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Sunlight and Protection Against Influenza
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A B S T R A C T

Recent medical literature suggests that vitamin D supplementation protects against acute respiratory
tract infection. Humans exposed to sunlight produce vitamin D directly. This paper investigates how
differences in sunlight, as measured over several years across states and during the same calendar week,
affect influenza incidence. We find that sunlight strongly protects against getting influenza. This
relationship is driven almost entirely by the severe H1N1 epidemic in fall 2009. A 10% increase in relative
sunlight decreases the influenza index in September or October by 1.1 points on a 10-point scale. A
second, complementary study employs a separate data set to study flu incidence in counties in New York
State. The results are strongly in accord.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Seasonal influenza has been with humans throughout history
(Viboud and Epstein, 2016). It imposes extreme costs on
contemporary societies, with the Spanish flu epidemic of 1918 –

which actually stretched from 1917 to 1920 – being a notable high
outlier (CDC 2018). Beyond the significant discomfort to those it
strikes, influenza saps productivity when individuals cannot work
(Duarte et al. 2017) and absorbs health care resources (Schanzer
and Schwartz 2013). Influenza also has less known long-range
consequences. Notably, individuals exposed to influenza in utero
have lower earnings as adults, are more likely to depend on
government assistance (Almond 2006; Schwandt 2017), and are
more likely to suffer from serious health problems later in life (Lin
and Liu 2014). They are also more likely to have a heart attack
(Kwong et al. 2018). Influenza severity can create capacity
constraints on hospitals, magnifying existing disparities in whom
a hospital chooses to admit (Alexander and Currie 2017). Finally,
influenza infections can cause an untimely death. The parallels

between the consequences of and measures to combat flu and
COVID-19 have stimulated far greater attention to flu in light of the
latter pandemic.

Influenza is a type of viral respiratory infection. Traditional
public health measures to combat it include vaccination (Maurer
2009; and White 2019) and paid sick leave to keep contagious
workers at home (Barmby and Larguem 2009; Pichler and
Ziebarth, 2016; Asfaw et al., 2017; Pichler et al., 2020). Coincidental
reductions in interpersonal contact (such as from holiday school
closings and public transportation strikes) can also reduce
prevalence (Adda 2016). Finally, a recent meta-analysis shows
that ingested vitamin D pills help to protect against these types of
infections (Martineau et al., 2017).1

This paper analyzes the potential of another mechanism for
securing vitamin D: direct bodily production of vitamin D when
exposed to sunlight (Holick 2007). This paper tests this mecha-
nism’s performance by regressing flu indices on sunlight levels.
Even with positive results, this reduced form approach cannot rule
out a variety of routes beyond vitamin D production. They include
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ltraviolet light that decreases folate status and hampers immune
unction (Branda and Eaton 1978; Cohn 2002; Borradale et al.
014; Jones et al. 2018), and direct deactivation of the virus
Sagripanti and Lytle, 2007). This form also prevents us from
istinguishing among potential alternative mechanisms where
unlight has no direct impact. Thus, sunnier days might increase
ime spent outdoors enjoying the sunlight, and therefore less time
n confined indoor spaces exposed to sick individuals.

While we can ingest vitamin D from many sources, such as fish
nd fortified milk, passive exposure to sunlight is a much more
ffective source.2 Sunlight as a source has two added benefits. First,
nlike ingested vitamin D, which can become toxic at a certain
oncentration, the self-production mechanism does not generate
oxic quantities (Holick 2007). Second, a far greater percent of the
opulation in an area is exposed to sunlight than secures
ignificant vitamin D for ingestion. Thus, the level of exposure is
ore likely to be in the range where herd immunity is significant.
Normally, flu season is in the winter, when both the average and

arianceof thesunlightlevelarelow.TheexperiencewiththeH1N1flu
pidemic in 2009 was dramatically different. The epidemic peaked
uch earlier, in the late summer and early fall. Those few months also
ad lower than average sunlight. This is sufficient concurrent variation
n both sunlight and flu to study the relationship.

This relationship between sunlight and flu has been studied in
he broader medical literature (as by Charland et al. 2009; Grant
nd Giovannucci, 2009; and Soebitantyo et al. 2015). Our study
ime period also overlaps the H1N1 outbreak in 2009. The
elationship between the 2009 H1N1 outbreak and Vitamin D
as been studied specifically (e.g., Bruce et al. 2010; Momplaisir
t al. 2012; Khare et al. 2013; Urashima et al. 2014), albeit with
nconclusive results. Grant and Giovannucci (2009) is probably the
losest to our study in that it uses sunlight data (specifically, UVB
rradiance) and case-fatality rates for the 1918-1919 H1N1
nfluenza pandemic. It discusses many of the biological pathways
y which vitamin D can help against influenza, including reducing
roduction of cytokines and the associated inflammation. While
ultiple flu strains (e.g., H1N1 and H5N1, responsible for avian flu)

nduce a cytokine response, vitamin D did not reduce the risk of
eath for mice infected with H5N1 (Grant and Giovannucci, 2009).
The studies on the 2009 H1N1 outbreak do not substantively

nvestigate the relationship between it and sunlight. This paper is
herefore the first to investigate the relationship between the 2009
1N1 outbreak and sunlight, and the first to perform its analysis at
wo levels of aggregation (across states in the U.S. and across
ounties in New York). The results from the two different levels are
onsistent.
Our paper also fits more broadly in the economics literature of

he health effects of sunlight. In previous work, we found a strong
rotective impact of a pregnant woman’s exposure to sunlight on
ater-in-life asthma in her child (Wernerfelt et al., 2017). Others
ave found that sunlight exposure in utero favorably affects birth
eight and gestational age (Trudeau et al., 2016; Zhang et al.,

2020), and also favorably affects fertility (Conway and Trudeau,
2019).

2. Data

For influenza data, we used data from the CDC. For cases of flu, we
used the CDC index that aggregates data reports from the individual
state health department influenza surveillance points, and then
harmonizes the aggregate to a consistent 10-point scale. The scale
measures the ratio of visits to outpatient healthcare providers by
those with symptoms of influenza, relative to all outpatient visits
(regardless of symptoms). Each point on the scale represents an
additional standard deviation above the mean. Weekly state-level
data are available, from October 2008 to the present.3 Some states,
however, are missing individual weeks of data. Dropping the
jurisdictions with missing flu data or sunlight data leaves us with
28 states for our primary analysis sample (CDC 2017a).4

We combined this flu data with the National Solar Radiation
Database (NSRDB)’s daily sunlight data for 2003-2016. It covers all
states but Alaska, plus the District of Columbia. This data reports the
solar radiation for a particular set of coordinates (in watts per square
meter). We calculate our primary independent variable by down-
loading the hourly sunlight data for the population-weighted county
centroid,averagingacross eachweek, andthenconstructingacounty
population-weighted average across counties for each state-week
(Census 2010).5 The dataset also includes data on temperature and
humidity. While our influenza data only begins in 2008, earlier data
was used, but solely for placebo tests (National Renewable Energy
Laboratory (NREL), 2018). For one of our robustness checks, we also
include precipitation data (which is not in NSRDB) from the National
Oceanic and Atmospheric Administration (NOAA)’s Global Surface
Summary of the Day (NOAA 2017), which utilizes data from 1,218
weather stations spread throughout the United States. We assigned
this data to states by matching the station closest to the population-
weighted centroid for each county and then averaging with in each
state-week across counties, as described above (Census 2010).6

We supplement our state-level analysis with a county-level
analysis, following Alexander and Currie (2017), who construct a
ZIP-code level weekly flu measure for New Jersey. Here, we use
Statewide Planning and Research Cooperative System (SPARCS)
hospital discharge data (New York State Department of Health
2015) for all of New York for October 2008 (the earliest month we
have CDC flu data) to June 2014 (the last year for which we have
discharge data and the last quarter for which we have bed data).

