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he seller posted-price procedure is probably the most common method for making trans-

actions in modern economies. We analyze the performance of posted pricing for transactions
having significant common-value elements. In a model of two-sided private information, we
characterize the fully revealing, perfect equilibrium offer strategy of the seller. We also charac-
terize equilibrium behavior under two other pricing procedures—a sealed-bid procedure and a
direct revelation mechanism. Finally, we examine the efficiency of these procedures and show
that as the degree of common values increases, fewer mutually beneficial agreements are at-

tained.

(Bargaining; Common Values; Game Theory; Asymmetric Information)

“Low prices informing, buyers take warning. High prices set right, common
values delight.”

Old Seller’'s Rime

1. Introduction

In many commonly encountered bargaining situa-
tions, each agent possesses private information that
bears on the potential value of the transaction. Ex-
amples range from a buyer and seller negotiating the
sale of an item to a pair of disputants attempting to
settle their conflict through negotiation rather than
adjudication. Typically, bargaining proceeds by ex-
changes of offers. The present analysis highlights two
elements of these situations.

First, the payoffs from such agreements almost al-
ways involve common values as well as private values.
For instance, the long-term worth of a target firm if
taken over by a would-be acquirer has a private-value
element (depending on the acquirer’s management ca-
pabilities) and a substantial common-value element
(based on existing products and market conditions).
Similarly, in a joint venture, the respective profits of the
partners depend both on their private capabilities and
circumstances and on common factors such as market
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conditions. Finally, the potential litigation value of a
case has a large common-value element (the expected
value of the court award) as well as private-value ele-
ments (reputation concerns and private legal costs).

Second, the exchange of offers, besides suggesting po-
tential terms of agreements, also transmits information
concerning these private- and common-value elements.
For instance, when the transaction contains a significant
common-value element, a seller’s offer will convey in-
formation not only about his own value, but also about
the potential value to the buyer. The buyer must com-
bine such inferences with his other information to de-
termine her expected value. (Throughout we refer to the
seller as he, the buyer as she.) One objective of this paper
is to characterize equilibrium offer and acceptance be-
havior taking these subtle inferences into account. A
second objective is to examine the joint effect of different
degrees of common values and alternative offer proce-
dures on the efficiency of bargaining.

As is well known, under private information, strate-
gic bargaining behavior leads to inefficient outcomes in
equilibrium. However, almost all the research to date
has considered models in which the bargainers hold in-
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dependent private values.! Notable exceptions include
Gresik’s (1991) analysis of optimal trading mechanisms
with dependent values and Vincent’s (1989) and Evans’
(1989) studies of sequential bargaining with common
and correlated values. The neglect of dependent-value
models by the bargaining literature is curious. (The auc-
tion literature, by contrast, has investigated many
dependent-value models and has not been tied to the
independent-value assumption.) The present paper ex-
tends the analysis of bargaining behavior and perfor-
mance to settings exhibiting value dependence.

Section 2 presents a bargaining model in which the
players have private signals bearing on the potential
value of the transaction. The information structure al-
lows for varying degrees of private and common values.
We examine the performance of the simplest and most
commonly used pricing procedure: the seller names a
price which the buyer can then accept or reject. The
analysis characterizes the perfect Bayesian equilibrium
associated with the seller-offer procedure. Attention is
paid not only to the inferences the buyer should draw
from seller offers, but also to the inferences the seller
must make in advance from the fact of buyer accep-
tance. (Acceptance implies that the item is worth more
than the seller expected.) This section also considers a
second, symmetric procedure in which both agents sub-
mit simultaneous offers, and the final price splits the
difference between them.

Section 3 presents a basic result concerning ineffi-
ciency in bargaining. Using the direct revelation ap-
proach, the analysis shows that increasing the common-
value element in the players’ reservation prices reduces
bargaining efficiency. The incidence of bargaining im-
passes, well known in independent-value models, is ex-
acerbated by the introduction of dependent values. This
result holds for any bargaining procedure. In fact, the
general analysis underscores a main drawback of the
seller-offer procedure—that it reveals too much infor-
mation. The very inferences that the buyer draws from
seller offers limit the transactions that a rational buyer

! Early work includes Fudenberg and Tirole (1983), Myerson and Sat-
terthwaite (1983), and Chatterjee and Samuelson (1983). For more re-
cent surveys of this bargaining literature, see Linhart (1989) and Ken-
nan and Wilson (1993).
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can accept. Section 4 offers a brief summary and con-
cluding remarks.

2. Offer Procedures

A buyer and a seller (both risk neutral) are attempting
to negotiate the sale of an indivisible good. Each player
has private information in the form of a signal bearing
on the potential value of the good. Let x denote the sel-
ler’s private signal and y the buyer’s private signal. We
make two assumptions about player signals and values.

ASSUMPTION 1. The signals are drawn independently
from distributions F(x) with support [0, 11, and G(y) with

support [y, y1.

ASSUMPTION 2. Each player's value for the good is a
separable function of x and y. In particular, the seller's value
is v, = x + ay and the buyer's value is v, = y + px, where
a and B are in the unit interval. In addition, these values are
independent of income effects.

