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Abstract

We consider a class of problems, which we call “SFQ” problems, in which both stocks and flows can be
controlled to promote the quality of a valued resource, such as environmental quality or public infrastructure.
Under the optimal policy, periodic restoration of the stock of quality complements positive but variable
abatement of the flow of damages. When deterioration is more rapid or highly variable, or when abatement is
more expensive relative to restoration, the optimal policy relies relatively more on restoration.

When deterioration is due to private firms or individuals, a flow tax equal to the present value of
marginal damages provides efficient incentives for abatement. This tax rises at first as quality worsens, but
eventually falls as restoration nears. The revenues raised by such a tax approximates the cost of restoration,
with the two quantities converging as the variance of flows goes to zero.

We discuss the implications of the SFQ model for a range of real-world problems in the environmental
arena, and for the management of public infrastructure. But the lessons are general, and we briefly discuss
how they apply to private stocks of physical and human capital.
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1. Introduction

Public policies across a range of issues involve maintaining the quality of a valued resource
stock. Thus, we try to prevent the deterioration of environmental quality and to keep our roads
well paved. The economist’s typical prescription in such settings is to identify the level where the
marginal cost of maintaining quality equals its marginal benefit, and then to stay there. Policy
proposals for global warming, for example, seek to identify a target concentration of carbon
dioxide in the atmosphere. Such an approach is optimal when quality can be maintained only by
slowing the rate of deterioration, e.g., through pollution abatement. However, there are often
economies of scale in moving a stock to a desired level of quality. In such cases, periodic
restoration of the stock will be worthwhile, and the optimal rate of abatement will adjust.

A simple example illustrates our theory. Consider the Longfellow Bridge linking Cambridge
and Boston. The rate at which it deteriorates can be slowed by regular maintenance, or by traffic
restrictions such as weight limits. Eventually, however, it will wear out and have to be replaced. (It
was completed a century ago, then replacing a century-old bridge.) Over the course of its lifetime,
optimal maintenance for the bridge will vary. Early on, maintenance increases with time, as it
requires increasing attention. Toward the end of its life, however, optimal maintenance declines,
since the future benefits of better quality for the current bridge decline. There is no need to fill the
cracks in a bridge that will soon be replaced.

The motivating observation of this paper is that the simple logic of the maintenance and
replacement of a bridge applies to the management of the quality of'a wide range of valued resources.
A canonical example in the environmental arena is the accumulation and treatment of waste at
landfills or generating sites. Optimal management both slows the generation of new wastes is slowed
and periodically cleans up accumulated stocks. The latter approach — capping a landfill or clearing
out a storage area — capitalizes on scale economies. Similar dynamics play out in a variety of other
instances: a reservoir fills with sediment until the dam must be replaced; a groundwater aquifer is
drawn down and eventually recharged; potholes are patched until a street is repaved; drug dealing is
tamped down by a police presence until a massive drug sweep is undertaken.

In each of these settings, two distinct approaches are available to manage the resource:
boosting its quality, and slowing the rate at which it deteriorates. Hence both stocks and flows can
be controlled to promote quality. We use the acronym “SFQ” to refer to this class of problems. In
this paper, we develop a general model of the optimal management of a resource stock when
flows are controllable and restoration of the stock is feasible. We discuss how the model applies to
environmental quality and public infrastructure. The lessons are general, however, and extend
readily to a variety of private applications, such as physical or human capital stocks within a firm.

We assume that the costs of flow control (which we call abafement) increase on the margin,
but that stock control (or restoration) exhibits economies of scale, so that discrete improvements
are potentially desirable. Such scale economies are likely to obtain in many settings. For example,
cleaning up a hazardous waste site typically requires hauling the soil away for off-site
incineration, in which case the costs vary little with the concentration of the contaminant in the
soil. Similarly, there are high fixed costs involved in dredging a river or paving city streets. As
will become apparent below, what is crucial to our analysis is that there are economies of scale “at
the bottom” — that is, that the costs of restoration do not increase too rapidly as the quality of the
stock diminishes. In many settings, the source of the nonconvexity is institutional rather than
technological. Consider fiscal policy. Over time, the tax code (the “stock” in this example)
accumulates loopholes and exceptions that distort incentives and undermine efficiency. While tax
simplification requires substantial political capital, observation suggests that the political costs are



N. Keohane et al. / Journal of Public Economics 91 (2007) 541-569 543

little different for small and large reforms. Thus, tax reform is a rare and lumpy event, eliminating
many loopholes at once.

Given economies of scale in restoration, the optimal policy calls for restoring the resource
whenever quality falls to a sufficiently low level. At states above that point, the new flow is abated
at a rate that varies with the current quality of the resource. After restoration occurs, deterioration
resumes, quality starts to decline (albeit stochastically), and the cycle repeats. The optimal trade-
off between abatement and restoration depends on the magnitude and variability of flows, the
relative costs of the two strategies, and the discount rate. If flows are low enough, or if abatement
is cheap enough, optimal abatement may rise to offset expected deterioration, achieving an
equilibrium in expectation. Even in this case, restoration will occur if unexpected shocks reduce
the stock of quality sufficiently; hence its availability influences the optimal abatement path.
When deterioration is more rapid or more variable, or when restoration is relatively less costly, the
optimal policy relies more on restoration.

In many settings, the stock deteriorates at a speed determined by the actions of myriad firms or
individuals. The central authority must now align private incentives with social welfare. We consider
the natural case in which abatement must be undertaken by a large number of firms but restoration is
implemented by the center. A municipal landfill is a natural example. Private parties (perhaps
influenced by taxes or other policy measures) control the flow into it. Ultimately, the government
caps it and restores the site. In such a case, the optimal abatement path can be achieved by charging a
time-varying flow tax equal to the present value of marginal damages. The tax has a surprising
pattern. As the quality of the stock decreases, this optimal tax rises at first, but it eventually falls as the
state worsens and restoration nears. Moreover, the optimal tax rate may be lower when there is more
pressure on quality (e.g., greater unregulated waste flow). We also consider the tax as a source of
revenue. Raising funds to pay for restoration might appear to be independent from aligning private
incentives. We show that revenues from the flow tax approximate the cost of restoration, with the two
quantities converging as the variance of flows goes to zero.

Our analysis melds two instruments that have typically been considered in isolation. The
theoretical literature on capital investment has centered on replacement (restoration) rather than
maintenance (abatement).! Optimal investment in these models typically follows an (S,s) policy
(Arrow et al., 1951). On the other hand, conventional models of the optimal management of stock
pollutants have modeled abatement alone. The optimal policy in that setting equates the marginal
benefit of reducing pollution, adjusted for the discount rate and the decay rate of the stock, to the
marginal cost of abating it. A steady state is reached in which optimal abatement efforts just keep
up with net new accumulation (Falk and Mendelsohn, 1993; Keeler et al., 1971; Plourde, 1972;
Plourde and Yeung, 1989; Smith, 1972).> During the transition to the steady state, the shadow
value of environmental quality rises steadily, and the optimal tax rises with it (Farzin, 1996). In
contrast, when restoration offering economies of scale is available, the optimal policy may entail
periodic restorations punctuating long periods of deterioration that are only partially offset by
abatement, with the optimal tax rate first rising and then falling as resource quality worsens.

! For models of investment in physical capital, see Feldstein and Rothschild (1974) and Abel and Eberly (1994).
Nickell (1975) considers maintenance as well as replacement, but models maintenance as exogenously determined. For a
model of optimal consumption of durable goods, see Grossman and Laroque (1990).

2 A few models of the optimal cleanup of an accumulated pollution stock have considered restoration but not
abatement. Caputo and Wilen (1995) assume that cleanup costs are convex. As a result, the optimal solution stops short of
complete cleanup (they let natural degradation finish the process), as long as when pollution approaches zero so does its
marginal damage. Phillips and Zeckhauser (1998) assume economies of scale in cleanup, but consider the problem in a
static setting and hence ignore abatement.
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The next section introduces the formal model. Section 3 characterizes optimal abatement and
restoration policies, and Section 4 discusses the optimal tax in a decentralized setting. Section 5
illustrates our analysis with real-world examples. Section 6 concludes.

2. Model framework

Our model considers the management of a valued resource whose quality level changes over
time. In the case of accumulating waste, for example, quality might be measured by the volume of
waste: The smaller the amount, the higher the level of environmental quality. We denote quality at
time ¢ by a real number x, with larger values of x, representing more desirable states. For
mathematical convenience, we shall be working mostly with negative values for x. (Note that we
use “quality” to denote the state of the resource. How the quality of a resource is valued will be
captured in the utility function.) To keep things simple, we assume for the time being that there is
a “manager” of the resource, who implements abatement and restoration policies in order to
maximize the expected net present value of social welfare.’

