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Abstract
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1 Additional Proofs

Proof of Proposition 5. First, note that Proposition 1 implies that whenever HIGH is risk

averse, it is optimal to use a PFO when μ = pl
ph
. We prove Proposition 5a through a series of

claims. Let b (μ) be the value function for the seller’s optimization problem:

b (μ) = max
y

μp1 (y) + (1− y) (1− μ) rl,

and note that b (0) = rl and b (1) = rh. Further, by the Theorem of the Maximum, b (μ) is

continuous on [0, 1]. Let y (μ) be the optimal second-offer probability for μ. Figure 3 illustrates

the argument.

Claim 1: b (μ) is convex.

Proof of Claim 1: Let μt = tμ0+(1− t)μ00, y0 = y (μ0), y00 = y (μ00), and yt = y (tμ0 + (1− t)μ00).
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Claim 2: For μ sufficiently high or sufficiently low, it is not optimal to use a PFO.

Proof of Claim 2: Note that μp1 (y) + (1− y) (1− μ) rl is concave in y, and p01 (y) > 0, where

at y = 0 and y = 1 we refer to the properly defined one-sided derivatives. The first derivative of

the objective function with respect to y is:

μp01 (y)− (1− μ) rl.
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Figure 3: The region over which PFOs are optimal.

If μp01 (1)− (1− μ) rl > 0, y∗ = 1, and it is not optimal to use a PFO. Since

lim
μ−>1μp

0
1 (1)− (1− μ) rl > 0,

for μ sufficiently close to 1 it is not optimal to use a PFO. Similarly, if μp01 (0) − (1− μ) rl < 0,

y∗ = 0, and it is not optimal to use a PFO. Since

lim
μ−>0μp

0
1 (0) + (1− μ) rl < 0,

for μ sufficiently close to 0 it is not optimal to use a PFO.

Claim 3: Equation b (μ) = rl has exactly two solutions, μ = 0 and μ0, where 0 < μ0 < 1.

Similarly, b (μ) = μrh has exactly two solutions, μ = 1 and μ1, where 0 < μ1 < 1.

Proof of Claim 3: Since using a PFO is not optimal for sufficiently small μ and b (0) = rl,

b () < rl for small μ. By convexity and continuity of b () there is exactly one point where b (μ0) = rl.

Since b (1) = rh, this point must be such that 0 < μ0 < 1. Similarly, since using a PFO is not

optimal for sufficiently large μ and b (1) = rh, b (μ) < μrh for large μ. By continuity and convexity

of b (), there is exactly one point where b (μ1) = μ1rh. Since b (0) = rl, this point must be such

that 0 < μ1 < 1.
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Claim 4: A PFO strategy is optimal on the closed interval [μ0, μ1].

Proof of Claim 4: A PFO is optimal when b (μ) ≥ max {rl, μrh}, b (μ) ≥ rl on [μ0, 1], and

b (μ) ≥ μrh on [0, μ1]. The intersection of these two sets is [μ0, μ1]. Note: Claims 1 - 4 suffice for

Proposition 5a, except for the fact that μ0 < μ1.

Claim 5: Increasing HIGH’s risk aversion decreases μ0 and increases μ1.

Proof of Proposition 5b: Consider two utility functions v1 () and v2 () for HIGH and let

v2 () be more risk averse than v1 (). Denote the seller’s value function when HIGH has utility

function v1 () by b1 (μ), and similarly let b2 (μ) be the seller’s value function when HIGH has utility

function v2 (), and let μt0 and μ
t
1 solve b

t
¡
μt0
¢
= rl and bt

¡
μt1
¢
= μt1rh, respectively. By Proposition

4, increasing risk aversion strictly increases the seller’s profit whenever a PFO is optimal. Hence

b2 (μ) > b1 (μ) for μ10 ≤ μ ≤ μ11. By continuity, μ20 < μ10 and μ21 > μ11. Claim 5 suffices for

Proposition 5b.