REMARK 1. The separability requirement in Assump-
tion 2 implies that the effect of a change in a player’s
private signal on o, or v, is independent of the other’s
(unknown) signal. As we shall see, this assumption
greatly simplifies each player’s equilibrium behavior.
The independence of Assumption 1 serves a similar
simplifying purpose. If dependence were the rule, each
player would have to draw a different probabilistic in-
ference about the other’s signal, depending on his own
signal. By adopting Assumption 2, we abstract from this
interesting but complex problem.

REMARK 2. In related work, Gresik (1991) considers
a more general value structure, assuming only that any
change in a player’s private signal will change his own
valuation for the item more than it will change his part-
ner’s. Our assumption that @ and S are smaller than one
ensures that this is the case. Note that if « and B are
both zero, the players’ values are purely private and
independent. If a and B are both one, the item has a
common value for the players (though neither knows
this value absent the other’s information). Thus, by
varying these parameters, one can introduce a greater
or lesser common-value element into the transaction. A
second important restriction in Assumption 2 is that the
players’ values are separable, linear functions of the sig-
nals.
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2.1. Seller-Offer Procedure

Our main focus is on the traditional bargaining proce-
dure whereby the seller makes a single price offer,
which the buyer can accept or reject. (The analysis if the
buyer makes the offer is completely analogous.) Let p
denote a particular price offer and p = P(x) denote the
seller’s offer function, i.e., the schedule listing the sel-
ler’s offer for each possible value of his private signal.
In turn, the buyer’s acceptance behavior can be sum-
marized by a “‘cut-off” value r. The buyer will accept
the seller’s offer if and only if y = r (i.e., only if her
private signal is greater than or equal to this cut-off
value). The buyer’s complete acceptance strategy can be
summarized by the function r = R*(p), which sets a cut-
off value given each offer of the seller.

For the functions P( ) and R*( ) to constitute a
Nash equilibrium, it must be the case that each player
maximizes his expected profit given the strategy of the
other. We restrict our attention to equilibria in which
P( ) is differentiable and strictly increasing—that is,
the seller’s offer strategy is fully revealing. In this case,
the buyer infers x from the seller’s offer p. Let P~'( )
denote the seller’s inverse offer function. The buyer in-
fers x from p according to x = P~'(p). Her optimal ac-
ceptance strategy is to purchase the item if and only if:

m=v,—p=Hy+px)—p=0,
or equivalently:
y=r=p—BPp). (1)

Thus, Equation (1) gives the buyer’s optimal cut-off
value. This acceptance strategy applies for quoted prices
in the range of the seller’s offer strategy. Let p and p
denote the smallest and largest equilibrium seller offers
respectively. To describe a perfect equilibrium, we need
to specify the buyer’s behavior in the event of a seller
quote outside the interval [p, pl. To cover this out-of-
equilibrium event, we impose two reasonable condi-
tions on the buyer’s beliefs: (1) If p = p, then the buyer
concludes that x = 1 and adopts the cut-off value, r = p
— B; (2) If p =< p, then the buyer concludes that x = 0
and adopts the cut-off value, r = p. As we will show,
the second condition is sufficient to characterize the sel-
ler’s differentiable offer strategy.

We now characterize the seller’s equilibrium strategy.
When he holds signal x, the seller’s expected profit is:

; _
m(x) = f [p — vlgly)dy = r [p — (x + ay)lg(y)dy,

(2)

The seller’s task is to choose p to maximize 7,(x) subject
to the buyer’s acceptance strategy, i.e., r defined in (1).
Instead of optimizing with respect to p, it is more con-
venient to think of the seller as reporting his value x,
then applying the offer function P( ). To be specific,
we can write the seller’s offer as P(z) and view him as
choosing z. Then P( ) is an optimal strategy if and only
if he can do no better than choose z = x for all x. If the
seller chooses z, then the buyer infers this to be the value
of x. That is, she hears the offer P(z), inverts this func-
tion to obtain the value of x (in equilibrium), and estab-
lishes the cut-off value r = p — fBz. This enables us to
rewrite the seller’s expected profit as:

[P(z) — x — aylg(y)dy

R(2)

ms(x, 2) =

= [R(2) + Bz — x — aylg(y)dy. (3)
R(z)
Here, r = R(z) denotes the buyer’s cut-off value as a
function of z. (We have also used the fact that r = p
— Bz or, equivalently, p = r + 8z.) The partial derivative
of w,(x, z) with respect to z is:

Y
on,/0z = f

R(z)

(R'(2) + B)g(y)dy

— R'(2)[R(z) + Bz — x — aR(z) ]g(R(z)), D)

where R’ denotes dR/dz. In equilibrium, 97 /9z = 0 at
z = x for all x. After some rearrangement, we arrive at
the differential equation:

R'{[(1 — B)x — (1 — o)RIg(R) + (1 — G(R)}
+ B(1 - G(R)) = 0. )

In equilibrium, R’( ) must be nonnegative.” This
means that an increase in x (accompanied by an increase

2To see this, let W(x, z) denote the right-hand side of (4). In equilib-
rium, W(x, x) = 0 for all x or equivalently, W(z, z) = 0 for all z. Subtract
W(z, ) from (4) to cancel out all terms but the single one involving x.
We find: W(x, z) = r,/8z = R'(2)(x — 2)g(R(2)). For z = x to be opti-
mal, W(x, z) must be nonnegative for z < x and nonpositive forz > x.
Thus, R'(x) must be nonnegative.
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in p) reduces the probability of an acceptance by the
buyer. Because P(x) = R(x) + B, it follows that P’(x)
= R’(x) + B. In equilibrium, the seller's marginal price
increase as x increases is at least as great as the buyer’s
marginal benefit. Thus, a higher price is always disad-
vantageous to the buyer. We summarize these findings
in the following proposition.