We model the deterioration of the resource, absent the efforts of the resource manager, as a
random variable with drift. The stochastic formulation reflects the reality that stock levels are not
entirely in the control of the resource manager. Consider the case where environmental quality
deteriorates as a stock pollutant accumulates. Although polluting firms are typically able to control
their average emissions rates, the actual flow of pollution is likely to vary over time due to random
shocks to firms’ inputs and outputs. For example, emissions of carbon dioxide from electric power
plants vary over time with electricity generation, the type and quality of the fuels, the performance
of the boilers, and so on — in ways that are neither entirely predictable, nor under the complete
control of the plant operators. Even if emissions are controllable, their effects on the environment
may not be: pollution concentrations depend on physical processes and climatic variables, not
merely anthropogenic emissions.* A similar role for stochastic variation exists in other settings.
The deterioration of highways and bridges, for example, depends on weather conditions as well as
on traffic levels and freight loads, whose realized values (at least from the point of view of the
manager) are appropriately modeled as random fluctuations around a mean.

To capture such randomness in a simple way, we assume that cumulative deterioration up to
time ¢, denoted by z¢, follows a Brownian motion with drift rate 11> 0, variance rate 0'2, and zp=0.
Hence, deterioration evolves according to z,=ut—ow, where w; follows a standard Brownian
motion. Unless the manager curbs the rate of deterioration or restores the resource, therefore,
quality at time ¢ will be

Xy = —ut + owy. (1)

Intuitively, i can be thought of as the “average” rate of deterioration of the resource: for example,
average pollution emissions minus natural decay. Throughout the analysis, we will refer to the drift
rate u as the “flow rate,” and will use the terms “flow” and “deterioration” interchangeably. The
relative values of the flow rate (1) and the variance rate (o) will vary with the setting. In contexts
where natural recovery is negligible — e.g., a bridge — ¢ will be small relative to u.

* The manager could be the administrator of a regulatory agency that issues rules or provides rewards to influence the
behavior of private-sector firms. We focus here on the behavior that a central planner would prescribe, and defer issues of
instrument design to the discussion in Section 4 below.

* For example, the formation of ground-level ozone (a local air pollutant) depends on a complex interaction between
nitrogen oxide emissions and biogenic volatile organic compounds, and is highly sensitive to temperature and sunlight.
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2.1. Utility and cost functions

We assume that society’s benefit from the resource at any point in time depends only on the
level of quality. Thus, at time ¢ society derives a flow of utility u(x;) from the availability of the
resource.” The social rate of time preference is denoted by o> 0. We further assume that the utility
function has the following properties.

Assumption 1. The utility function u is twice continuously differentiable, with <0, u'>0, u”
<0, and u’ unbounded above. Furthermore, E, [ ft:() e“"’u(x,)dt] is finite for all x, where E,
denotes the expectation conditional on an initial state x.

Note that utility takes negative values; the utility function can be thought of as the negative of a
convex loss function.

We define abatement as a reduction in the rate of deterioration: abating at rate a slows the
expected deterioration rate from u to 4 —a. Crucially, its costs are increasing on the margin.

Assumption 2. The abatement cost function c: [0, o) is twice continuously differentiable with
¢=>0, ¢(0)=0, and ¢" > € for some €>0.

We assume that a finite maximum feasible rate of abatement exists, denoted @.° This
ceiling may be higher than the mean flow rate u. Hence our model allows (but does not
impose) the possibility that abatement may more than fully offset deterioration. In such a case,
“abatement” results in a positive rate of change in quality — but with increasing marginal
costs.

Restoration corresponds to an improvement in quality that affects the stock directly, rather than
by slowing deterioration. Two simplifying assumptions ease exposition; neither is crucial to our
results. First, the manager can restore the resource from any state x; to a certain high level, which
we normalize as x=0. (We relax this assumption of a fixed destination in Section 3.4.2, below.)
Second, there is a positive fixed cost of restoration to x=0, with zero marginal cost to starting at a
lower point. This is an extreme form of nonconvexity.

Assumption 3. The cost of restoring quality from any state x, to x=0 is independent of the state
x, and of time ¢, and is given by C>0.

Thus the cost of restoration is “destination-driven” in the sense of Phillips and Zeckhauser
(1998): it depends on the ultimate level of quality, rather than the initial level (or the size of the
quality gain). Though this assumption simplifies the model, our results hold for cost functions
exhibiting less extreme economies of scale, as we discuss below in Section 3.4.2. For simplicity,
we also assume that the restoration cost is time-independent.’

> We ignore issues such as population growth or changes in income, which could make the utility function time-
dependent. For example, one might scale the utility function to the size of the population. If abatement costs remained
constant while population grew, the optimal level of abatement at a given level of quality would increase over time. On
the other hand, abatement costs and the drift rate u might be greater for a larger population.

© The assumption of a ceiling on abatement provides a measure of generality. In some cases of interest, the manager
may have limited abilities to stem or particularly to reverse the flow of deterioration. This assumption is completely
innocuous, however: the ceiling can always be set high enough that the probability it binds is vanishingly small.
Moreover, an optimal abatement policy can still be shown to exist even if we allow abatement to be unbounded.

7 Two sources of time dependence would seem to be of potential interest. First, technological change could drive down
the cost of restoration over time, raising the restoration trigger. Of course, technological advance in abatement would
have a countervailing effect. A more interesting extension might have the restoration cost depend on the number of
previous restorations, as we discuss in footnote 29.
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2.2. Abatement and restoration policies

An abatement policy a(x) specifies the abatement level as a function of the state x. Under a
restoration policy R, restoration occurs whenever the state x, lies in the set R.® Given a combined
abatement-restoration policy (a, R), the state of the resource evolves according to
X = f;zo(a(xs)ju)ds—&— OWr— D (7<) ¥7,» Where T; is the time at which the ith restoration
occurs. Hence starting from an initial state x, the infinite-horizon expected discounted utility is

B [ e utn)-elatxar Y e @

=0 i=1

The manager’s objective is to choose a combined abatement-restoration policy that maximizes
this expectation simultaneously for all x.

3. Optimal abatement and restoration policies

In this section we characterize optimal restoration and abatement policies. We then discuss how
the optimal policies vary with the magnitude and variability of flows, the costs of restoration and
abatement, and the discount rate. Finally, we briefly consider three extensions of the basic model.

3.1. Characteristics of the optimal policies

We use stochastic dynamic programming to characterize the optimal restoration and abatement
policies. Let J be the optimal value function:

J(x) = sup E“F /tw ef‘”(u(x,)*c(a(xt)))dt*i e 'C , (3)

a,R =]

where the supremum is taken over pairs of abatement and restoration policies. J(x) represents the
maximal present value of the future stream of net benefits (utility minus cost) under the optimal
policy, starting from state x.

Theorem 1 describes the optimal abatement and restoration policies, and the resulting path of
quality. It identifies two key states: X, the restoration trigger; and x', an inflection point in the value
function that coincides with maximum abatement. (All proofs are given in the Appendix.)

Theorem 1. Let Assumptions 1, 2, and 3 hold. Then there exist states X and x, with x <x', such
that the following results hold.:

8 More formally, an abatement policy is a mapping o R~ [0, a], while a restoration policy is characterized by a
measurable closed subset R of R. We shall restrict our attention to optimal stationary policies, but this does not affect the
practical implications of our analysis. Suppose the manager’s problem is to choose an optimal stochastic process {a,}
measurable with respect to the filtration generated by {w,}. Such an optimal process can be produced by letting a,=a(x,),
justifying our approach.
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Qualities of the value function: (i) J<0 and J(x) is finite for every x. (ii) J(x)=J(0)—C for all
x <x. (iii) J is continuously differentiable for every x, and is twice continuously differentiable on
(X, o). (iv) For all x> x, J satisfies

2
sup ("0 + (@ ()27 (0) 4 ) -cla) ) =0 @)
aco,a ]

Shape of the value function: (v) J'(x) > 0 for x E (X,00). Moreover, (vi) J"(x) > 0 for xE (x, x); (vii)
J"")=0; and wiii) J"(x) <0 for xE(x", ).

Optimal policy: (ix) There is a function a*: (x, ©)— [0, @] such that for every x € (x, ®), a*(x)
uniquely attains the supremum in Eq. (4). (x) a* is increasing on {x<(x, x")|a(x)#a} and
decreasing on xe i, w)|a(x)#a}. (xi) Letting R*= (-, x], the pair (a* R*) is an optimal
policy.

Under the optimal restoration policy, the manager restores the resource whenever quality falls
to x. This closely resembles the familiar solution to the classic inventory problem. A profit-
maximizing firm will follow an (S, s) rule in managing its inventory, drawing its stock of goods
down until some level s is reached and then replenishing the inventory up to the level S (Arrow
et al., 1951; Scarf, 1960). The “inventory” in the restoration case is quality, and a restoration
corresponds to a replenishment of inventory.

The optimal abatement policy can be understood heuristically as equating marginal benefit and
marginal cost at each level of quality. From Theorem 1, the abatement rate must attain the
supremum of a function f(a)=aJ'(x) —c(a), i.e., the components of Eq. (4) that are a function of
a. The first term, aJ'(x), represents the rate at which the value function increases. This
corresponds roughly to the expected benefit from abating at rate a, taking into account present
and future utility.” The second term, c(a), represents the cost of abatement a. Hence the optimal
policy at each state sets the abatement rate to maximize the resulting “expected net benefit.”

