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Abstract-This analysis uses the concept of mixed populations-that is, ones among whose 
members the probability of loss varies, either in its baseline value or in its response to an 
intervention. Losses from such heterogeneous populations will be skewed in a systematic manner; 
members with high loss probabilities will be disproportionately represented among early drop- 
outs. Similarly, such populations will respond to an intervention designed to postpone losses in a 
manner that reflects any differential in benefits afforded members at varying risk levels. 

Traditional assessments of interventions are systematically biased, for they fail to take adequate 
account of variability in risk among members of a population. A general methodology is devel- 
oped here for inferring the structure of a mixed population to the extent possible, for predicting 
accurately its response to an intervention and for extending existing models of mortality. The 
methodology is applied to data drawn from a number of health-related examples. For hernia 
recurrence, an outstanding fit is achieved when individuals at the 10th percentile are assigned 100 
times the 5-yr recurrence risk of those at the 90th percentile. A blood pressure control example 
shows that traditional assessments overstate mortality reductions at age 75 by 16%. Cross- 
population comparisons of life expectancy (by nation and by race) exhibit crossovers in remainmg 
life expectancy with increasing age. 

The mixed-population approach can be useful whenever there are heterogeneous populations 
with dropouts. Whether the populations at issue consist of college students, satisfactory housing 
units, reformed criminals or patients receiving hernia repairs, attention to the variability of risk 
among individuals will strengthen our understanding of the dynamic processes at work. thereby 
enhancing our predictive powers. 

THE PRIMARY objective of many health-promoting interventions, whether based in 

medicine, lifestyle or environment, is to postpone a morbid event. Most commonly, the 
critical event is death, but it may equally well be the onset or progression of any illness. 

Such an event can be defined as a loss from a population-that is, a cohort of people, 

usually but not necessarily of the same age and sex, for whose members the specified 
event has not yet occurred. Although this discussion focuses on issues related to health, 

the underlying analysis applies equally well to problems in such diverse fields as educa- 

tion (where the critical event might be dropping out of school), production (machine 
malfunction), rehabilitation of criminals (recidivism), demography (migration) or unem- 
ployment (getting a job). In formulating policy, it is often important to assess the benefits 
returning to alternative programs of health intervention. Our approach provides an 
objective and systematic method of predicting the way a population will respond to such 

programs. 
Numerous examples are developed here. Their purpose is not to report definitive 

medical findings-our restricted data sets and one- or two-factor hypotheses are too 
limited for that. Rather, our goal is to illustrate the widespread applicability of the 
mixed-population concept in medical contexts. 

*Dr. Shepard is Adjunct Research Associate, Kennedy School of Government and Lecturer, School of Public 
Health, Harvard University. Dr. Zeckhauser is Professor of Political Economy, Kennedy School of Govern- 
ment. 
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1. MIXED POPULATIONS 

If a population were homogeneous, assessments of alternative interventions should be 
rather straightforward, at least in principle. Homogeneity, however, is unlikely. Even 
individuals of the same age and sex differ on many dimensions that virtually affect health 
status. Our interest here, therefore, is in mixed populations, ones in which the probability 
of loss from the population varies among members of a cohort in either its initial value, 
its evolution over time or its response to an intervention. This analysis models losses 
from a mixed population, hoping thereby to provide improved predictive tools for policy 
analysts and decisionmakers, and an enhanced interpretative capability for those who 
wish to draw inferences from longitudinal data. 

In recent years, mixed-population models have been applied in a number of disciplines. 
According to a ‘mover-stayer’ model for labor market mobility, only a portion of the 
workers (the movers) are subject to job changes [l]. Extensions of this model allow a 
continuous distribution of workers’ rates of job change [2], and changes over time in an 
individual’s rate of mobility [3-51. In the biostatistics literature, regression models have 
been proposed for estimating times to failures of medical treatments according to charac- 
teristics of the subjects and their treatments [S, 71. We previously found mixed- 
population concepts useful for studying cohorts as diverse as recipients of kidney trans- 
plants or hernia repairs (who might suffer rejection or relapse) and automobile drivers 
(who might have accidents) [S, 91. This paper sets forth a systematic approach for 
examining interventions in mixed populations. Thus, it provides a means to assess the 
effects of policies designed to alter probabilities of dropping out of such populations. It 
describes the survival pattern with and without the intervention, suggests how the 
concept can be applied even though the underlying risk factors may be unobservable, 
indicates the biases if heterogeneity is not recognized, illustrates the diversity of situ- 
ations for which the concept is useful and presents policy implications for a sample of 
health’ programs. 

A. Competing risk models 

Predicting the response of a mixed population to an intervention is closely related to 
the classic demographic problem of analyzing competing causes of death. There the 
objective is to assess the impact of adding, deleting or altering one of a number of causes 
of death. Most efforts to model this problem start with an admittedly naive assumption: 
within a given age-sex group, the competing causes of death act independently. This 
assumption permits ready computation of the gains in life expectancy to be reaped, 
say, by eliminating cardiovascular death [lo] or different types of cancer [ll]. Post- 
intervention mortality rates are estimated by removing the age-specific mortalities due to 
the causes met by the intervention. 

Empirical evidence shows the independence assumption to be invalid for many appli- 
cations. Examining mortality rates in Massachusetts, Jenkins et al. [123 find that regions 
where mortality rates for one cause of death are higher than expected on the basis of age 
and sex tend to have higher standardized rates for a number of other causes as well. 
Jenkins et a[. [12] suggest that common factors-environment, lifestyle or inadequate 
medical care-simultaneously raise a number of risks. Influenza epidemics seem to raise 
cancer death-rates, as they weaken cancer victims [13]. States and countries with high 
rates of breast cancer tend to have high rates of colorectal cancer. Cultural and dietary 
influences (such as high intakes of beef) may be common to both diseases [14]. Indivi- 
duals who have contracted one type of cancer appear to face one-and-a-half to two times 
the expected risk of certain other primary cancers [15,16]. Part of this risk is attributable 
to genetic or environmental predispositions, although often the specific factor(s) has not 
been identified. 

Although the need to recognize interdependence among competing death causes has 
long been recognized [17], models to include such dependencies have been limited [18]. 
These dependencies have been formalized, for example, by assuming that potential sur- 
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viva1 times until death due to competing causes (also termed multiple decrements) follow 
some joint probability function of a specified parametric form [19,20], or derive from 
some common factor [21]. Because these models seek to estimate a survival distribution 
from known data on numbers, times and causes of death, they are not well adapted to 
use epidemiological findings to estimate the effect of changes in risk factors or exposures 
or partial elimination of certain causes of death. Furthermore, models that integrate 
increasing mortality with age in a realistic pattern tend to be cumbersome. 

Although they are not often identified as such, two types of interdependencies, age and 
sex, are commonly incorporated into competing risk models. Epidemiologists know that 
most risks of death vary significantly with age, and many vary with sex as well. An 
elevated risk of death due to cancer is associated with an elevated risk from stroke 
because both are associated with age. Similarly, death due to coronary heart disease is 
associated with death due to motor vehicle accidents because both causes represent 
greater risks in males than in females. 

Estimates of the potential benefit of an intervention that could eliminate cardio- 
vascular-renal disease provide a dramatic illustration of the importance of modeling the 
dependence of risk on age. If one assumed that age (and other possible interdependen- 
ties) were unimportant, then in the absence of cardiovascular-renal disease, the long-run 
crude death-rate would be simply the rate from all other causes. Using 1960 data for 
white males as an example, this rate was 67/10,000 man-years. Life expectancy would be 
the reciprocal of this death-rate, or 149 yr. This estimate, though impressive, is absurd: it 
ignores the fact that persons dying of cardiovascular disease tend to be older than those 
still alive, and thus faced an increased risk of death from other causes. Eliminating one 
cause of death would increase the crude death-rates from other causes, because the 
population as a whole would be older. (This effect is termed the Taeuber paradox [22].) 
Using the same data, and appropriately considering the factor of age, Chiang [23] 
calculated that eliminating cardiovascular disease would increase life expectancy from 
67.3 to 79.0 yr. 

Heterogeneity of risk has been shown to explain the shape of certain relative survival 
curves [24]. Relative survival at some number (x) years is the ratio of the proportion of 
persons with a given disease surviving for x yr to the proportion of a comparison group 
(generally matched for age and sex) surviving for the same number of years. After an 
expected steep decline, relative survival for women with cancer of the colon and small 
intestine flattens and begins to rise around the fifth year, indicating that the current 
mortality rate among these cancer cases has dropped below that of the comparison 
group. The rise in relative survival can be explained by the variation in risk among colon 
and intestinal cancer cases. The patients who die within 5 yr are likely to be those at 
highest risk (in terms of age or other factors). Survivors after 5 yr tend to be predomi- 
nantly low-risk patients. This selection effect explains why the overall prognosis for 5-yr 
survivors of colon and intestinal cancer may (and, in fact, does) turn out to be better than 
that of a comparison group. 