PROPOSITION 1. In a separating equilibrium, the seller’s
optimal offer strategy is given by P(x) = R(x) + Bx, where
R'(x) is nonnegative and satisfies differential Equation (5).

A Uniform Example. For arbitrary distribution
functions, the differential equation in (5) has no general,
closed-form solution. Furthermore, -considerable care
must be taken to establish appropriate boundary con-
ditions. For special cases, however, complete solutions
are available, and these are instructive. As an example,
suppose that the buyer’s signal y is uniformly distrib-
uted in the unit interval—that is, G(R) = R and g(R)
= 1. Employing the changes of variables, t = T(x)
=R(x) —1ands =x - (1 — «)/(1 — B), we can rewrite
(5) as:

T'1-B)s - 2—-a)T] - BT =0.
This differential equation has the closed-form solution:
s=k|t|"P? +[2-a)/(1-28)),  (6)

where k is a constant of integration (and 8 # 0 or 0.5).
From this family of solutions (parametrized by k), the
unique, perfect-equilibrium offer strategy can be iden-
tified by invoking the out-of-equilibrium conditions.
The essence of the argument is that the seller should not
be able to profit by making an offer below the range of
equilibrium offers. As shown in Appendix A, this re-
quirement implies the boundary conditionr = 1/(2 — a)
at x = 0. In turn, this boundary condition can be sub-
stituted into (6) to compute k.

To illustrate the nature of the equilibrium, Figure 1
shows the seller’s optimal offer function for the case, a
= B = 3. The graph also shows the buyer’s acceptance
region. (Remember that the buyer deduces x from P(x)
and establishes the cut-off value r = P — Bx.) Finally,
the area above the dashed line indicates the joint reali-
zations of signals supporting mutually beneficial agree-
ments, i.e.,, v, = v,. As the figure shows, the seller uses
a markup strategy—that is, he sets his price above his
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expected personal value of the item, conditional on his
offer being accepted. Thus, the acceptance region is
smaller than the region of mutually beneficial agree-
ments. Strategic bargaining often leads to disagree-
ments even when gains from trade are available.

By inspecting the expressions for P(x) and R(x), we
can identify a number of comparative statics results for
the uniform case. First, the seller shifts to uniformly
higher offers with an increase in a or 8. The intuitive
explanation is straightforward. If the seller's expected
value for the item increases (via a), he naturally asks
for higher prices. Similarly, a savvy seller should raise
his prices if there is an increase in the potential value to
the other side (8). Next, it is natural to ask: What effect
do changes in the bargaining environment have on the
realized gains from trade? For the uniform case, we can
derive closed-form expressions for the players’ expected
profits. For # = a, these are:

(1-a)@2+3p)

1
1
e = J; mo(x)dx = -2 -pa+ B’ and
B 1 _l (1 - a)s
Mo = .[, WY = T R + B)’

Note that
s = [(2 + 36)(2 — a)/ (2 — B)]m,.

Hence, the seller's ex ante expected profit is always
strictly greater than the buyer’s. Efficiency under the
seller-offer procedure can be judged by comparing total
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realized expected profits to the potential expected trad-
ing gains, E[v, — v,|v, = v,]. In the uniform case, the
potential trading gains come to: 7* = (1/6)(1 — a)?
/(1 — B). Comparing m, + m, to 7*, we find that the
ratio of realized trading gains to potential gains declines
as a and/or f8 increases.

Summary. Though the precise formulas for the
seller and buyer strategies are somewhat complex, the
qualitative characteristics of the equilibrium are
straightforward. We have seen that the seller-offer pro-
cedure yields a fully separating equilibrium. The buyer
recognizes that a higher price quote implies an item of
greater value (both to the buyer and the seller) and sets
her acceptance strategy accordingly.

Split-the-Difference Procedure

We can gain additional insight into the strategic ele-
ments associated with common values by examining a
symmetric offer procedure. Consider a particular one-
shot negotiation method (following Chatterjee and Sa-
muelson 1983):

Under split-the-difference (SD) offers, the seller and
the buyer submit sealed offers denoted respectively by
s and b. If the buyer’s offer is greater or equal to the
seller’'s demand (b = s), then a negotiated agreement is
concluded at the terms P = (b + s)/2. If s exceeds b,
there is no agreement, and bargaining terminates.

There are two key differences between this procedure
and the seller-offer procedure. First, the SD procedure
solicits offers from both sides. Since the agents’ offers
depend on their respective private signals, so does the
final price. By contrast, the final price when the seller
makes the only offer necessarily reflects only his private
signal. In this sense, the final price incorporates more
information under the SD procedure than under the
seller-offer procedure. Second, the inferences the buyer
draws under the two methods are quite different. When
the seller makes the only offer, the buyer infers perfectly
the seller’s signal. By contrast, under the SD method,
the buyer does not know the seller’s offer (or signal) at
the time she makes her own offer. Instead, she must ask
herself: What inference can I draw about the seller’s sig-
nal (and, therefore, the value of the item) conditional on
an agreement taking place, s < b? In this sense, the SD
procedure conveys less information to the buyer than
the seller-offer procedure.