Fig. 1 illustrates the resulting abatement path.'® Because utility is concave, the marginal
benefit from abatement at first increases as x diminishes. Thus starting from an initial high level
(i.e., immediately following a restoration), the optimal abatement rate rises as quality worsens.
Marginal benefit, and hence abatement, reach their peak at a state x”>x."" Beyond this point,
abatement decreases as quality continues to worsen. As the trigger point x nears, the marginal
benefit of abatement diminishes, since the quality of the resource will soon be restored.'?

? Heuristically, for a given marginal change in the state dx, the resulting change in the value function would be J(x)dx.
Abatement a, carried out over an infinitesimal time period of duration d¢, yields a marginal improvement in the state due
to abatement dx=adt. We can think of (ad?)J(x) as the resulting change in the value function (over an infinitesimal period
of time). Dividing through by dr yields the rate of change in the value function, aJ'(x). (Note that this heuristic
explanation, like subsequent ones, puts intuition ahead of rigor, and thus is less technically precise than the formal results
it seeks to explain.)

1% The functional forms and parameter values used for all figures are provided in Appendix B.

""" The key state x™ marks an inflection point in the value function: J is concave above above x' and convex below. The
convexity of the value function below x" — despite the concavity of the underlying utility function — is a consequence
of the optimal restoration policy. J is constant below x, since the restoration always returns the state to x=0 at a fixed
cost. Because J is differentiable, its slope at x is zero. Above x, J is increasing. In some region just above x, therefore, J
(x) must be convex. The upper bound of this region is the inflection point x'.

'2 For destination-driven costs, the abatement rate falls to zero at the restoration trigger x. At that point, the marginal
benefits of further abatement are zero, because the state will be restored immediately. By the smooth-pasting condition
(Krylov, 1980), the marginal benefits from abatement must decline smoothly to zero as the state approaches x. Marginal
cost, and hence abatement, must follow suit. In Section 3.4.2 below, we consider a variable component of restoration cost
v (x), with 9/(x)<0. In that case, abatement would decline smoothly to a >0 satisfying c¢'(a)=—7'(x).
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Fig. 1. Optimal policies. Quality x is plotted on the horizontal axis. The optimal abatement rate, a*(x), appears above the
axis, with the corresponding value function J below. Note the different units of measurement on the positive and negative
segments of the vertical axis.

If the abatement rate rises high enough, it will equal or exceed the average flow rate u. In this
case, let x* denote the highest state at which a(x*)=wu. At states just below x*, abatement is
greater than average deterioration; hence the quality level will increase toward x* in expectation.
Above x*, abatement slackens, and quality tends back toward x*. These dynamics are illustrated
by the arrows in Fig. 1. Note that ¢/(u)=J'(x*). Thus at x*, the marginal cost of fully abating
expected pollution just equals the marginal benefit from doing so. This equimarginal condition
suggests a useful analogy between x* and the steady-state equilibrium in deterministic models of
resource stocks.

We refer to x* as the mean drift equilibrium. By this we mean that the optimal abatement rate
at x* equals the mean drift rate u; hence the expected rate of change in the quality of the resource
is zero. Under the optimal policy, moreover, quality tends back toward x* (in expectation) from
states in the neighborhood of x*. Of course, since flows are stochastic in our model, quality will
not remain at x*. Indeed, if the state deviates downward sufficiently (an event which will occur
with certainty after a long enough period, given the stochastic process), restoration will be
undertaken. This influences the optimal abatement path, as we discuss in the next section.

3.2. The interdependence of abatement and restoration

While the optimal restoration and abatement policies share features with familiar models,
neither strategy takes the form it would in the absence of the other. The effect of abatement on
restoration is intriguing. Intuition might suggest that restoration and abatement should substitute
for one another. Thus one might expect the optimal restoration trigger to fall when abatement is
available. However, abatement can also raise the trigger. By allowing the manager to maintain a
higher level of quality than she otherwise could, abatement may make high-quality states more
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Fig. 2. Effects of restoration on optimal abatement policy, for two flow rates.

attractive relative to low-quality ones. If so, the restoration trigger will increase, because the state
is restored as soon as the gain in the value function equals the restoration cost. Simulations
demonstrate that this latter effect dominates when flows are sufficiently great.

The effect of restoration on abatement, on the other hand, is unambiguous. Less abatement is
optimal when restoration is feasible. The feasibility of restoration must raise J(x) everywhere,
since its absence represents a constraint on the resource manager. But the value function increases
more at low levels of quality, where restoration is imminent, than at high levels, where restoration
is more distant. Since J'(x) is smaller when restoration is possible, the marginal benefit of
abatement is also lower, hence less abatement is optimal. Theorem 2 states this result formally.

Theorem 2. Let Assumptions 1, 2, and 3 hold. Let J,pue and a,p..e denote the optimal value
function and abatement policy in the absence of restoration. Then (i) J' <J' ,pares and (ii) for each
state x € (x, ©), where x is the restoration trigger, either a(x) <aupae(X) OF a(X) =aupare(X) =a.

Fig. 2 portrays optimal abatement policies with and without the possibility of restoration. In
the top panel, a mean drift equilibrium exists in both cases, but it occurs at a lower level of quality
when restoration is available. Thus, restoration alters the optimal abatement policy even when it is
exceedingly rare.'® In the bottom panel of the figure, restoration has a more drastic effect. No
mean drift equilibrium exists: at all values of x above x, abatement merely slows — but never
halts — the net flow of damages. Rather than maintaining quality at a certain level, the optimal
policy lets damages accumulate steadily until the trigger level is reached and the resource is

13 We thank an anonymous referee for pointing out a parallel to the optimal extraction of an exhaustible resource with an
uncertain backstop technology. Even a small probability that such a technology will be developed in the future raises the
optimal extraction rate (Dasgupta and Heal, 1974; Dasgupta and Stiglitz, 1981). In our model, a small probability of a
future restoration lowers the optimal abatement rate. The decrease in abatement, speeding up deterioration, is akin to an
increase in extraction that more rapidly depletes the stock.
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Fig. 3. Optimal abatement as a function of quality, for three flow rates. The left-hand figure (panel (a)) plots abatement
rates; the right-hand figure (panel (b)) depicts the abatement rates as fractions of mean flow rates.

restored. Which of the two cases portrayed in Fig. 2 prevails depends on how rapidly the resource
deteriorates, as we discuss in the next section.

3.3. The optimal balance of strategies

While the optimal policy always employs both restoration and abatement, its reliance on one
strategy versus another depends on the rate and variability of flows and on economic variables
such as costs and the discount rate. In this section, we consider how these factors affect the
optimal mix of the two methods for improving quality. We rely on simulations for most of our
results, since important relationships in the model are often complex, hence resistant to straight
analytic demonstrations.

3.3.1. Mean flows and variability

First, consider the effects of the mean flow rate u. Fig. 3 illustrates optimal abatement policies
(both in absolute terms and as a fraction of flows) for three flow rates. When the mean flow rate is
high, the cost of offsetting it with abatement is high as well. At the same time, restoration will be
more frequent, on average, so that damages will persist for a shorter period before the resource is
restored. Hence at higher flow rates, restoration becomes more attractive relative to abatement,
and less abatement is done.'* The frequency distributions of states corresponding to these three
flow rates are plotted in Fig. 4. When flows are low, restoration is rare. States around the mean
drift equilibrium x*are much more common than other states, yielding a peak in the frequency
distribution. At higher flow rates, the frequency distribution is flatter.

The fraction of total quality improvement achieved by abatement provides a natural way to
describe the balance between the two strategies. Fig. 5 plots this measure of abatement’s
importance against the flow rate. The dashed line on the figure marks the flow rate above which a
mean drift equilibrium ceases to exist. (In Fig. 5, this critical value is just above 1.2.) When flows
are low, the cost of fully offsetting expected deterioration is also small. In this case, a mean drift

!4 This relationship can be neatly summarized in a poem: “Abate, don’t wait, when flows are low/If flows are more you
must restore.”
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Fig. 4. Frequency distributions of resource qualities (states) under optimal policies for three flow rates.

equilibrium is reached, and restoration occurs with very small probability. For low flow rates,
then, abatement is the principal improvement strategy. When flows increase beyond this cutoff,
the mean drift equilibrium vanishes, and restoration becomes the principal strategy.

Greater variability has a similar effect as greater flows. Fig. 6 depicts the effects of the variance
rate o> on the optimal abatement policy. Note that abatement reaches a higher peak when
variability is lower. Given convex abatement costs, expected abatement cost increases when
variability rises; hence less abatement is done. For sufficiently high variance rates, peak
abatement never exceeds the mean flow rate, hence no mean drift equilibrium exists. Plotting the
fraction of quality improvement due to abatement against the variance rate o> would reveal a
pattern similar to Fig. 5. Since greater variability of flows depresses the optimal abatement rate,
the share of improvement achieved by abatement falls as the variability rises.