Finally, note that for any finite level of risk aversion, b
³
rl
rh

´
> rl, and therefore by the continuity

argument above, μ0 <
rl
rh

< μ1 for any finite level of risk aversion.¥

Proof of Proposition 7. For the purposes of the proof, it is notationally simpler to work with

zj = 1 − yj , the (conditional) probability of making a jth offer after the seller’s offer of pj−1 is

rejected. Let ζkt =
³Qt

j=k+1 zj

´
. For each k, constraints (14) can be rewritten as:

θk + v (w − pk) ≥ ζkt (θk + v (w − pt)) , for t = k + 1, ..., n, or

v (w − pk) ≥ (1− ζkt) v (w − rk) + ζktv (w − pt) , for t = k + 1, ..., n.

Let Pk (zk+1) satisfy:1

v (w − Pk (zk+1)) = (1− zk+1) v (w − rk) + zk+1v (w − rn) , for k = 1, ..., n− 1. (26)

Let z1 = 1, and let Pn (zn+1) = rn. Note that rk > Pk (zk+1) > rn = rk if 0 < zk+1 < 1.

Step 1: Since Pk (zk+1) ≤ rk, all participation constraints (12) are satisfied.

Step 2: For 0 < zk < 1, k = 2, ..., n, P (zk+1) satisfy (14). For each k = 1, ..., n, and

1Functions Pk (z) are similar to p1 (y) from the two-type case except, being defined on z instead of y, Pk (z) are
decreasing and concave in z.
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t = k + 1, ..., n:

v (w − Pk (zk+1)) = (1− zk+1) v (w − rk) + zk+1v (w − rn)

≥ (1− ζkt) v (w − rk) + ζktv (w − rn)

≥ (1− ζkt) v (w − rk) + ζktv (w − Pt (zk+1)) ,

where the first inequality follows from ζkt ≤ zk+1 and v (w − rk) < v (w − rn), and the second

inequality follows from Pt (zk+1) ≥ rn.

Step 3: Note that if pk ≥ rk+1 for k = 1, ..., n− 1, then (13) are satisfied.
Profit under Pk (zk+1) is given by

nX
k=1

⎛⎝ kY
j=1

zj

⎞⎠μkPk (zk+1) .

As v () becomes infinitely risk averse, Pk (zk+1) → rk for zk+1 ∈ (0, 1), and therefore pk > rk+1,

satisfying (13). Thus, as buyers become infinitely risk averse,
Pn

k=1

³Qk
j=1 zj

´
μkPk (zk+1) →Pn

k=1

³Qk
j=1 zj

´
μkrk. And, letting zk → 1, expected profit converges to

Pn
k=1 μkrk, the full

information profit. Finally, note that every zk must satisfy 0 < zk < 1 for this convergence to

occur, and therefore that a PFO cascade is optimal.2¥

Proof of Proposition 8: Since πD < πF , and πD is the largest profit the seller can earn without

using a PFO, if we can show that π∗ → πF as HIGH becomes infinitely risk averse, this establishes

the result. Consider the family of offers such that x1 = xF1 , x2 = xF2 , and p2 = pF2 . This satisfies

LOW’s participation constraint (18). Let p̄ be the value of p1 such that ul
¡
xF1 , wl − p̄

¢
= 0. Any

value of p1 such that p̄ ≤ p1 ≤ pF satisfies (16) and (17). We will focus on the problem to one

of choosing p1 to maximize expected profit subject to x1 = xF1 , x2 = xF2 , p2 = pF2 , (15), and

p̄ ≤ p1 ≤ pF . The solution to this problem is feasible but not necessarily optimal in the seller’s

original problem.

2 If zk = 0 for some k, then the game stops with probability 1, and profit can be no higher than k
j=1 μkrk. If

zk = 1 for k 6= 1, then pk = pk+1 ≤ rk+1, again bounding profit away from the full-information maximum.
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Consider HIGH’s incentive-compatibility constraint evaluated at xF1 , x
F
2 , and pF2 .

uh
¡
xF1 , wh − p1

¢ ≥ yuh
¡
xF2 , wh − pF2

¢
.

