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Abstract A fixed budget must be allocated to a finite number of different
projects with uncertain outputs. The expected marginal productivity of capital
in a project first increases then decreases with the amount of capital invested.
Such behavior is common when output is a probability (of escaping infection,
succeeding with an R&D project...). When the total budget is below some
threshold, it is invested in a single project. Above this cutoff, the share invested
in a project can be discontinuous and non-monotone in the total budget. Above
an upper cutoff, all projects receive more capital as the budget increases.
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We address a common capital allocation problem in which an agent can
implement various investment projects at different levels. Such projects usually
have uncertain payoffs; hence the objective is to maximize total expected
benefits. In the public realm, a federal agency may have to determine a
vaccination strategy for a contagious disease, such as avian flu, with a limited
national vaccination budget. Given that herd immunity develops, it is well
known that the expected social benefit curve from a vaccination campaign is
S-shaped in the proportion of those inoculated in a locale. A similar problem
arises if a very limited amount of a drug is to be distributed to reduce new
infections in a nation heavily afflicted with HIV. An egalitarian allocation
might have little beneficial effect. This application to public health policy
operates in an uncertain environment.

Our general model also applies to a range of allocation problems. A wide
range of applications arises in the field of prevention, where an agency must
determine where to allocate preventive efforts, given the fact that the proba-
bility of success of the preventive effort is usually S-shaped. Many efforts to
market a new product in different areas under uncertainty have this character.
The financing of R&D projects, where the probability of discovery would
be the dependent variable, represents another branch of the literature that
relates to our topic. In the field of productive efficiency, a credit-rationed
entrepreneur may have the potential to invest in various independent projects,
each of which offers increasing and then decreasing expected returns to
invested capital. The industrial policy of a country is also faced with the same
dilemma of determining the sectors that should be favoured. Weitzman (1979)
considered the case where there is a finite number of different opportunities,
each yielding an unknown reward. He proposed an algorithm that tells at each
stage whether or not to continue searching and if so, which project to finance.
This could apply to the optimal sequential search strategy for developing
various uncertain technologies that meet the same or similar purpose. This
model has been extended by Roberts and Weitzman (1981) to a more general
framework. Our analysis approaches this one, except that the expected benefit
function generated by each project is assumed to be known in our case.

Our analysis maximizes expected benefits.1 The central ingredient of the
general model is that the expected marginal benefit of each possible action
is hump-shaped, i.e., the expected marginal benefit of an action reaches a
maximum at some intermediate intensity of that action. The objective function,
namely the sum of the expected benefits extracted from the different actions,
is therefore not concave in the vector of decision variables. Given this assump-
tion, it is appropriate to give up the idea of distributing resources to all projects,

1This objective function finesses risk aversion. There are three justifications: (1) In many instances
the scale of the payoffs is small relative to aggregate payoffs, implying that risk aversion is not
a major concern. (2) For many applications, e.g., health risks, variability is due to the number of
people affected. For individuals considering their own risk, only their expected probability matters,
not how many will suffer when they do. (3) To foster intuition and expositional clarity, it is best to
deal with the simplifying assumption of risk neutrality.
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because projects funded at a modest scale offer low productivity. Hereafter,
when we talk about benefit or marginal benefit, the modifier “expected” should
be understood.

The question of increasing returns in an economy has been widely studied,
in a theoretical framework, notably in the seventies. Indeed, with increasing
returns, a competitive market may lack an equilibrium. Many authors pro-
posed solutions to avoid this problem (see for instance Rader 1970; Aoki
1971; Crémer 1977; Brown and Heal 1979 or Heal 1999). The optimal fi-
nancing of a finite number of projects, each presenting an S-shape has been
addressed in particular in an important early paper by Ginsberg (1974). He
characterizes the solution in the general case and explains how the budget
is usually shared among an increasing number of projects when the benefit
functions are identical. He typically uses the average benefit function to solve
the problem. We adopt a different approach. We focus on plausible shapes for
the benefit function and we find that they yield sensible solutions. To do so, we
introduce some families of functions defined by interesting and fairly general
properties for the marginal benefit function. We also highlight the features of
the aggregate benefit function.

Section 1 motivates the paper by giving examples where the benefit function
is S-shaped. Section 2 states some general properties in the case of a low
budget level. Section 3 analyzes higher budget levels for the case of identical
benefit functions. Section 4 tackles the case of heterogeneous benefit functions
in the context of a high budget level. Section 5 describes the properties of the
aggregate benefit function, and Section 6 concludes.

Much of our analysis relates outcomes to the shape of benefit functions,
and two distinctive properties for shapes are identified. When the total budget
is below a lower cutoff, all of it is invested in a single project. Above an
upper cutoff, all projects receive more capital as the budget increases. In
between cutoffs, for some plausible expected benefit functions, namely those
like Fig. 7, the results are tractable. The optimal investment strategy goes
from full specialization (a single project) to equal division among supported
projects. However, when benefit functions resemble those in Fig. 6, as the
total allocation increases, positive but unequal allocations will be experienced.
Furthermore, optimality will require that some projects experience a reduction
in budget over some range. When benefit functions differ across projects,
matters are more complex still.

1 S-shaped productivity in various domains

This section argues that a total productivity curve that is S-shaped is found
across a broad array of areas. The shape usually arises because three ele-
ments are at work: (1) Small investments accomplish little. Thus, $100,000
has virtually no chance to produce a sophisticated new invention, nor dent
the national consciousness in a media campaign for a new product. (2) Over
an intermediate range of investment, significant output starts to be realized.
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(3) Beyond a certain level of investment, decreasing returns set in. Hence,
productivity first rises with expenditure at an increasing rate, and then the rate
decreases. The S-shaped curve, as is shown in Fig. 1, emerges.

The concept of herd immunity is well known in epidemiology. Each individ-
ual who gets immunized against a communicable disease within a closed pop-
ulation conveys a positive externality. Since he can no longer get the disease,
he can no longer communicate it to others. The first few immunizations yield
little external benefit, since there remain so many other individuals who can
still convey infection. However, once a significant proportion of individuals has
been vaccinated, the whole population is substantially protected, which leads
to the label herd immunity. Beyond a certain point, additional vaccinations
therefore yield little additional protection (see for instance Fine 1993). Once
more, all these considerations apply in an uncertain environment: infection
only arises with a certain probability.

Efforts to produce inventions have long been recognized to exhibit an S -
shape in the function that relates probability of success to level of investment.
The empirical evidence relating the probability of non-zero patenting to the
level of R&D spending shows a clear S-shape (see Scherer 1983 Fig. 1,
whose study looks across 4,274 individuals lines of business in firms). With
low expenditures, the probability of getting a patent is very low but once a
sufficiently high level of expenditures has been devoted to research, a given
increase in the patenting probability is more difficult to achieve. S-shaped
curves for product performance are a driving concept behind Utterback’s
(1994) (pp. 158–160) analysis of radical innovations, and Christensen’s (1997)
(pp. 39–41) model of disruptive technologies. Successor (radical or disruptive)
technologies come along when the first technology is operating beyond its

input x

expected benefits

w1w0

Fig. 1 The expected benefit function as a function of the amount invested in the specific project
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inflection point. Kuznets (1967) (pp. 31–33) noted the same S-shape phenom-
enon for an industry as a whole, which might be relevant say for government
R&D and tax policies that seek to push various industries forward.

Little (1979) provides an overview look at the returns to aggregate ad-
vertising of various products, drawing on the work of others. He identifies
S-shaped responses, e.g., of sales/capita in response to advertising/capita,
though he also alerts readers to more complex patterns. He concludes (p. 639)
“that advertising models should accommodate S-shaped curves”.

In general, in any investment arena where there is a range of increasing
expected returns, we should expect to find S-shaped response curves. That is
because we know that decreasing returns set in at some point. Except where
natural resources are involved, we do not see one product, or one firm, or
one industry dominating a major economy. When two or more entities must
compete for investment, and where those entities each experience S-shaped
returns, the lessons of this paper apply.