An innovative paper by Park and Lees [25] in 1951 indicated that consideration of 
heterogeneity can lead to an appraisal of clinical therapies very different from the con- 
ventional wisdom. They contended that early treatment for breast cancer at that time 
was virtually ineffective, because the apparently better prognosis of cases identified when 
the tumor was small was only a spurious association. They reasoned that there was 
heterogeneity in the rate of growth of malignant tumors of the breast. Those diagnosed 
early were more likely to be slower growing and inherently less prone to metastasize, 
More recently, Fox [26] has shown that heterogeneity in the case fatality rate of breast 
cancer cases combined with a greater proportion of less virulent cases receiving treat- 
ment could explain why the case fatality rate for breast cancer has declined while the 

population mortality rate has remained constant over recent decades. 

B. Mixed population models, a disaggregation approach 

Our model of mixed populations extends the principle of disaggregation inherent in 
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TABLE 1. FIRST RECURRENCE AFTER HERNIORRHAPHY 

Interval 
after surgery 

br) 

Proportion of 
survivors free of 

recurrence at end 
of interval* 

Rate of first 
recurrence during interval? 

Cl l-0.1 X 0.30 = 0.970 30.0 
l-5 l-0.1 x 0.65 = 0.935 9.1 
5-10 l-0.1 x 0.81 = 0.919 3.4 

*This value is computed in the table as 1 - (proportion of patients eventually 
suffering recurrences) x (cumulative proportion of recurrences up to the end of 
this interval). Data derived from Neuhauser [27]. 

tRecurrences per 1000 person-years among persons still free of recurrence. 

sex and age classification to stratification on other variables such as smoking habits or 
blood pressure characteristics. The principle is the same: among persons with a given set 
of characteristics, the risks of death due to competing causes can be modelled on the 
assumption of independence. If these risks prove not to be independent, generally the 
characteristics can be stratified further until independence is achieved, or until dependen- 
cies fall to levels that are below practical importance. In general, the risks of death will 
differ among the strata of this mixed population. If only one type of risk is being 
examined, it is only necessary to continue stratifying until that particular risk achieves 
independence from other risks of death; the other risks may continue to be interdepen- 
dent. (Computational complexity could interfere with this process, as could hard-to- 
separate dependencies between highly correlated risks.) 

Mixed-population models are mathematically tractable. Results for a homogeneous 
population within which risks are independent can be applied directly to each stratum. 
Corresponding results for the aggregate population can be obtained by summing or 
integrating, in the continuous case, over the strata. 

C. Inferring the presence of a mixed population-hernia recurrence example 

Losses from a mixed population will be skewed in a systematic manner: members with 
continuing high probabilities of loss will obviously be included disproportionately 
among early losses. An example from the field of surgery provides an intuitive feel for the 
change over time in the composition of a mixed population. A hernia can be repaired 
through a surgical operation called herniorrhaphy. If the abdominal tissues rupture and 
allow the intestine to protrude again, the hernia is said to recur. Neuhauser [27] has 
summarized data from several studies of recurrences after first herniorrhaphy represent- 
ing roughly 600 cases; freedom from recurrence is measured from the herniorrhaphy. 
From his summary, we computed the proportion of patients free of recurrence at the end 
of I-, 5, and lo-yr intervals, as shown in Table 1. The population under study was all 
individuals still free of recurrence. This is a first-failure analysis, with hernia recurrence 
analogous to death in more traditional demographic studies. 

Heterogeneity of patients with respect to their per-period probability of recurrence 
offers a simple and consistent explanation for the observed pattern. To estimate the 
first-recurrence rate in each time interval, we look at the ratio of survivor proportions at 
the beginning and end. Thus, for the interval years one to five, the calculation is: 

Annual rate = 1 - (0.935/0.970)“4 = 0.0091. 

These rates decline with increasing length of time after surgery-the result that would 
have been predicted by a model with heterogeneous recurrence probabilities.* 

*Chance is unlikely to be the explanation for the decline in recurrence rates; given constant recurrence 
probabilities, there is less than one chance in 1000 that departures of this magnitude would be observed. We 
might think that the probability of recurrence for each patient falls over time as tissues heal and strengthen 
after surgery. Our surgical colleagues suggest that this explanation is unlikely after the initial weeks of healing. 
At first, sutures provide protection; then scar tissue forms and the wound gains maximum strength within a 
few weeks, not a few years. 
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TABLE 2. DEMONSTRATIONOFDECLINING RECURRENCERATES IN A POPULATION WITH TWO RISK 

GROUPS 

Interval 
after 

surgery 

(yrl 

Number of patients free oC recurrences 
at end of interval Rate of 

Low-rate group High-rate group first recurrence 

Wl/yrf (0.25/yrl Total during interval* 

0 loo loo 200 Not applicable 
O-1 99 75 174 130 
I-5 95 24 119 91 
5510 90 6 96 42 

*Recurrences per 1000 person-years among persons still free of recurrence. 

The most basic model-deliberately simplified to highlight the qualitative character- 
istics of heterogeneity-posits two types of patients receiving herniorrhaphy, dis- 
tinguished by their probability of a first recurrence in any given year. (This structure is 
equivalent to a discrete form of the ‘mover-stayer’ model [2].) Patients in the low-rate 
group have a 0.01 chance of having a recurrence in any given year. High-rate group 
patients have a 0.25 chance. (For this analysis we will ignore the possibility of death; as 
noted earlier, it could be incorporated using models of competing risk [23].) Consider a 
population consisting of 100 individuals of each type. After 1 yr, the number of patients 
in the low-rate group still free of recurrences is 100 x (1 - 0.01) = 99. In the high-rate 
group, 100 x (1 - 0.25) = 75 have escaped a recurrence. The recurrence rate during the 
initial year is 1 - (99 + 75)/200 = 130/1OOO/year. For the 4-yr period. l-5 yr after sur- 
gery, the comparable annual rate is 1 - (119/174)“4 = 91/1000. 

The data and rates in Table 2 have the qualitative characteristics that Neuhauser 
observes. 

In our applications section, we extend this analysis using a gamma distribution to 
define a continuous spectrum of annual recurrence rates across the population.* This 
recurrence example reveals the potential magnitude of heterogeneity within a population 
in one instance, and shows the way its existence could be inferred and estimated. 

If this model is construed more broadly as one in which individuals have varying risks 
of dropping out of the population, then it offers a qualitative result that has widespread 
application. Any such population will ‘improve’ itself as it differentially eliminates indivi- 
duals at high risk. The greater the absolute level of risk and the more substantial the 
variation in probabilities among risk groups, the more noticeable will be this selection 
process, hence the more rapid the ‘improvement’ of the population. This property has 
made mixed-population models useful in analyzing migration [4], labor mobility [28] 
and reliability [29]. 

D. Interventions in mixed populations 

One of our primary interests here is to estimate the benefits of interventions intended 
to lower the dropout rate, when applied to mixed populations. Phenomena related to the 
selective survival pattern just noted play a significant role whenever there is a relation- 
ship between the benefits an individual receives from the intervention and his preinter- 
vention risk. Commonly, such an intervention offers its greatest benefits to those who are 
at highest risk.? If a tutorial program instituted to prevent freshmen from flunking out 
from college is, as we would expect, most beneficial to those whose probabilities of 
flunking were greatest, the sophomores next year will have a greater proportion of 

*The distributions must be written in terms of instantaneous recurrence rates. sometimes called ‘hazard rates’. 
The observed annual rate of recurrences, q, will be related to the hazard rate, p, by y = I - e-“. The more 
familiar term ‘force of mortality’ is the corresponding instantaneous mortality rate. 

f The opposite situation could apply. Airline safety measures, for example. provide benefits to passengers who 
are substantially wealthier and somewhat healthier than the average citizen. and probably at lower risk of 
death than the average for their age. 
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‘previously endangered’ students. If there is a correlation between risks in freshmen and 
sophomore years, the survivors will be on average a weaker group. Hence, there will be a 
greater proportion of sophomores flunking. The intervention will prove to have offered 
less benefit than might have been inferred from a nai’ve headcount of successful passing 
freshmen. 

We have observed the phenomenon of an intervention weakening a population in a 
simulation of the effects of various motor vehicle safety programs [S, 303. We found that 
air bags would have a qualitatively similar effect on the composition of the driving 
population. Since air bags reduce the fatality rate of motor vehicle accidents, they differ- 
entially benefit heavy drinkers. If heavy drinkers have an accident rate 10 times normal, 
air bags would increase their share of the male population from a presumed 2.6 to 2.8%. 
The change is slight, since motor vehicle accidents account for less than 3% of deaths. 

The benefits of an intervention that lowers risk in the short run may in part be offset 
by a worsening of the population at risk in the future. Traditional assessments, generally 
overlooking this factor, will overestimate the benefits of many health-promoting inter- 
ventions. The more an intervention concentrates benefits in a subgroup at continuing 
high risk, the more distorted will be a traditional assessment. At an extreme, we con- 
structed a hypothetical example in which all motor vehicle fatalities are attributed to a 
tiny group of extremely reckless drivers. We assumed that air bags would cut the fatality 
rate of accidents in half. A traditional assessment would suggest that air bags could 
increase life expectancy by 0.3 yr; but if the increasing prevalence of reckless drivers is 
recognized, the gain would be calculated as only one tenth as large. 