224

In contrast to the seller-offer procedure, there are a
multitude of (perfect) equilibria in the sealed-offer pro-
cedure.’ Consider once again the example of uniformly
distributed values, F(x) = x and G(y) = y. It is straight-
forward to check that linear strategies constitute an
equilibrium.* (For arbitrary distributions, Appendix B
derives the linked differential equations characterizing
equilibria in differentiable strategies.) In addition, we
restrict attention to the symmetric case in which a = g
and let a denote this common value. Then, the equilib-
rium offer strategies are:

s=5(x) =8+ 5%, b=DBx) =b+ by,

where s; = b, = (2/3)(1 + a), so = 0.55,/(2 — 5,), and
by = 0.55,(1 — 51)/(2 — 5,). Note that the seller’s offer
function is uniformly greater than the buyer's—=5(x)
> B(x), for any value of x. Thus, some agreements are
missed (b < s) even when trading gains exist, i.e., when
-, =(1-a)y—x)>0.

The offer strategies respond to the degree of common
values present in the transaction. An increase in a
causes an upward shift in the seller's demands as well
as the buyer’s offers. (After all, increasing a increases
the value of the item to both agents.) However, the up-
ward shift in seller demands exceeds the shift in buyer
offers, causing a fall in the frequency of agreements. An
agreement occurs if and only if b = s, or equivalently,
y=x+ 05(1 + a)/(2 — a). As « increases, the region
of missed trades (and the associated dead-weight
losses) increase. As a approaches one, agreements dis-
appear altogether.

Table 1 compares the ex ante efficiency of the seller-
offer procedure and the SD procedure for the uniform
case with @ = 8. For each procedure, the table lists the
ratio of the realized gains from trade to the maximum

3 For the sealed-bid procedure with independent values, Linhart et al.
(1989) show that there exists a continuum of equilibria involving dif-
ferentiable strategies as well as a multitude of equilibria involving
step ‘unction strategies. In terms of performance, these equilibria
range from the second-best ex ante efficient outcome to the complete
inefficiency of no trade.

*We focus on the linear equilibrium for two reasons. First, it is the
simplest possible differentiable equilibrium. Indeed, laboratory exper-
iments to date (see Radner and Schotter 1989)) have shown that sub-
jects have a strong tendency to play linear strategies. Second, as noted
below, it has relatively desirable efficiency properties.
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Table 1 Efficiency Ratios in the Uniform Case with « = §
Seller Offer Split-the-Difference
s+ Tp Ts Tp s+ Tp Ts = Tp
a=p4=0 0.750 0.500 0.250 0.844 0.422
0.1 0.673 0.469 0.204 0.797 0.399
0.2 0.593 0.428 0.165 0.741 0.370
0.3 0.509 0.378 0.130 0.673 0.336
0.4 0.422 0.322 0.100 0.593 0.297
05 0.323 0.259 0.074 0.500 0.250
0.6 0.245 0.194 0.051 0.394 0.197
0.7 0.160 0.128 0.031 0.276 0.138
0.8 0.083 0.068 0.015 0.156 0.078

possible gains from trade. We observe that the SD pro-
cedure is significantly more efficient than the seller-offer
procedure. As noted earlier, the seller-offer procedure
produces very unequal payoffs to the agents. The buyer
(who is disadvantaged under the seller-offer procedure)
unambiguously prefers the equal treatment of the sym-
metric SD procedure. For low enough a, the seller pre-
fers to retain the power to make a take-it-or-leave-it of-
fer. But for a greater than 0.54, the seller's preference
switches to the SD method because it yields superior
expected profits.®

For this particular example, increasing the common-
value element of the players’ values reduces ex ante ef-
ficiency under either procedure. For instance, according
to Table 1, the SD procedure achieves over 84% of the
potential trading gains when values are independent (a
= (). But this percentage falls drastically, from about
60% to 16%, as a increases from 0.4 to 0.8. The pattern
for the seller-offer procedure is analogous. Of course, as
a approaches one, the maximum feasible gains, as a

5 The efficiency advantage of the SD procedure does not depend on
the prescribed symmetry of the example. Corresponding calculations
when the players have different estimate distributions (retaining the
uniform assumption) confirm the SD procedure’s efficiency advan-
tage, provided asymmetries are not “too” pronounced. One such
asymmetry occurs if the support of the buyer’s estimate is much nar-
rower than the support of the seller’s. (That is, there is much less un-
certainty about the buyer’s estimate than about the seller’s.) In this
case, efficiency dictates that the final price be solely determined by the
seller’s (informed) offer rather than by both players’ offers.
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fraction of the good’s value to either player, also ap-
proach zero, in which case the inefficiency matters less.
The next section shows that this result holds not only
for this example but in general. Regardless of the bar-
gaining procedure and the particular distributions, ef-
ficiency declines as the degree of value dependence in-
creases.