In many instances, the success of a project depends upon whether demanded
capacity exceeds installed capacity. This is the case for example for an elec-
tricity transportation network (which breaks down if overloaded), or for the
number of emergency units built to face a crisis for which the demand for
medical assistance is uncertain. In such cases, assuming risk neutrality, the
cumulative distribution of the demand determines an ex ante benefit function
for the quantity of emergency capacity. It is often the case that this cumulative
distribution is S-shaped. The logistic distribution is a notable case of an
S-shaped distribution. Balakrishnan (1991) in his handbook of the logistic
distribution proposes a range of applications. It was first applied to model
population growth. But Oliver (1969) used the logistic distribution to model
the spread of innovation, and more precisely the thousands of agricultural
tractors in Great Britain from 1950 to 1965. In economics, the logistic dis-
tribution has been used to model both income distribution (Fisk 1961) and
agricultural production (Oliver 1964). It is also widely employed in public
health. For instance, the ratio of disease incidence among those exposed versus
those not exposed to the risk factor of interest (it is called the relative risk)
may be estimated with a logistic function. Plackett (1959) was the first to use
the logistic function in the analysis of survival data. He developed a model that
applies to operations on cancer patients, but also to labour turnover, business
failures or animal experiments. Therefore, this article applies to a large number
of risky events whose distribution is S-shaped. However, in the rest of the
article, we are going to speak of an investor who has a given budget to invest
in different projects without specifying their nature.

2 Low budget levels: general case

We first state the problem in the general case where a finite number of projects
presenting different benefit functions b1,..., bn are available to the investor. We
assume that bi(0) = 0 ∀i, and that each function bi is increasing in its argument.
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Finally, we assume, as shown in Fig. 1, that there exists a critical investment
level w0 such that each function bi is locally convex in [0, w0[, and that it
is locally concave in ]w0, +∞[. The investor is endowed with a budget w to
finance these projects, and he finances each project bi with an amount xi. In
this case, the problem he has to solve reads

B (w) = max
x1...xn

b1 (x1) + ... + bn−1 (xn−1) + bn (xn) , (1)

subject to

xi ≥ 0 ∀i = 1...n,
∑n

i=1 xi = w.

The budget constraint is binding since each function bi is increasing. Following
Ginsberg (1974), we focus on the average benefit function to obtain the
following result whose proof is straightforward and thus omitted.

Lemma 1 Suppose there are n benefit functions b1, · · · , bn each characterized
by w∗

i = arg max bi (x) /x. If w ≤ min
i

w∗
i , then the entire budget w goes to the

project with the highest benefit bi (w).

When the total budget is less than mini w∗
i , it is optimal to invest the entire

budget in the project offering the highest benefit because of the increasing
returns to scale at low intensities. The following parts study the optimal
allocation in the case of higher budget levels. We solve this problem in two
steps, focusing first on the case of identical benefit functions, and studying then
different benefit functions.

3 Intermediate budget levels: the case of identical benefit functions

To secure intuition for the results, we first analyze the case of two identical
benefit functions. We then use induction to extend the results to a finite
number of benefit functions. As before, all benefits should be thought of as
expectations.

3.1 Two identical projects

3.1.1 General properties

In the general case, we rapidly characterize the solution following Ginsberg
(1974). If x and w − x denote the budget invested in each project, the choice
problem is

B(w) = max
0≤x≤w

b(x) + b(w − x). (2)
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Fig. 2 The two expected benefit functions together with the objective function

In Fig. 2, the objective function b(x) + b(w − x) is represented for a given
value of w as well as the two benefit functions b(x) and b(w − x). This
maximization program has three types of solutions as the following proposition
tells us.2

Lemma 2 The optimal solution of problem 2 belongs to one of the following
three types

1. the full-specialization type x∗ ∈ {0, w},
2. the symmetric -or egalitarian- type x∗ = w/2,
3. the asymmetric interior type x∗ = x̂ (w), where x̂ (w) < w0 < w − x̂ (w)

and b ′ (̂x (w)) = b ′ (w − x̂ (w)).

Notice that program 2 is symmetric relative to w/2. Therefore, in the rest
of our discussion of the 2 identical-projects case, we are going to focus on
solutions that are greater or equal to w/2. The full-specialization solution
will designate w, the equal solution w/2 and the asymmetric interior solution
w − x̂ (w). In the case of the full-specialization solution, the entire budget
is devoted to only one project. In the case of the symmetric solution, both
projects get exactly the same amount, and in the case of the asymmetric interior
solution, the two projects get a different positive amount (as in Fig. 2).

According to Lemma 1, when w is less than w1 = arg max b(x) /x, all the bud-
get is devoted to a unique project. Moreover, given the convexity of function

2This result is already known and thus the proof is omitted. Any interested reader can contact the
corresponding author to obtain more information on the proof.
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b on [0, w0], when the budget level is less than 2w0, the objective function in
program 2 is convex in the decision variable x in its domain, and the symmetric
strategy can never be a maximum. The following lemma provides more insights
about how the optimal strategy evolves as the budget level w increases.

Lemma 3 Consider the case of two identical projects. The optimal investment
strategy has the following characteristics:

1. For low budget levels, the full-specialization strategy is optimal;
2. Then, as the total budget level w increases, the optimal strategy can switch to

an asymmetric interior solution, or directly to the symmetric allocation;
3. Once the symmetric allocation is selected, it remains optimal for all

larger w.

Proof See the Appendix. 	


According to Lemma 3, once a strategy (an asymmetric interior solution or
the equal strategy) dominates the full-specialization strategy for a given budget
level w, the full-specialization strategy will not be optimal for any budget level
that is higher than w. Moreover, if the symmetric strategy is optimal for a
given budget level, it will remain optimal for any higher budget levels. This
particular result has already been proved by Ginsberg (1974). Intuitively, when
the budget level is low, the investor prefers to favour one project by investing
the whole budget in it because of the low productivity at low budget levels (see
Fig. 3 in which w = 0.6).

0.1 0.2 0.3 0.4 0.5 0.6
input x
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0.3

0.4

0.5

expected benefits

b(x)+b(w-x)
b(w-x)
b(x)

Benefit functions

Fig. 3 The two expected benefit functions together with the objective function for a low value
of w
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On the contrary, when the total budget level is high enough, the investor
prefers to share the budget equally between both projects because of the
projects’ decreasing productivity from w0 on (see Fig. 4 in which w = 1.3).

In between, the investor wants to invest a strictly positive amount in each
project but he still favours one project to the detriment of the other. It is not
worthwhile to invest everything in a single project since, from the inflection
point on, the marginal benefit of investing in a project is decreasing. In Fig. 2,
which shows the objective function for w equal to 0.88, the solution is the
asymmetric interior one.

To illustrate this result, consider an example where the benefit function is
given by

b(x) = xγ

xγ + k(1 − x)γ
, (3)

with γ = 2 and k = 2. Observe that w0 = 0.613 and w1 = 0.816 in this numer-
ical example. We have drawn the optimal strategy as a function of the total
budget w in Fig. 5. When w is below 1, it is optimal to invest everything in one
project. When w is between 1 and 1.225, the asymmetric interior solution is
optimal. Finally, for larger w, the symmetric strategy is optimal.

0.2 0.4 0.6 0.8 1 1.2 1.4
budget level w

-0.2

0.2

0.4

0.6

0.8

1

allocation to project

w0 w1

w-x(w)

x(w)

Fig. 4 The two expected benefit functions together with the objective function for a high value
of w
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Fig. 5 The optimal investment in projects 1 and 2 as a function of the total budget

Concerning asymmetric interior solutions, observe that as wealth w in-
creases, one of the two projects will get a smaller budget, as seen in Fig. 5.3

This comes from the full differentiation of the first-order condition,4 which
yields

dx̂
dw

= b ′′(w − x̂ )

b ′′(̂x ) + b ′′(w − x̂ )
and

d (w − x̂ )

dw
= b ′′(̂x )

b ′′(̂x ) + b ′′(w − x̂ )
. (4)

As x̂ < w0 < w − x̂, b ′′(̂x ) is positive and b ′′(w − x̂ ) is negative, dx̂/dw and
d(w − x̂ )/dw must have opposite signs.

To get more information on how the solution to the maximization program
2 evolves as the total budget level increases, we hereafter study three particular
classes of functions: symmetric benefit functions, benefit functions that are
“pulled down”, and benefit functions that are “lifted up”. This analysis focuses

3Observe that there is another reason for why the project-specific budgets do not increase
monotonically the total budget. When the optimal strategy switches from full specialization to
full diversification, the previously financed project gets a 50% reduction in its budget.
4b ′(x∗) − b ′(w − x∗)

{ = 0 if x∗ < w,

≥ 0 if x∗ = w.
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on the shape of the marginal benefit function, and therefore goes beyond
Ginsberg (1974). It allows us to characterize cases for which the outcome is
very simple, and then complex.

3.1.2 Symmetric benefit functions

A symmetric benefit function can be seen as either having symmetric first
order derivatives with respect to the inflection point w0, or as a 180◦ rotated
function from the part below w0 to the part above w0. In this case, the
marginal benefit function is symmetric relative to the axis w = w0. With such a
benefit function, any asymmetric interior allocation x̂ is excluded. If we denote
w2 the unique critical wealth below which full-specialization dominates the
symmetric solution, and above which the symmetric allocation is preferred to
full-specialization, the following proposition tells us that w2 equals 2w0.