2. PROCEDURES FOR ASSESSING SURVIVAL CHANGES 

FROM INTERVENTIONS 

We wish to examine the performance of interventions, such as medical procedures or 
safety measures, in reducing probabilities for the event, ‘loss from a population’. Usually, 
we shall focus on an intervention first applied at a particular chronological time to 
individuals of a specified age and sex. The loss from the population may represent an 
actual death, or merely the onset of some illness or condition. 

We employ a risk model to provide a mathematical statement of the probability of 
experiencing some event in an interval of time. Risk will be a function of background 
variables such as age, smoking habits and time, as well as the policy intervention. An 
intervention is a program intended to affect risk. The baseline situation is also referred to 
as an intervention. A risk group is a homogeneous stratum within a population; its 
surviving members of the same age bear identical risks. Risk group categories are 
mutually exclusive and exhaustive. 

A. The standardized assessment-the recommended procedure 

Classification of the population into homogeneous risk groups will enable us to com- 
pute unbiased assessments of the performance of an intervention. The recommended 
procedure comprises five steps: 

(i) Divide the population into homogeneous strata. In principle, any number of strata 
are possible on any number of stratification variables (e.g. age, sex, blood pressure.) 
Stratification variables may be qualitative or quantitative; the latter may be discrete 
or continuous.* In practice, two discrete strata often suffice to capture much of the 
variability in a mixed population. 

(ii) Indicate the prevalence of each stratum in the population at the age the interven- 
tion would begin, i.e. its proportion of the initial age cohort. 

*Thus, with continuous variables, the number of strata is infinite. In the analysis that follows, however, only 
one continuous variable besides age will be considered at a time. Stratification in our model bears an analogy 
to the subdivision of disease states in a Markov model. This subdivision, based on differences in prognosis, has 
been applied to distinguish dialysis patients in their first year from those in subsequent years [31], and heart 
attack patients according to the presence of a previous attack [32]. 
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(iii) Estimate the age-specific loss rate (mortality) from the population in each stratum 
with or without each intervention at each age. 

(iv) Compute the outcome measure(s) of interest (such as life expectancy, survival to 
particular ages or duration of freedom from disease) separately for individual strata. 

(v) Compute the overall outcome measure for the population by averaging the 
measures for the strata according to the relative sizes of the strata. (Within a hom- 
ogenous population there is only one stratum; steps (3) and (4) are sufficient to compute 
outcome measures.) 

Classification into risk strata can be a sophisticated process. The crux is judging when 
classification has proceeded far enough to achieve sufficient homogeneity within risk 
groups, in the sense that within a single risk stratum and age, all members derive nearly 
the same expected benefits from a proposed intervention. A refined stratification may 
prove difficult if, beyond obvious variables such as blood pressure and smoking status, 
there is insufficient evidence to indicate which classifying variables are important. 

Stratification variables might be single medical variables or multivariate risk scores 
which modify the effect of a proposed intervention [333. They might also include lifestyle 
characteristics, such as smoking and drinking habits. Socio-economic variables are often 
helpful proxies for both environmental and lifestyle variables. For example, cervical 
cancer has a higher incidence among women living in less hygienic conditions 1341. 
These are all observable variables. 

Many factors that determine future mortality risks may be unobserved [35,36]. Some 
may become evident as further events unfold; others may never come to view, though 
their presence might be inferred through statistical experiments. In assessing the gains 
from an intervention over time, unobserved factors are as important as those that can be 
identified and must be taken into account when individuals are classified into risk cate- 
gories. Frequently this will be done on an ad hoc basis. For example, if it is known that 
among individuals with common background variables, some confront substantially 
higher cardiac risk than others, one might use an additional classification variable with 
two categories: high cardiac risk and normal cardiac risk [36]. When a population is 
characterized by an unobserved risk factor, we cannot estimate the risk for an individual. 
Often we can, however, infer the statistical distribution and evolution of risks for the 
population as a whole. This distribution is sufficient for a standardized assessment. 

Although our proposed procedure of classifying the population into risk groups may 
prove difficult in any particular circumstance, it has the redeeming virtue, as we shall 
shortly show, of avoiding systematic biases inherent in traditional modes of assessment. 
Three paradigms-the simple extrapolation, the traditional assessment and the standard- 
ized assessment-will help us make our points precisely. 

B. The simple extrapolation-without longitudinal data 

The simplest estimate of the benefit of an intervention-what we refer to as the simple 
extrapolation-assumes the population is homogeneous and the loss rate for each indivi- 
dual is constant over time. Under this assumption, the aggregate population will have a 
constant loss rate equal to the initially observed loss rate. In the example of hernia 
recurrences discussed above, the proportion of the population free of recurrence at 10 yr, 
given a first-year rate of 30/1000 persons, would be calculated as (1 - 0.030)10 = 0.74. 
Because the actual rates of recurrence decline, as shown in Table 1, the true proportion is 
0.919. Even in the absence of an intervention, the simple extrapolation may be a poor 
predictor of survival over time. 

C. The traditional assessment-with longitudinal data available 

Epidemiological data like those in Table 1 often reveal that rates of death or other 
losses vary over time. In such cases, the simple extrapolations described above are clearly 
inadequate to describe survival even under the baseline intervention. Many careful inves- 
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tigators then use what we call a ‘traditional assessment’, which posits a pattern of losses 
for the baseline intervention that varies with age or time according to some empirically 
observed pattern (e.g. mortality rates from some standard life table) or according to some 
statistical model. Losses or deaths under the active intervention are assumed to follow 
the same age and time patterns, but to reflect an additional intervention effect as well. 
While risk groups are not recognized explicitly, the adjustments for age and time impli- 
citly allow for the changes in the mixture of risk groups over time in a manner compar- 
able with the standardized assessment. We define these procedures more rigorously in the 
next section. 

A traditional assessment of the benefits of an intervention starts by computing age- 
specific mortality (loss rates from the population) in the presence of the intervention, 
assuming that the current population mix at each age is maintained. This assessment 
computes survival, life expectancy or some other output measure employing these new 
mortality rates. A traditional assessment, in other words, implicitly assumes that the preva- 
lence of diferent risk groups at future times with the active intervention will be the same as 
it would have been under the baseline intervention. 

To our knowledge, all the published calculations on the benefits of removing some 
particular cause of death are traditional assessments: they assume the risks of other 
causes remain unchanged, which is equivalent to assuming that the persons who bene- 
fited from the removal of one cause of death were at average risk for their age and sex 
from other causes. 

The assumption that an intervention will not change prevalence rates strikes us as 
highly unrealistic for most circumstances. In an example we have developed at length 
elsewhere, we showed that the continued availability of a mobile cardiac care unit in a 
community will increase from 12 to 15% the proportion of men alive at age 75 who have 
had a previous heart attack [8]. This represents an increase in the prevalence of a group 
at high risk for future cardiac events, and no doubt other conditions as well. A beneficial 
intervention thus provides the greatest absolute benefit to those groups at highest risk, 
and may have the long-term effect of increasing the prevalence of high-risk persons. 
Traditional assessments, overlooking this factor which offsets short-term benefits, will 
overestimate the value of such an intervention. 

D. Formal concepts for assessing interventions 

Consider a mixed population where the subscript i denotes interventions and j indexes 
risk groups. The initial prevalence or proportion of risk group j at the initial age is rP 
The hazard rate, /+j, also referred to as the incidence density or loss rate, is the instan- 
taneous probability of the dropout event per unit time. When the event is death, pij is 
called the force of mortality. 

The survivalfunction gives the probability of surviving from the initial age, at which the 
model begins, to some specified age, under a given intervention. If we let pi,(x) denote the 
hazard rate, then survival to age x will be: 

lij(X) = exp[ -S,: aii(r)dtJ [37]. (1) 

Notice that at x = 0, lij = 1. The mixed-population’s 
ii.(x), is a weighted average of lij(X): 

ii.(X) = C rjlij(X). 
j 

survival at age x, denoted by 

(2) 

The prevalence, or proportion of survivors, of risk category j under intervention i at age 
X, rij(X), is: 

lijtx) rij(x) = rj __ 
ii.(X) ’ 

The overall hazard rate under intervention i at age x, mi(x), is a weighted average of the 
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hazard rates for the individual risk groups weighted by their respective prevalences; 
that is: 

(3) 

If this rate is small, it will closely approximate the ratio of expected events (e.g. death or 
recurrences) at age x to the population attaining that age. 

The three outcome measures of a health intervention that are most commonly 
employed are change in survival for a specified interval, say 5 yr; change in the mortality 
rate at a given age; and change in life expectancy. In some circumstances, alternative 
measures may be appropriate, such as period of freedom from a disease, expected time 
until relapse or ‘quality-adjusted life years’ (QALYs). In what follows, let i = 1 denote the 
baseline intervention of carrying on as usual, and let i = 2 denote the new program or 
intervention whose benefits are to be computed. 