Since uh
¡
xF1 , wh − pF1

¢
= 0, this can be rewritten as:

uh
¡
xF1 , wh − p1

¢ ≥ (1− y)uh
¡
xF2 , wh − pF2

¢
+ yuh

¡
xF1 , wh − pF1

¢
,

and letting p̂ be such that uh
¡
xF1 , wh − p̂

¢
= uh

¡
xF2 , wh − pF2

¢
, this can again be rewritten as:

uh
¡
xF1 , wh − p1

¢ ≥ (1− y)uh
¡
xF1 , wh − p̂

¢
+ yuh

¡
xF1 , wh − pF1

¢
. (27)

Note that since uh
¡
xF2 , p

F
2

¢
> 0, p̂ < pF1 .

Let p1 (y) be defined as:

uh
¡
xF1 , wh − p1 (y)

¢ ≡ (1− y)uh
¡
xF1 , wh − p̂

¢
+ yuh

¡
xF1 , wh − pF1

¢
,

i.e., the maximum price that satisfies HIGH’s (27). Since ∂2uh(x,w)
∂w2

< 0 for all (x,w), p1 (1) = pF1 ,

p1 (0) = p̂, and p1 (y) is increasing and concave on the interval (0, 1).

Since we have written the problem as a one dimensional monetary lottery, an increase in risk

aversion is equivalent to a increase in p1 (y) for all y, and as HIGH becomes infinitely risk averse,

p1 (y) converges to pF1 for 0 ≤ y < 1. Let pn1 (y) be a sequence of functions corresponding to

increasingly risk averse versions of HIGH. Let pn1 (1) = pF1 , p
n
1 (0) = p̂, and pn1 (y) is increasing in y

and concave on the interval (0, 1) for each n. Further, let pn+11 (y) > pn1 (y) for all 0 < y < 1, and

limn→∞pn1 (y) = pF1 for 0 < y < 1.

lim
y−→0 lim

n−→∞πn (y) = lim
y−→0 lim

n−→∞
¡
μ
¡
pn1 (y)− c

¡
xF1
¢¢
+ (1− y) (1− μ)

¡
pF2 − c

¡
xF2
¢¢¢

= lim
y−→0μ

¡
pF1 − c

¡
xF1
¢¢
+ (1− y) (1− μ)

¡
pF2 − c

¡
xF2
¢¢

= μ
¡
pF1 − c

¡
xF1
¢¢
+ (1− μ)

¡
pF2 − c

¡
xF2
¢¢
= πF .

Let π∗∗ = maxy
¡
μ
¡
pn1 (y)− c

¡
xF1
¢¢
+ (1− y) (1− μ)

¡
pF2 − c

¡
xF2
¢¢¢
. Since πF > πD, π∗ ≥
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π∗∗, and π∗∗ → πF , this establishes that PFOs outperform deterministic strategies when HIGH is

sufficiently risk averse. The argument that the seller’s expected profit is non-decreasing in HIGH’s

risk aversion is similar to the one in Proposition 4.¥

2 Supporting computations for section 3.4

A change of variables simplifies the analysis. Let s = f (q) =
√
q be the utility earned by HIGH

from consuming q dollars worth of quality. Hence in terms of s, the utility functions of the buyers

can be written as uH (s, p) = (s− p)
1
b and uL (s, p) = (as− p)

1
b . Given that q is measured in

dollars, the cost of producing utility-from-quality s is given by c (s) = f−1 (s) = s2. Hence there

is a one-to-one correspondence between an offer (q, p) and an offer (s, p) for s defined in this way.

We will refer to s simply as quality, although it should be understood as the utility, measured in

dollar terms, that quality yields.