Proposition 1 Suppose that b ′ is symmetric in the sense that b ′(w0 + δ) =
b ′(w0 − δ) for all δ ∈ [0, w0]. Then, the fully specialized strategy is optimal if
w is smaller than 2w0, whereas the symmetric strategy is optimal if w is larger
than 2w0.

Proof See the Appendix. 	

When the benefit function is symmetric, the optimal strategy requires full-

specialization when w ≤ 2w0, and is egalitarian otherwise. In other words, for
any budget w below 2w0, one project gets all the budget w, otherwise the
two projects get exactly the same amount w/2. This special case serves as a
benchmark for the next two cases, where the benefit function is not symmetric.

The analysis proves simpler if it is conducted using the marginal benefit
function. We consider two cases. In the first, beyond the inflection point both
the total and marginal functions lie below their equivalent function for the
hypothetical symmetric case.5 We refer to this as having the benefit functions
(both total and marginal) “pulled down”. In the second case, both the total and
marginal benefit functions lie above their symmetric counterparts. We call this
the “lifted up” case.

3.1.3 “Pulled down” (PD) benefit functions

Let us first give the definition of a benefit function that is pulled down.

5When the total benefit function is symmetric, the shape of the marginal benefit function to the
right of the inflection point is a mirror reflection of what is to the left. For the asymmetric case,
if the marginal benefit function lies below its symmetric counterpart, then the corresponding total
benefit function will also lie below its counterpart, but the reverse is not true.
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Definition 1 A benefit function is said to be pulled down (PD) if b ′(w0 + δ) ≤
b ′(w0 − δ) for all δ ∈ [0, w0].

If a benefit function is PD, beyond the inflection point w0 the marginal bene-
fit curve is pulled to the left so that it lies everywhere below the symmetric case
curve. In Fig. 6, the marginal benefit function in the PD case is represented.

Given PD, once the maximal productivity b ′ (w0) has been reached, the
increase in productivity is less than in the symmetric case. The following lemma
allows us to characterize the solution.

Proposition 2 Suppose that the benefit function b is PD, then w2 ≤ 2w0. More-
over, the symmetric strategy is optimal whenever w > 2w0.

Proof See the Appendix. 	


When the benefit function is PD and the budget level exceeds 2w0, it is
optimal to share the budget equally between the two projects. Remember that
we obtained the same result in the symmetric case. Because the increase in
productivity from w0 on is less rapid than in the symmetric case, the attractive-
ness of the specialized solution is weakened. Since it was already inferior to the
egalitarian solution in the symmetric case, the PD case reinforces that result.

To illustrate, focus on the case of a logistic distribution function on [0, 1]

whose cumulative distribution function is equal to 1
2 tanh(1)

(
tanh

(
8x−4

4

) +
tanh (1)

)
. In order to introduce the concept of PD and LU benefit functions,

we add a transformation and the benefit function equals

b(x) = 1 + αx
1 + α

1

2 tanh (1)

(

tanh

(
8x − 4

4

)

+ tanh (1)

)

. (5)

0.2 0.4 0.6 0.8
input x

0.6

0.8

1.2

marginal expected benefits

symmetric case
PD case

Marginal expected benefit functions

Fig. 6 Marginal expected benefit function in the PD case



J Risk Uncertainty (2008) 37:1–33 13

If α = 0, b is a symmetric function with respect to w0. If α is negative, function
b is PD, and if α is positive, function b is lifted up. We take α to be equal to
−0.2. In this case, w0 = 0.445 and w2 = 0.793 < 2w0. For w > 2w0 = 0.890, the
symmetric allocation is optimal. An asymmetric interior solution exists when
w ∈ [0.831, 0.890].

3.1.4 “Lifted up” (LU) benefit functions

A second important case arises when both the total and marginal benefit
functions are “lifted up”, so they lie above their hypothetical symmetric
functions. We define this term more formally as:

Definition 2 A benefit function is said to be lifted up (LU) if b ′(w0 + δ) ≥
b ′(w0 − δ) for all δ ∈ [0, w0] .

If a benefit function is LU, beyond the inflection point w0 the marginal
benefit curve is pulled to the right so that it lies everywhere above the sym-
metric case curve.6 Therefore, the increase in productivity beyond w0 is more
rapid than in the symmetric case. Intuitively, this reinforces the attractiveness
of the more specialized strategies. In other words, unlike in the PD case, it
should be more likely that one project receives a greater share of the total
budget than the other even when w > 2w0. Consider the quantity x (δ) defined
by b ′ (w0 − δ) = b ′ (x (δ)), with x (δ) > w0. It is defined for all δ ∈ [0, w0]. In
fact, for each δ, there exists a w (δ) such that x (δ) = w (δ) − (w0 − δ) and
w0 − δ is an asymmetric interior solution. We are interested in the quantity
z (δ) = x (δ) − (w0 + δ) (see Fig. 7).

It corresponds to the horizontal distance between the LU marginal benefit
function and its symmetric equivalent. As b is LU, we know that z (δ) ≥ 0 for
all δ ∈ [0, w0]. A condition on this function z (.) allows us to characterize the
shape of the optimal solution in the case of a LU benefit function.

Proposition 3 Suppose that the benefit function b is LU, then w2 ≥ 2w0.
Moreover

1. If w ≤ 2w0, then the full-specialization strategy is optimal.
2. If w > 2w0 and if δ �−→ z (δ) is increasing, then the optimal strategy cannot

be an asymmetric interior one.

Proof See the Appendix. 	


We see that, in the LU case, the egalitarian strategy will not in general be
optimal even when w ≥ 2w0. If function z is increasing, we have a complete

6Note that the only way for a function to be simultaneously PD and LU is to be symmetric. If this
is not the case, a LU benefit function cannot be PD and vice versa. However, these two notions
are not mutually inclusive since a benefit function might be neither PD nor LU.
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Fig. 7 A LU marginal expected benefit function together with function z

characterization of the solution: it employs the full-specialization strategy for
w ≤ w2 and then switches to the equal-allocation strategy for w > w2. Because
w2 ≥ 2w0, even when the total budget is higher than 2w0, it is still optimal
to favour one project. This is because beyond w0 productivity increases more
rapidly than in the symmetric case. Given that z is an increasing function,
the marginal productivity decreases less rapidly than in the symmetric case.
A LU benefit function is thus all the more attractive. Thanks to this condition,
an interior allocation satisfying the first order condition is a local minimum
and should therefore not be taken into account for the search of the optimal
solution (the second order condition is not satisfied). If the condition stated in
Proposition 3 is not satisfied, the asymmetric solution may be a local maximum.
Therefore, the optimal strategy may begin with the full-specialization strategy
when w is very low, and then switch successively to an asymmetric interior
solution as w increases and ultimately reaches the equal-allocation strategy.
We now turn to the case of a finite number of identical benefit functions.

3.2 n identical projects

As already stated in Section 2, with n projects, the investor has to solve the
maximization program

B (w) = max
x1,...,xn−1

b(x1) + ... + b(xn−1) + b(w − x1 − ... − xn−1) (6)

subject to

xi ≥ 0, ∀i = 1...n − 1,
∑n−1

i=1 xi ≤ w.
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It is convenient to maximize this benefit function in two steps.

1. A first maximization

max
x1,...,xn−2

b(x1) + ... + b(xn−1) + b(w − x1 − ... − xn−1) (7)

finds the optimal allocation between n − 1 projects when the total budget
level that is available is equal to w − xn−1. The solutions to this maximiza-
tion are denoted x∗

1 (xn−1, w) , ..., x∗
n−2 (xn−1, w).

2. Then, there remains to solve

max
xn−1

b
(
x∗

1 (xn−1, w)
) + ... + b

(
x∗

n−2 (xn−1, w)
) + b(xn−1) +

+ b
(
w − x∗

1 (xn−1, w) − ... − x∗
n−2 (xn−1, w) − xn−1

)
. (8)

This kind of problem has to be solved using induction arguments. It is
difficult to extend the results concerning PD benefit functions in the case of
n different projects. Indeed, recall that in the two projects case, we did not find
a condition assuming that no asymmetric interior solution exists. Therefore, in
this study of the n projects case, we generalize the 2 projects case we focus on
to the case of lifted up benefit functions.7

Proposition 4 Suppose b is a LU benefit function and δ �→ z (δ) is an increasing
function. Then, the optimal strategy is to share equally the budget between all
financed projects. Moreover, as w increases, the number of financed projects
increases until being equal to n.