The three outcome measures can be written formally using the terminology defined 
above. For survival over a specified interval, suppose that the interval begins at age 0 and 
ends at age x.* Then the increase in survival is: 

12.(x) - II.(X). 

The change in mortality at some arbitrary age x is: 

m2W - w(x). 

(A beneficial intervention will reduce mortality and yield a negative difference above.) 
The life expectancy of the mixed population under intervention can be represented as a 
weighted average of the life expectancies of the risk groups under that intervention, or as: 

1 
ti. = 

s 
Ii. (x)dx.t 

0 

The increase in life expectancy from an intervention is thus: 

62. -&i.. 

E. Comparison of traditional and standardized assessments 

Our standardized assessment stratifies the population into subgroups homogeneous 
with respect to risk of the event under study. A ‘traditional assessment’, by contrast, 
treats a population aas a single group, all of whose members are presumed subject to the 
same risks. This section formalizes the definition of a traditional assessment in terms of 
the concepts outlined above, and compares traditional and standardized assessments. 

1. Formalized dejnition of the traditional assessment. In a traditional assessment, 
unrecognized substrata are implicitly weighted by their prevalence under the baseline 
intervention. The prevalence of risk stratum j at age x under the baseline intervention is 
r,j(x) defined by equation (3), so the aggregate risk under the traditional assessment for 
the baseline intervention is: 

2. Bias in a traditional assessment of an intervention. For the baseline intervention, the 
weighting under the traditional assessment is the same as for the standardized assess- 
ment. Therefore, the estimate of risk, and all measures that derive from it, will be 
identical for both assessments. The difference arises under the innovative treatment. 

*We may interpret age zero as the initial age for our analysis. the age from which the proposed intervention is 
being modeled. This origin need not be birth; its designation as age zero is simply a matter of convenience, 

tRemaining life expectancy is usually defined as the expected number of years until death: 

s 

II 
.~l’i,(.~)I,,(.u)d.~. 

0 

Integrating by parts and using the fact that I,,(m) = G gives the more convenient formula in the text 
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Failing to recognize the existence of substrata, the traditional assessment continues to 
weight by the same relative prevalences as under the baseline intervention. Thus, it 
estimates risk at age x under the active treatment (treatment 2) as: 

N21x) = C rlj(X)p*j(X). 
j 

This expression differs from that for the standardized assessment because different-and 
incorrect-prevalence rates have been used. The inaccurate survival function derived 
from the traditional assessment is: 

l&(x) = exp[ -1: m;(r)dr]. 

We are interested in the difference between a traditional and a standardized assessment. 
We term this difference Am(x) at age x and define it by: 

Am(x) = mz(x) - m;(x). (4) 

A positive difference means that true mortality is higher than the traditional estimate, 
and that the benefit of an intervention has been overstated. 

3. D~rectiun and unitize of bias. Only under special circumstances, when one of two 
particular conditions is satisfied, will the traditional and standardized assessments be 
identical, i.e. will Am(x) be zero. Those conditions are: 

(i) The innovative treatment lowers risk by the same constant amount in each risk 
group. In other words, uZj(x) - u,j(X) is constant for all risk groups j at all ages x. This 
means that the division into risk groups is irrelevant with respect to the intervention. 
Conceivably this condition might apply for reductions in death risks related to nuclear 
wars. 

(ii) The intervention reduces all risks to the same level. That is, Uzj(X) is constant for 
all risk groups j and for all ages x less than some designated X. This condition would 
apply if existing differences in risk were due to a single factor which was eliminated by 
the intervention. Such an intervention, for instance, might be a vaccine against an infec- 
tious disease for which sus~ptibility and fatality are uncorrelated with other risks. 

Except in these special cases, the traditional assessment will give a biased mortality 
estimate. The bias will be indicated by a nonzero value for Am(x). To help define its sign 
and magnitude, we define comparative survival gain as: 

gi(x)+_!Z 
2 It.’ 

Thus, gj measures the gain in survival to group j relative to the overall gain in survival 
from treatment. It is highest (and positive) for the risk group that gains most, and lowest 
(and negative) for the group that gains the least from treatment. An important result, 
which we prove elsewhere [30,36], is that this mortality difference has the simple 
expression : 

Am(x) = covariance l&,(x), gj(x)]. (5) 

Here the products and means in the covariance are weighted according to rjg the pre- 
valence at the starting age. An equivalent expression that writes Am(x) as a weighted 
crossproduct of p&x) and gxx) is:* 

Am(x) = 1 rjFzj(x)gj(x)* 
j 

If an intervention benefits groups at high risk most, then the covariance pairs larger 
values of gj with larger values of p(x), so the covariance is positive. (The covariance 
always has the same sign as a correlation coefficient.) Thus, the bias is positivethe 

*These expressions are equivalent because g&c) has a mean of zero when weighted by rj. 
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standardized mortality is higher than the mortality computed using the traditional 
assessment. The direction of bias can be summarized as follows: 

of an intervention is more beneficial to the high-risk group, in the sense that the amount 
that it subtracts from the mortality force of high-risk persons is more than it subtracts 

fro~l the force for how-risk persons, then the traditional method will overesti~te the 
bene$t of the intervention.* 

In other words, the traditional method will compute mortality rates under the interven- 
tion that are too low, and estimates of life expectancy or effective life expectancy that are 
too high. 

The simple extrapolation suffers from the same direction of bias as the traditional 
assessment, and the magnitude of bias may be much greater. Starting with the baseline 
data of our hernia-recurrence example, assume that there was an intervention that cut 
each individual’s per period loss probability by SO’/& and employ as a benefits measure 
the increase in the number of patients not having a recurrence within 10 yr. The simple 
extrapolation, mistakenly assuming that loss rates would stay constant into the future, 
would estimate that with the intervention 86.0% would survive in contrast to 73.796 
without it, or a gain of 12.3 percentage points. For the traditional assessment, the figures 
would be 96.7, 91.9 and 4.8%. The correctly computed standardized assessment would 
give 93.5, 91.9 and 1.6%. The simple extrapolation produces by far the greater bias, as it 
always will with constant loss rates. (Keyfitz and Littman [38] analyze further the bias of 
the simple extrapolation in mortality studies.) In what follows, we shall restrict our 
attention to traditional and standardized assessments. 

Most familiar interventions confer the greatest benefit on high-risk persons. Auto- 
mobile safety measures do more for the accident-prone than for others. The elimination 
of cardiovascular-renal disease would lower mortality more among older persons than 
younger ones. 

4. Bias over time. Note from the expressions for Am(x) that the magnitude of the bias 
will be time-dependent. Interestingly enough, the bias is greatest at intermediate time 
intervals. At time zero, there is no bias, for there has been no opportunity for selective 
mortality to affect the composition of the population. That is, gj(x) is zero since all 
survival functions, 1, are unity. Naive extrapolations of benefits from an intervention after 
a long period of time would not be biased, since, with or without the intervention, 
virtually all survivors are by then low-risk individuals. For intermediate time intervals, 
where selective survival bias operates, but low-risk individuals are not overwhelmingly 
predominant, the bias will be greatest. The next section presents a numerical example 
where, as expected, bias is greatest for intermediate time periods.+ 

5. Bias under two widely used models of mortality. The multiplicative model is sometimes 
termed a model of preventive or etiological independence, since the effects of the inter- 
vention are assumed to be independent of other determinants of risk. The model states 
that for every risk category and at every age, risk under the active intervention is a 
constant multiple of baseline risk. In epidemiology and biostatistics, the constant mul- 
tiple is termed the risk ratio; in life insurance, it is called the loading factor. Cox’s [6] 
widely used regression model for analysis of failure times is a generalization of the 
multiplicative model. As the multiplicative model can also be written as: 

where h(x) is a function of age, and X, fli and yj are parameters, it is also termed the 
exponential hazard model. 

The logistic model, applied extensively in cardiovascular epidemiology, assumes that 

*The format proof of the sign of this bias requires that there be no age for which the tow-risk group benefits 
more, Specific numerical computations would be required to determine the direction of bias when sometimes 
those at high risk benefit more, other times those at low risk. 

tThis discussion was based on discrete risk groups, With continuous risk groups, other patterns are possible; 
for example, the relative bias may increase asymptotically with time, Bias will always be zero at time zero. 
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the probability of an event during a unit interval of time, qij, is a logistic function of 
intervention, risk group and age [33]. In contrast to the multiplicative model, which 
applies a constant factor to the instantaneous probability of death, the logistic model 
applies a constant factor, called the odds ratio, to the odds of death in a discrete time 
interval. The two models are practically identical except when risks during the interval 
are very high (above 0.1). For each of these two models of risk, the covariance in (5) 
above is positive [36]. Whichever model is used, traditional assessments of mortality 
under other than baseline conditions will be biased downwards. Benefits of useful inter- 
ventions will be overstated. 