Under the assumptions we have made, the relevant constraints are HIGH’s incentive compati-

bility constraint and LOW’s participation constraint. The seller’s maximization problem is thus

written:

max
p1,s1,p2,s2

μ
³
p1 − (s1)2

´
+ (1− y) (1− μ)

³
p2 − (s2)2

´
,

s.t. (s1 − p1)
1
b ≥ (1− y) (s2 − p2)

1
b , and

(as2 − p2)
1
b ≥ 0.

Clearly, LOW’s participation constraint binds. Hence as2 = p2. Substitute this into the problem.

max
p1,s1,s2

μ
³
p1 − (s1)2

´
+ (1− y) (1− μ)

³
as2 − (s2)2

´
,

s.t. (s1 − p1)
1
b ≥

³
(1− y)b (1− a) s2

´ 1
b
.

HIGH’s incentive-compatibility constraint is equivalent to s1 − p1 ≥ (1− y)b (1− a) s2. Fur-

ther, since the right hand side of the constraint does not depend on s1 or p1, we can let k =

(1− y)b (1− a) s2 and thus separate out the problem of choosing a contract for HIGH that maxi-
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mizes profits, subject to the constraint that HIGH’s utility under the contract is at least k:

max
p1,s1

³
p1 − (s1)2

´
s.t. : s1 − p1 ≥ k.

Again, the constraint clearly binds, and we can write this as max s1−k− (s1)2. This is maximized
at s∗1 =

1
2 , implying p

∗
1 =

1
2 − (1− y)b (1− a) s2.

Substituting these values into the objective function yields:

max
y,s2

: μ

µ
1

4
− (1− y)b (1− a) s2

¶
+ (1− y) (1− μ)

³
as2 − (s2)2

´
. (28)

Thus the seller’s problem can be written as an unconstrained optimization problem in two variables,

subject to the boundary conditions that y ∈ [0, 1] and s2 ≥ 0.
The seller’s problem in the deterministic case is equivalent to (28) with y set equal to zero:

μ

µ
1

2
− (1− a) s2 − 1

4

¶
+ (1− μ)

³
as2 − (s2)2

´
. (29)

Differentiating with respect to s2 and setting the result equal to zero yields the optimal value of s2

when the seller chooses to make offers (s1, p1) and (s2, p2) that are accepted by HIGH and LOW,

respectively.

−μ+ a− 2sD2 + 2μsD2 = 0,

s =
1

2

a− μ

1− μ
if a ≥ μ.

Since s2 must be non-negative, whenever a < μ the seller will offer s2 = 0, which is equivalent to

contracting only with HIGH. In the deterministic problem, the optimal quality for HIGH is given

by sD1 =
1
2 , implying that s

D
2 < sD1 (since a < 1). Hence the seller will never choose to offer the

same contract twice.
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Computing profits establishes the claims in Proposition 9. When a ≥ μ, profit is given by:

μ
³
p1 − (s1)2

´
+ (1− μ)

³
p2 − (s2)2

´
=
1

4

μ− 2μa+ a2

1− μ
.

When a < μ, profit is μ
4 . ¥

Proof of Proposition 10. The first derivatives of 28 with respect to s2 and y are:

Ds2 = −μ (1− y∗)b (1− a) + (1− y∗) (1− μ) (a− 2s∗2)
⎧⎨⎩ ≤ 0 at s∗2 if s∗2 = 0

= 0 at s∗2 if s∗2 > 0
, and (30)

Dy = μb (1− y∗)b−1 (1− a) s∗2 − (1− μ)
³
as∗2 − (s∗2)2

´
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
≤ 0 at y∗ if y∗ = 0

= 0 at y∗ if y∗ ∈ (0, 1)
≥ 0 at y∗ if y∗ = 1

. (31)

Suppose y∗ = 1. Since Ds2 equals zero, the first-order condition with respect to s2 is satisfied for

any value of s2. Further, the first term of Dy equals zero. For any a > 0 there exists an s2 (a)

such that as2 (a)− (s2 (a))2 > 0. Since Dy > 0 when s2 = s2 (a) and y∗ = 1, y∗ = 1 is not optimal.