Proof See the Appendix. 	


If the benefit function is LU, the decrease in productivity for wealth levels
higher than or equal to w0 is less rapid than in the symmetric case. Therefore,
it is optimal to increase the number of financed projects as the total budget w

increases, and to share it equally between all financed projects. We present the
result in the case of a LU benefit function and of 3 projects in Fig. 8 for a new
functions’ family

b(x) = 1 + αx
1 + α

1

π

(
arctan (2x − 1) + π

4

)
(9)

with α = 0.2.
In this part, we managed to give the shape of the optimal allocation when

the budget level increases in the case of a finite number of identical benefit
functions. Now, we determine how these results generalize to the case of
heterogeneous benefit functions.

7Note that this result also holds for n symmetric benefit functions since a symmetric benefit
function is a special case of a LU benefit function where function z is equal to 0.
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Fig. 8 Optimal strategy for a LU expected benefit function with three identical projects

4 Intermediate budget levels: the case of different benefit functions

Heterogeneity makes the problem much trickier. We consider thus a special
case of two different projects, the second operating at a much larger scale than
the first one. Their benefit functions are

b(x) and c(x) = kb(x/j ) with 1 < k < j. (10)

They are represented in Fig. 9.

0.5 1 1.5 2 2.5 3
input x

0.5

1

1.5

2

2.5

expected benefits

project c
project b

Expected benefit functions

Fig. 9 Expected benefit functions b and c
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Denote w∗
1 = arg max b(x) /x (resp. w∗

2 = arg max c (x) /x). It can easily be
shown that w∗

2 > w∗
1 and that ∀x ≤ w∗

1, b(x) > c (x). According to Lemma 1,
if the total budget level w is less than w∗

1 , then project b gets the entire budget
w and project c gets nothing. Indeed, for low budget levels, project b is more
profitable than project c. Before delving further into the study of the optimal
allocation, we describe the potential solutions to the investor’s maximization
program

max
0≤x≤w

b(w − x) + c (x) . (11)

Lemma 4 Suppose b is a benefit function and c (x) = kb(x/j ) with 1 < k < j.
The optimal solution of program 11 belongs to one of the following five types:

1. x (w) = 0 : the whole budget goes to project b ,
2. x (w) = w : the whole budget goes to project c,

3. x̂ 1 (w) with b ′ (w − x̂ 1 (w)
) = k

j b
′
(

x̂ 1(w)

j

)
and w0 < x̂ 1(w)

j < w − x̂ 1 (w).

This solution will be called “interior solution 1”,
4. x̂ 2 (w) with b ′ (w − x̂ 2 (w)

) = k
j b

′
(

x̂ 2(w)

j

)
, x̂ 2(w)

j < w0 < w − x̂ 2 (w), and

k
j2 b ′′

(
x
j

)
+ b ′′ (w − x) ≤ 0. This solution will be called “interior solution 2”,

5. x̂ 3 (w) with b ′ (w − x̂ 3 (w)
) = k

j b
′
(

x̂ 3(w)

j

)
, w − x̂ 3 (w) < w0 < x̂ 3(w)

j , and

k
j2 b ′′

(
x
j

)
+ b ′′ (w − x) ≤ 0. This solution will be called “interior solution 3”.

Proof See the Appendix. 	


In this case, there exist three interior solutions. Taking the derivative of the

first order condition, b ′ (w − x (w)) = k
j b

′
(

x(w)

j

)
, with respect to w leads to

dx̂ i (w)

dw
= b ′′ (w − x̂ i (w)

)

j
k2 b ′′

(
x̂ i(w)

j

)
+ b ′′ (w − x̂ i (w)

) and (12)

d
(
w − x̂ i (w)

)

dw
=

j
k2 b ′′

(
x̂ i(w)

j

)

j
k2 b ′′

(
x̂ i(w)

j

)
+ b ′′ (w − x̂ i (w)

) . (13)

The ranking of x̂ i(w)

j and w − x̂ i (w) , i = 1, 2, 3 relative to w0 allows us to note
that x̂ 1 (w) and x̂ 2 (w) are increasing functions of w, x̂ 3 (w) is a decreasing
function of w. w − x̂ 1 (w) and w − x̂ 3 (w) are increasing functions of w, but
w − x̂ 2 (w) is a decreasing function of w. When the interior solution 2 solves
the maximization program 11, project c gets an increasing amount of the
total budget whereas project b gets a decreasing amount of the total budget.
This result is similar to the case of homogenous benefit functions. Quite the
opposite happens with the interior solution 3: project b gets an increasing
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amount of the total budget whereas project c gets a decreasing amount of the
total budget. This is not the case anymore with the interior solution 1, where
the two optimal solutions are increasing functions of the total budget w: as
the budget increases, each project gets more financing. The following lemma
characterizes the optimal allocation.8

Lemma 5 Suppose b is a benefit function and c (x) = kb(x/j ) with 1 < k <

j. The optimal solution to the maximization program 11 has the following
characteristics:

1. When x ≤ w∗
1 , project b gets the whole budget,

2. When interior solution 1, x̂ 1 (w), is the optimal allocation, it will remain so
for any higher budget level.

Proof See the Appendix. 	


The path of the optimal allocation between the two projects as a function
of the budget is quite different from the case where the benefit functions were
identical. No general result indeed holds on the way the different allocations
link together. However, there are two similarities. First, when the budget level
is very low, only one project, project b , is financed. Second, once the interior
solution 1 is reached, the funding of each project increases with w. But contrary
to the identical benefit functions case, the two projects are not financed at the
same level. Between the allocation that gives all the budget to project b and the
interior solution 1, virtually anything may happen. In particular, either project
can have an allocation that is an increasing function of the total budget whereas
the allocation of the other project is a decreasing function of the total budget
(interior solutions 2 and 3). Moreover, it can be the case that one project
stops being financed (when project c gets all the budget), implying that the
solutions may be not continuous.9 It can also happen that the three allocations
mix together. In order to illustrate this discussion, we consider the functions’
family introduced in the previous section

b(x) = 1 + αx
1 + α

1

π

(
arctan (2x − 1) + π

4

)
. (14)

8Edward Shpiz helped with this lemma and with Lemma 4.
9Note that also in the 2 identical benefit functions case, there exist a lot of cases where the
optimal solution is not continuous in the total available amount. This is the case if for instance

b ′ (x) =
{

kx if x ≤ w0,
a
x6 + d if x > w0,

where k = 0.1, d = 0.001 and c and d are chosen such that b and b ′

are continuous.
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with α = 0.05, k = 1.8 and j = 2. With these parameters, the inflection
point, w0, is equal to 0.5122, and w∗

1 = 0.74783. The numerical resolution of
this example gives the following results (which are depicted in Fig. 10):

• If w < 1.1306, then project b gets the entire budget,
• If 1.1306 < w < 1.2407, then the optimal solution is the interior solution 2.

The two projects are financed, but as w increases, project b is less financed
whereas project c is more financed,

• If 1.2407 < w < 1.6296, then project c gets the whole budget w,
• If 1.6296 < w < 1.7073, the interior solution 2 is once again the optimal

solution,
• If w > 1.7073, the interior solution 1 is optimal, meaning that the funding

of each project increases with w.

When the budget level is low, only project b gets financing. But once the
budget level w passes the inflexion point, b becomes less profitable, whereas
project c still presents increasing marginal productivity. Therefore, project c
begins to be funded and project b gets a lower share of the total budget before
ultimately being totally abandoned. There is a range of budget levels for which
project c gets the whole budget: indeed, for these values of w, both marginal
productivities are decreasing, but project c still presents a higher marginal
productivity. But on [1.6296, 1.7073], project b comes back to life. The two
decreasing marginal productivities get closer, but the dominance of project c
relative to project b makes b lose funding as the budget increases. Once the
last threshold 1.7073 is crossed, both projects get increasing funding as w gets
larger. Indeed, the two marginal productivities, while decreasing, converge and
the two projects both get financed with a strictly positive budget share. The

0.5 1 1.5 2 2.5 3
budget level w

0.5

1

1.5

2

2.5
allocations to projects

project b:w-x(w)

project c:x(w)

Fig. 10 Optimal allocations with heterogenous expected benefit functions
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optimal allocation is thus much more complex than in the homogenous case;
indeed the financing of each project may not be monotone with the budget
level w. Moreover, the number of financed projects is not increasing with
the total budget that is available. It is difficult to get a more precise description
of the optimal allocation, but the main result is that after a succession of
financing and non-financing of the different projects, they both end up being
financed in an increasing way as the total funding increases.