F. Numerical examples of bias 

1. Compliance with medical therapies. A simple example shows the bias inherent in 
traditional estimation methods. The higher the rate of dropping out (analogous to rates 
of mortality in traditional population studies), the more pronounced the effect. Problems 
involving compliance with medical therapies provide compelling examples in which loss 
rates are substantial within the time frame of most studies, 

Haynes and Taylor’s [39] review of the compliance literature found that compliance 
rates for medical treatments initiated by providers are of the order of 50% after 1 yr. The 
review identified only a few factors consistently predictive of compliance, such as a 
patient’s belief about the seriousness of the condition to be avoided and the effectiveness 
of the recommended preventive action. Assume that an index of these factors is employed 
to divide the population into two groups. Under baseline conditions, the ‘believers’ 
(j = 1) have an incidence density (or hazard rate) of 02/personyear. The ‘non-believers’ 
(j = 2) are much more likely to drop out of the ~pulation; indeed their hazard rate is 
l.O/person-year, five times as high. Initially, half the population is in each category. 

An intervention designed to reduce drop out rates is brought to the population. It 
might consist of telephone contacts, or payments for compliance. The intervention is 
expected to cut drop-out rates in half to 0.10 and O.SO/person-year, respectively. Rates for 
survival in treatment at 1 yr are lowered from 0.59 under baseline conditions to 0.76 with 
the intervention. These magnitude are consistent with the literature. 

We now use our equations to calculate survival, prevalence and loss rates at 3 yr. The 
upper part of Table 3 shows the prevalence of the two risk groups under alternative 
treatment conditions. Under baseline conditions, the annual’loss~rate at 3 yr, mi(3), is 
0.26 (0.92 x 0.2 + 0.08 x 1.0). The intervention lowers this mortality to m2(3), 0.19, 
according to the standardized assessment (0.77 x 0.1 + 0.23 x 0.5). However, the 
traditional assessment would use the old weights, and compute a mortality of r&,(3), 0.13 
(0.92 x 0.1 -I- 0.08 x 0.5). The traditional assessment is 31% too optimistic. The 
traditional assessment fails to note that the intervention enriches the mix of nonbelievers 
among the survivors. A good indication of the way the selection effect dilutes the benefit 
of the intervention is the fact that the aggregate loss rate at 3 yr, appropriately measured, 
is only 28% below the initial loss rate, despite the fact that the intervention initially cut 
the loss rate by one half, and the loss rate for a surviving member of either group has 
been cut by one half. 

TABLE 3. EFFECTS OF HYPOTHETICAL INTERVENTION TO BOOST COMPLIANCE 

Characteristic 
Baseline 

intervention 

Active intervention 
Traditional Standardized 
assessment assessment 

Prevalence at end of third year 
Believers, ~~~(3) 
Non-believers, r,,(3) 

0.92 0.92 0.77 
0.08 0.08 0.23 

Rates for combined group 
Dropout rate after 3 yr, mi.(3) 0.26 0.13 0.19 
Survival to third year, fi (3) 0.30 0.55 0.48 
Mean survival si. 3.00 7.42 6.00 
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The time pattern of bias exhibits the properties discussed in the previous section. For 
extremely short periods, selection will not yet have operated. For very long periods, 
selection will no longer be relevant because virtually all survivors will be believers. At 
these extremes, there will be no bias. For intermediate periods, the selection effect 
strongly offsets the benefits of the intervention. Computations with equation (4) reveal 
that the bias as a percentage of the true value reaches a maximum at 3.5 yr. Traditionally 
estimated losses will be O.l23/yr; true losses will be O.l79/yr, an error of 31.4%. 

TABLE 4. GAIN IN LIFE EXPECTANCY IN YEARS FROM HYPOTHETICAL 

TREATMENT CONSIDERING SINGLE RISK FACTOR, AND PERCENTAGE 

OVERESTIMATION IF RISK FACTOR IS IGNORED 

Odds 
ratio for 

treatment 

1.2 
0 1 0 
1.6 
0 I 0 
2.0 
0 / 0 

4.0 
0, 0 

10.0 
“I 0 

1.2 

2.13 
0.4 

7.02 
0.4 

10.25 
0.5 

18.99 
0.7 

29.98 
1.3 

Odds ratio for risk indicator 
1.6 2.0 4.0 

2.69 2.36 2.36 
2.4 5.1 18.3 

6.93 6.81 6.14 
2.7 5.7 19.8 

10.14 9.98 9.10 
3.0 6.3 20.8 

18.92 18.79 17.82 
4.3 8.2 23.1 

27.02 27.06 26.81 
6.1 10.6 20.4 

10.0 

1.90 
42.5 

4.95 
44.8 

7.34 
45.9 

14.92 
45.8 

24.45 
41.5 

2. Effects of risk factors. Our second example concerns loss rates that increase with 
time, a pattern observed for mortality rates above age 30. We employ the logistic model 
in one of its traditional areas of application to model the survival of a population with 
multiple risk indicators. The presence or absence of the intervention enters the mortality 
equation in a manner parallel to other risk factors and age. 

Since any number of potential risk factors could function as confounding variables, a 
researcher must inevitably exercise judgment in choosing which factors to include and in 
estimating the magnitude of possible bias from variables excluded. To assist in these 
decisions, Table 4 shows the correctly computed gain in life expectancy for various 
hypothetical treatments with one additional binary risk factor. The initial prevalences of 
the high- and low-risk categories are 50%. The calculations assume that there are con- 
stant odds ratios relating to differences in risk category and treatment. An odds ratio of 
two for treatment, for example, would suggest that an individual in any risk category 
who did not receive the treatment would have a probability of dying within a year two 
times greater than if he did. Table 4 assumes that mortality rates can be represented by a 
three-variable logistic model similar to the multivariate logistic models estimated in the 
Framingham Study [40] and the Pooling Project [41]. The three-variable model gives 
the probability of death in a year as: 

qij = l/(1 + expj -[A + BX - C(i - 1) + D(j - l)]}), (6) 

where .x denotes age, i treatment group (with i = 1 being untreated) and j risk factor 
(with j = 2 being high risk). The coefficients, C, is a measure of the strength of the 
treatment, in terms of the natural logarithm of its odds ratio. Similarly, the coefficient, D, 
describes the risk factor in terms of the logarithm of its odds ratio. The only effects of age 
on the intervention or risk factors are represented by an additive term in years of age. 
The age coefficient, B, was set at 0.037931, its value as determined from a Framingham 
multiple-risk-factor equation. The constant, A, was set so that the annual mortality in the 
untreated group at age 50, ml(xo), would equal 0.00894, the rate published in a life table 
best representing the Framingham population (white males in the New England census 
division) [42]. Thus, A is constant within each column, but decreases as we move to the 
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right. The percentage below each entry in Table 4 shows the amount by which the gain in 
life expectancy would be overstated if the risk factor were not considered.* 

Elsewhere, we have extended the techniques for modeling mixed populations to deal 
with changing loss rates over time (using the Gompertz function to capture increasing 
mortality with age) and to allow for continuous distribution of risk groups. Many risk 
factors are continuous-physiological factors, such as blood pressure; environmental 
exposures, such as pollution concentrations; and unhealthy lifestyles, such as physical 
inactivity. A rich and manageable family of mathematical models based on gamma 
distributions enables us to break down observed loss rates in a population into hetero- 
geneity effects, which lower observed rates for a population over time, and individual loss 
rates, which evolve with time in a variety of systematic manners. In these more complex 
models, the relative error in mortality from traditional assessments is roughly propor- 
tional to: the number of years since the intervention was first applied, the relative 
benefit of treatment and the variance in risk divided by the initial risk assuming no 
intervention [43]. 

Still further generalizations may be appropriate. The assumption that an individual 
always remains in the same risk group could be relaxed [3], allowing for changes in 
underlying risk based on random disturbances or past experience. Alternative functional 
forms may be utilized to represent dependence on age or time. With actual data 
sets, likelihood ratio tests may permit comparisons of the goodness of fit of alternative 
specifications. 

3. APPLICATIONS 

We consider four applications of our methodology. The first estimates the magnitude 
of the traditional assessment bias in estimating the benefits of a hypertension control 
program; the second illustrates the use of continuous risk groups to model hernias and 
other problems with recurrences; the third applies the principles of mixed populations to 
a central problem of demography, assessing mortality and constructing life tables; 
the fourth examines interpretations of relative survival data given a heterogeneous 
population. 