3. Methodology

As described above, Martineau et al. (2017)’s meta-analysis of
randomized control trials demonstrated significant benefits of
vitamin D supplements for reducing the likelihood that an
individual will contract an acute upper respiratory infection.
Randomized controlled trials have served as the gold standard for
epidemiological investigation. This analysis follows an alternate

2 The minimum daily amount of sunlight exposure (on head, neck, arm, and
ands, without sunscreen) necessary to reach saturation (and therefore produce an
ffective allotment) varies greatly by latitude, weather, time of year, and skin tone.

 the summer it can be as short as a few minutes; in the winter it can be over an
our per day for some and impossible for others. See http://nadir.nilu.no/�olaeng/
strt/VitD-ez_quartMEDandMED_v2.html which uses Ola Engelsen’s work to

3 See Appendix A for more details about the how the index is calculated.
4 Those 28 states are: Alabama, Arizona, California, Georgia, Hawaii, Illinois,

Indiana, Kansas, Maine, Massachusetts, Michigan, Minnesota, Mississippi, Missouri,
Nebraska, Nevada, New Hampshire, New Jersey, Ohio, Pennsylvania, Rhode Island,
South Carolina, Tennessee, Texas, Vermont, West Virginia, Wisconsin, and
alculate the minimum effective exposure time given a certain set of conditions. For
xample, in Minneapolis (44.98� N, 93.27� W, elevation 0.26 km) on a cloudless day
n the lawn, a pale Caucasian person would need over an hour, whereas a Black
erson would not be able to get enough sunlight even if outside the whole day. Also,
n interesting feature of these calculations is that while excessive unprotected sun
xposure can lead to sunburn and increased risk of skin cancer, the minimum
xposure time for adequate vitamin D is always less than the minimum exposure for
 sunburn.

Wyoming. As shown in Appendix Table 1, when we include all 49 states with
sunlight and flu data (plus the District of Columbia), using whatever data is available
for each month, we find consistent results.

5 Appendix D shows comparable results using census tract level sunlight for the
100 largest counties in the U.S.

6 The correlation between the week-month average temperature variables from
the two data sets is 0.9947, suggestions that there is no issue with combining
weather variables from both.
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path to methodological soundness. It employs quasi-experimental
variation to effectively create equivalent randomization, a com-
mon econometric technique. Implicitly, this approach controls for
a wide number of variables. It thereby avoids the inevitable
selection problems that arise when individuals must volunteer for
randomized controlled trials. The current study thus employs an
independent variable over which individuals had effectively no
control: the deviation of a state’s sunlight from its normal level.

Ideally, an econometric study would run a two-stage instrumen-
tal variable analysis, where the first stage used sunlight to predict
vitaminD levelsand thesecondstage usedpredictedvitamin D levels
to predict influenza. Unfortunately, we lack any large scale, geo-
tagged data on vitamin D levels. In its stead, our analysis employs a
“reduced form” estimate of sunlight’s impact on influenza. Given
that sunlight levels in a geographic area for a particular week vary
randomly over the years, this provides us with a robust estimate.

Vitamin D is fat-soluble (unlike vitamin C, for example, which is
water-soluble) and, therefore, has a half-life of between two weeks
and two months (Mawer et al., 1971; and Jones 2008). Thus, we are
most interested in, and therefore calculate, the average sunlight
received over the week of the influenza report and seven weeks
prior (eight weeks in total). This choice of windows is conservative,
for two reasons: if the half-life is long, it includes the right
window; if the half-life is short, it includes extra information,
which would bias our results toward zero.7

Our dependent variable is a weighted average (by county
population). Such weighting is important, because the more
populous areas have a greater impact on the flu index, which is a
function of the count of outpatient visits.

We estimate the impact of the percent of deviation of sunlight
(i.e., the change in log points), from its mean, on deviations of the
flu index, again computed from its mean. This follows the
specification in Wernerfelt, Slusky, and Zeckhauser (2017).

Fluswy ¼ a þ gln sunlightswy
� �þWeatherswy þ stateweeksw

þ fluyearyþeswy

Fluswy is the flu index for state s in week w in flu year y. By flu
year, we mean the twelve months from July 1 of one year to June 30
of the next year, denoted by the first of the two years (e.g., flu year
2009 is July 2009 to June 2010). Given that influenza troughs in the
summer, this prevents an artificial break between December and
January in the middle of a flu season. sunlightswy refers to the
average sunlight for week w and the prior seven weeks (as
described above) for state s in year y.8 We use the epidemiological
definition of a week (always Sunday-Saturday), which is the CDC
standard.9 g is our coefficient of interest.

There is a chance that our results could be picking up some other
kind of weather variation. Hence, we include a vector of weather
controls in Weather. These controls include continuous variables
for average temperature, giventhat it is known tohavehealth effects
(Deschenes 2013; Barreca et al., 2018; Barreca et al. 2016; and
Huetal et al., 2020). Also, following Barreca et al. (2018) and
Wernerfelt et al. (2017), we control for a discrete variable for the
number of days per week that a state experiences extreme cold
(daily low temperature below 15 �F). Such a measure is merited,

because the influenza virus can survive better at lower temper-
atures (Polozovet al. 2008). Absolute humiditycan also playa role in
influenza mortality. Prior work identifies a negative nonlinear
relationship between humidity and influenza, where levels below 6
g of water vapor per kg of air had a substantial impact (per Barreca,
2012; Barreca and Shimshack 2012).10 As with temperature, we
include a continuous variable for the average specific humidity, and
a discrete variable for the number of days it was below 6 g / kg.
Finally, we include a continuous average precipitation variable, as it
is possible that a lack of sunlight is acting through this channel.

Our preferred specification also includes interaction terms
(stateweek) for state-week fixed effects (for example, week 40 in
Kansas), and flu year fixed effects (for example, July 2009-June
2010).11 Robust standard errors are clustered at the state level.12

Flu year fixed effects are also particularly appropriate given that
the specific strains of influenza differ from year to year and vary
significantly in their intensities (hence visits to the hospital if
infected) and degrees of contagion. This specification follows our
prior work examining the link between sunlight and vitamin D in
relation to asthma (Wernerfelt et al., 2017).

To evaluate and bolster the robustness of our results, we
conducted a second analysis at the county level in New York State.
That analysis followed the methodology of Alexander and Currie
(2017) for constructing a local measure of influenza intensity. The
method of the county analysis can be briefly described as follows:

1 Identify all emergency department discharges and all inpatient
discharges with an emergency department indicator (since
those admitted from the ED drop out of the ED file).

2 Keep those emergency discharges with an influenza diagnosis
(CCS13 code of 123) and inpatient discharges with an influenza
diagnosis that was present on arrival.

3 Use the admitted date to assign an epidemiological week.

We use these counts of influenza discharges to construct a
county-level measure, again following Alexander and Currie
(2017). Briefly, the steps are as follows:

1 For each hospital, merge in bed data (New York State
Department of Health 2016)14 and divide the number of
admissions in that week by the number of beds to get the
per-bed admissions rate.

2 For each county centroid (Census 2010), calculate the great circle
distance to the geocoded coordinates of each hospital’s address.

3 For each hospital within 100 miles, divide the per-bed influenza
rate by the distance between the county and the hospital and
then sum to get the county level influenza flu index

7 Appendix Table C10 re-estimates our main results for past windows of two to
seven weeks and finds all are statistically significant and directionally consistent,

10 Specific humidity is not directly provided in the NSRDB data, so we calculated it
using the available information on dew point and atmospheric pressure and the
Tetens equation. See http://snowball.millersville.edu/�adecaria/ESCI241/esci241_-
lesson06_humidity.pdf for the necessary formulas.
11 Previous literature on the relationship between sunlight and flu (including
Charland et al. 2009; Grant and Giovannucci 2009; and Soebitantyo et al. 2015) does
not make use of fixed effects models. Given the substantial variation in latitude,
weather sunlight and flu severity across states, fixed effects are crucial to ensure
that estimates measure the impact of relative sunlight variation on relative flu
variation, as opposed to merely identifying simple correlations.
12 We also estimate our main state-level and county-level results adjusting for
spatial correlation, using the "acreg" function available at https://acregstata.weebly.
with the magnitude increasing with the length of the window.
8 Wernerfelt, Slusky, and Zeckhauser (2017) use data from the American Time Use

Survey to show that relative increases in sunlight increase relative time spent
outdoors. We rely on their validation of this measure of sunlight and do not repeat
their analysis. Based on it, we are confident that relative sunlight increases do in fact
reach Americans.

9 https://wwwn.cdc.gov/nndss/document/MMWR_Week_overview.pdf, using
the Stata command “epiweek”

com/ (Colella et a. 2019). Using a conservative distance cutoff of 10,000 km (so that
any state in the contiguous United States and certainly any county in New York State
could be spatially correlated with another), we find results that are still statistically
significant nationally (p-value < 0.001) and for New York (p-value = 0.018).
13 https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
14 The current number of beds is available on the New York State Department of
Health’s website. Historical information through the second quarter of 2014 was
obtained in response to an email request.
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We then merged this county-level influenza measure with the
ounty-level sunlight and weather data from NSRDB. New York has 62
ounties, hence slightly more than the 28 units in the main analysis.