5 Properties of the aggregate benefit function

The object of this section is to study function B defined by

B (w) = max
x1...xn−1

b1 (x1) + ... + bn−1 (xn−1) + bn (w − x1 − ... − xn−1) (15)

subject to

xi ≥ 0 ∀i = 1...n − 1,
∑n−1

i=1 xi ≤ w.

We can first state a simple property of function B.

Lemma 6 Function B is increasing in the budget level w.

Proof This is an application of the envelope theorem. 	


From now on, our analysis will narrow to the case of identical benefit
functions. Indeed, we have noted in the previous sections that it is very difficult
to obtain general properties in the case where benefit functions differ. We
begin with the case where the characterization of the optimal solution is
straightforward, i.e., when the benefit function is LU.

5.1 The case of LU benefit functions10

In Section 3, we proved that under some condition, the optimal strategy is to
finance equally an increasing number of projects as the budget increases. How
does this result affect the aggregate benefit function?

Proposition 5 Suppose that b is a LU benefit function and that function z is
increasing. Then, function B is convex on [0, w0] and concave on [w0, +∞[.

Proof See the Appendix. 	


10The results of this section also apply to the case of symmetric benefit functions.
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Fig. 11 Aggregate expected benefit function when the expected benefit functions are LU

In Fig. 11, we illustrate this result with the LU benefit functions’ family we
already used.

Note that it is not correct to say that the aggregate benefit function is
S-shaped although it is successively convex and concave. Indeed, as the first
derivative of function B is not continuous11, there is a kink around w2 and B
can be seen as locally convex around this threshold (the derivative b ′ (w) is
lower than b ′ (w/2)). It is straightforward to extend this result to the case of a
symmetric benefit function.

5.2 The general case

Recall that in the general case the characterization of the optimal strategy is
tricky. Therefore, we concentrate on the case of two identical benefit functions.
According to Proposition 3, we know how the solution evolves as the budget
increases and we can state the following proposition.

Proposition 6 In the case of two identical benefit functions, if there exist values
of w for which the interior solution is optimal, the function B is successively
convex, concave, convex to end up concave as the budget w increases.

Proof See the Appendix. 	


We illustrate this proposition with the benefit function b(x) = x2

x2+2(1−x)2 in
Fig. 12. B is convex on [0, w0], concave on

[
w0, w

]
, convex on

[
w, w

]
and

11There is indeed no reason that b ′ (w) = b ′ ( w
2

)
at w = w2.
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Fig. 12 Aggregate expected benefit function in the general case with two projects

concave on [w, +∞[. In fact, when the asymmetric interior solution is optimal,
B is convex, meaning that the marginal aggregate benefit function is increasing.
Indeed, in this case, the project that begins to be financed has a greater weight
than the other one in terms of the second derivatives of the aggregate benefit
function (the increase in the marginal benefit function is more important than
the decrease). But once this property is no longer satisfied, we turn to the equal
allocation and the aggregate marginal benefit function is concave. Note that in
this example, the first derivative of function B is continuous. This comes from
the continuity of function x in the special example we treated. However, as we
discussed in footnote 9, this is not always the case and function B may present
a kink as in the case of LU benefit functions.

6 Concluding remarks

We study the investment decision of an investor with multiple available
projects, each presenting a range of increasing returns before returns decline.
Such decisions are common across a great range of fields, such as allocating
R&D investment, advertising budgets, or inoculations for communicable dis-
eases, and are particularly prevalent when outcomes are uncertain or indexed
probabilities. With n identical projects, when budget levels are low, the in-
vestor favours one project by investing the whole budget in it. Once he decides
to invest a strictly positive amount in each project for a given budget level, he
will keep on investing strictly positive amounts in each project.

The properties of the optimal allocation are most easily seen with just two
projects. As the budget increases, allocations may be unequal though positive,
and a project may actually experience a reduction in budget over some range.
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When the total budget level is high enough, the investor shares the budget
equally between the two projects, and this equal strategy remains optimal for
any higher budget level. When the benefit function has a plausible shape, what
we label lifted up, the optimal investment strategy goes from full specialization
to equal division without passing through a range with positive but unequal
division. These results extend immediately to the case of a finite number of
projects.

Matters are more complex when the benefit for the projects may differ.
Qualitatively, however, the same local and global marginal efficiency re-
quirements must be satisfied, and the prime features of efficient allocations
are maintained. Thus, first one project gets all resources. Then there is an
intermediate range where multiple projects get funding, and the funding for
some may be non-monotonic with the total budget. Finally, when the budget is
large, all projects get funded, and the funding for each increases as the budget
grows further.

The aggregate benefit function for the lifted up case is first convex and
then concave. More generally, the aggregate benefit function is successively
convex, concave, convex... to end up concave in the budget level. In short,
an apparently straightforward and commonly encountered resource allocation
problem, one that is particularly common when outputs are uncertain, turns
out to have an intriguingly complex solution, despite perfectly intuitive effi-
ciency conditions.

Appendix

Proof of Lemma 3

We are going to show the following three assertions:

1. As w increases, one can never switch from the fully diversified solution to
the full-specialization one.

2. As w increases, one can never switch from an asymmetric interior solution
to the full-specialization one.

3. As w increases, one can never switch from the fully diversified solution to
an asymmetric interior one.

The first property is straightforward to prove and thus omitted. It is suffi-
cient to prove that the function b(w) − 2b(w/2) has a unique zero and that the
derivative is positive at this zero.

Let us focus first on the second result. Consider a range of w for which an
asymmetric interior solution (̂x, w − x̂ ) exists, where x̂(w) is defined by the
asymmetric solution to equation b ′(̂x ) = b ′(w − x̂ ). We know from Proposi-
tion 2 that x̂ < w0 < w − x̂. Let us study the function w �−→ g (w) = b(w) −[
b(̂x(w)) + b(w − x̂(w))

]
. Consider any solution w = w of equation g(w) = 0.

We show that this implies that g′(w) be nonpositive. Indeed, by the envelope
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theorem, we have that

g′(w) = b ′(w) − b ′(w − x̂(w)).

Because w0 < w − x̂(w) ≤ w, we have that b ′ is decreasing between w − x̂(w)

and w. It implies that b ′(w − x̂(w)) is larger than b ′(w), or equivalently, that
g′(w) is nonpositive. It implies that if one switches between the fully specialized
solution and the asymmetric interior solution when wealth increases, it can
only be from the former to the latter.

To prove the third result, consider a range of w for which an asymmetric
interior solution (̂x, w − x̂ ) exists, where x̂(w) is defined by the asymmetric so-
lution to equation b ′(̂x) = b ′(w − x̂ ). Let us study the function w �−→ h (w) =
b(̂x(w)) + b(w − x̂(w)) − 2b(w/2). Consider any solution w = w of equation
h(w) = 0. We show that this implies that h′(w) be nonpositive. Indeed, by the
envelope theorem, we have that

h′(w) = b ′(w − x̂(w)) − b ′(w/2).

We know from Proposition 2 that x̂ < w0 < w − x̂. We also know that b ′
is increasing and then decreasing in interval [̂x(w), w − x̂(w)], and that the
values of b ′ are the same at the boundaries of this interval. Because w/2
belongs to this interval, we have that b ′(w/2) is larger than b ′(w − x̂(w)), or
equivalently, that h′(w) is nonpositive. It implies that if one switches between
the asymmetric interior solution and the equal solution when wealth increases,
it can only be from the former to the latter. 	


Proof of Proposition 1

We first prove that the first-order condition b ′(x) = b ′(w − x) may have only
one root at x = w/2 when w �= 2w0. Suppose by contradiction that there exists
x̂ �= w/2 such that b ′(̂x ) = b ′(w − x̂ ). By symmetry, this can be true only if
x̂ = w − x̂, or if w0 − (̂x − w0) = w − x̂. The first case is equivalent to x̂ = w/2,

a contradiction. The second case is equivalent to w = 2w0, also a contradiction.
Thus, x = w/2 is the only candidate for an interior optimum.

We then show that x = w/2 is a minimum of the objective function when
w is smaller than 2w0. To show this, we prove that b ′(x) ≤ b ′(w − x) for all
x smaller than w/2. Two cases must be considered depending upon whether
w − x is smaller or larger than w0. When w − x < w0, both x and w − x are
smaller than w0. Because b ′ is increasing in this range, we indeed obtain
that b ′(x) ≤ b ′(w − x) if x ≤ w − x, which is true. When w − x > w0, x and
w − x are on opposite sides of w0. But b ′(w − x) = b ′(w0 + (w − x − w0)) is by
symmetry equal to b ′(w0 − (w − x − w0)), whose argument is smaller than w0.