For the range of parameters depicted in Fig. 6, greater variability drives down the restoration
trigger. This observation suggests a useful analogy with the theory of real options.'> Recall from
Theorem 1 that the value function is convex just above the restoration trigger, and flat below it.
Since the rate of deterioration is stochastic, and restoration is an irreversible investment, there is
an option value to waiting before restoring. Just above the trigger, a favorable shock raises quality
and expected utility. The “downside risk,” however, is limited, since quality does not affect the
cost of restoration. The resulting option value represents a reward to waiting, and thus lowers the
restoration trigger. As with options, the reward is greater when flows are more variable.'®

3.3.2. Costs and discounting

Economic variables have effects that accord with intuition. When marginal abatement cost is
higher, the optimal abatement rate is lower at every state, and the fraction of quality improvement
achieved by abatement falls. When restoration is more expensive, more abatement is done. These

'3 See Dixit and Pindyck (1994) for a thorough discussion of option value in the context of dynamic stochastic models
of investment under uncertainty.

16 Alas, this relationship breaks down when both mean flow and variability are sufficiently low. We conjecture the
following: When flows are sufficiently high that a mean drift equilibrium does not exist, the restoration trigger decreases
monotonically with the mean flow rate and with the variability of flows.
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Fig. 5. Fraction of total quality improvement due to abatement, as a function of the mean flow rate .

effects are summarized in Fig. 7, which demonstrates how the costs of abatement and restoration
affect the amount of improvement done by each. For the purposes of illustration, and in keeping
with our other numerical simulations, we depict the case of an exponential utility function; for that
case, optimal policy is independent of the scale of abatement and restoration costs, so that their
relative importance in promoting resource quality depends only on their relative cost. For three
flow rates, the figure identifies two salient ratios of restoration cost C to the abatement cost
parameter y (which scales the slope of the marginal abatement cost function). When C/y lies
below the lower cutoff, abatement optimally accounts for less than five percent of the
improvement in quality. Equivalently, the average abatement rate is below one-twentieth of the
average flow rate in this region. When (/7 is above the upper cutoff, more than 95% of quality
improvement is due to abatement.
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Fig. 6. The effect of the variance rate o> on the optimal abatement policy.
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Fig. 7. The fraction of quality improvement due to abatement, as a function of the relative costs of restoration and
abatement. The circles mark the values of the ratio C/y for which the fraction of total improvement achieved via abatement
is 5% (hollow circles) or 95% (solid circles), for three flow rates.

The effect of higher discount rates, depicted in Fig. 8, is striking. When quality is high, more
patience leads to more abatement. This is intuitive, since the costs of abatement are incurred
immediately, while the benefits stretch into the future. At low quality, however, the relationship
inverts. A more patient manager will restore the resource at a higher quality, and hence abates less.
That is because a lower discount rate also makes restoration more attractive, since the future
benefits from a restored resource are valued more highly. In conventional resource management
models, patience always prompts immediate preservation, e.g., harvests from a depleted fishery
are reduced in the near term to build up the steady-state stock. In the SFQ model, by contrast, over
arange of states a more patient manager will be more tolerant of short-run degradation — because
such tolerance hastens restoration, and raises environmental quality in the long run.

3.3.3. The value of variance

Finally, consider how the variance rate o affects the value of the resource. Because utility is
concave in quality, and abatement costs are convex, initial intuition might be that variance is
always undesirable. Absent restoration, this would be true, since the value function would be
everywhere concave, and Jensen’s Inequality would imply that variability lowers value. But when
restoration is possible, J is convex immediately above the restoration trigger. In that region,
variance increases expected net benefits.
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Fig. 8. The effect of the discount rate o on the optimal abatement policy.



554 N. Keohane et al. / Journal of Public Economics 91 (2007) 541-569

Hence when restoration is feasible, a sufficiently patient manager may find variance to be
desirable. The intuition is as follows. Consider accumulated deterioration z, (as distinct from
current quality x,, which incorporates the effects of restorations). For example, z, might represent
total emissions (gross of abatement) of a stock pollutant up to time ¢. Since flows are stochastic,
accumulated deterioration rises and falls; but it must always be less than or equal to the maximum
cumulative deterioration that has been realized. The difference between the historical “high-water
mark” and the current total must increase with the variability of flows. Given accumulated
deterioration up to time ¢, therefore, the number of past restorations is greater when flows are
more variable.'” Hence the quality of the state at time 7 will be higher, on average. If the discount
rate is sufficiently low, this exchange of more numerous cleanups for higher quality raises the
present value of expected utility.

We can establish a strong result for the case when only restoration is possible. In such a scenario,
when the discount rate o is sufficiently small, variance raises the value function everywhere.

Theorem 3. Let Assumptions 1 and 3 hold. Let J,cg0re( 0”, a) be the optimal value function
given variance rate o° and discount rate o, when only restoration is feasible. Then, for any x,
there exists a scalar @ > 0 such that for any a € (0, &), JyesiorelX, 0°, @) is increasing in °.

Although Theorem 3 contemplates a polar case, it identifies a desirable aspect of variance that
persists in the full SFQ setting. Because variability also has unwelcome effects when abatement is
available, the value of variance is ambiguous in general. We leave a full analysis to future research.

3.4. Three extensions

3.4.1. Initial stock of quality

For convenience, in describing the optimal abatement policy, we have assumed that the starting
point at time 0 coincides with the destination of restoration, i.e., that x,=0. Of course, in real-
world applications one might be interested in another starting point. Initial conditions do not
affect the optimal abatement or restoration policies, which are functions of the state. Suppose, for
example, that the resource manager only becomes aware of the deterioration in quality (or only
becomes empowered to act) once the stock has fallen below the restoration trigger x, as has
happened with toxic waste dumps and endangered species in the U.S. In that case, immediate
restoration would be optimal.'® On the other hand, if the initial state is relatively pristine, so that
X0>0, the optimal abatement rate will increase smoothly from a low starting point as quality falls
toward 0, whence it proceeds as already described.

3.4.2. Greater costs for greater restoration
We have assumed that restoration costs are “destination-driven,” in that they depend on ultimate
rather than initial quality. However, the results of the model hold for cost functions that exhibit less

'7 Initial intuition can be tricky here. Greater variance does not increase the expected frequency of restorations, which
depends rather on the mean flow. However, at any particular point in time, the number of past restorations, conditional on
cumulative damages z,, increases with the variability of flows 2.

"% In a previous version of this paper (Keohane et al., 2005), we studied the optimal management policy for the
endangered California condor. Our simulations suggested that restoration would optimally occur at a population of about
160 birds. In fact, the number of condors had already fallen to a few dozen by 1967, when the species was first designated
as “endangered”. In the mid-1980s, after the population had dwindled further, the U. S. Fish and Wildlife Service
captured the remaining birds and embarked on a major restoration effort through captive breeding.
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extreme economies of scale. For example, suppose that the cost of restoring the resource to x=0
starting from quality level x has a fixed component F, as before, but also has a variable component
Y(x). We suppose Y(x) to be a decreasing function of x; i.e., the restoration cost increases with the
amount of restoration. Total cost is given by C(x)=F+7(x). Unless J(0)—J(x)<C(x) for all x,
restoration will be optimal for at least one state x. Suppose such a state exists, and let x denote the
highest value of x at which restoration is optimal. Then the system will evolve much as in the case
with only a fixed cost for restoration. '’

Note that in this case, there is no longer any assurance that restoration will play any part of an
optimal scheme. When restoration costs are destination-driven, restoration is guaranteed to be
attractive once quality deteriorates to a sufficiently low level. In contrast, when restoration is costly
at the margin, abatement may always dominate restoration even at low states. In particular, if the
variable cost of restoration is sufficiently high, then J(0)—J(x)<C(x) for all x. In that case,
restoration will never occur. Instead, quality will be maintained only by abatement, and the state
will fluctuate around the mean drift equilibrium x*. In a sense, this represents a limiting case of our
analysis. The distinguishing feature of restoration in our model is the presence of scale economies.

We can extend this discussion further to allow the destination of restoration to be endogenous.
Consider a model in which restoration can result in any quality level x<[x,, ), and the cost
incurred is a function C of the quality difference (x—x,). Let restoration cost increase with the
amount of restoration done, but at a decreasing rate (i.e., exhibit economies of scale); thus C'>0,
C">e for some positive scalar €, and C”<0. In this case, as in the earlier ones, it can be shown
that there exists a state x such that restoration occurs if and only if x,=x. Unlike the previously
discussed cases, the optimal destination state x(x) generally will depend on the state x at the time
of restoration. Because C” <0, X(x) increases as x decreases. Together with the fact that x, is
continuous, this implies that in steady state, restorations only occur at x and quality is restored to
X(x) each time this happens. In particular, Theorem 1 holds so long as Assertion (ii) is replaced by
the following: For each x<x, there is a state X(x)>x such that J(x)=J(x(x))— C(x(x)—x);
furthermore, J(x) is increasing and x(x) is decreasing on (—o0, x].