. Results

As mentioned above, our time period overlaps the H1N1
pidemic of 2009. This is crucial, because of both the timing and
everity of that season (CDC 2017b), as shown in Fig. 1. Warmer
olors represent earlier years, and cooler colors later years. Here a
ear refers to a July-June flu year denoted, as described above, by
he first calendar year involved, i.e., the one starting in July.

Here, we see that the 2009 flu year was extremely atypical. It was
y far both the most severe and occurred much earlier in the year
weeks 33 to 48, corresponding to August to November) than any
ther. Its level of greatest severity occurred during a time of the year
ith more sunlight overall as well as much more sunlight variation
round long-term average levels). No other flu year approached its
xtreme outlier status on any of these measures.15,16

Table 1 shows summary statistics for the flu index and
population-weighted average sunlight levels, as well as for other
weather variables (used as additional controls.)

We see that the flu index varies between 1 and 10, with an
average level of 2. Sunlight also varies widely, specifically by
latitude, weather, and season. Temperature and humidity also vary
extensively.

Table 2 shows our initial regression results that estimate the
impact of sunlight on the influenza index. The regressions use the
state-week and year fixed effect strategy described above.

Column (1) of Table 2 shows that a 10% increase in the average
sunlight over the past two months reduces the 10-point flu index
by 0.1403.

However, Table 2 includes months that have minimal influenza
activity, and also months that have low levels of sunlight. Including
these months dramatically reduces the magnitude of the
coefficients, and diminishes measured seasonality in the results.

Table 3 re-estimates our model for each month of flu data after
including the impact of that month and the prior month’s sunlight.
State-week and flu-year fixed effects are still included.17

It shows that September influenza (that is, August and
September sunlight), and to a lesser extent October influenza
(that is, September and October sunlight) are driving our results.
These months meet the dual requirements (as shown in
Appendix Figure B3) of non-trivial level of influenza activity and
still-substantial levels of sunlight. For these two months, shown in
Column (13), a 10% increase in relative sunlight levels leads to a 1.1-
point decline in the influenza index.

Table 3 shows that the statistically significant results are found
primarily in the late summer and early fall, and Fig. 1 shows that
the majority of flu cases in this time of year were in the H1N1

Fig. 1. Weekly National Influenza Intensity.

15 We also examine variation in population-weighted sunlight averages (in
ilojoules per square meter per day). Appendix Figure B1 shows the three-year
2009-2016) average. We see the expected pattern, which is that the United States is
unnier in the south and west. Appendix Figure B2 then shows the variation by state

 the average influenza index. Here we see a somewhat different pattern than in
ppendix Figure B1. Some sunny states have high flu levels (such as Texas and
alifornia), and some low flu levels (for instance, Arizona). Moreover, some less
unny states also have high flu levels (such as Illinois), and some have low flu levels
such as Maine and New Hampshire). Still, the correlation between the two is 0.53,
hich is statistically significant at the 1% level (p value = 0.0037). This simple

nalysis, though, pools seasons and years. Other state-specific factors may influence
fluenza levels, which makes controlling for state-specific fixed effects important.

16 Appendix Figure B3 addresses this issue. It plots the ranges of influenza and
unlight by month. The top half of that figure shows that there is flu activity in the
te summer, fall, and winter, but that activity is minimal in the spring and summer
except in outlier situations). The lower half shows the expected seasonal variation

 sunlight levels, with large amounts of sunlight in the spring and summer and
ubstantially less in the fall and winter.

4

epidemic of 2009. Those results might lead one to wonder whether
17 We assign weeks to a month based on the last day (Saturday) of the week. Given
variations in what day of the week a month starts on and the length of each month,
each month does have exactly the same sample size.
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our results are present in years other than 2009. Table 4 shows
several analyses for that year alone, and for all of the other years.

Columns (1)-(3) in Panel A show the results of regressing the flu
index for a state and month on the log sunlight for that month and
the prior month for only the 12 months in 2009. For any category of
months (all, August-October, or September-October) a negative
relationship exists between sunlight levels and flu, a relationship
that is strong both statistically and in magnitude.

In theory, this association could be endogenous: individuals
who chose to live in each of these states could have chosen it
understanding of how sunny it is on average each month.
Therefore, following the spirit of the main analysis above, we
instead calculate differences from the state-week mean value, as
log points for sunlight, and as points on the flu index for its

Finally, in Panel B, we re-estimate the main model in its normal
form (i.e., year and state-week fixed effects), but excluding the data
from 2009. We find, if anything, marginally statistically significant
positive results. This further supports our hypothesis that 2009
was a special flu year, with an early and intense season. That year is
responsible for any cross-year results.

We can also see this result in graphical form. Fig. 2 graphs the
deviations in the September and October influenza index and the
log level of August/September and September/October sunlight
from the mean for each state and month. The vertical axis
represents the residual after regressing the difference in the
state-week mean flu index on the difference in the state-week
mean weather controls.

The horizontal axis displays our independent variable, the log of

Table 1
Summary Statistics.

(1) (2) (3) (4) (5)
N Mean StDev Min Max

Flu index 12,068 2.049 2.289 1 10
Sunlight (W/m2) 12,068 183.1 71.61 46.49 358.3
Temperature (�F) 12,068 53.92 17.27 4.033 89.22
Specific humidity (g water vapor / kg air) 12,068 12.26 6.460 1.662 28.35
Days/week temp <15 �F 12,068 0.403 0.993 0 6.693
Days/week specific humidity < 6 g/kg 12,068 1.731 2.133 0 7
Precipitation (inches / day) 12,068 0.0819 0.0505 0.000006.43 0.365

Note: Unit of observation is a year-week for each of the 28 states that have complete flu and sunlight data.

Table 2
Main Results of Sunlight on Flu, All Months.

(1) (2) (3) (4)

Log sunlight for that month and the prior month �1.403** �2.324*** �1.310** �1.824**
(0.597) (0.738) (0.577) (0.779)

Observations 12,068 12,068 12,068 12,068
R-squared 0.066 0.069 0.069 0.074
Weather levels X X
Weather thresholds X X

Notes: 2008-2016. All regressions include state-week and flu year fixed effects. The panel consists of the 28 states that have complete flu and sunlight data. Weather level
controls include the log of temperature, specific humidity, and precipitation. Weather thresholds include extreme cold (daily low temperature below 15 �F) and low humidity
(below 6 g of water vapor per kg of air). Robust standard errors clustered at the state level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1

Table 3
Month by Montha.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Sep & Oct

Log sunlight for that month and the prior
month

1.390 0.514 2.548 1.461 1.656* �1.592 0.459 1.697 �7.315** �9.625*** �0.376 1.909 �10.56***
(1.110) (1.978) (2.054) (1.594) (0.902) (2.021) (1.053) (1.012) (3.136) (2.012) (2.297) (1.679) (1.438)

N 1,036 896 980 952 1,008 952 980 1,008 924 1,148 1,092 1,092 2,072
R-squared 0.648 0.344 0.239 0.203 0.092 0.065 0.075 0.084 0.472 0.781 0.546 0.447 0.663

Notes: 2008-2016. All regressions include state-week and flu year fixed effects and all weather controls. The panel consists of the 28 states that have complete flu and sunlight
data. Robust standard errors clustered at the state level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

a Because the flu data begins in October 2008, the regressions for October, November, and December have an additional year of observations for each of the 28 states
included in the primary analytic sample.
incidence. This then measures not the level of sunlight but the
difference in sunlight when compared to an average year. That
independent variable should be exogenous. Analysis with these
exogenous variables yields much larger magnitudes. The results
differ little with and without August flu. Going forward, we
therefore focus on September and October flu.
5

sunlight by date and month. The vertical axis plots our dependent
variable, flu index by state and month, in the difference variables in
log-points calculated for Table 4 above Thus, if sunlight is
protective, then the greater its level for a state and a month, the
lesser will be the flu index for that state and month. As can be seen
by the vertical placement of observations in Fig. 2, consistent with
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ig. 1 above, the 2009 flu season was substantially more severe than
ny other season in our sample. In addition, there was substantially
ss sunlight that year than in the average year, and much more

Hence, in 2009 a clear and substantial negative relationship emerges
between relative differences in sunlight and relative differences in flu
level. We now turn to examine, and hopefully replicate, our results at

able 4
he Role of 2009.