3. Direct Revelation Mechanisms

It is well known that an equilibrium of any game under
incomplete information, no matter how complicated the
strategies, can be recast as a direct revelation mecha-
nism (DRM) in which each side reports its private in-
formation (truthfully), and these revelations directly
determine equilibrium outcomes. We will apply the di-
rect revelation approach to characterize possible nego-
tiation outcomes. This approach has the advantage that
it allows us to dispense with the exact description of the
negotiation process. Rather, the approach encompasses
all possible bargaining or negotiation methods. Use of the
direct revelation approach was pioneered by Myerson
and Satterthwaite (1983) for bilateral monopoly and by
Gresik and Satterthwaite (1989) for mechanisms involv-
ing many traders. Recently, Gresik (1991) has extended
the approach to trading mechanisms among agents hav-
ing dependent values. The present analysis draws on
and complements Gresik’s results.

The negotiated outcomes of the direct revelation
mechanism can be summarized by two functions that
map realizations of the parties’ signals into outcomes:
(1) p(x, y), the probability that the good is transferred
from seller to buyer, and (2) t(x, y), the monetary
amount paid by the buyer to the seller (unconditional
on whether the good is transferred). In the play of the
DRM, each side’s report of his or her signal determines
the likelihood of an agreement, p(x, ), and the amount
paid, ¢(x, y). (Of course, the DRM must be designed to
give each player the incentive to report a true signal.)

Consider the expected payoff of the seller when he
holds signal x and reports his signal as z. This is:

m(x, z) = fy {tz, y) — plz, PIx + ayligdy. (7)
y

This payoff is the expected (unconditional) transfer he
receives minus the value of the good in the case of a
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sale. Note that the probability of a sale and the transfer
payment depend on his reported signal. To implement
an equilibrium outcome, the DRM must ensure that
each player maximizes his expected payoff by reporting
his true signal—that is, the DRM must be incentive com-
patible (IC). For the seller, the direct revelation mecha-
nism must satisfy 7,(x, x) = 7,(x, z) for all possible re-
ports z and all x. For ease of notation, we denote the
seller's expected profit conditional on x and given a
truthful report by =,(x) = m,(x, x). Also define P(x)
= E[p(x, y)], where E, denotes the expectation of y,
over the distribution G(y). Thus, P(x) denotes the sel-
ler’s assessed probability of an agreement (in equilib-
riumn) conditional on x. According to standard results
in the direct revelation literature (see Myerson and Sat-
terthwaite 1983), the IC conditions imply:

P(x) is nonincreasing in x. (8)

Roughly speaking, the higher is the seller’s signal, then
the higher must be the trading price in equilibrium, im-
plying a lower probability of an agreement. A second
implication is that

dn./dx = —P(x), C))]

almost everywhere. An informal way to derive equation
9 is to apply the envelope theorem to Equation (7):

drs/dx = On,/O0x + (On,/0z)(dz/dx) = On,/Ox,

since an optimal report implies 07;/9z = 0. Thus, we
confirm dr,/dx = —P(x) since z must be identically
equal to x to satisfy incentive compatibility.

The analysis for the buyer is similar. The buyer's ex-
pected profit when she holds signal y and reports z is:

1
(Y, 2) = f {p(x, 2)ly + Bx] — t(x, D}f(x)dx. (10)
1]

Incentive compatibility implies that
Q(y) is nondecreasing iny, and amn
dmy/dy = Q(y), (12)

almost everywhere, where Q(y) = E,[p(x, y)]. Note that
a higher signal for the buyer implies a higher probabil-
ity of agreement (by (11)) and a greater expected profit
for the buyer (by (12)).
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A second requirement of the mechanism is that it be
individually rational (IR)—that is, the players’ condi-
tional payoffs, 7.(x) and m,(y), must be nonnegative for
all x and y. From (12) and (15), the seller’s and buyer’s
profits are nonincreasing and nondecreasing, respec-
tively. Thus, the relevant IR constraints become

(1) =0 and m(y) =0. (13)

That is, the player must be satisfied with his expected
payoff when he holds his least favorable signal (i.e., the
greatest x for the seller or the lowest y for the buyer).
In fact, since lump-sum transfers can be made between
the parties, the equivalent IR constraint is simply

(1) + m(y) = 0. (13")

By integrating the seller and buyer IC constraints (see
Appendix C), we can express this IR constraint in more
usable form as:

1
m(1) + m(y) = J'yf {{Q-a)y—-Q-Gy)/gyl
y 0

= [(1 = B)x + F(x)/ f(x)}p(x, y)f(x)g(y)dxdy = 0.
(14)

To sum up, implementing a bargaining outcome
comes down to specifying functions p(x, ) and #(x, y)
that satisfy the IC and IR conditions in (8), (9), (11),
(12), and (14).6

Efficiency. Ex post efficiency requires that the good
be sold if and only if the buyer’s signal exceeds the sel-
ler's. That is, the bargaining mechanism must specify
plx,y)=1lifandonlyifv, =y + Bx=v, =x + ay. It
is well known (see Myerson and Satterthwaite 1983)
that ex post efficiency is unobtainable when the bar-
gainers hold private personal values. To verify this us-
ing the present framework, (1) set « = § = 0 to invoke
purely private values, and (2) confirm that setting
p(x, y) = 1 for y = x violates the IR constraint (14).

In an important article, Gresik (1991) has provided a
general characterization of trading mechanisms show-

¢ Once the probability function of the DRM is established, the payment
function can be established via Equations (7), (9), (10), and (12). Many
different lump-sum transfers are possible, subject of course to the IR
constraints in (13).
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ing that value dependence is also incompatible with ex
post efficiency.” We demonstrate a complementary re-
sult—that bargaining efficiency declines as the degree
of common values increases.