3.4.3. Delayed restoration

In many real-world applications of the SFQ model, restoration is unlikely to be instantaneous.
For example, proposed methods to remove greenhouse gases from the atmosphere (e.g., seeding
oceans with iron filings to promote plankton growth) would require long lead times. Consider
generalizing the model of Section 2 to incorporate a delay of length D in restoration. During the
interval [T;+D, T ) between the completion of the ith restoration and the commencement of the
next, the state evolves as before. The optimal value function is now defined by

J(x) = sup 2%
a,R

7 ks Tis —
/, e (u(x)—c(a(x,)))dt + Y / ¢ () —ela(w)))dr= 3 e *C (5)

=0 i—1 Jt=Ti+D

(Compare (5) to (3).) Note that states observed during a restoration project do not enter into
Eq. (5). Instead, the restoration cost C incorporates all costs incurred and utility realized in the
course of a restoration project. While the length of the delay is deterministic in this model, the
restoration cost could be random, in which case C would be the expected cost. The results in

19 If p(x) is convex, the restoration policy R may no longer be a convex set. Nonetheless, the evolution of the system
will be similar, since restoration will be triggered each time the state hits x. In this case too, the extent of scale economies
will clearly depend on the relative size of the fixed cost F, and will determine how far the state falls before restoration is
undertaken.
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Theorems 1 and 2 continue to hold in such a model, with only a slight modification to Theorem 1:
the boundary condition stated in Assertion (ii) becomes J(x)=e “’J(0)— C for all x<x.

4. Policy implementation when flows are decentralized

Thus far, we have assumed implicitly that the resource manager is able to implement the optimal
abatement and restoration policy directly. In many applications of interest, however, no single
“manager” exists. For example, carbon dioxide is emitted by factories, power plants, and motor
vehicles; municipal solid waste is generated by firms and individuals; passing cars and trucks punch
potholes in highways. To achieve optimality, a central authority (usually the government) must
regulate the activities of these private parties.

In this section, we suppose that deterioration (and thus abatement) depends on a large number of
self-interested agents who are subject to regulation by a central authority; and that authority also
carries out any restoration. Two issues arise. First, how can the optimal abatement path be achieved?
Second, how should the central authority support the costs of restoration? As a motivating example,
we consider a stock pollutant emitted by a multi-firm industry. Let 4, denote firm ;s average rate of
emissions in the absence of any regulation, and denote firm ;°s abatement rate at time ¢ by a;,. Thus
the expected deterioration in quality (i.e., expected emissions net of abatement) is u—a;, where
p=>u; and a,=2a;. Aggregate abatement cost is then c(a,) = min{aﬂ‘zja”:a,} jN:1 ¢j(ajr). For
simplicity, we shall assume that firms are “small” relative to the industry, so that each firm ignores the
effects of its own emissions and abatement on the state.

4.1. Aligning incentives for abatement

As in other settings, the central authority can induce efficient abatement by levying an
appropriate tax on pollution, or more generally on deterioration. Consider a tax 7 (x) set equal to
the derivative of the value function, J'(x), which represents the present discounted value of the
marginal benefit of abatement. Faced with such a tax, each polluter that chooses positive
abatement will equate its marginal abatement cost with the tax.”’ Hence c’; (ai)=1(x)=J"(x),
ensuring that at every state x>x the optimality condition ¢’(a)=J'(x) is met in Eq. (4). Note that
while the tax varies over time to equal marginal damages, it is linear in emissions at every state x.
Thus at any given point in time, each polluter faces a constant tax per ton of emissions, and all
polluters face a common tax rate; but this tax rate changes over time with the quality of the
resource.

Several characteristics of the optimal tax are notable. First, one can readily show that the
expected tax revenue to the center is the same whether it collects the flow tax 7(x) on the actual
change in the state (—dx;), or on the expected deterioration over a given time interval, (u—a,) d.”'
Abatement incentives are also identical in the two cases. If firms are risk averse, the center may
prefer to charge them only for expected deterioration, so that it (rather than the firms) bears the

20 The perfect competition assumption is crucial here. If firms are sufficiently large that their abatement affects the state,
they will have incentives to over-or under-abate, relative to the optimal path, in order to lower their future taxes. For
example, over the range of states when the tax rate is decreasing in x (i.e., when J is concave), strategic firms would abate
more than the efficient rate, in order to slow the rate at which quality deteriorated and their taxes increased. Below the
inflection point x*, on the other hand, such firms would abate less than the efficient rate in order to hasten the arrival of
lower quality states with lower taxes.

2! This equivalence follows from the fact that £ { ftQTH r(x[)crdw,} = 0 by the optimal sampling theorem: note that
[, t(x)odw,, conditioned on T}y, is a martingale, and T} is a stopping time.
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risk from random fluctuations. Second, to align incentives properly, the regulator must both levy a
tax on net emissions and pay out a subsidy on net abatement. Thus the expected flow of revenue to
the regulator, 7(x) (1 —a,), will be positive or negative depending on u 2 a,.*

Third, the optimal tax will follow the same qualitative path as abatement. Indeed, a plot of the
tax rate against quality would be identical to panel (a) of Fig. 3, only scaled up by a constant.”
When environmental quality is high, the present value of marginal damages is low, for two reasons:
current marginal damage is low because the stock of pollution is small; and the contribution of
emissions to future high-damage states is far removed, hence heavily discounted. As quality
deteriorates, the tax rises along with the present value of marginal damages. Once quality has
deteriorated sufficiently, however, the optimal tax falls: as restoration nears, additional pollution
will affect future utility over a shorter duration (at least in expectation), and thus impose smaller
marginal damage.

The eventual decline in the optimal tax rate contrasts with the steadily rising taxes derived in most
theoretical models of stock pollution (Plourde, 1972; Falk and Mendelsohn, 1993; Farzin, 1996), as
well as integrated assessment models of climate change (Nordhaus and Boyer, 2000).>* Analyses of
an optimal carbon tax, on the other hand, have found a “hump-shaped” time profile similar to that of
the SFQ tax (Ulph and Ulph, 1994; Hoel and Kverndokk, 1996; Farzin and Tahvonen, 1996). In both
the SFQ model and these optimal carbon tax models, the eventual fall in the optimal tax happens
because the pollution stock ultimately gets eliminated. As the stock falls to zero, the marginal
damages follow suit. The reason the stock disappears, however, is fundamentally different in the two
types of models. In the carbon-tax literature, the stock pollutant (i.e., carbon dioxide) is modeled as
the byproduct of consuming an exhaustible natural resource (i.e., fossil fuels). The pollution stock
decays to zero once the scarce resource is exhausted, eliminating the source of emissions. In the SFQ
model, the pollution stock vanishes because it is cleaned up.?

Fourth, the optimal tax in our model bears a surprising relationship to the mean flow rate, u.
Because the optimal tax rate is a monotonic function of abatement, it reaches a lower peak when
flows are high on average (recall Fig. 3). Hence when restoration is feasible, the optimal emissions
tax may be lower when unregulated emissions are higher — that is, when there is more pollution
(or potential pollution) around.?® This result contrasts sharply with familiar models, in which the
efficient tax increases with the baseline level of pollution. The availability of restoration makes the
difference. At high levels of quality, restoration is remote, and the dynamic remains much the same
as the no-restoration case: A higher flow increases marginal damages from current pollution (and

22 positive net abatement, a>u,would be feasible in cases such as global climate change, where afforestation allows
negative net flows of carbon. Of course, in many cases — e.g., soot from factories — it is natural to assume that @=pu, so
that abatement cannot exceed unregulated emissions. If so, the expected tax revenue will always be positive.

23 The scaling factor is the slope of the marginal cost function, equal to 80 in our simulations.

24 If restoration were not available, our model would produce an essentially identical result to those deterministic
models. The optimal tax would rise over time as quality worsened, until the resource reached the mean drift equilibrium
(x*); after that point, the tax would (in expectation) be constant, varying only with stochastic changes in the resource
quality around x*. Note further that the initial increase in the tax rate over time depends on the assumption that the initial
pollution stock is lower than its eventual level. In the deterministic framework, this is readily seen in the first-order
conditions for maximization, although it is not always recognized in the literature. In our framework, this amounts to the
assumption that x,>x*. Recall our discussion on the role of the starting point x, (Section 3.4.1).

25 We thank an anonymous referee for noting an analogy between our model and that of Farzin and Tahvonen (1996).
They show that under certain conditions, the optimal extraction of an exhaustible resource may follow an “open-close-
open” cycle — i.e., positive extraction, followed by a period of zero extraction, followed by a second phase of positive
extraction until exhaustion. This echoes the optimal SFQ policy of abatement punctuated by periodic restoration.

26 Note that in our model — as in standard models of abatement — abatement cost is assumed to be only a function of
the amount abated, and thus independent of unregulated emissions (here represented by ).
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hence the tax), because it speeds the arrival of states in which marginal utility is high. The situation
reverses at low quality levels. Then the predominant effect is that higher flow hastens restoration,
which terminates the effects of current pollution; hence marginal damage is lower. Optimal
abatement, and the optimal tax rate, fall accordingly.