Panel A: Only 2009

(1) (2) (3) (4) (5) (6)
Outcome Variable Flu Index Difference in Flu Index from the State-

Week Mean

Log sunlight for that month and the prior month �5.256*** �21.43*** �20.41***
(0.694) (2.035) (2.560)

Difference in log sunlight for that month and the prior month from the state-month mean �11.78*** �22.66*** �39.64***
(3.459) (5.461) (5.495)

N 1,456 392 252 1,456 392 252
R-squared 0.240 0.508 0.405 0.097 0.273 0.445
Months All Aug-Oct Sep-Oct All Aug-Oct Sep-Oct

Panel B: Years Other Than 2009

(1) (2) (3)
Outcome variable Flu Index

Log sunlight for that month and the prior month 2.113** 0.0814 0.0836
(0.811) (0.517) (0.777)

Observations 10,612 2,688 1,820
R-squared 0.093 0.017 0.022
Months All Aug-Oct Sep-Oct

otes: All regressions include weather controls. The panel consists of the 28 states that have complete flu and sunlight data. Robust standard errors clustered at the state level
 parentheses. Only flu year 2009. *** p < 0.01, ** p < 0.05, * p < 0.1
otes: All regressions include state-week and flu year fixed effects and all weather controls. Flu years 2008 & 2010-2016. The panel consists of the 28 states that have complete
u and sunlight data. Robust standard errors clustered at the state level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1

ig. 2. State-Week Deviations for Flu and Sunlight, September and October.
otes: Red Circles = 2009; Orange Diamonds = 2010, Yellow Triangles = 2011, Green Squares = 2012, Blue Pluses = 2013, Purple X’s = 2014, Brown Small Circles = 2015, Black
mall Diamonds = 2016. Line is linear best fit for 2009. The vertical axis indicates the residual after regressing the difference in the state-week mean flu index on the difference

 the state-week mean weather controls.
ariability in those deviations.18 These deviations facilitate estimation.
18 Appendix Figure B4 stratifies each of the two panels in Appendix Figure B3 into
009 and the other years, and also shows that the fall of 2009 had comparatively
ore flu and less sunlight.

6

the sub-state level. To replicate, we first need to show that our results
are consistent for at least some subsets of states.19 Table 5 shows our
19 As we’ll show below, our results are robust to omitting each state one at a time,
and so are not driven by any individual state.
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resultsstratifyingbyquartilesof overallaveragesunlight levels.20Here
weinclude all states (even thosewith missing weeksof influenzadata)
and all months, both to maximize statistical power and because the
state we will eventually look within (New York) has only nearly
complete CDC data. (It is missing one week of data out of 451 weeks.)

Apart from the sunniest quartile of states, our results are
broadly consistent across quartiles. We can therefore proceed to
analyze within New York (which falls in the second quartile).21,22

In Table 6, we that see across a variety of flu measures and
sample months the results are highly consistent with those at the
national level, as shown above. Appendix Table B3 stratifies the
results in Table 6 by race and by age, as the New York State county-
based measure data comes from individual-level discharge data.
That data contains both these variables. The hypothesis here is that
sunlight would be more protective to the non-elderly population
(under age 65) who are more likely to go outside, and to white
individuals given that they convert sunlight to Vitamin D faster.
While all of the results are statistically significant at the 1% level,

the results are much larger in magnitude for white and non-elderly
individuals.23

We now stratify the New York results by years, as above. Table 7
is analogous to Table 4, first looking at only 2009, and then at the
rest of the years excluding 2009. This separation tells if our results
appear in only 2009, given that it is the source of our late summer/
early fall flu variation, or in other years as well.

Panel A shows consistent results, both in the cross section and
using differences from county-month averages across all years. The
panel B, in Column (1), finds no statistically significant result,
analogous to Table 4 above. In Columns (2) and (3), despite
excluding 2009, identifies the statistically significant result that
relatively greater levels of fall sunlight led to relatively lower
influenza intensity. The coefficients, however, are a tiny fraction of
what they were for 2009.24

We now consider Fig. 3, analogous to Fig. 2. It compares the
differences in sunlight and flu within counties across years. Again,
the vertical axis represents the residual after regressing the
difference in the state-week mean flu index on the difference in the
state-week mean weather controls.

Here we see a similar relationship to the one above, where the
variation is driven by 2009 (consistent with Figs. 1 and 2 above).
The relationship, as expected, slopes downward (more sunlight
implies less flu). The results are robust to dropping the two outliers
at the top left of the graph (with a difference greater than 3) —see
Table 6, Columns (3) and (6).

5. Robustness Checks

The tables in Appendix C conduct additional robustness checks.
Appendix Table C1 repeats the Table 2 analyses, but includes an
unbalanced panel of all contiguous states, Hawaii, and D.C. (i.e.,
even those with missing influenza data in some weeks). That table
shows a comparable result. It also employs both linear and
quadratic specifications. All three specifications find strongly
statistically significant results, though obviously at different
coefficient magnitudes.

Table 5
Results Stratified by Average Sunniness of State.

(1) (2) (3) (4)
Quartile of Sunniness 1st

(least sunny)
2nd 3rd 4th

(sunniest)

Log sunlight for that month and the prior month �2.514*** �2.463** �2.522** �0.833
(0.652) (0.971) (1.123) (1.357)

Observations 5,083 5,095 5,100 5,592
R-squared 0.075 0.074 0.093 0.091
Number of state-weeks 663 636 636 689
States 13 12 12 13

Notes: 2008-2016. All months. All regressions include state-week and flu year fixed effects and weather controls. Robust standard errors clustered at the state level in
parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

20 1st Quartile: Connecticut, Delaware, District of Columbia, Maine, Michigan,
Minnesota, Montana, New Hampshire, North Dakota, Oregon, Vermont, Washing-
ton, and Wisconsin 2nd Quartile: Idaho, Illinois, Indiana, Iowa, Massachusetts, New
Jersey, New York, Ohio, Pennsylvania, Rhode Island, South Dakota, and West
Virginia, 3rd Quartile: Arkansas, Kansas, Kentucky, Maryland, Missouri, Nebraska,
North Carolina, South Carolina, Tennessee, Utah, Virginia, and Wyoming 4th

Quartile: Alabama, Arizona, California, Colorado, Florida, Georgia, Hawaii,
Louisiana, Mississippi, Nevada, New Mexico, Oklahoma, and Texas
21 To validate the county-level approach, following Alexander and Currie, (2017)
Appendix Figure B5 compares the weekly New York State flu index from the CDC
(2017a) with the total number of influenza admissions that week in New York.
While our discharge-based measure is less spikey than the CDC’s measure, the two
track each other remarkably well. This is all the more significant given that the CDC
measure is based on outpatient office visits and not emergency department visits.
22 We expand upon Table 5 in Appendix B. Appendix Table B1 investigates further
whether our fall (September and October) results are driven by overall sunniest, the
H1N1 epidemic in the fall of 2009, or sunshine variation specifically in the fall of
2009. We find consistent statistically significant results for the above median
sunniest states and the below median states. We find consistently insignificant
results for both groups of states when we exclude 2009. If we instead group states
by average deviations from the mean log sunlight level (the horizontal axis in Fig. 2),
the results are driven entirely by the states that had deviations with magnitudes
larger than the median. This suggests our results are driven both by H1N1 in 2009
and by larger sunlight deviations in those months. They are not driven by overall
sunniness or lack thereof. Appendix Table B2 considers the typical peak flu months
of October to March for the less sunny and more sunny states. While the point
estimates are comparable for the two groups, the effect is highly statistically

23 Appendix Table B5 repeats the monthly level specification of Table 3 for the
county-level New York data. While several coefficients are statistically significant,
after a Bonferroni correction for testing multiple hypothesis only the negative
significant (p = 0.003) for the less sunny states and not statistically significant (p =
0.136) for the more sunny states. Appendix Table B4 then expands on Table 3 by
stratifying the month-to-month analysis by the same low and high sunniness
categories of Appendix Table B2. While a few coefficients are statistically significant
at the 10% level, the only strongly significant coefficient is October for the low
sunniness states. However, when pooling September and October, both sets of
states have coefficients statistically significant at the 1% level, though the one for the
more sunny states is smaller in magnitude.

effects of sunlight on influenza for May and October remain statistically significant.
24 The disparity in statistically significant results when 2009 is excluded for the
county-level analysis but not the state-level analysis may be due to the difference
standard deviations of relative sunlight. Specifically, for each set of sunlight data, we
calculate the county- or state-week mean (excluding 2009) for log sunlight for the
past eight weeks, and then the difference between a particular week and the
respective mean. For the county-level data, the standard deviation is 0.066 whereas
it is only 0.049 for the state level data.