This effect can be captured by setting a = 8 and let-
ting this common value increase from zero to one. Un-
der this restriction, the maximum possible trading gains
are:

Elv, — v|vy = 0] = (1 — @)Ely — x|y = x].

In turn, the realized (ex ante expected) trading gains for
a particular mechanism are:

1
m+m=(1—a) _r J‘O (y — )p(x, Y f(x)g(y)dxdy.
Yy

The ratio of the players’ realized trading gains to the
maximum possible gains is a natural measure of bar-
gaining performance. Note that this ratio does not de-
pend on «. Now consider the problem of maximizing
this ratio subject to the IR constraint in (14) as « in-
creases from zero to one. As a increases, the only effect
is on the IR constraint. Increasing a reduces the left side
of the inequality in (14), thereby tightening the individ-
ual rationality constraint. In short, the ratio of realized
trading gains to the maximum possible gains declines.®
Thus, we have:

PROPOSITION 2. Increasing the degree of common value
between the reservation prices of the buyer and seller (increas-
ing a = B on the interval 0 to 1) reduces the obtainable
trading gains as a fraction of the maximum possible gain.

Straightforward intuition underlies this result. When
a and f are near zero, the magnitude of a player’s profit

7 Gresik’s analysis allows a very general value structure, where each
player’s value is a function of all private signals. He shows that opti-
mal trading mechanisms have deterministic solutions, provided any
change in a player’s private signal changes his (virtual) valuation more
than it changes anyone else’s. (This latter condition is assured by our
assumption that a and S are smaller than one.) Thus, while we have
focused on an additive structure for analytical simplicity, the approach
extends to more general value structures.

8 Alternatively, adopting the parameterizations v, = x/(1 — a)
+ [a/(1 — e)ly and v, = y/(1 - @) + [a/(1 — a)lx makes the same
point. Here, the realized trading gains (as well as the maximum pos-
sible gains) are invariant with respect to a. Consequently, the maxi-
mand of 7, + m, declines as « increases (and the IR constraint tightens).
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depends mainly on attaining efficient agreements (to
the extent afforded by the IC and IR constraints). How-
ever, as a and / or 8 increase, differences in reservation
prices become much less important than the (nearly)
common, unknown value the bargainers put on the
transaction. Since each side knows only its own signal
(half the relevant information), it has to be careful not
to pay too much or accept too little for the transaction.
Failing to draw the appropriate inferences, a player is
likely to fall prey to the “winner’s curse”: buying an
item at too dear a price or selling an item too cheaply.
This strategic precaution creates a tighter IR constraint
and implies fewer negotiated agreements.’

Maximizing the Gains from Trade. To maximize
the expected trading gains subject to (14), we form the
Lagrangian:

£

7 + T, + Ma(D) + m(y))

l N
fy f H(x, y)p(x, y)f(x)g(y)dxdy, where
y Y0

Hx,y) =1+ NI —a)y — (1 - B)x]
- M1 - G(y) /gy + Flx)/f(x)].

Note that the Lagrangian is linear in p(x, y). Therefore,
trading gains are maximized by setting: p(x, y) = 1 for
H(x,y) = 0 and p(x, y) = 0 for H(x, y) < 0.°

A Uniform Example. Again suppose F(x) = x and
G(y) = y and let & = B. It follows that

° As long as & = § < 1, the individual rationality constraint allows
“some” agreements, i.e., p(x, y) = 1 for sufficiently large y and small
x. (To see this, note that the individual rationality constraint in (14) is
nonbinding when p(x, y) = 0 for all x and y.) However, as a = §
approaches one, the transaction becomes closer and closer to a case of
pure common values. As is well known, in the pure common-value
case (@ = 8 = 1), no trade can take place, despite differing private
values. The buyer recognizes that she cannot profit from any deal the
seller would offer. Similarly, the seller would make a loss at any price
that the buyer would accept. This result is usually referred to as the
“no trade theorem” and was first demonstrated by Milgrom and Sto-
key (1982).

10 Of course, one must be careful that this choice of p(x, y) satisfies the
monotonicity conditions in (8) and (11). A sufficient condition to as-
sure this is that x + F(x)/f(x) and y — (1 — G(y))/g(y) are both increas-
ing functions.
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H=Q1+NM1-a)y—-x) —\1—y+x).

Thus, the optimal mechanism is of the form: p(x, y) =1
if and only if y = x + A, where A > 0. The IR constraint
in (14) can be written:

1-A pl
f f A[(1—oz)(y—x)—(l—y)—x]dydx=0.
0 x+

Evaluation of this double integral leads to the equation:
(1/3)2 — )1 = A)*(A +05) — 05(1 — A)* =0,
which implies:
A=15/2-a)—-05=051+a)/2 - a).

In short, the optimal mechanism calls for trade if and
onlyify = x + 0.5(1 + a)/(2 — ). In turn, the ratio of
the realized trading gains (7, + 7,) to the maximal gains
(%) is (9/2)(1 — @)*/(2 — ). This ratio approaches
zero as a goes to one. Finally, we note in passing that
the optimal mechanism calls for trade in exactly the
same circumstances that trade occurs in the linear equi-
librium of the SD procedure. Thus, in the special case
of symmetric, uniformly distributed signals, the SD pro-
cedure’s linear equilibrium is ex ante efficient.