4.2. Raising funds for restoration

Next, consider how the central authority should fund restoration. This would seem to pose a
new issue: How should the cost of a restoration project be divided up among the agents
responsible for the deterioration of the resource? In fact, no new cost-sharing rule is needed,
because the revenue raised from the flow tax closely approximates the restoration cost. Indeed, as
the variability of flows goes to zero, the total revenue collected from the flow tax, between any
one restoration and the next, converges precisely to the cost of restoration.

To see this, recall that the cost of restoratlon C must equal the gain in the value function from
restoration. Thus C = J(0)-J(x) = — f T , where T; (as before) is the time of the ith
restoration. Applying Ito’s Lemma the mtegral becomes.

c— ( /:T J' (x,)dx,)(%z /:T " (xt)dt). (6)

The first term on the right-hand side of Eq. (6) equals the tax revenue from levying the flow tax
1(x)=J"(x) on the observed deterioration in resource quality. The sign of the second term depends
on the sign of J” over the realized path of the state {x,}. Since the value function has both convex
and concave regions, this second term may be positive or negative. Thus the revenue from the
flow tax may exceed or fall short of the cost of restoration. As o> —0, however, this term
vanishes, so that the restoration cost precisely equals the revenue from the flow tax. Even when
the variance is low but positive, the difference between the restoration cost and the revenues from
the flow tax alone is negligible. Thus when variability is relatively small, the flow tax suffices to
raise the funds needed for restoration.?’

5. Applications

Here we explore the implications of our theoretical model for managing real-world resource
stocks. First, we briefly sketch the model’s application to a number of environmental problems,

27 Simulation results indicate that for the parameter values considered throughout Section 3 of this paper (i.e., 6>=9 and

WUE[1, 3]) the discrepancy is on the order of one percent of the restoration cost or less. However, if o> were dramatically
larger relative to flow rate, say a variance of 100 for a flow rate of 1, the funding gap would rise to around 35% of the
restoration cost. A natural way to achieve exact budget balance is suggested by the second term in Eq. (6), under the
additional assumption that firm-level emissions are independent. Consider a tax p(x) = 7" on the variance generated
by each firm per unit time. Such a tax would yield total revenue of _—J”( ) df over an interval df — ensuring that the
combined revenue from the variance and flow taxes would precisely equal the cost of restoration, for any realization of
the stochastic process. Note that such a variance tax is not needed to align incentives; even if variance is taken to be
controllable by polluting firms, it could be contracted upon, given our assumption of Brownian motion. (We thank an
anonymous referee for pointing this out.)
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ranging from accumulating waste to zebra mussels.”® We then discuss how the model would apply
to public infrastructure — in particular, highway construction and maintenance.

5.1. Environmental quality

The accumulation of wastes at disposal sites or generating facilities is a canonical SFQ problem.
Consider the management of municipal solid waste, for example. The environmental quality of a
landfill site and the surrounding area diminishes as garbage accumulates. The flow of waste may be
slowed through recycling, composting, or waste reduction. Eventually, the landfill is capped, the
site is restored — perhaps becoming a park or recreation area — and quality returns to its initial
high level.” In a typical scenario in the real world, waste diversion remains roughly constant over
time, or changes only with changing preferences (e.g., a desire to increase levels of recycling) or
prices (e.g., land becomes more expensive, or recycled materials become more valuable). Optimal
waste management would vary the rate of abatement over time. Early in the life of a landfill,
diversion should be relatively high, since the discounted expected damages from dumping garbage
are high relative to the damages from waste arriving later. As the landfill nears capacity, diversion
should drop, since the waste will impose damages only for the brief time until restoration.

Similar issues, on a different scale, are involved in the management of hazardous wastes. Con-
sider the chemistry department at Harvard University.*” The department’s laboratories accumulate a
variety of toxic and reactive substances. Storing such substances on campus heightens health and fire
hazards.”’ Removing the wastes for permanent disposal — restoration in this context — involves
economies of scale, reflecting the fixed costs of labor and transportation. A 55-gallon drum of
corrosive flammable liquids costs $320 to ship; a single 5-gallon container, $95. Atleast in principle,
several methods exist to control the flow of lab waste generated: experiments could be altered or
curtailed to conserve chemicals; technicians could exert greater effort to prevent spills; laboratories
could manage their inventories more efficiently; or some fraction of the waste stream could be
purified and reused rather than thrown away. For years, however, individual laboratories were not
charged for disposal, and thus had little incentive to reduce their chemical use. Limited experience
with a recently-imposed volume-based charge indicates that the use of chemical wastes is fairly
inelastic, suggesting high costs of substantial abatement.

The sedimentation of reservoirs presents a very different application.*® The “stock” in this context
is the capacity of the reservoir, which diminishes as sediment flows into the reservoir and accu-
mulates. Retiring a dam and constructing a replacement constitute restoration, with destination-

28 For further discussion of environmental applications, see Keohane et al. (2005).

2% With solid waste management, successive waves of accumulation and restoration take place on a series of dump sites,
as opposed to the cyclical cleansing and soiling of a single resource. Our model could be extended to accommodate the
multiple-site case by having restoration costs rise as we move to successively more expensive landfills. Such an approach
would characterize restoration as using up a nonrenewable resource (finite landfill space); hence we can appeal to results
from the theory of nonrenewable resources (Dasgupta and Heal, 1979; Hotelling, 1931). Abatement today would be
influenced by the shadow price of future restorations.

30 We thank Henry Littleboy, Health and Safety Officer (for Harvard’s Faculty of Arts and Sciences Office of
Environmental Health Services), who oversees hazardous waste management in the Chemistry Department, and Dr. Alan
Long, Director of Laboratories, for their generosity in answering questions and providing information about hazardous
waste management in the Harvard chemistry department.

31 Of course, chemical waste storage and disposal are heavily regulated by the Environmental Protection Agency. For
example, existing regulations prohibit the storage of waste longer than ninety days. At Harvard, the constraint does not
bind: limited storage space makes more frequent collection necessary.

32 The description of dam sedimentation and management draws on Palmieri et al. (2001).
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driven costs. The sediment flow can be abated by soil conservation, reforestation, and other measures
in the catchment area; or sediment can be routed away from the reservoir. The common practice of
letting sediment accumulate unchecked before retiring the dam — equivalent to a restoration-only
policy — is almost surely suboptimal. At the other extreme, “sustainable management” that seeks to
maintain an equilibrium by relying exclusively on controlling sediment flow, without periodic
restoration (Palmieri et al., 2001), is equally unlikely to be optimal.

The SFQ model applies naturally to the control of animal pests, such as zebra mussels (Dreissena
polymorpha). These small freshwater mollusks were introduced to the U. S. accidentally, carried in
bilge water of cargo ships. They clog water intake and distribution systems by adhering in large
clusters to pumphouses, plumbing systems, and other pieces of equipment. The control of zebra
mussels by power plants, water works, and other large users of water in the Great Lakes region is
estimated to have cost as much as $1 billion in the 1990s alone.”

Methods that can prevent mussel settlement vary by location. In the pumphouses of power
plants, mussels grow on walls, debris screens, valves, and pumps, obstructing the flow of water.
Mechanical measures to remove them — physical scraping or “hydrolasing” with high-powered
water hoses — involve high fixed costs from sending down a team of divers or even dewatering the
pumphouse (thus shutting down the plant). An (S,s) policy is followed. Mussels are allowed to
settle and grow, and periodically are removed. Removal is done every year or two in western Lake
Erie, their densest habitat. Inside the plumbing systems of power plants and water works, mussels
are inaccessible, rendering mechanical removal infeasible, but chemical removal is possible. In
such locations, both flow and stock controls are employed. Continuous low-level chlorination of
circulating water is an abatement policy that inhibits the settlement of juvenile mussels. Periodic
injections of high concentrations of chlorine or other biocides represent a restoration strategy used
to kill off encrusted adult mussels.

5.2. Public infrastructure

The basic SFQ model applies to a range of public infrastructure projects. Consider highways,
for example. Highway expenditures take a substantial chunk of public spending, most of it routed
to building new roads rather than maintaining old ones. Across countries, maintenance appears to
be underfunded relative to new investment, particularly in developing countries (Rioja, 2003). In
the U.S., total government expenditures on highways averaged $122.5 billion annually over the
period 1998—2002; half went to capital outlays (new investment), while a quarter was spent on
maintenance ((USDOC), 2004).

Recent studies use optimal growth models to consider how public funds should be allocated
for investment and maintenance in infrastructure (Rioja, 2003; Kalaitzidakis and Kalyvitis, 2004).
An SFQ approach incorporates restoration to represent the replacement and/or rehabilitation of
existing infrastructure.”* Suppose that a large number of infrastructure projects coexist, and that
they share a common level of unchecked deterioration. Then the quality of infrastructure projects

33 Personal communication, Charles O’Neill, Project Director, National Zebra Mussel Information Clearinghouse, New
York Sea Grant.