7
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Appendix Table C2 drops each of the 28 states in the primary
pecification, one at a time, to test whether the main result persists
f any one state is excluded. The answer is yes. Appendix Table C3
erforms the analysis for only sunlight from each day of the week
e.g., the average sunlight on Sundays in a given month). It finds
hat the sunlight for every day of the week has an impact.

Appendix Table C4 performs the analysis at a monthly level
ith state-month fixed effects. The primary variable calculated as
he average over the previous two months. The results are
onsistent with those found at the week level.
The next three tables all contain variants on our weather

ontrols. Appendix Table C5 adds weather controls one at a time
nd finds minimal effect on the primary finding. Appendix Table C6
ses more flexible dummy variables for ventiles (e.g., 20 bins that
t the 5, 10, 15, etc. percentiles of the variables data) of each
eather control, and finds comparable results. Finally,
ppendix Table C7 includes the level of precipitation instead of

outcome is consistent with this effectively being a more rigid form
for including flu year fixed effects.

Appendix Table C9 utilizes data on the flu vaccination rates
from the Behavioral Risk Factor Surveillance System (BRFSS) from
(CDC 2019). BRFSS asks individuals not only whether they’ve had a
flu vaccination in the past 12 months, but also what month they
had it in. Given that, as described above, we define a flu year as
from July-June, we can use these two variables to create a variable
for whether each respondent had a flu vaccination in that season.
This information can be aggregated up to a rate at the state-week
level. That rate appears in Column (1).

This measure is very noisy, so some adjustments are necessary.
First, we linearly interpolate when there is no respondent in a
particular state-week. These interpolated values appear in Column
(2). Then we can also compute a 7-week moving average to smooth
out some of the noise. Those averages are shown in Column (3).
Finally, sometimes the vaccination rate appears to go down. We thus

able 6
ew York State County-Level Analysis for Hospital-Based Influenza Measure.

(1) (2) (3) (4) (5) (6)
Per Bed Per Bed Per Bed Count Count Count

Log sunlight for that month and the prior month �0.268*** �0.997*** �0.774*** �59.72*** �85.74*** �76.77***
(0.0333) (0.245) (0.108) (12.31) (13.76) (10.46)

Dropping Outlier Counties X X
Observations 20,651 3,139 3,087 20,651 3,139 3,087
R-squared 0.066 0.241 0.368 0.038 0.370 0.381
Months All Sep-Oct Sep-Oct All Sep-Oct Sep-Oct

otes: 2008-2014. All regressions include county-week and flu-year fixed effects and weather controls.
hile there are no state-weeks with zero precipitation, there are a handful of county-weeks that have zero precipitation, making it impossible to take the log. We therefore
clude the level of precipitation instead. In Appendix Table C7, we show that for the state level results (where we can include either log or level of precipitation) it only makes

 minimal difference which we include (less than 2% in the magnitude of the coefficient). Therefore we do not think this accommodation here is consequential.
obust standard errors clustered at the county level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

able 7
he Role of 2009, New York Counties.

Panel A: Only 2009

(1) (2) (3) (4) (5) (6)
Outcome Variable Hospital-Based Flu Measure Difference in Flu Measure from the

County-Week Mean

Log sunlight for that month and the prior month �0.202*** �0.976*** �1.514***
(0.0290) (0.220) (0.288)

�0.560*** �2.306*** �2.795***
Difference in log sunlight for that month and the prior month from the state-month mean (0.0609) (0.567) (0.607)

N 3,220 867 558 3,220 867 558
R-squared 0.160 0.293 0.303 0.102 0.193 0.224
Months All Aug-Oct Sep-Oct All Aug-Oct Sep-Oct

Panel B: Years Other Than 2009

(1) (2) (3)
Outcome variable Hospital-Based Flu Measure

Log sunlight for that month and the prior month 0.0127 �0.0158*** �0.0211***
(0.0175) (0.00400) (0.00783)

Observations 17,431 3,901 2,581
R-squared 0.134 0.079 0.087
Months All Aug-Oct Sep-Oct

otes: Flu year 2009 only. Robust standard errors clustered at the county level in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
otes: Flu years 2008, 2010-2014. All regressions include county-week and flu-year fixed effects and weather controls. Robust standard errors clustered at the county level in
arentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
ts logarithm; it too finds comparable results.
Appendix Table C8 controls for the annual flu vaccine match

ate, using data from White (2019). Because this control is collinear
ith the flu year fixed effects, the results employ one or the other
ut not both. Including the flu vaccine match rate produces much
arger results in magnitude, but a much lower r squared. That
8

employ a ratchet for each season, so that come November of each flu
year it only goes up and we ignore any data suggesting it would go
back down (through May). The ratcheted values appear in Column
(4). Our results are robust to utilizing any of these measures.

Appendix Table C10 reconsiders our choice to use average
sunlight data over the previous eight weeks. It looks instead at all
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windows from two weeks to seven weeks. The results are all
statistically significant at the 1% level, and the magnitude of the
coefficient grows with each week beyond two that is added to the
window, which suggests a persisting effect of recent sunlight.

Appendix Table C11 interacts the weather controls with terciles
of the vaccine match rate. Our main results are unchanged. That
table also looks for a relationship between sunlight and flu in the
falls of years other than 2009 by tercile of the vaccine match rate; it
finds no statistically relationship in any tercile.

Appendix Table C12 includes the monthly local unemployment
rate (Bureau of Labor Statistics 2020) as an additional control in
both the state-level analysis (following Tables 2 and 3) and the
county-level analysis (following Table 6). The main results are all
robust to this inclusion. At the state level, we find no statistically
significant relationship between the unemployment rate and flu,
whereas at the county-level we find a positive relationship.25

Finally, in Appendix F, we conduct placebo tests using sunlight
data from other years to predict influenza rates for a particular
year. Our primary coefficient retains its statistical significance,
even when multiple other independent variables are included.
Moreover, adding these variables only nudges the R-square values
slightly upward.

6. Additional Analysis

In Appendix E, we also extend our analysis to mortality, both for
the modern period covered in the data in this paper, but also for the
1918 influenza pandemic given that there are a number of
similarities. They are the only two recorded H1N1 epidemics.
They are the two largest flu epidemics since 1900, though the 1918
epidemic was many times worse. The majority of mortality for the
earlier epidemic occurred between October 1918 and January 1919,

extensively in the economics literature as a driver of adverse
outcomes apart from health (Almond 2006; Brown and Thomas
2018; Beach et al., 2018; Fletcher 2018). It has received much less
attention in the economics literature as an adverse outcome itself
(Clay et al., 2018; Clay et al., 2019). None of these latter studies
considered sunlight. For both epidemics, we find small and
statistically insignificant coefficients for the effects of relative
sunlight on the share of deaths from influenza.

7. Discussion

7.1. Impact on welfare

How important are the impacts we identify on welfare? As
described above, each point on the influenza index represents one
standard deviation above the mean share of the non-flu week’s ratio of
outpatients presenting with symptoms of influenza to all outpatients
(CDC 2017a). (That data is also available on the actual outpatient
counts, though those counts are not broken down at the state level
(CDC 2017b.) In the 2005-2008 “pre-period,” this mean share is 1.03%,
and the standard deviation is 0.394 percentage points.26

Fig. 2 shows that the range of relative sunlight levels for
September and October within state-weeks across years. That
range is roughly plus or minus 0.05 log points, that is, 10
percentage points. Thus, our coefficient for log sunlight (-10.56)
shown in Table 3, Column (13), when multiplied by 0.1 corresponds
to a 1.056-point reduction in the influenza index, which can be
interpreted as approximately 1.056 standard deviations. Given that
one standard deviation is 0.394 percentage points in flu incidence,
-1.056 standard deviations represents 0.416 percentage points,
which represents a 40% reduction on the mean of 1.03%.