A. Control of hypertension 

We wish to estimate the improvement in survival and reduction in mortality from the 
control of hypertension (high blood pressure). For the sake of illustration, we define 
‘hypertension’ to mean a diastolic blood pressure of I i0 mmHg and ‘controlled’ to mean 
90 mmHg. Although randomized trials have established that antihypertensive therapy is 
effective, the populations in these experiments are too small and specialized to provide a 
basis for quantitative estimates of the long-term effects of blood pressure control in the 
general population [44]. Therefore, at least at present, one must rely on existing epi- 
demiological data as a guide. A traditional assessment would calculate mortality and life 
expectancy for controlled (new intervention) and uncontrolled (baseline intervention) 
hypertensives as if hypertensives of the same age and sex were a homogeneous risk 
group. (This approach formed the basis of a recent major policy study of hypertension 

C441.) 
Studies of cardiovascular disease support the hypothesis that the effects of risk factors 

are roughly multiplicative and are well represented by the logistic model [38]. Thus, 
blood pressure control would reduce risk most in persons already at high risk. Our 
analysis begins with a population of 50-yr-old males who would be hypertensive unless 
controlled. To disaggregate this population, we classify the men by cigarette-smoking 
habits, the strongest cardiovascular risk factor after age and hypertension itself. For 
simplicity, we consider this factor in binary form in a manner that divides the initial 

*The percentage overestimation is a single-humped function of the initial prevalence. When the prevalence is 0 
or 100% (i.e. the population is homogeneous) the percentage error is zero. The maximum error occurs when 
the prevalence is between 30 and 70% for the range of odds ratios considered above. The gain in life 
expectancy is practically invariant with respect to changes in the prevalence. 
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population into two equal-sized risk categories of ‘heavy smokers’ (here defined as indivi- 
duals who smoke a pack or more a day*) and ‘others’ (light and non-smokers). In future 
years, the surviving cohort will continue to be categorized by its smoking status at age 
50.t An equal proportion of each risk group receives the intervention ‘blood pressure 
control’. Together, these men are termed the controlled group. The remainder of each 
risk group remains hypertensive. Figure 1 shows the age-specific annual mortality rates 
for the controlled group estimated from the Framingham risk coefficients and vital 
statistics for New England. As smoking is hazardous to survival, the proportion of 
heavies declines in both the hypertensive and controlled groups. This selection is 

I 1 I I I I I 
50 55 60 65 70 75 60 65 90 

he, xtyrl 

FIG. 1. Mortality ratios of controlled group. 

reflected in Fig. 1; with increasing age, the combined line approaches the others line. 
Under the multiple-risk-factor hypothesis, smoking is more lethal for hypertensives. Thus 
at any age beyond 50, the proportion of smokers among the survivors will be lower in 
the hypertensive group than the controlled group, as is shown in Table 5. 

TABLE 5. COMPUTED PROPORTION OF HEAVY SMOKERS 

AMONG SURVIVORS, ri2(X) 

Treatment 50 
Age, x 

10 90 

Hypertensive, i = 1 
Controlled, i = 2 

0.500 0.383 0.105 
0.500 0.415 0.138 

Table 6 reveals that blood pressure control increases life expectancy in the combined 
group from 18.65 to 21.17 yr, a gain of 2.52 yr, making appropriate classification for 
smoking status. A less sophisticated approach that did not stratify by smoking habits 
would neglect the increased proportion of smokers among hypertensives surviving due to 
blood pressure control. The gain would then be estimated at 2.63 yr, some 4.4% too high. 
A more sensitive outcome measure is mortality at advanced ages. At age 75, for example, 
blood pressure control is predicted to reduce annual mortality by 80/10,000. The 
traditional assessment would predict a decrease of 93/10,000, some 16% larger. At older 
ages, the percentage error is even greater. 

*The cutoff level of one pack per day was chosen to divide the population in half equally and to be consistent 
with the Framingham population over the period these data were gathered (late 1950s to early 1970s). 

tThis simplifying assumption is consistent with the finding that, at least as far as respiratory physiology is 
concerned, stopping smoking does not yield immediate benefits [45]. 
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TABLE 6. PREDICTED IMPROVEMENTS IN LIFE EXPECTANCY AND MORTALITY FROM TREATMENT OF HYPERTENSION 

Outcome measure 
Baseline Assessment of change 

level Standardized Traditional Bias 
Percentage 

bias* 

Expectation of 
remaining life (yr) 0 

At 50 age 18et65 
e2 0 -6, e*. 0, - P, h2 - k;. 

2.52 2.63 -0.011 -4.4 
Annual mortality 

0.0”450 
m2 - ml rn; - ml Am 

At 65 age -0.0041 - 0.0046 0.0005 -13 
At 75 age 0.1066 -0.0080 - 0.0093 0.0013 -16 
At 85 age 0.1850 -0.0161 -0.0194 0.0033 -21 

*Bias as a per cent of change according to standardized assessment. For expectation of remaining life, it is 
(d, - h;)/(gZ - s,): for mortality, it is Am/(m2 - m,). 

These modest differences are the effect of only a single, observable risk factor, categor- 
ized into only two levels. If smoking behavior had been divided more finely, i.e. by 
separating those who don’t smoke at all from light smokers, the estimated benefits of the 
intervention would be lowered further. 

More importantly, a complete analysis should include other risk factors or indicators. 
These other factors should include possibly unobservable variables as well, such as 
coronary-prone behavior patterns, willingness to adhere to dietary changes and the like. 
The effects of such other risk factors would be roughly additive. If there were a number 
of such factors, or even one tir two important ones, the traditional assessment’s overstate- 
ment of gains, even correcting for smoking behavior, could be even more significant than 
in the example given above. 

B. Hernias and other problems with recurrences 

We return to the issue of recurrence of hernias which we considered qualitatively at the 
beginning of this paper. We assume that for a single individual the rate of recurrence is 
fixed over time, but the rates among individuals in the population are gamma- 
distributed. The gamma distribution that best fits the summary of Neuhauser’s data 
reproduces the survival rates in Table 1 to three decimal places.* The individuals in the 
population at time zero, right after the completed herniorrhaphy, have a mean instan- 
taneous recurrence rate of O.O552/yr; the standard deviation among their rates is 0.3296. 
The distribution of recurrence rates is highly skewed to the right; that is, the bulk of the 
patients have low rates, but a few have quite high rates. Indeed, the risk at the 90th 
percentile is 100 times as great as at the 10th percentile. The analysis suggests that 
substantial variability in risk of recurrence offers a satisfactory explanation of the 
observed pattern of declining rates over time. The strong clinical implication is that study 
of possible correlates of risk such as weak abdominal tissue, chronic cough or imperfect 
surgical repair could prove highly beneficial. Investigations may suggest ways to lower 
these risks or, alternatively, may recommend that high-risk patients be given different or 
supplementary treatments. 

The problem of recurrence or recidivism has widespread application outside the medi- 
cal area. A continuous-risk-factor model yields results that accord well with data on the 
return to the use of alcohol, cigarettes and heroin [30]. Relapse rates decline over time as 
the high-risk individuals separate themselves from the population of abstainep. The 
commonly heard statement that the first few months are the hardest, say for those who 
have given up smoking, may miss the mixed-population aspect of the problem. The 
importance of getting a patient through the first few months may not be that his personal 
relapse probability will decline with time. Rather, if he gets over the first few months it is 
substantially less likely that he was an individual who had a high monthly relapse rate. 
Indeed, it is conceivable that each individual’s relapse rate rises over time, but that the 

*Since the gamma distribution offers two free parameters, a: and B, any two of the three survival probabilities 
could be fit exactly. This spectacularly good fit is partly serendipitous. The fact that we are fitting a cumulative 
distribution (survival) rather than a density function makes it easier to secure a good fit. 
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heterogeneity is great enough that the population’s relapse rate declines over time. Narve 
extrapolation assuming that the population is homogeneous would give an impression 
that was wrong qualitatively as well as quantitatively. 

C. Expected remaining lije at selected ages 

An examination of life expectancy data at various ages by race and nationality pro- 
vides further evidence confirming our hypothesis of variability in risk and selective 
attrition. 

1. Comparison by race: white and non-white. The number of expected remaining years 
of life at selected ages by race, sex and year are given in Table 7. Non-whites of both 

TABLE 7. EXPECTED REMAINING YEARS OF LIFE AT SELECTED AGES, BY SEX, RACE AND 

YEAR* 

Year and 
age 

Male Female 
White Non-white White Non-white 

Difference 
Male Female 

1973 
Birth 68.4 61.9 16.1 70.1 

70 10.4 10.7 13.7 13.2 
85 4.7 6.3 5.1 1.3 

1930 
Birth 59.1 47.6 62.7 49.5 

70 9.2 8.8 10.0 10.3 
85 4.0 4.3 4.2 5.5 

6.5 6.0 
-0.3 0.5 
-1.6 -1.6 

11.5 13.2 
0.4 -0.3 

-0.3 - 1.3 

*From National Center for Health Statistics [46]. 

sexes have a lower life expectancy at birth than whites, presumably because of poorer 
nutrition, medical care and education. With increasing age, the life expectancy of non- 
whites equals and eventually surpasses the life expectancy of whites for both sexes. 
(Although these patterns are confounded by possible misreporting of age of death among 
non-white persons, adjustment for these inaccuracies by reference to census records does 
not eliminate the crossover [47].) 