Because b ′ is increasing in this range, it implies that b ′(x) ≤ b ′(x + (2w0 − w))

if w ≤ 2w0, which is also true.
A parallel proof can be written when w is larger than 2w0. 	
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Proof of Proposition 2

Suppose b is PD. We are going to prove that b(2w0) < 2b(w0).

b(2w0) = ∫ w0

0 b ′ (x) dx + ∫ 2w0

w0
b ′ (x) dx

= ∫ w0

0 b ′ (w0 − δ) dδ + ∫ w0

0 b ′ (w0 + δ) dδ

≤ 2
∫ w0

0 b ′ (w0 − δ) dδ

= 2b(w0) .

Therefore, b(2w0) ≤ 2b(w0) and w2 ≤ 2w0.
We turn to the second part of the Proposition and suppose that there exist

w and x̂ such that b ′ (̂x) = b ′ (w − x̂ ) with x̂ < w0 < w − x̂. Define δ̂ ∈ [0, w0]
such that x̂ = w0 − δ̂. We have that

b ′ (̂x ) = b ′ (w0 − δ̂
)
,

= b ′ (w − x̂ ) ,

= b ′ (w − (
w0 − δ̂

))
,

≥ b ′ (w0 + δ̂
)
.

As b ′ is decreasing for x ≥ x0, the above equality thus implies that w −(
w0 − δ̂

) ≤ w0 + δ̂, hence w ≤ 2w0. Therefore, if w and x̂ exist, we must have
that w ≤ 2w0. Thus, if w > 2w0, no interior asymmetric interior solution exists
and the solution belongs to {w, w/2}. But we know that for a PD benefit
function 2w0 > w2. Therefore, if w > 2w0, 2b(w/2) > b(w) and the allocation
{w/2} is the solution for w > 2w0. 	


Proof of Proposition 3

Suppose b is LU. We are going to prove that b(2w0) > 2b(w0).

b(2w0) = ∫ w0

0 b ′ (x) dx + ∫ 2w0

w0
b ′ (x) dx,

= ∫ w0

0 b ′ (w0 − δ) dδ + ∫ w0

0 b ′ (w0 + δ) dδ,

≥ 2
∫ w0

0 b ′ (w0 − δ) dδ,

= 2b(w0) .

Therefore, b(2w0) ≥ 2b(w0) and w2 ≥ 2w0.
Suppose now there exist w and x̂ such that b ′ (̂x ) = b ′ (w − x̂ ) with x̂ <

w0 < w − x̂. Define δ ∈ [0, w0] such that x̂ = w0 − δ. We have that

b ′ (̂x ) = b ′ (w0 − δ) ,

= b ′ (w − x̂ ) ,

= b ′ (w − (w0 − δ)) ,

≤ b ′ (w0 + δ) .

As b ′ is decreasing for x ≥ x0, the above equality thus implies that w −
(w0 − δ) ≥ w0 + δ, hence w ≥ 2w0. Therefore, if w and x̂ exist, we must have
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that w ≥ 2w0. Thus, if w ≤ 2w0, no interior asymmetric interior solution exists
and the solution belongs to {w, w/2}. However, in this case, w/2 is a local
minimum. Therefore, if w ≤ 2w0, the solution is the full-specialization strategy
{0, w}.

We now focus on the case where w > 2w0, as x̂ = w0 − δ, the condition
on function z implies that w (δ) − x̂ (δ) − (w0 + δ) is an increasing function,
where w (δ) is defined by b ′ (̂x (δ)) = b ′ (w (δ) − x̂ (δ)). Therefore, w′ (δ) ≥ 0.
Differentiating b ′ (̂x (δ)) = b ′ (w (δ) − x̂ (δ)) with respect to δ and recalling that
x̂ (δ) = w0 − δ lead to

(
w′ (δ) + 1

)
b ′′ (w (δ) − x̂ (δ)) = −b ′′ (̂x (δ)). As w′ (δ) ≥

0, this implies that b ′′ (w (δ) − x̂ (δ)) + b ′′ (̂x (δ)) ≥ 0 and the asymmetric inte-
rior solution is a local minimum and is not a potential candidate for the optimal
allocation. The solution to program 2 belongs thus to {w, w/2}. 	


%vspace*9.5pt

Proof of Proposition 4

Before proving the lemma, we introduce some notations and give a preliminary
result. Let us first introduce the thresholds w2, ..., wi, ..., wn defined by

(i − 1) b
(

wi

i − 1

)

= ib
(wi

i

)
, ∀i = 2...n − 1. (16)

Note that we recover the definition of w2. In the following lemma, we prove
the uniqueness of these thresholds, and we rank them.

Lemma 7 The thresholds w2, ..., wn are uniquely defined by Eq. 16 and satisfy

w0 < w2 < ... < wi < ... < wn.

Moreover, ∀i = 2, ...n − 1,

(i − 1) b
(

w
i−1

)
> ib

(
w
i

) ∀w < wi,

(i − 1) b
(

w
i−1

)
< ib

(
w
i

) ∀w > wi.

We are going to prove this lemma in three steps. First, since b is a convex
function on [0, w0], b

(
w0
2

)
< 1

2 b(w0), meaning that w0 < w2.

Concerning the uniqueness of the thresholds defined by Eq. 16, let us
consider function fi (x) = (i − 1) b

( x
i−1

) − ib
( x

i

)
. The first derivative, f ′

i (x) =
b ′ ( x

i−1

) − b ′ ( x
i

)
is strictly negative when x > iw0 (since b ′ is decreasing on

[w0, +∞[) and is strictly positive when x < (i − 1)w0 (since b ′ is increasing
on [0, w0]). We hereafter show that there exists a unique a such that f ′

i (a) = 0.
Suppose by contradiction that there exist a and c, with (i − 1)w0 < a < c < iw0

such that b ′ ( a
i−1

) = b ′ ( a
i

)
and b ′ ( c

i−1

) = b ′ ( c
i

)
. w0 < a

i−1 < c
i−1 < iw0

i−1 implies
that b ′ (w0) > b ′ ( a

i−1

)
> b ′ ( c

i−1

)
> b ′ ( iw0

i−1

)
, and (i−1)w0

i < a
i < c

i < w0 implies

that b ′
(

(i−1)w0
i

)
< b ′ ( a

i

)
< b ′ ( c

i

)
< b ′ (w0). This leads to a contradiction since

b ′ ( a
i−1

) = b ′ ( a
i

)
and b ′ ( c

i−1

) = b ′ ( c
i

)
. Therefore, a is unique and fi is increas-
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ing on [0, a] and decreasing on [a, +∞[. As fi (0) = 0, if a positive zero wi exists
to fi, it is unique. fi changes sign only once, from positive to negative.

Now, we prove that wi < wi+1, ∀i = 2...n − 1. According to Eq. 16,
wi+1 is such that ib

(
wi+1

i

) = (i + 1) b
(

wi+1

i+1

)
, or by dividing each member by

x, i
wi+1

b
(

wi+1

i

) = i+1
wi+1

b
(

wi+1

i+1

)
. We have already proved that function x �→ b(x) /x

is single peaked, increasing on [0, w1] and then decreasing on [w1, +∞[. There-
fore, in order i

wi+1
b
(

wi+1

i

) = i+1
wi+1

b
(

wi+1

i+1

)
to hold, it must be the case that wi+1

i+1 < w1

and wi+1

i > w1, or iw1 < wi+1 < (i + 1)w1. To compare wi and wi+1, let us
compute ib

(
wi+1

i

) − (i − 1) b
(

wi+1

i−1

)
. As wi+1 > iw1, w1 <

wi+1

i <
wi+1

i−1 , x �→ b(x) /x
is decreasing and therefore i

wi+1
b
(

wi+1

i

)
> i−1

wi+1
b
(

wi+1

i−1

)
, meaning that wi+1 > wi.

Now that Lemma 7 is proved, we focus on the proof of Proposition 4 that
we are going to lead using induction arguments.

First of all with two benefit functions, we know according to Proposition 3
that when w < w2, the optimal allocation is x∗ (w) = {w, 0} and when w ≥ w2,
the optimal allocation is x∗ (w) = {w/2, w/2}.

Now, we suppose that the result holds when the investor has the choice
between n − 1 projects. Let us prove that it then holds when the investor has
n projects. According to the previous discussion, we maximize the investor’s
program in two steps. First of all, we solve

max
x1,...,xn−2

b(x1) + ... + b(xn−1) + b(w − x1 − ... − xn−1) .