The average annual number of total outpatients in September

Fig. 3. County-Month Deviations for Flu and Sunlight, September and October.
Notes: Pink Small Squares = 2008, Red Circles = 2009; Orange Diamonds = 2010, Yellow Triangles = 2011, Green Squares = 2012, Blue Pluses = 2013, Purple X’s = 2014, Brown
Small Circles = 2015, Black Small Diamonds = 2016. Line is linear best fit for 2009. Y axis is the residual after regressing difference in state-week mean flu index on difference in
state-week mean weather controls.
a similar pattern to the 2009 epidemic, suggesting that weak
sunlight might have played a role. The 1918 case has been studied
25 This is counter to the results of Markowitz, Nesson, and Robinson (2019). They
find increases in the employment to population ratio lead to increased influenza
rates. We leave further analysis in this area to future researchers.

9

and October (weeks 35 to 43) in our study years (2009-2016) (from
CDC 2017b) is 6,342,726. A 0.416 percentage point reduction in flu
incidence would lead to 26,390 fewer outpatient cases.
26 See Appendix A for additional calculation details.
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.2. Herd Immunity

Giving 100 people in a town of perhaps 10,000 people a vitamin
 supplement will offer extremely few externalities of protection.
ut give that same town extra sunlight, and most members of the
ommunity will produce their own vitamin D. This mass effect will
onvey an externality of protection, namely herd protection
gainst influenza, a highly communicable disease.27 Posit that
upplements and sunlight-produced vitamin D are equally
owerful. That externality should make the protective effect of
unlight far greater for an individual than would a vitamin D
upplement.
To test this conjecture, we compared our results to those for

itamin D supplementation. The Martineau et al. (2017) meta-
nalysis of 25 randomized controlled trials of vitamin D
upplementation found an adjusted odds ratio of 0.88 for acute
espiratory tract infections. 42.2% of the control group experienced
t least one acute respiratory tract infection, compared to 40.3% of
he treatment group. Thus, there was an unadjusted difference of
.9 percentage points (4.5%). The externalities promoting herd
mmunity when sunlight is the protective factor may have
ontributed to this difference. An alternate explanation, of course,
s that part or all of the disparity arises because sunlight produces
ore vitamin D or more effective vitamin D than supplements.

.3. Possible alternative mechanisms

Given this disparity between our results and the results from
he Martineau et al. (2017) meta-analysis, it is plausible that
ultiple other mechanisms might be at work. From our prior work
e know that relative increases in sunlight increased relative time
pent outdoors (Wernerfelt et al., 2017). Enjoying the sunlight (and
herefore spending less time in confined indoor spaces exposed to
ick individuals), could reduce interpersonal transmission.
Sunlight can also directly protect against influenza via a

athway quite apart from the production of vitamin D. For
xample, ultraviolet light can decrease folate status and hamper
mmune function (Branda and Eaton 1978; Cohn 2002; Borradale
t al. 2014; Jones et al. 2018), and deactivate the virus directly
Sagripanti and Lytle, 2007). Data beyond that in this paper would
e required to assess the relative contributions of time spent in
lose proximity to others, folate status, immune function, virus
eactivation, and vitamin D production. However, we can be
onfident that the vitamin D path is consequential, as the
artineau et al. (2017) meta-analysis demonstrates.

. Conclusion

Sunlight, likely operating through the well-established channel
f producing vitamin D, has the potential to play a significant role
n reducing flu incidence. A recent meta-analysis of 25 randomized
ontrolled trials of vitamin D supplementation (Martineau et al.
017) demonstrated significant benefits of such supplements for
educing the likelihood that an individual will contract an acute
pper respiratory infection. The current study considers sunlight
s an alternate, natural path through which humans can and do
ecure vitamin D. This study’s findings complement and reinforce
he Martineau et al. findings.

Our major result is that incremental sunlight in the late summer
nd early fall has the potential to reduce the incidence of influenza.

below average at the national level, and the flu came early. Our
result is potentially relevant not just to the current COVID-19
pandemic, but also to a future outlier H1N1 pandemic. The threat is
there; some H1N1 viruses already exist in animals (Sun et al. 2020).
One must be cautious, though, with generalizations, given the
unique economic circumstances (e.g., a 25-year high unemploy-
ment rate) in the fall of 2009.

A remaining question is whether sunlight matters more broadly
for flu, or whether it is unique to H1N1. While we lack a
counterfactual of an early flu from a different strain, we do have
two pieces of evidence to suggest that the effect is broader than
just H1N1. First, as described throughout the paper, the Martineau
et al. study about the relationship between Vitamin D and upper
respiratory infections are not specific to H1N1. Second, with
granular, county level data, we do see strongly statistically
significant negative effects of fall sunlight on influenza for years
other than 2009 (see Columns (2) and (3) of Panel of Table 7).

Therefore, apart from its methodological contributions, this
study reinforces the long-held assertion that vitamin D protects
against acute upper respiratory infections. One can secure vitamin
D through supplements, or through a walk outdoors, particularly
on a day when the sun shines brightly. When most walk, herd
protection provides benefit to all.
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Appendix A. The CDC Flu Index Calculation
unlight had a dramatic effect in 2009, when sunlight was well
27 This herd immunity obviously would also benefit those who do not go outdoors,
s the more outdoorsy people with whom they come in contact would be less likely
o be infected and thereby contagious.

1

We use the weekly count of outpatient visits (both total and
only those due to influenza) from the CDC (2017b) along with the
documentation in the ILI data (CDC 2017c) to conduct calculations
regarding the influenza index. That index corresponds to the
number of standard deviations the share of outpatient visits that
report influenza symptoms that week exceeds all non-influenza
0
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weeks. A “non-influenza week” is defined as a week in which it and
its preceding week had fewer than 2% of all outpatient visits to
healthcare providers indicating influenza.

Our study period is 2008-2016. Hence, we use the October
2005-September 2008 period as a “pre-period” to calibrate our
index. We begin with the formal start of the season, which the CDC
defines as week 40 (the first week of October). Unfortunately,
whereas the ILI data (CDC 2017a) is available at the state level, the
outpatient visit count data is only available nationally. Therefore,
we conduct our calculations at that level.

Nationally, of the 156 weeks in October 2005-September 2008,
108 fit the above definition of “non-influenza.” The mean share for
those 108 weeks is 1.03%, and their standard deviation is 0.39
percentage points.

Given this, the method for calculating the influenza index is
now to take all weeks, calculate the z-score[s] (that is, number of
standard deviations above or below the mean), and then apply the
following index definition:

Flu index =

1 if Z < 0
int Zð Þ þ 2 if 0 < Z < 8
10 if Z > 8

So, in the interior range of the index, we can consider an
additional index point as representing an additional standard
deviation.

Appendix B. Additional Figures

Appendix Figure B1: Population-Weighted Geographic Sun-
light Variation

Notes: 3-year average (2009-2016) of daily county sunlight,
weighted by county population. “No data” and “***” refer to
incomplete influenza data for that state.

Appendix Figure B2: Geographic Flu Variation

Appendix Figure B3: Box Plots of Average Flu and Sunlight by
Month

Notes: Covers the 28 contiguous states that have full flu and
sunlight data. Outliers are shown in blue dots.

Appendix Figure B4: Box Plots of Average Flu and Sunlight by
Month

Panel A: Flu, flu-year 2009 (top) and 2010-2016 (bottom)

Panel B: Sunlight, flu-year 2009 (top) and 2010-2016 (bottom)
Notes: 3-year average (2009-2016) of weekly state-level flu
index. “No data” and “***” refer to incomplete influenza data for
that state.
11
Notes: Covers the 28 contiguous states that have full flu and
sunlight data. Outliers are shown in blue dots.
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Appendix Figure B5: Comparison of CDC and Discharge Flu
easures for New York State
Panel A: CDC Flu Index

Panel B: Hospital Emergency Room Visits for Flu

Appendix Table B1: Stratifying by Sun Level and by Deviation
f Fall 2009 Sunlight

(1) (2) (3) (4) (5) (6)
Sunniness Sunniness Fall 2009 Log

Sunlight Variation

Low High Low High Large Small
Years 2008-2016 2008, 2010-

2016
2008-2016

Log sunlight
for that
month and
the prior
month

�6.031*** �6.658*** 0.897 �0.131 �7.680*** �2.359
(2.145) (1.277) (0.912) (1.284) (1.864) (1.863)

Observations 1,716 1,821 1,500 1,596 1,709 1,820
R-squared 0.566 0.841 0.042 0.032 0.813 0.602
Average
Sunlight
(W/m2)

161.9 197.5 161.9 197.5

Average Sept/
Oct 2009
Deviation of
Log Sunlight
from Mean

�0.121 �0.0389

Notes: Septemberand Octoberonly. All regressions include state-
eek and flu year fixed effects and weather controls. All states are

ncluded, even those with missing weeks of flu data (hence the
ifferences in sample sizes). Robust standard errors clustered at the

Michigan, Minnesota, Montana, New Hampshire, New Jersey,
New York, North Dakota, Ohio, Oregon, Pennsylvania, Rhode
Island, South Dakota, Vermont, Washington, West Virginia and
Wisconsin.