The seller would always prefer to offer quality s2 (a) with some positive probability rather than set

y∗ = 1. Since offer (as2 (a) , s2 (a)) is feasible and offers the seller a positive profit, the optimal

second offer must also yield a positive profit. Hence y∗ < 1 and s∗2 > 0.

If y∗ ∈ (0, 1), (30) and (31) hold with equality. These equations can easily be solved for y∗ and
s∗2:

s∗2 = a
b− 1
2b− 1 (32)

y∗ = 1−
µ

a (1− μ)

(2b− 1)μ (1− a)

¶ 1
b−1

. (33)
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Clearly y∗ < 1, as established above. From (33), y∗ > 0 whenever:

a (1− μ)

(2b− 1)μ (1− a)
≤ 1, or

b ≥ 1

2

µ
a (1− μ)

μ (1− a)
+ 1

¶
.

Hence a PFO is optimal whenever b > b∗ = 1
2

³
a(1−μ)
μ(1−a) + 1

´
. The remainder of the optimal PFO is

computed using (32) and (33).

Proof of Corollary 1. Consider (22) - (24). Note in (22) that q∗1 = qF1 for all b, and p∗1 → pF1

as b→∞ since
³

a(1−μ)
(2b−1)μ(1−a)

´
→ 0. The convergence for (q∗2, p∗2) is obvious. Applying L’Hopital’s

rule to ln (1− y∗) shows that y∗ → 0.¥

3 A Model with an Endogenous Outside Option

An alternative version of the model we discuss in Section 3.1 is that, instead of the outside buyer

having known value p0, selling to the outside buyer corresponds to drawing a new buyer whose

reservation value has the same distribution as the current buyer, i.e., it is rh with probability μ and

rl with probability (1− μ). In this case, the expected price from selling to a new buyer becomes

endogenous, and the seller’s problem can be approached as a dynamic programing problem. The

seller begins by offering initial price p1. If this price is rejected, the seller may make an immediate

second offer to the current buyer, or alternatively request a new buyer. However, if a new buyer is

requested, she arrives only after some delay. Let δ be the relevant discount factor, where 0 < δ < 1.

If y is the probability that the seller will request a new buyer following a rejection, the highest initial

price that a HIGH buyer will accept is once again given by p1 (y). And, the seller’s problem is

stationary in the sense that the seller’s expected value at the start of the game is the same as its

expected value from choosing a new buyer following an initial rejection (conditional on that buyer’s

arrival). Thus, the seller’s expected value as a function of y, which we denote v (y), must satifsy:

v (y) = μp1 (y) + (1− μ) (y ∗ δ ∗ v (y) + (1− y) rl) , or

v (y) =
μp1 (y) + (1− μ) (1− y) rl
(1− (1− μ) ∗ y ∗ δ) .
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In this setting, the seller’s optimal y is found by maximizing v (y).

Although a complete discussion of the solution to this problem falls beyond the scope of the

paper, the two extreme cases of a very patient seller and a very impatient seller are worth brief

comments. If the seller is extremely patient (i.e., δ is near one), then it can be shown that the

seller’s optimal strategy is to choose y = 1 and charge rh. That is, the seller offers the current

buyer price rh, and if it is rejected he chooses a new buyer and again offers price rh. Because there

is no cost to drawing a new buyer, the seller is content to draw a new buyer until he finds one that

is HIGH. Knowing this, HIGH buyers are willing to pay up to rh to acquire the object.

On the other hand, when the seller is very impatient (i.e., δ is near zero), then the seller’s

problem looks very much like the one we considered above. The seller would like to avoid drawing

a new buyer. However, a small threat of doing so induces a risk-averse HIGH buyer to raise her

willingness to accept a high initial price. Thus, a PFO will still be optimal, provided that buyers

are sufficiently risk averse and δ is sufficiently low.
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