As the result holds when the investor has the choice between n − 1 projects,
we know how to solve this program.

x∗
1 (xn−1, w) =

⎧
⎪⎪⎨

⎪⎪⎩

w − xn−1 if w − xn−1 ≤ w2,
w−xn−1

2 if w2 < w − xn−1 ≤ w3,

...
w−xn−1

n−1 if w − xn−1 > wn−1

,

x∗
i (xn−1, w) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if w − xn−1 ≤ w2,

...
w−xn−1

i if wi < w − xn−1 ≤ xi+1,

...
w−xn−1

n−1 if w − xn−1 > wn−1,

∀i = 2, ...n − 2.

There remains to solve the second step. Suppose that wi < w − xn−1 ≤ wi+1.
Therefore, the maximization comes down to

max
xn−1

b(xn−1) + ib
(

w − xn−1

i

)

,

subject to

xn−1 < w − wi,

xn−1 ≥ w − wi+1.
(17)

The first order conditions, b ′ (xn−1) = b ′ ((w − xn−1) / i), lead to the follow-
ing candidate solutions
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1. xn−1 = (w − xn−1) / i, then xn−1 = w
i+1 and condition 17 leads to w > i+1

i wi,
2. x1

n−1 such that b ′(x1
n−1

)=b ′((w−x1
n−1

)
/ i

)
and x1

n−1 <w0 <
(
w−x1

n−1

)
/ i. We

call x1
n−1 the asymmetric interior solution 1,

3. x2
n−1 such that b ′ (x2

n−1

) = b ′ ((w − x2
n−1

)
/ i

)
and

(
w − x2

n−1

)
/ i < w0 <

x2
n−1 (maximization problem 8 is not symmetric anymore). In this case,

condition 17 leads to w > w0 + wi. We call x2
n−1 the asymmetric interior

solution 1. There are also the two corner solutions,
4. xn−1 = w but this can be eliminated because condition 17 leads to wi < 0,
5. xn−1 = 0.

We are going to prove that the two asymmetric interior solutions x1
n−1 and

x2
n−1 do not exist. We first focus on x1

n−1 . If we define δ1 ∈ [0, w0] such
that x1

n−1 = w0 − δ1, z (δ1) = (w (δ1) − (i + 1) w0 − (i − 1) δ1) / i. As it is in-
creasing by assumption, w′ (δ1) ≥ i − 1. But w (δ1) is defined by b ′ (w0 − δ1) =
b ′ ((w (δ1) − w0 + δ1) / i). Differentiating this expression with respect to δ1

leads to

−b ′′ (w0 − δ1) = w′ (δ1) + 1

i
b ′′ ((w − w0 + δ1) / i) .

As w′ (δ1) ≥ i − 1,
(
w′ (δ1) + 1

)
/ i ≥ 1, and the following inequalities hold:

b ′′ (w0 − δ1) = −w′(δ1)+1
i b ′′ ((w − w0 + δ1) / i) ,

≥ −b ′′ ((w − w0 + δ1) / i) ,

≥ − (1/ i) b ′′ ((w − w0 + δ1) / i) .

Therefore b ′′ (w0 − δ1) + 1
i b ′′ ((w − w0 + δ1) / i) ≥ 0 and the asymmetric in-

terior solution 1, if it exists, is unique and is a local minimum.
Before studying x2

n−1, let us prove an intermediate result, that is wi > iw0,
∀i ≥ 2. To do so, we compute ib(w0) − (i − 1) b

( i
i−1w0

)
.

ib(w0)−(i − 1) b
(

i
i − 1

w0

)

=
∫ w0

0
b ′ (w0 − δ) dδ − (i − 1)

∫ w0
i−1

0
b ′ (w0 + δ) dδ,

≤
∫ w0

0
b ′ (w0 − δ) dδ −

∫ w0
i−1

0
b ′ (w0 − δ) dδ,

− (i − 2)

∫ w0
i−1

0
b ′ (w0 + δ) dδ,

=
∫ w0

w0
i−1

b ′ (w0 − δ) dδ − (i − 2)

∫ w0
i−1

0
b ′ (w0 + δ) dδ,

= −b
(

w0 − w0

i − 1

)

− (i − 2)

×
(

b
(

w0 + w0

i − 1

)

− b(w0)

)

, < 0.
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Therefore, wi > iw0, ∀i ≥ 2. We thereafter focus on the solution x2
n−1 such

that b ′ (x2
n−1

) = b ′ ((w − x2
n−1

)
/2

)
and

(
w − x2

n−1

)
/2 < w0 < x2

n−1. There ex-
ists δ2 > 0 such that x2

n−1 = w0 + δ2. In this case,

z (δ2) = (w (δ2) + (i − 1) δ2 − (i + 1)w0) / i.

Condition 17 implies that w − x2
n−1 > wi. Let us define F (δ2) = w (δ2) − w0 −

δ2 − wi. Condition 17 implies that F (δ2) > 0, ∀δ2 > 0. F ′ (δ2) = w′ (δ2) − 1.
Recall that w (δ2) is defined by b ′ (w0 + δ2) = b ′ ((w (δ2) − w0 − δ2) / i). Taking
the derivative of this expression with respect to δ2, this leads to b ′′ (w0 + δ2) =
1/ i

(
w′ (δ2) − 1

)
b ′′ ((w (δ2) − w0 − δ2) / i).

This last equality holds if and only if w′ (δ2) − 1 < 0. Therefore F (δ2) is
strictly decreasing. F (0) = w (0) − w0 − wi and w (0) = (i + 1)w0 for a LU
benefit function. Therefore, F (0) < 0 and condition 17 is violated and this
asymmetric interior solution 2 cannot exist for a LU benefit function. The
two asymmetric interior solutions have been eliminated, thus xn−1 = w

i+1 or
xn−1 = 0 and the proposition is proved. 	


Proof of Lemma 4

The first two candidate solutions are the two corner solutions. Let us now focus
on interior solutions characterized by the first order conditions b ′ (w − x̂ ) =
k
j b

′
(

x̂
j

)
. As 1 < k < j, it follows that b ′

(
x̂
j

)
> b ′ (w − x̂ ). There are four

candidate solutions to this inequality:

1. b ′
(

x̂
j

)
> b ′ (w − x̂ ) with x̂

j > w0 and w − x̂ > w0. As b ′ is decreasing ∀x >

w0, it is the case if and only if w0 < x̂
j < w − x̂. The second order condition,

k
j2 b ′′

(
x̂
j

)
+ b ′′ (w − x̂ ) ≤ 0, is satisfied because of the concavity of function

b on [w0, +∞[ . This candidate solution is therefore called the “interior
solution 1”.

2. b ′
(

x̂
j

)
> b ′ (w − x̂ ) with x̂

j < w0 and w − x̂ < w0. In this case, k
j2 b ′′

(
x̂
j

)
+

b ′′ (w − x̂ ) ≥ 0 and this solution is a local minimum. It can therefore be
skipped.

3. b ′
(

x̂
j

)
> b ′ (w − x̂ ) with x̂

j < w0 and w − x̂ > w0. This candidate turns out
to be a potential solution if and only if the second order condition is

satisfied, k
j2 b ′′

(
x̂
j

)
+ b ′′ (w − x̂ ) ≤ 0.

4. b ′
(

x̂
j

)
> b ′ (w − x̂ ) with x̂

j > w0 and w − x̂ < w0. This candidate turns out
to be a potential solution if and only if the second order condition is

satisfied, k
j2 b ′′

(
x̂
j

)
+ b ′′ (w − x̂ ) ≤ 0. 	
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Proof of Lemma 5

The first result is an application of Lemma 1. Concerning the other results, they
are similar to the results of Proposition 3. We are going to prove the following
five results:

1. As w increases, one can never switch from the interior solution 2 to the
allocation that gives the whole budget to project b ,

2. As w increases, one can never switch from the interior solution 1 to the
interior solution 2,

3. As w increases, one can never switch from the interior solution 1 to the
allocation that gives the whole budget to project c,

4. As w increases, one can never switch from the interior solution 1 to the
allocation that gives the whole budget to project b ,

5. As w increases, one can never switch from the interior solution 1 to the
interior solution 3.

We successively prove the five assertions.

1. Consider a range of w for which an interior solution 2 (̂x 2, w − x̂ 2)

exists, where x̂ 2(w) is defined by b ′ (w − x̂ 2 (w)
) = k

j b
′
(

x̂ 2(w)

j

)
with

x̂ 2(w)

j < w0 < w − x̂ 2 (w). Let us study the function w �−→ g1 (w) = b(w) −
[
kb( x̂ 2(w)

j ) + b(w − x̂ 2(w))
]
. Consider any solution w = w of equation

g1(w) = 0. We show that this implies that g′
1(w) be nonpositive. Indeed,

by the envelope theorem, we have that

g′
1(w) = b ′(w) − b ′(w − x̂ 2(w)).