High sunniness states: Alabama, Arizona, Arkansas, California,
Colorado, Florida, Georgia, Hawaii, Kansas, Kentucky, Louisiana, Mary-
land, Mississippi, Missouri, Nebraska, Nevada, New Mexico, North
Carolina, Oklahoma South Carolina, Tennessee, Texas, Utah, Virginia,
and Wyoming.

Large Fall 2009 Log Sunlight Deviation from Mean: Alabama,
Arkansas, Delaware, Georgia, Illinois, Indiana, Iowa, Kansas,
Kentucky, Louisiana, Maryland, Mississippi, Missouri, Nebraska,
New Jersey, New York, North Carolina, North Dakota, Ohio,
Oklahoma, Pennsylvania, Tennessee, Texas, West Virginia.

Small Fall 2009 Log Sunlight Deviation from Mean: Arizona,
California, Colorado, Connecticut, Florida, Hawaii, Idaho, Maine,
Massachusetts, Michigan, Minnesota, Montana, Nevada, New
Hampshire, New Mexico, Oregon, Rhode Island, South Carolina,
South Dakota, Utah, Vermont, Virginia, Washington, Wisconsin,
Wyoming.

Appendix Table B2:
Stratifying by Sun Level for Normal October-March Flu Season

(1) (2) (3)
All Low

Sunniness
High

Sunniness

Log sunlight for that month and the
prior month

�2.241*** �2.325*** �2.024
(0.682) (0.704) (1.311)

Observations 10,977 5,409 5,568
R-squared 0.133 0.124 0.156
Average Sunlight (W/m2) 180.1 161.9 197.5

Notes: 2008-2016. October-March only. All regressions include
state-week and flu year fixed effects and weather controls. All
states are included, even those with missing weeks of flu data
(hence the differences in sample sizes). Robust standard errors
clustered at the state level in parentheses. *** p<0.01, ** p<0.05, *
p<0.1

Low sunniness states: Connecticut, Delaware, District of
Columbia, Idaho, Illinois, Indiana, Iowa, Maine, Massachusetts,
Michigan, Minnesota, Montana, New Hampshire, New Jersey,
New York, North Dakota, Ohio, Oregon, Pennsylvania, Rhode
Island, South Dakota, Vermont, Washington, West Virginia and
Wisconsin.

High sunniness states: Alabama, Arizona, Arkansas, California,
Colorado, Florida, Georgia, Hawaii, Kansas, Kentucky, Louisiana,
Maryland, Mississippi, Missouri, Nebraska, Nevada, New Mexico,
North Carolina, Oklahoma South Carolina, Tennessee, Texas, Utah,
Virginia, and Wyoming.

Appendix Table B3: Stratifying New York Results by Race and
Age

(1) (2) (3) (4) (5)
All White Non-

White
Age<65 Age>=65

Log sunlight for
that month and
the prior month

�0.997*** �0.847*** �0.151*** �0.975*** �0.0227***
(0.245) (0.211) (0.0361) (0.238) (0.00653)

Observations 3,139 3,139 3,139 3,139 3,139
R-squared 0.241 0.232 0.258 0.240 0.140

Notes: 2008-2014. September and October only. Per-bed rate of
influenza discharges. All regressions include county-week and year
tate level in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Low sunniness states: Connecticut, Delaware, District of
olumbia, Idaho, Illinois, Indiana, Iowa, Maine, Massachusetts,
1

fixed effects and weather controls. Robust standard errors
clustered at the county level in parentheses. *** p<0.01, **
p<0.05, * p<0.1.
2
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Appendix Table B4: Month by Month
Panel A: Low Sunniness States

Panel B: High Sunniness States

Appendix Table B5: Month by Month for New York State County-Level Analysis for Hospital-Based Influenza Measure

Appendix C. Additional Robustness Checks
Appendix Table C1: Results Including States Missing Flu Data for Some Months

Appendix Table C2: Results Dropping One State at a Time

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Sep & Oct

Log sunlight for that month and
the prior month

�0.523 �3.370* 2.135 0.956 0.260 �4.199 �0.807 �0.368 �1.455 �13.86*** 1.541 2.518* �12.79***
(1.466) (1.694) (2.994) (1.882) (0.715) (3.748) (0.611) (0.500) (1.738) (2.657) (1.389) (1.314) (1.380)

N 518 448 490 476 504 476 490 504 462 574 546 546 1,036
R-squared 0.644 0.335 0.258 0.215 0.125 0.152 0.046 0.039 0.288 0.697 0.783 0.473 0.544

Notes: 2008-2016. All regressions include state-week and flu year fixed effects and all weather controls. The panel consists of the 14 less
sunny states that have complete flu and sunlight data (Illinois, Indiana, Maine, Massachusetts, Michigan, Minnesota, New Hampshire, New
Jersey, Ohio, Pennsylvania, Rhode Island, Vermont. West Virginia, and Wisconsin). Robust standard errors clustered at the state level in
parentheses. *** p<0.01, ** p<0.05, * p<0.1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Sep & Oct

Log sunlight for that month and the prior
month

3.785 4.085 4.268 1.555 5.956* 2.227 0.489 �3.375* �11.93* �5.722 0.390 3.807 �8.827***
(2.212) (2.758) (3.344) (3.216) (2.836) (1.365) (1.123) (1.864) (6.174) (3.452) (4.362) (3.775) (2.002)

N 518 448 490 476 504 476 490 504 462 574 546 546 1,036
R-squared 0.692 0.400 0.284 0.280 0.174 0.084 0.096 0.181 0.700 0.881 0.381 0.495 0.805

Notes: 2008-2016. All regressions include state-week and flu year fixed effects and all weather controls. The panel consists of the 14
more sunny states that have complete flu and sunlight data (Alabama, Arizona, California, Georgia, Hawaii, Kansas, Mississippi, Missouri,
Nebraska, Nevada, South Carolina, Tennessee, Texas, Wyoming). Robust standard errors clustered at the state level in parentheses. ***
p<0.01, ** p<0.05, * p<0.1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Sep & Oct

Log sunlight for that
month and the prior
month

0.0208 �0.0949* 0.0171 0.0486** �0.436*** �0.165* 0.0755* 0.0134 �0.0407** �1.626*** �0.511** 0.0352 �0.997***
(0.0770) (0.0496) (0.0367) (0.0234) (0.123) (0.0960) (0.0434) (0.0133) (0.0190) (0.419) (0.222) (0.0284) (0.245)

N 1,920 1,731 1,962 1,779 1,951 1,818 1,555 1,629 1,511 1,628 1,578 1,589 3,139
R-squared 0.511 0.422 0.339 0.304 0.126 0.320 0.234 0.209 0.363 0.287 0.547 0.559 0.241

Notes: 2008-2014. Per-bed rate of influenza discharges. All regressions include county-week and year fixed effects and weather
controls. Robust standard errors clustered at the county level in parentheses. *** p<0.01, ** p<0.05, * p<0.1

(1) (2) (3) (4) (5) (6)
States All All Non-Missing Non-Missing Non-Missing Non-Missing
Months All Sept & Oct All Sept & Oct

Log sunlight for that month and the prior month �2.203*** �6.663***
(0.520) (1.309)

Sunlight for that month and the prior month �0.0182*** �0.0419*** �0.0345** �0.249***
(0.00528) (0.00868) (0.0142) (0.0384)

(Sunlight for that month and the prior month)2 3.36e-05 0.000494***
(2.92e-05) (8.87e-05)

F stat 8.247 31.83
P value 0.00160 7.90e-08
Observations 20,870 3,537 12,068 2,072 12,068 2,072
R-squared 0.071 0.701 0.080 0.651 0.090 0.675

Notes: 2008-2016. All regressions include state-week and flu year fixed effects and weather controls. Robust standard errors clustered at
the state level in parentheses. *** p<0.01, ** p<0.05, * p<0.1