34 In models of infrastructure, deterioration is typically assumed to be proportional to the existing capital stock, whereas
our formulation assumes that it is independent of the stock. However, this difference can be easily accommodated. In the
infrastructure setting, our model can be considered to apply to “single projects” subject to maintenance and restoration. In
a model of a large number of such projects, each of identical size, aggregate deterioration would indeed be proportional to
the number of projects, i.e., the total capital stock.
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will be described by a frequency distribution of the type illustrated in Fig. 4, while the optimal
share of expenditure on maintenance versus restoration at any point in time will be described by
Fig. 5.

Note how the rate of unchecked deterioration helps to determine the optimal policy. The greater
is economic activity, all else equal, the faster will infrastructure deteriorate, and the greater should
be the expenditure on new investment (restoration) rather than maintenance. One implication is
that the share of expenditures allocated to maintenance relative to new construction should be
higher in less-developed countries (where economic activity is lower); the reverse pattern is
observed.

An SFQ analysis also offers insight into the optimal financing of infrastructure projects. A tax on
deterioration — for example, a tonnage tax on trucks to fund highway expenditures — could align
private incentives with social welfare, as it simultaneously raises the revenue required to pay for
restoration. Indeed, current gasoline taxes in the U. S., which help pay for highway construction, are
(at least qualitatively) appropriate instruments. Moreover, implementation of a targeted deterioration
tax would be relatively easy, given the existing structure of gasoline taxes, tonnage charges, and
turnpike tolls.

6. Conclusion

In a wide range of settings, both stocks and flows can be controlled to improve the quality of a
valued resource. If so, the SFQ model applies. Managing the resource entails abating the
downward drift in quality and periodically restoring the stock. These strategies are interdependent.
The optimal balance between them depends on the rate and variability of ongoing deterioration, the
costs of the two strategies, and the discount rate. If flows are low enough or abatement is cheap
enough, a “mean drift equilibrium” may be reached where abatement efforts just offset the
expected deterioration of the resource. If so, abatement is the principal management tool, although
the potential for restoration still lowers the optimal abatement rate. When deterioration is more
rapid or more variable, when abatement is more expensive, or when restoration is less costly, the
optimal policy relies more on restoration.

This model has broad relevance for the management of resource stocks in the real world. We
have discussed a range of applications: the disposal of municipal solid waste and hazardous
laboratory waste; the slowing of siltation in reservoirs; the control of pests such as zebra mussels;
and the construction and maintenance of public infrastructure projects such as highways. Our
analysis generalizes readily to the management of private stocks of physical and human capital.
Thus, determining how steadily to service a piece of capital equipment, and how often to replace it,
depends on the speed and variability of deterioration, not merely the costs of maintenance and
replacement. Similarly, from the perspective of the firm, investment in human capital presents an
SFQ problem. Workers age, tire, and burn out. In industries with rapid technological advance,
workers’ skills quickly obsolesce. A firm can train its workers to maintain their productivity, but at
some point it may replace its older workers, through layoffs or reassignments to less cutting-edge
tasks.

Government will likely play a role in many SFQ problems, e.g., in controlling environmental
quality. A time-varying tax can ensure efficient abatement in a decentralized setting. Here, too,
abatement and restoration are linked. The tax that induces efficient abatement generates the revenues
needed to pay for restoration. Moreover, government policy should incorporate the central lesson of
the SFQ analysis — That stock and flow controls should be coordinated and implemented jointly
when both are feasible. When restoration is an option, maintaining a resource stock at a constant
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level by abating flows, the usual government policy, will be more expensive than achieving the same
present value of expected utility from quality, but allowing quality to vary over time. On the other
hand, a policy relying solely on restoration will not only restore too frequently (since deterioration is
unchecked), but may also allow quality to fall too far before each restoration (since the availability of
abatement may raise the optimal trigger).

Alas, single-prong strategies are often employed inappropriately in the real world. For
example, environmental policies towards municipal and hazardous waste tend to emphasize
terminal cleanup and permanent storage (restoration) rather than slowing waste generation. In
contrast, traditional regulation of water quality, as embodied in the Clean Water Act, entails
curbing effluents rather than boosting environmental quality. Restoration efforts have been
viewed as last-ditch measures borne of desperation: Consider the Boston Harbor cleanup, or the
imminent remediation of the Hudson River. While those specific restorations may have been long
overdue, they do not signal the failure of earlier efforts at controlling pollution. Rather, our model
suggests that the periodic cleanups they exemplify are part of optimal policies to manage resource

quality.
Appendix A. Proofs of Theorems

A.1. Proof of Theorem 1

Proof. We have J<0 because u<0, ¢>0, and C>0. Furthermore, for each x, J(x)>—o because
E.[[,Z, ¢ *u(x,)dz] is finite. We have established Assertion (i).

Because restoration sets the state to 0 and costs C, J(x)=>J(0)—C for all x, and an optimal
policy R can be defined to be the set of all x such that J(x)=J(0)—C. Let us establish that any
optimal policy R is nonempty — that at some level of environmental quality the manager restores
the resource. Assume, for contradiction that the optimal restoration policy R is empty. Then, we
would have J(x) = sup,E¢[ [=) e * (u(x,)—c(a(x,)))dz]. It is easy to see that J would be un-
bounded below, contrad1ct1ng the fact that J(x)=J(0)—C.

By straightforward sample-path arguments, it is easy to show that J is continuous and
nondecreasing. Hence, there exists a state x such that J(x)=J(0)— C for all x <x and J(x)>J(0)—C
for all x>x, establishing Assertion (ii).

It follows from Theorem 3 on page 39 of Krylov (1980) that J is twice continuously
differentiable on (x, o) and differentiable everywhere. Furthermore, J satisfies

sup (%J” (x) + (a=p)J ' (x)=o (x) + ”(x)_c(")) =0

a0,

for all x>x. Hence, Assertions (iii) and (iv) are valid. It is easily verified by sample-path
arguments that J is increasing on (x, o) (Assertion (v)).

It follows from Assertions (ii) and (iii) that J’(x)=0. Since J'(x)>0 for all x>x, we have
J"(x)>0 on some range x<(x, y) for some y>x. Furthermore, since J is bounded above,
J"(x) must be negative for some x>x, and by continuity of the second derivative, there is a
well-defined minimal inflection point x'=min{x>xJ"(x)=0}, which by definition satisfies
Assertions (vi) and (vii).

Now consider an optimal policy. Assertion (ii) implies that the restoration component of an
optimal policy is given by R*=(—o0, x]. Let a function f; be defined for x>x by f(a)=aJ (x) —c(a).
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Note that f,"=—c" < —e for some €. Hence, for any x, the supremum

sup fi(a) (7)

a €03

is uniquely attained by some a &[0, a]. For each state x>x, let a*(x) be the value attaining the
supremum, and note that (a*, R*) constitutes an optimal policy since the values a*(x) also attain the
supremum in the Hamilton—Jacobi—Bellman equation (Eq. (4)). This validates Assertions (ix) and
(xi). Moreover, for any x, y& (x, x") with x<y, £} (a*(x))>fa*(x))=0, since J">0 on (x, x").
Consequently, unless a*(x)=da, we have a*(y)>a*(x). An entirely analogous argument establishes
that a*(y)<a*(x) if x" <x<y and a*(y)#a. Assertion (x) follows.

We are left with the task of establishing Assertion (viii). Given scalars 4>0 and x>x"+ 4, we
define two processes

t
xt_:x—i—/ (a*(x;)—p)dt + owy,
s=0

and ‘
x =x+24 —|—/ (a*(x)~w)dt + ow,,
s=0

each evolving on [0, T'], where T is given by

T = inf{t]x, = xf or x, =x}.

Let ,
x=x+4 +/ ((a*(x]) + a*(x,))/2—p)dt + ow,
s=0

and note that x,=(x; +x, )/2 for all t&[0, T]. It is easy to show that T'is finite with probability one.
Define “sample costs” associated with the three processes:

J v, 0) = /t:o e () —c((a* () + a*(x))/2))dt + T (xp),

T

f+(x, ) = /z:o e (u(x)—c(a*(x))))dt + e J (x7),

T o) = [ & (uley el () +¢ ),

where @ denotes the sample path of the underlying Brownian motion w,.
We will show that for almost all @ and any x < (x', o),

7, w)% (7 o) +7 (x0).
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We consider two separate cases that together comprise a set of probability 1. The firstis when
Xz #x". In this event, we have x}:x;:xT>xT, and the desired inequality follows directly from
concavity of u and convexity of c.

The second case is when x;=x1. Given our assumptions on c, the fact that a* is bounded
above, and the fact that J is bounded and twice continuously differentiable on (x, o), it can be
shown that for any y>x, |a*(y)—a*(y+4)|=0(A). It follows that sup,g[oﬂ|a*(x[)*a*(x:r)|=
O(4) and x;—x"=0(4). We then have

Jwo) = [ utmel(ate) +a%(a))/2)d+¢ o)
|t + o))l )+ € )
[ et + e e )

t=0

5 (J0ef) + I (D) + 0(?)