We can frame the comparison between whites and non-whites using our previous 
terminology. The ‘treatment’ is advantages in medical care, nutrition and environment 
which have been more regularly available to white than to non-white persons. The 
hypothesized risk indicator is ‘constitutional weakness’. The data suggest that ‘treatment’ 
may have interacted positively with this unobservable risk indicator. That is, those with 
constitutional weakness are hurt much more severely by lack of access to health- 
promoting advantages. With two groups that are otherwise identical, the one with less 
access to these advantages will initially experience much higher mortality. The gap will 
narrow over time, and may well reverse itself at higher ages. The scope for selection is 
ample: out of a cohort of 1000 male births, using 1973 mortality rates, 555 whites but 
only 406 non-whites would reach age 70, when the two groups of survivors have essen- 
tially the same prospects. 

There is no need to make an argument as strong as the one that whites and non-whites 
would have had identical mortality experience had they had identical access to health- 
promoting advantages. Genetically connected racial differences undoubtedly play a role 
in determining mortality patterns, though even the direction of possible genetic differ- 
ences is difficult to assess. What is clear is that the selective-risk-factor model outlined 
above is consistent with data on racial differences in mortality. We know of no equiva- 
lently simple hypothesis that can explain the observed patterns. 

2. A comparison by nation: Sweden and the United States. Sweden, renowned for its 
advanced health care system and emphasis on healthy lifestyles, enjoys a greater life 
expectancy at birth than the United States for both males and females. As Table 8 shows, 
however, this difference narrows with increasing age, becoming zero at age 76 in males 
and age 64 in females, and then reverses. Since both countries have highly developed 
medical care systems and similar major health problems (e.g. coronary heart disease, 
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TABLE 8. EXPECTED REMAINING YEARS OF LIFE AT 

SELECTED AGES IN SWEDEN AND THE U.S.A., 1972 

Sex and 

age Sweden* U.S.A.? Difference 

M&S 
Birth 71.97 67.38 4.59 

60 17.68 16.06 1.62 
70 10.87 10.39 0.48 
80 6.04 6.38 -0.34 
90 4.27 4.86 -0.59 

Females 
Birth 77.41 75.08 2.33 

60 21.06 20.82 0.24 
70 13.13 13.54 -0.41 
80 7.07 7.92 -0.85 
90 4.81 5.83 - 1.02 

*From United Nations [48]. 
tcalculated as the ratio of T, (total person-years 

remaining) to 1, (survivors) [49]. 

cancer), it is hard to identify isolated medical factors that would explain this pattern. The 
hypothesis of heterogeneity again offers a simple and consistent explanation which is 
compellingly parallel to the one comparing white and non-white patterns of mortality in 
the United States. Similar patterns are widespread. A comparison of mortality rates in 46 
national and racial populations found that 37% of the possible pairs exhibited at least 
one crossover in age-specific mortality at age 60 and above [SO]. 

3. Construction of life tables. An understanding of mixed-population models highlights 
a conceptual error in traditional means of constructing updated life tables. The usual 
procedure is to examine present mortality on a cross-sectional basis and assume that 
without any further medical advance it will persist over time. Thus, a newborn baby 
today is expected to face the mortality at age 50 that today’s 50:yr-olds face at present. 
But if there has been health progress, reflected by the fact that today’s observed cross- 
sectional mortality rates are lower than those the present 50-yr-old faced at the equival- 
ent ages, then there will be a systematic bias. Assuming, as we have in most of this 
analysis, a positive interaction between benefits from these improvements and initial 
mortality, the 50-yr-olds of today have a higher proportion of low-risk individuals than 
will the 50-yr-olds of 50 yr in the future. Gauging future mortality by looking at today’s 
cross-sectional rates will give an underestimate. This bias will be hard to notice, of 
course, if we continue to make progress in reducing mortality. Such progress would 
counteract the bias. The net effect would be that we would overlook the role of mixed 
populations, and underestimate the extent of progress in reducing age-specific mortality 
for individuals in particular risk groups. As the population mix effect is more important 
at higher ages, we would expect the least (or possibly no) reduction in mortality at high 
ages even if medical and environmental advances benefitted all ages equally. 

D. Relative survival 

The mixed-population model facilitates a proper interpretation of relative survival 
curves. As noted previously, selective survival can explain the rise in relative survival in 
colon and intestinal cancer after 5 yr [24]. Heterogeneity in risk has an even broader 
importance, however. It is commonly thought that the time at which the relative-survival 
curve between those with and without a disease becomes flat indicates the point at which 
excess mortality from the disease has ceased. Actually, the slope of the relative-survival 
curve at any time depends on two effects-the excess mortality in each individual due to 
the disease being studied and the difference in selection effects due to heterogeneity in 
risk between the diseased and comparison groups. The two effects would probably 
counteract each other. A flat or rising relative-survival curve beyond some follow-up time 
does not necessarily indicate that the excess mortality has ceased, but only that it is offset 
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by the selection effect. Although the selection effect or improvement in mortality due to 
variation in risk operates in both the diseased and comparison groups, that effect is 
usually greater in the former because of its higher absolute levels of risk. Thus, the excess 
risk imposed by a disease on an individual tends to be greater than would be inferred 
from the relative survival curve if one incorrectly assumed homogeneity. 

Stratification by known risk factors, such as age and race, can reduce the confounding 
of individual risk levels and the changing composition of the population. But unless the 
analyzed group and its control are completely homogeneous in risk, the problem cannot 
be eliminated. hatching to obtain a comparison group that is similar to the diseased 
group gives an accurate measure of the excess mortality from a disease at first, but 
cannot standardize for the evolving mixture of risk factors among the survivors as 
opposed to the control group over time. The problems are analogous to those of the 
traditional assessment. By stratifying on important risk factors, our standardized assess- 
ment for interventions could be adapted to measure the excess mortality of a disease. In 
place of an intervention that lowers risk differentially according to risk groups, the model 
would include a disease that increases risk in each stratum. The resulting predictions 
could be tested, like our previous examples, for accuracy and parsimony in explaining 
observed relative survival curves. 

4. CONCLUSIONS 

Users of health statistics are familiar with the fact that risks of death and disease- 
both total and specific to given causes-vary markedly by age and sex. Accordingly. 
analyses of the effects of proposed interventions or historical changes commonly dis- 
aggregate by those two factors. We contend here that age and sex are only the two most 
familiar examples of a larger and very common analytical problem--that risk varies from 
person to person in a consistent pattern over time according to characteristics that may 
or may not be observable. 

Mixed-population models enable us to develop consistent hypotheses that explain 
otherwise perplexing patterns in such diverse areas as hernia recurrences and inter- 
national comparisons of age-specific mortality. The composition of a cohort in a mixed 
population will change over time as selection differentially removes individuals at high 
risk. This fmding has wide applicability. For example, it explains why recidivism or 
relapse rates in a great variety of policy areas are observed to decline over time. 

This observation has important implications for treatment policies. If we accepted the 
homogeneous-population model, and concluded that individuals’ relapse rates declined 
rapidly over time, we would want to concentrate antirecidivism treatment strongly on the 
first few months. On the other hand, if we understood that the population was hetero- 
geneous, it might even prove beneficial to delay expensive long-term treatment for a few 
months, understanding that the missed early lapsers, being differentially high-risk indivi- 
duals, would have been more likely to relapse ultimately anyway, in spite of treatment. 

Frequently for policy purposes we wish to make prospective estimates of the benefits 
of interventions designed to reduce drop-out rates from populations. Traditional assess- 
ment procedures do not consider the influence that an intervention will have on the mix 
of risk levels within the population at future dates. Yet if, as we would usually expect, the 
intervention increases most the survival chances of those at highest risk, the mix of the 
population will change. At any time after some losses have occurred, those who have 
survived with the intervention will be a weaker group than those who survived without 
it. A traditional assessment will overstate benefits. An accurate estimate of benefits can be 
provided only by what is here called a standardized assessment, an assessment that 
tracks over time the evolving risk level mix within a cohort. The difference between the 
two types of assessments, i.e. the bias inherent in most actual assessments, can be 
expressed in terms of the covariance between benefits secured from the intervention and 
future risk levels. 

The concept of mixed populations, as we hope we have demonstrated, provides useful 
~~#~~fuf~~~ insights into the interpretation of longitudinal studies. In cases where a sub- 
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stantial portion of at least one risk stratum is expected to experience a loss within the 
period of analysis, mixed-population models are likely to offer a worthwhile quantitative 

refinement as well. This occurs when the levels of risk are high, the differences in risk 
among strata are high and/or the period of analysis is long. As we have shown, these 
conditions can be satisfied by some situations with a period of analysis of only a few 
years, such as dropping out of medical therapy, or death from a disease involving a high 
case fatality rate. If the period of analysis is several decades, the conditions are met by 
most models of adult mortality. Attention to heterogeneity in such circumstances can 
help us to construct more informative and accurate models. 

The application of mixed-population models goes beyond the health-oriented issues 
discussed in this paper. Wherever there are populations with drop-outs, whether com- 
posed of college students, satisfactory inner-city housing units, reformed criminals or 
individuals receiving hernia repairs, attention to the heterogeneity of risk rates among 
individuals will yield dividends in prediction and understanding. 