4. Concluding Remarks

The seller-offer procedure, e.g., a posted price, is the
most widely used method for making transactions in
modern economies. Indeed, when the item for sale in-
volves purely personal values for the agents (a = § = 0),
the seller prefers to name a take-it-or-leave it price over
any other pricing mechanism."' By naming the price, the
seller can exercise monopoly power even though this
risks the loss of beneficial agreements (and produces
accompanying inefficiencies).

The present paper extends the analysis to consider
transactions having significant common-value ele-
ments. Using the direct revelation approach, Proposi-
tion 2 shows that increasing the degree of common val-
ues inevitably leads to reduced bargaining efficiency."

" For a formal proof, see Williams (1987). In addition, as Riley and
Zeckhauser (1983) show, the seller avoids being drawn into haggling
with subsequent buyers by committing to a posted price.

12 Vincent (1989) and Evans (1989) demonstrate analogous results for
sequential bargaining: that dependent values lead to delayed agree-
ments (and hence inefficiency).

228

This result would predict that a sale of a piece of art, for
example, is less likely when it is valued for the sake of
investment (i.e., when a common-value element is im-
portant) than when it is valued for the sake of personal
enjoyment.

The use of the seller-offer procedure becomes more
problematic as common-value elements increase. The
split-the-difference procedure suggests that it offers sig-
nificant efficiency advantages relative to the seller-offer
mechanism. A principal advantage is that it capitalizes
on both sides’ private information, and hence delivers
beneficial sales more frequently. Enjoying equal footing
with the seller, the buyer unambiguously prefers the SD
method to a seller take-it-or-leave-it offer. Given a suf-
ficient degree of common values, even the seller benefits
on average from the SD method.

Appendix A

We characterize P(x) and R(x) for x and y uniformly and indepen-
dently distributed on [0, 1]. We will use the more general notation v,
= Ax + By and v, = Cx + Dy with A, B, C, D > 0. With these coeffi-
cients and uniform distributions Equation (5) becomes

r'[A-Cx+B-2D)r+D]-Cr+C=0. (A1)

Suppose the seller makes a subrange offer. Without loss of generality
the seller may assume 0 = p/D = 1. The seller’s expected profit is

1 1
P P 1
— (Ax + By)ldy = D — 1——)—[Axy+—Bz]
.[, tp y)ldy D( D 2 y p/D

/D

P (PN _ 4 B, .2 E(z)z
—DD D(D) Ax 2+ADX+2 D

B-2D[p\ p B
= 14 Ly - A2
> (D)+(Ax+D)D Ax > (A2)

We assume 0 =< R(x) = 1. If the seller offers p below his range we may
assume

0=p=P0)=DRO) or 0=p/D=R(@O)

The Subrange Condition. In a perfect equilibrium, at x = 0 the
seller’s original offer P(0) = DR(0) must be optimal; therefore, the RHS
of Equation (A2) over the domain 0 = p/D = R(0), must reach its
maximum at R(0). This is clear if R(0) = 0 so suppose R(0) > 0. Sup-
pose, moreover, B — 2D < 0 since the other case will take care of itself.
Then we need

2

2D - B

= R(0), or equivalently, = P(0),

2D -B

which holds if R(0) = 0. It follows that
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D + Ax
2D-B

= R(0),

and for all x in [0, 1] the maximum is at R(0), which puts p inside the
range of P.

In sum, in equilibrium, we need R a function on [0, 1] satisfying
Equation (A1) and R’(x) = 0 on [0, 1]. If B — 2D < 0 we also need
D/(2D — B) = R(0), and the Above-Range condition

A+D-C r R =1

R() zTD——T o

Note that if in fact B — D < 0 then our constraint on R(0) precludes
R equal to the constant function 1. Thus, there exist some prices at
which the buyer will buy some of the time.

If A = C the solution to Equation (A1) is

Cx=(B-2D)r+(B—-D)In|r-1]| +k.

Otherwise, to solve the differential equation in (A1), we use the change
in variables:
_D-B

A-C’

s=X

and ¢t = r — 1. Then Equation (A1) becomes
+'[(A — C)s + (B - 2D))] — Ct = 0.
Let t = vs. Then dt = vds + sdv and
(vds + sdv)[{A — C)s + (B — 2D)vs] — Cusds = 0,
(A = C)vds + (B — 2D)v*ds — Cvds + [(A — C) + (B — 2D)v]sdv =0,
[(A — 2C)v + (B — 2D)v*1ds + [(A — C) + (B — 2D)v]sdv = 0,

d A-C+B-2Dv1
S tGAT0rE-Dws =" (A3

If A — 2C = 0, then the solution is
B-2D

= t .

s [ C ln||+k]t

In the generic case A * 2C, Equation (A3) becomes

ds A-Cdo B-2D Cdv -0
s A-20v A-2C(A-200+(@B-2Dw
A-C c
In|s| +A_2Cln|v| —A_zclnl(A—ZC)+(B—2D)v| +k =0,
A-C c
A_zclnlvsl—mml(A—ZC)s+(B_2D)m|+k,=0,
A-C