\S]

Il
N —
o

<

(v.0) +J " (x.0) + 0(4),

where the second-to-last expression relies on the fact that J”(x")=0 and that x;—x"=0(4). It
follows that for almost all @ and any x € (x', ©0), J(x, ®) is concave in x.
By Bellman’s principle of optimality, we have

J() = EJ (x,0)),J(x+24) = EJ " (x,0)], and J(x + A)=E} (x, w)].

1
J(x+ 4)= 5 (J(x) +J(x +24) + 0(4%)).
and therefore J”(x)<0 for x>x". [
A.2. Proof of Theorem 2

Next, consider Theorem 2, which contrasts the full SFQ case with the case where only
abatement is possible. Before proving the theorem, we establish some properties of the optimal
abatement policy in the abate-only case.

Lemma. Let Assumptions 1 and 2 hold, and assume that restoration is not feasible. Let a denote
the optimal abatement policy in this case. Then (i) there exists a state X such that d is decreasing
on (X, ) and d(x)=a for all x=X; (ii) lim,_,., d(x) =0; and (iii) if a> u, then there exists a state
X* pate SUCh that W <da(x) for x <x*,pue and pu>a(x) for x>x*,p4z0

Proof. Let J denote the optimal value function in the case when only abatement is possible:
F(x) = sup E° { / e (ulx)—clalx,)))dr|. (8)
a t=0

where the supremum is taken over abatement policies. Let d be the corresponding optimal
abatement policy.
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Let . be defined by

fila) = aJ' (x)=c(a),

and let @(x) be the value in [0, @] that uniquely attains the supremum of ;.. Along similar lines as in the
proof of Theorem 1, one can show that.J’(x)>0, implying £ (0)>0. Also recall that f}'=—c" <—e for
some €. Consider the less constrained problem

sup f(2). 9)

ze[0,00)

Since f”=—¢, the supremum is always attained by some zE(0, «). Let b(x) denote the
optimum for a given state x. Because f/(0)>0, b(x)>0. Furthermore, since f/(z) decreases as x
increases, b is decreasing.

It is easy to see that @(x)=min(h(x), @). Since J' is unbounded below, for any z>0 there exists
a state x such that f/(z)>0, implying that b is unbounded above, and therefore, there exists a state
X such that d@(x)=a for x <x. Assertion (i) follows.

Recall that /<0 and J” >0, so that lim,_,., J’(x)=0. Hence for any z>0, there exists a state x
such that £(z)<0, implying that lim,_,., 5(x)=0 and that Assertion (ii) holds. The fact that b is
decreasing implies that there exists a state x* such that u<b(x) for x<x* and u>b(x) for x>x*.
Since u<da by hypothesis, we have Assertion (iii). [

Proof of Theorem 2. As a step toward establishing Assertion (i), we will show that J<J. It is
easy to see that J’ <.J. From Theorem 1, we have J'(x)=0<J'(x). This implies that J(x)<
J(x). For x<x, we then have J(x)=J(x)>J(x)>J(x). For x>x, on the other hand, the fact
that J(x)<J(x) follows from our observation that J(x)<J(x) coupled with standard sample-
path arguments.

Consider two states y and z with x<y<z. By Bellman’s principal of optimality (see, e.g.,
Krylov), we have

J(z) = sup £ { [ ) e (ulx)=c(alx,)))dr +e 1] (y)}

=0

and

J(z) = s;?lg) E“R [/tTo e “(u(x,)—c(a(x,)))dt + e“TJ(y)}

—p 2] [ e () ela(e)))di + 0],

=0

where T is the first time at which x,=y. (The final equality holds because x,>x for t < T)
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Let a be an optimal policy for the case where only abatement is possible. We then have

a 0

J(z)=J () = sup e { /, ' e (u(x,)~c(a(x,)))d + e_“TJ(y)}

sz [ " e ) -clal))dt + eI 0)]

0

<E* UtT e (u(x;)—c(a*(x;)))dt + e“TJ(y)]

=0

fE;‘* {/IT e “(u(x;)—c(a*(x;)))dr + e“TJN(y)}

=0

— B [ (I ()T ()] < T()~T ()

It follows that J/<J”’, which gives us Assertion (i).

Now turn to Assertion (ii). Again, let £; be defined by fi(a)=a.J”(x)—c(a). Recall that for any x,
the supremum of £, is uniquely attained by d(x). Since J'>.7, for every x>x, we have f; (a*(x))>
f@*(x)). This implies that if a*(x)<a then d(x)>a*(x). Hence, we have Assertion (ii). [

A.3. Proof of Theorem 3

Proof. Without loss of generality, we will assume in this proof that o >0. Recall that damage
evolves according to z,=ut—ow,. Consider a fixed restoration threshold ¥<0, which may or may
not correspond to the optimal restoration strategy. We introduce some notation to facilitate our
analysis. First, we denote the running maximum of damage by m,=max.<o ;z.. The number of
restorations carried out up to time ¢ is 7,=|—m,/zl. Given only knowledge of z,, the tightest lower
bound on r, is r,=l—z,/%l. The state can be written as x,=—z,—r,%. If we carried out r, rather than
r, restorations, the state would be y,=—z,—r,%.

Let J:(-, o, o) be the value function corresponding to a restoration threshold % Since x;,
reaches X in finite expected time and the process regenerates every time it hits %, it is ergodic. It
follows that

Bg)l OCJ);(X, g, OC) = I;fg aEx

/ e “u(x,)dr + Z e "iC
p :

=0 i=1

1 T

1 T
= lim —E, {/ u(x,)dt] —Cuzx,
T ‘

T— 0 —0

where the final term follows from the fact that the expected interarrival time between visits to Xis
U

We will now establish that lim, o a/z(x, o, o) is increasing in o. Note that (x;, v, 7,—r,)
together form an ergodic process. There is a joint stationary distribution over the variables x;, y;,



N. Keohane et al. / Journal of Public Economics 91 (2007) 541-569 567

and r,—r; such that if (xo, yo, ro—ro) is sampled from this distribution, (x;, y, r;—r,) is a
stationary process. Let E,, denote expectation with respect to the distribution of this stationary
process. It is easy to see that, for any ¢, the marginal distribution (with respect to the stationary
process) of y, is uniform over [X, 0]. We therefore have

1 ! 1 r
Tango ?Ex [/to u(xt)dt} = TILHL ?Em [/zo u(xt)dt}

1 T
= lim —=E_ {Em [/ u(x,)dt
r t

dl

T— =0
1 T
- Tlgrolof_T/Eoo /t:ou(y’_(”t_ﬁt)f)dt ye=y|dy.
y=0%

Note that, conditioned on z, and z,, the process z, forms a Brownian bridge on T<[0, 7]. A
sample path argument shows that for any y>max(z, z;), Pr{m,=> Y|z, z,} is increasing in o. It
follows that for any y>max(zy, z,), Pr{m,—z,= 7y|zo, z;} is increasing in o, and therefore, for any
v=1, Pr{r,—r,=>7v|z0, z,} is increasing in o. Since this holds for all z, and z, and y, is a
deterministic function of z,, for any y>1 and any y,, Pr{r,—r,>7|y,} is also increasing in o.
Since u’ >0, it follows that

T
B [ uotor e
t=0

is increasing in . Therefore,

| T
TlLH:o ?Ex |:»/t—0 u(xt)dt}

is increasing in o. It follows that that lim, o oJx(x, o, &) is increasing in o.

It is not hard to show that for any x>% and any o> 0, Jx(x, o, o) is continuously differentiable
in Xand o, and we will take this as given. Let x(o, o) denote the optimal threshold as a function of
o and o. It can be shown that x(o, o) is continuously differentiable in o, and we take this as given
as well. It follows that

Orestore (x7 g, O!)
oo

. an(x, g, OC)

5 ox

0=0

Since x(o, o) maximizes JX(x, &, o) over XE R, we have

GJ;C(x, o, CX)

=0.
ox

F=x(7,)
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Table Bl

Parameter values and functional forms for figures

Variance rate 62=9.0

Discount rate a=0.005

Restoration cost C=13,000

Abatement ceiling a=20

Abatement cost cla)y=yd’ v=40

Utility u(x)=—¢ A B=0.05
k==7.5

We have already shown that, for any x and o>0, lim, oo/z(x, o, o) is increasing in o. It
follows that, for any x and & >0, there exists some & >0 such that for all 2 € (0, &),

0Jy(,2)(x,0,)

8Jrestore (X, g, O()

and therefore
oo

>0. 0O

0=0

Appendix B. Numerical simulations in Section 3

The computations that generated the figures were conducted using a quadratic function for
abatement cost and a negative natural exponential function for utility. The functional forms and
parameter values used are summarized in Table B1. The flow rate u is not given in the table; it
varied as indicated in the figures and the text. The variance rate %, the ratio of the restoration cost
C to the marginal cost parameter , and the discount rate o also vary in some figures, as indicated.

Value functions were computed via policy iteration on a “locally consistent” approximating
Markov chain (see, e.g., Kushner and Dupuis, 1992). Most simulations required only 10 iterations
to converge to a solution for a given set of parameter values, although more iterations were used in
some cases.
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