Acknowledgements-This work was supported in part by NSF grant SOC77-16602 to the Kennedy School, and 
by a grant from the Robert Wood Johnson Foundation through the Center for the Analysis of Health 
Practices. We would like to thank colleagues at the School of Public Health and the Kennedy School for 
helpful comments, particularly Dr. Benjamin Barnes, Dr. William Stason and John Pratt. Nathan Keyfitz 
provided continuing encouragement and stimulation. 

1. 

2. 
3. 

4. 

5. 

6. 
7. 

8. 
9. 

10. 

11. 

12. 

13. 
14. 
15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 
24. 
25. 

Blumen I. Kogan M, McCarthy PJ: The Industrial Mobility of Labor as a Probability Process. Cornell 
Studies of Industrial Relations. Vol. 6. Ithaca: 1955 

REFERENCES 

Spilerman S: Extensions of the mover-stayer model. Am J Social 78: 599-627, 1972 
Heckman JJ, Willis R: A beta logistic model for the analysis of sequential labor force participation by 
married women. J Pol Econ 85: 27-58, 1977 
Singer B, Spilerman S: Some methodological issues in the analysis of longitudinal surveys. Ann Econ 
Social Measmt 5: 447474, 1976 
Tuma NB: Rewards, resources, and the rate of mobility: a non-stationary multivariate stochastic model. 
Am Social Rev 41: 338-360, 1976 
Cox DR: Regression models and life-tables. J R Stat Sot B 34: 187-202, 1972 
Kalbfleisch JD, Prentice RL: Marginal likelihoods based on Cox’s regression and life model. Biometrika 
60:267?278, 1973 
Zeckhauser RJ, Shepard DS: Where now for saving lives. Law Contemp Prob 40(4): 545, 1976 
Shepard DS, Zeckhauser RJ: Heterogeneity among patients as a factor in surgical decision making. In: 
Costs, Risks and Benefits of Surgery. Bunker JP, Barnes BA, Mosteller F (Eds.). New York: Oxford 
University Press, 1977, pp. 56-69 
Preston SH, Keyfitz N, Schoen R: Causes of Death: Life Tables for National Populations. New York: 
Seminar Press, 1972 
Murray JL, Axtell LM: Impact of cancer: years of life lost due to cancer mortality. J Natn Cancer lnst 52: 
3-7, 1974 
Jenkins CD, Tuthill RW, Tannenbaum SI et al.: Zones of excess mortality in Massachusetts. New Eng J 
Med 296: 13541356, 1977 
Schmeck HM Jr: US deaih rate in ‘74 lowest on record. New York Times February 4 1976, p. 1 
Howell MA: The association between colorectal cancer and breast cancer. J Chron Dis 29: 243-261, 1976 
Schottenfeld D: Concluding commentary for the international workshop on multiple primary cancers. 
Cancer 40 (Suppl.): 1982-1985. 1977 
Schoenberg B, Greenberg RA, Eisenberg H: Occurrence of certain primary cancers in females. J Natn 
Cancer Inst 43: 15-32, 1969 
Makeham WM: On an application of the theory of the composition of decremental forces. J Inst 
Actuaries 18: 317-322, 1874 
Cornfield J: The estimation of the probability of developing a disease in the presence of competing risks. 
Am J Pub Hlth 47: 601607, 1957 
Berkson J, Elveback L: Competing exponential risks, with particular reference to the study of smoking 
and lung cancer. J Am Stat Sot 55: 415428, 1960 
Gail M : A review and critique of some models used in competing risk analysis. Biometrics 31: 209-222, 
1975 
David HA: Parametric Approaches to the Theory of Competing Risks, Reliability and Biometry. Proschan 
F, Serfling RJ (Eds.). Philadelphia: Society for Industrial and Applied Mathematics, 1974, pp. 275-290 
Keyfitz N: What difference would it make if cancer were eradicated? an examination of the Taeuber 
paradox. Demography 14: 411418, 1977 
Chiang CL: Introduction to Stochastic Processes in Biostatistics. New York: John Wiley, 1968 
Hakulinen T: On long-term relative survival rates. J Chron Dis 30: 43143, 1977 
Park WW, Lees JC: The absolute curability of cancer of the breast. Surgery Gynec Obstet 93: 129-152, 
1951 



Long-term Effects of Interventions to Improve Survival in Mixed Populations 433 

26. Fox MS: On the diagnosis and treatment of breast cancer. J Am Med Ass 241: 489-494. 1979 
27. Neuhauser D: Elective inguinal herniorrhaphy versus truss in the elderly. In: Costs, Risks and Benefits of 

Surgery. Bunker JP, Barnes BA, Mosteller F (Eds.). New York: Oxford University Press. 1977. pp. 
223-239 

28. Bartholomew DJ: Stochastic Models for Social Processes. New York: John Wiley, 1967, pp. 1 I-37. 
29. Mann NR. Shaefer RE, Singpurwalla ND: Methods for Statistical Analysis of Reliability and Life Data. 

New York: John Wiley, 1974 
30. Shepard DS: Prediction and incentives in health care policy. PhD Dissertation. Harvard University. Ann 

Arbor: Xerox University Microfilms, Dissertation No. 77-l 1744, 1977 
31. Barnes BA: An overview of the treatment of end stage renal disease and a consideration of some of the 

consequences. In: Costs, Risks and Benefits of Surgery. Bunker J, Barnes B, Mosteller F (Eds.). New York: 
Oxford University Press, 1977 

32. Cretin S: A model of the risk of death from myocardial infarction. Cambridge. Mass.: MIT Operations 
Research Center. Technical Report 0974, 1974 

33. Truett D. Cornfield D, Kannel WB: A multivariate analysis of the risk of coronary heart disease in 
Framingham. J Chron Dis 20: 51 l-524, 1967 

34. Knox EG: Cervical Cancer, Screening in Medical Care. New York: Oxford University Press. 1968. pp. 
43354 

35. Perks W: On some experiments in the graduation of mortality statistics. J lnst Actuaries 83: 1240. 1932 
36. Shepard DS, Zeckhauser RJ: The assessment of programs to prolong life recognizing their interaction 

with risk factors. Boston: Center for the Analysis of Health Practices. Harvard School of Public Health. 
Discussion Paper, 1975 

37. Keyfitz N: Introduction to the Mathematics of Population. Reading, Mass.: Addison-Wesley, 1968 
38. Keyfitz N, Littman G: Mortality in a heterogeneous population. Popul Stud 33: 333~.342, 1979 
39. Haynes RB, Taylor DW: Annotated and indexed bibliography on compliance with health actions and 

therapeutic regimens. Prepared for Second McMaster Workshop/Symposium on Compliance with Thera- 
peutic Regimens, 25-27 May 1977 

40. Kannel WB, Gordon T (Eds.): Some Characteristics Related to the Incidence of Cardiovascular Disease and 
Death: Framingham Study, l&year Follow-up, the Framingham Study: An Epidemiological Investigation of 
Cardiovascular Disease. DHEW Publication No. (NIH)74-599. Washington, D.C.: Government Printing 
Office, 1974 

41. Pooling Project Research Group: Relationship of blood pressure serum cholesterol smoking habit, rela- 
tive weight and ECG abnormalities to incidence of major coronary events: final report of the Pooling 
Project. J C&on Dis 31: 201-306, 1978 

42. National Center for Health Statistics: Life Tables for the Geographical Divisions of the United States 
I%!&1961. DHEW Publication No. (PHS)1252. Washington, D.C.: Government Printing Office, 1965 

43. Shepard DS, Zeckhauser RJ: Interventions in mixed populations: concepts and applications. Cambridge. 
MA: Kennedy School of Government, Harvard University, Discussion Paper No. 49. 1977 

44. Weinstein MC, Stason WS: Hypertension: A Policy Perspective. Cambridge. MA: Harvard University 
Press. 1976 

45. Gordon T. Kannel WB, McGee D: Death and coronary attacks in men after giving up cigarette smoking. 
A report from the Framingham Study. Lancet 2: 134551348, 1974 

46. National Center for Health Statistics: Vital Statistics of the United States 1973, Life Tables. Vol. 2. 
DHEW Publication No. (HRA)75-1104. Washington, D.C.: Government Printing Office, 1975 

47. Hambright TZ: Comparability of Age on the Death Certificate and Matching Census Record. Vital and 
Health Statistics Series 2, No. 29. Washington, D.C.: US National Center for Health Statistics, 1968 

48. United Nations: Demographic Yearbook 1974. New York: Department of Economic and Social Affairs. 
United Nations, 1975 

49. National Center for Health Statistics: Vital Statistics of the United States 1970. Vol. 2. Mortality. DHEW 
Publication No. (HRA)74-1101. Washington, D.C.: Government Printing Office, 1974 

50. Nam CB, Weatherby NL, Ockay KA: Causes of Death which Contribute to the Mortality Crossover Effect. 
Tallahassee. FL: Institute for Social Research, Florida State University, 1978 