Tlnltl —In|(A-2C)s + (B —2D}| +k, =0,

(A —2C)s + (B — 2D)t — ks|t|4 /€ =0, or

B—-2D

= k|¢|a-ove £
s = kltl A-2C

(A4)

This is the counterpart of Equation (6) in the text.
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Now we worry about which values of k in these solutions yield Nash
equilibria, and which yield perfect equilibria. Suppose D > B and A
# C, 2C, so that Equation (A4) applies. The useful part of these curves
resembles a parabola open in the increasing x direction in the x-r plane.
As we vary k we get a nested family of curves. For k equal to a specific
value—call this specific value K to be defined later—the curve is tan-
gent to the r-axis. For k > K the curve lies to the right of the r-axis, so
we do not get a function defined for x in the positive neighborhood of
0. (See Figure Al.) Since R is increasing, we need the part of the curve
above where the tangent is vertical. For k < K, this part of the curve
intersects the r-axis too high for our subrange conditions to be met.
For k = K the subrange condition is met exactly. Similar arguments
apply when A = Cor A = 2C.

We define K as follows: Set d/dt of Equation (A4) equal to 0, set ¢
= (B — D)/(2D — B) and let K be the solution for k.

If
Z_'_‘CB:Sl and 4>C,
define R by Equation (A4) for
B-D
2D_Bst<0,
and R(x) = 1 for
D_Bsxsl
A-C ’

The pieces fit, but not smoothly, for A > C. This is acceptable since
for fixed x, using equation (A1), we see that A(x — z)R'(z), the
derivative with respect to z of the seller’s expected profit when he
offers price P(2), is 0 on the lower interval and has the proper sign on
the upper interval and is continuous on the entire interval for z.

Appendix B
The Split-the-Difference Procedure
Derivation of Differentiable Strategies.

Let s = S(x) denote the seller's equilibrium offer function, and let
h(s) denote the density function of these offers over the interval [s, 5].
Let b = B(x) and j(b) over [b, b] denote similar entities for the buyer.

Figure A1

229

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LINDSEY, SAMUELSON, AND ZECKHAUSER
Selling Procedures

Finally, let S7'( )and B™'( ) denote the respective inverse functions.
The seller’s conditional expected profit is:

5
(s, x) = f [(b +5)/2 — [x + aB7'(b)]j(b)db.

Thus, the seller’s first-order condition is:
On (s, x)/0s = —sj(s) + (1 — J(s))/2 + xj(s) + aB7(s)j(s) = 0.

Let w = B7!(s). It follows that s = B(w) and J(s) = G(B™!(s)) = G(w).
In turn,

j(s) = dJ(s)/ds = g(B-1(s))/B’ = g(w)/B"(w).

After making these substitutions, the seller’s first-order condition be-
comes:

0.5B’(w)(1 — Gw)) + [S7'(B(w)) + aw — B(w)]g(w) = 0. (B1)

In turn, the buyer’s conditional expected profit is:
b
my(b, y) = f ly + BS7'(s) — (b + s)/2]h(s)ds.
£

Therefore, the buyer’s first-order condition is:
Omy(b, y)/ 8b = yh(b) + BS~'(b)h(b) — H(b)/2 — bh(b) = 0.

Let z = S7'(b). It follows that b = 5(z) and H(b) = F(S7'(b)) = F(2).
In turn,

h(b) = dH(b)/db = f(§7 (1)) /S’ = f(z)/S'(2).

After making these substitutions, the buyer’s first-order condition be-
comes:

0.55'(2)F(2) — [B™'(5(2)) + Bz — $(2)}f(z) = 0. (B2)

Depending on the distributions F( ) and G( ), these linked differ-
ential equations may or may not have closed-form analytical solutions.
For instance, linear solutions exist if F and G are of the form:
k(x — x), where the parameters are arbitrary. For arbitrary distribu-
tions, the equations can be solved by numerical methods.

Appendix C
The Direct Revelation Mechanism

The Individual Rationality Constraint.
To derive the IR constraint in (14), we proceed as follows. From (3)
we can write the seller’s conditional expected payoff as
1
m(x) = 7w, (1) — f P(s)ds.
In turn, the seller’s ex ante expected payoff is
1 1
7w = Edm(x)] = m(1) — f f P(s)dsdF(x).
0 ¥Yx
After integrating the second integral by parts and using the definition

of P(x), this can be rewritten as

230

Wl
7, = m (1) + fv f F(x)p(x, y)g(y)dxdy. (C1)
¥ 0
In turn, the buyer’s ex ante expected profit can be written as

my, = EIm(y)] = m(y) + r _r Q(s)dsdG(y)
v %y

7 Pl
=m(y) + _r f [1 - GWplx, Pf(x)dxdy. (C2)
v 0
The sum of the players’ ex ante profits is simply:
g 1
T + Ty = f f [(1 - a)y — (1 = B)xlp(x, Pf(x)g(ydxdy. (C3)
y vo

To see this, note that for a particular realization of estimates, the sum
of the players’ profits is:

p-v)+@w-p=v,-v,=1-a)y—(1- PG

Using (C1), (C2), and (C3), we can rewrite the IR condition in (13')
as:

v 1
fy f {[(1 —a)y — (1 -Gy /gl
y 1]

= [ = B)x + F(x)/ f(Olp(x, y)f(x)g(y)dxdy = 0.

This is the expression in (14).
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