As w > w − x̂ 2 (w) > w0, b ′ is decreasing and b ′ (w) < b ′ (w − x̂ 2 (w)
)
.

Therefore, g′
1(w) is nonpositive. It implies that if one switches between the

allocation that gives the whole budget to project b to the interior solution
2, it can only be from the former to the latter.

2. Consider a range of w for which an interior solution 1 (̂x 1, w − x̂ 1) and
an interior solution 2 (̂x 2, w − x̂ 2) exist, where x̂ 2(w) is defined
by b ′ (w−̂x 2 (w)

)= k
j b

′
(

x̂ 2(w)

j

)
with x̂ 2(w)

j <w0 <w− x̂ 2 (w) and where

x̂ 1(w) is defined by b ′ (w− x̂1 (w)
)= k

j b
′
(

x̂ 1(w)

j

)
and w0 < x̂ 1(w)

j <

w − x̂ 1 (w). Let us study the function w �−→g2(w)=kb
(

x̂ 2(w)

j

)
+

b(w− x̂ 2(w))−
[
kb

(
x̂ 1(w)

j

)
+b(w − x̂ 1(w))

]
. Consider any solution w=w

of equation g2(w) = 0. We show that this implies that g′
2(w) be nonpositive.

Indeed, by the envelope theorem, we have that

g′
2(w) = b ′(w − x̂ 2(w)) − b ′(w − x̂ 1(w)).

As x̂ 2(w) < jx0 < x̂ 1(w), w − x̂ 2(w) > w − x̂ 1(w) > w0, by assumption.
Therefore, b ′ is decreasing and b ′ (w − x̂ 2(w)

)
< b ′ (w − x̂ 1(w)

)
. There-

fore, g′
2(w) is nonpositive. It implies that if one switches between the
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interior solution 2 to the interior solution 1, it can only be from the former
to the latter.

3. Consider a range of w for which an interior solution 1 (̂x 1, w − x̂ 1)

exists, where x̂ 1(w) is defined by b ′ (w − x̂ 1 (w)
) = k

j b
′
(

x̂ 1(w)

j

)
and w0 <

x̂ 1(w)

j < w − x̂ 1 (w). Let us study the function w �−→ g3 (w) = kb
(

w
j

)
−

[
kb( x̂ 1(w)

j ) + b(w − x̂ 1(w))
]
. Consider any solution w = w of equation

g3(w) = 0. We show that this implies that g′
3(w) be nonpositive. Indeed,

by the envelope theorem, we have that

g′
3(w) = k

j
b ′

(
w

j

)

− b ′(w − x̂ 1(w)).

As w0 < x̂ 1(w)

j and x̂ 1(w) < w, b ′
(

w
j

)
< b ′

(
x̂ 1(w)

j

)
and k

j b
′
(

w
j

)
<

k
j b

′
(

x̂ 1(w)

j

)
= b ′(w − x̂ 1(w)). Therefore, g′

3(w) is nonpositive. It implies
that if one switches between the allocation that gives the whole budget
to project c to the interior solution 1, it can only be from the former to the
latter.

4. Consider a range of w for which an interior solution 1 (̂x 1, w − x̂ 1)

exists, where x̂ 1(w) is defined by b ′ (w − x̂ 1 (w)
) = k

j b
′
(

x̂ 1(w)

j

)
and w0 <

x̂ 1(w)

j < w − x̂ 1 (w). Let us study the function w �−→ g4 (w) = b(w) −
[
kb( x̂ 1(w)

j ) + b(w − x̂ 1(w))
]
. Consider any solution w = w of equation

g4(w) = 0. We show that this implies that g′
4(w) be nonpositive. Indeed,

by the envelope theorem, we have that

g′
4(w) = b ′(w) − b ′(w − x̂ 1(w)).

As w > w − x̂ 1 (w) > w0, b ′ is decreasing and b ′ (w) < b ′ (w − x̂ 1 (w)
)
.

Therefore, g′
4(w) is nonpositive. It implies that if one switches between the

allocation that gives the whole budget to project b to the interior solution
1, it can only be from the former to the latter.

5. Consider a range of w for which an interior solution 1 (̂x 1, w − x̂ 1) and an
interior solution 3 (̂x 3, w − x̂ 3) exist, where x̂ 3(w) is defined by b ′ (w −
x̂ 3 (w)

) = k
j b

′
(

x̂ 3(w)

j

)
with w − x̂3 (w)<w0 < x̂ 3(w)

j and where x̂ 1(w) is

defined by b ′ (w− x̂ 1 (w)
)= k

j b
′
(

x̂ 1(w)

j

)
and w0 < x̂ 1(w)

j <w− x̂ 1 (w).

Let us study the function w �−→g5(w)=kb
(

x̂ 3(w)

j

)
+b(w− x̂ 3(w))−

[
kb

(
x̂ 1(w)

j

)
+b(w − x̂ 1(w))

]
. Consider any solution w = w of equation

g5(w) = 0. We show that this implies that g′
5(w) be nonpositive. Indeed,

by the envelope theorem, we have that

g′
5(w) = b ′(w − x̂ 3(w)) − b ′(w − x̂ 1(w)).
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As w − x̂ 3 (w) < w0 < x̂ 3(w)

j and w0 < x̂ 1(w)

j < w − x̂ 1 (w), it follows that

w − x̂ 3 (w) < w0 < x̂ 1(w)

j < x̂ 3(w)

j < w − x̂ 1 (w). g′
5(w) = b ′(w − x̂ 3(w)) −

b ′(w − x̂ 1(w)) = k
j b

′
(

x̂ 3(w)

j

)
− k

j b
′
(

x̂ 1(w)

j

)
. As x̂ 3(w)

j > x̂ 1(w)

j > w0, b ′ is

decreasing and k
j b

′
(

x̂ 3(w)

j

)
< k

j b
′
(

x̂1(w)

j

)
. Therefore, g′

5(w) is nonpositive.
It implies that if one switches between the interior solution 3 to the interior
solution 1, it can only be from the former to the latter. 	


Proof of Proposition 5

The first step is to prove that in this case, wi > iw0 ∀i = 2...n where the wi have
been defined in the proof of Proposition 4. The comes down to proving that

(i − 1) b
(

iw0

i − 1

)

≥ ib(w0) .

We have:

(i − 1) b
( iw0

i−1

) = (i − 1)
∫ w0

0 b ′ (w0 − δ) dδ + (i − 1)
∫ w0

i−1

0 b ′ (w0 + δ) dδ

≥ (i − 1)
∫ w0

0 b ′ (w0 − δ) dδ + (i − 1)
∫ w0

i−1

0 b ′ (w0 − δ) dδ

= ib(w0) + (i − 1)
(
b(w0) − b

( i−2
i−1w0

)) − b(w0)

≥ ib(w0)

The last inequality holds since (i − 1)
(
b(w0) − b

( i−2
i−1w0

)) − b(w0) ≥ 0. Indeed,

as i−2
i−1w0 < w0 < w1, it follows that

b( i−2
i−1 w0)
i−2
i−1 w0

≤ b(w0)

w0
.

Recall now that under the conditions stated in the proposition, the aggregate
benefit function has the following expression:

B (w) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

b(w) if w < w2

2b
(

w
2

)
if w2 ≤ w < w3

...
ib

(
w
i

)
if wi ≤ w < wi+1

...
nb

(
w
n

)
if w ≥ wn

.

With the result we just proved, B is convex on [0, w0] and concave on
[w0, +∞[. 	


Proof of Proposition 6

If an asymmetric interior solution exists, B has the following shape:

B (w) =
⎧
⎨

⎩

b(w) if w < w

b(̂x (w)) + b(w − x̂ (w)) if w ≤ w < w

2b
(

w
2

)
if w ≥ w

,
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where w ≥ w1 and w ≥ w2. Let us focus on what happens on
[
w, w

]
. Ac-

cording to the envelope theorem, B′ (w) = b ′ (w − x̂ (w)) and thus B′′ (w) =(
1 − dx̂(w)

dw

)
b ′′ (w − x̂ (w)). Recall that in this case w − x̂ (w) > w0, therefore

b ′′ (w − x̂ (w)) ≤ 0 and
(

1 − dx̂(w)

dw

)
≤ 0: B is thus convex in this case. It follows

that B is convex on [0, w0], concave on
[
w0, w

]
, convex on

[
w, w

]
, concave on

[w, +∞[ . 	
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