State dropped Log sunlight for that month
and the prior month

R-squared

Alabama �10.16*** 0.65
Arizona �10.87*** 0.66
California �11.28*** 0.66
Georgia �10.40*** 0.653
Hawaii �10.99*** 0.689
Illinois �10.43*** 0.656
Indiana �10.45*** 0.654

Kansas �10.65*** 0.654
Maine �9.903*** 0.68
Massachusetts �10.33*** 0.674
Michigan �10.50*** 0.672
Minnesota �10.48*** 0.668
Mississippi �10.82*** 0.655
Missouri �10.84*** 0.652

13



A

y
c
p

M

i
T
s
p

c
p

D.J.G. Slusky and R.J. Zeckhauser Economics and Human Biology 40 (2021) 100942
ppendix Table C3: Results By Days of the Week

Appendix Table C4: Monthly Level Results
(1) (2) (3) (4)

Months All Sept &
Oct

All Sept &
Oct

States All All Non-
Missing

Non-
Missing

Log sunlight for that month and
the prior month, one year
earlier

�2.573*** �9.278*** �2.145*** �13.76***
(0.520) (1.577) (0.774) (1.781)

Observations 4,760 760 2,744 448
R-squared 0.080 0.755 0.081 0.737

Notes: 2008-2016. All regressions include state-month and flu
ear fixed effects and weather controls. Robust standard errors
lustered at the state level in parentheses. *** p<0.01, ** p<0.05, *
<0.1

(Continued)

(1) (2) (3) (4) (5)

Controls (past two
months):

Log temperature X
Days per month
below 15�F

X

Log specific
humidity

X

Days per month
specific humidity
is below 6 g/kg

X

Log precipitation X
Observations 2,072 2,072 2,072 2,072 2,072
R-squared 0.645 0.651 0.654 0.653 0.648

Notes: 2008-2016. All regressions include state-week and flu
year fixed effects. September and October only. The panel consists
of the 28 states that have complete flu and sunlight data. Robust
standard errors clustered at the state level in parentheses. ***
p<0.01, ** p<0.05, * p<0.1

Appendix Table C6: Dummy Variables for Ventiles of
Weather Controls

(1) (2) (3) (4)

Log sunlight for that month and
the prior month

�1.824** �1.631** �10.56*** �9.156***
(0.779) (0.775) (1.438) (1.455)

Observations 12,068 12,068 2,072 2,072
R-squared 0.074 0.103 0.663 0.679
Weather Controls Standard Ventiles Standard Ventiles
Months All All Sep & Oct Sep & Oct

Notes: 2008-2016. All regressions include state-week and flu
year fixed effects. September and October only. The panel consists
of the 28 states that have complete flu and sunlight data. Ventiles
are specific to the subsample in the column. Robust standard errors
clustered at the state level in parentheses. *** p<0.01, ** p<0.05, *
p<0.1

Appendix Table C7: Levels of Precipitation Instead of
Logarithms

(1) (2) (3) (4)

Log sunlight for that month and
the prior month

�1.824** �1.829** �10.56*** �10.44***
(0.779) (0.770) (1.438) (1.470)

Observations 12,068 12,068 2,072 2,072
R-squared 0.074 0.073 0.663 0.663

(1) (2) (3) (4) (5) (6) (7)
Log sunlight
for that
month and
the prior
month, only
for:

Sunday �1.831*
(0.978)

Monday �3.401***
(0.624)

Tuesday �5.964***
(0.829)

Wednesday �1.327**
(0.562)

Thursday �3.233***
(0.564)

Friday �2.242***
(0.765)

Saturday �1.284**
(0.558)

Observations 2,064 2,072 2,069 2,070 2,067 2,070 2,072
R-squared 0.636 0.647 0.665 0.627 0.635 0.636 0.629

Notes: 2008-2016. September and October only. All regressions
nclude state-week and flu year fixed effects and weather controls.
he panel consists of the 28 states that have complete flu and
unlight data. Robust standard errors clustered at the state level in
arentheses. *** p<0.01, ** p<0.05, * p<0.1

(Continued)

State dropped Log sunlight for that month
and the prior month

R-squared

Nebraksa �10.32*** 0.66
Nevada �10.72*** 0.658
New Hampshire �10.21*** 0.678
New Jersey �10.78*** 0.672
Ohio �10.48*** 0.67
Pennsylvania �10.63*** 0.657
Rhode Island �10.55*** 0.671
South Carolina �10.62*** 0.654
Tenneesee �10.61*** 0.651
Texas �10.04*** 0.654
Vermont �10.99*** 0.678
West Virginia �10.63*** 0.664
Wisconsin �10.69*** 0.656
Wyoming �10.56*** 0.66

Notes: N=1998. 2008-2016. September and October only. All regressions include state-week and flu year fixed effects and weather
ontrols. The panel consists of the 28 states that have complete flu and sunlight data. Robust standard errors clustered at the state level in
arentheses. *** p<0.01, ** p<0.05, * p<0.1
Appendix Table C5: Results Controlling for Other Weather
easures

(1) (2) (3) (4) (5)

Log sunlight for
that month and
the prior month

�7.017*** �7.527*** �9.400*** �8.321*** �8.878***
(1.295) (1.145) (1.074) (1.053) (1.447)
14
Precipitation Control Log Linear Log Linear
Months All All Sep & Oct Sep & Oct
Notes: 2008-2016. All regressions include state-week and flu
year fixed effects and weather controls. The panel consists of the 28
states that have complete flu and sunlight data. Robust standard
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errors clustered at the state level in parentheses. *** p<0.01, **
p<0.05, * p<0.1

Appendix Table C8: Controlling for Flu Match Rate
(1) (2) (3) (4)

Log sunlight for that month and
the prior month

�1.824** �3.194*** �10.56*** �20.20***
(0.779) (0.719) (1.438) (2.723)

Observations 12,068 12,068 2,072 2,072
R-squared 0.074 0.025 0.663 0.437
Flu Year Controls X X
Match Rate Control X X
Months All All Sep & Oct Sep & Oct

Notes:2008-2016.Allregressionsincludestate-weekfixedeffects
and weather controls. The panel consists of the 28 states that have
complete flu and sunlight data. Robust standard errors clustered at
the state level in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Appendix Table C9: Controlling for Cumulative Flu Vaccina-
tion Rate

(1) (2) (3) (4)

Log sunlight for that month
and the prior month

�10.18*** �10.53*** �10.33*** �10.33***
(1.439) (1.436) (1.414) (1.414)

Observations 2,053 2,072 2,072 2,072
R-squared 0.652 0.663 0.664 0.664
Vaccination Control Raw Rate Raw +

Interpolated
Moving
Average

Season
Ratchet
Rate

Notes: 2008-2016. September and October only. All regressions
include state-week and flu year fixed effects and weather controls.
The panel consists of the 28 states that have complete flu and
sunlight data. Robust standard errors clustered at the state level in
parentheses. *** p<0.01, ** p<0.05, * p<0.1

Appendix Table C10: Results for Different Past Sunlight
Windows

(1) (2) (3) (4) (5) (6)

Log sunlight
for the
past:

Two weeks �2.988***
(0.611)

Three weeks �5.607***
(0.789)

Four weeks �7.372***
(0.832)

Five weeks �9.104***
(1.005)

Six weeks �10.18***
(1.118)

Seven weeks �10.69***
(1.283)

Observations 2,072 2,072 2,072 2,072 2,072 2,072
R-squared 0.651 0.674 0.682 0.684 0.680 0.671

Notes: 2008-2016. September and October only. All regressions
include state-week and flu year fixed effects and weather controls
for the same period as the sunlight variable (e.g., the past two
weeks). The regressions use the level of precipitation instead of the
log as a few of the two-week averages are zero. The panel consists
of the 28 states that have complete flu and sunlight data. Robust
standard errors clustered at the state level in parentheses. ***
p<0.01, ** p<0.05, * p<0.1

Appendix Table C11: Weather Controls Interacted with
Terciles of Vaccine Match Rate

(Continued)

(1) (2) (3) (4) (5)

Log sunlight for that month
and the prior month *
medium match rate

(0.843)

Log sunlight for that month
and the prior month *
high match rate

0.0323
(1.040)

Weather Controls
Interacted with Terciles
of Vaccine Match Rate

X X X

Observations 2,072 2,072 1,820 1,820 1,820
R-squared 0.663 0.669 0.022 0.032 0.036
Years 2008-

2016
2008-
2016

2008;
2010-
2016

2008;
2010-
2016

2008;
2010-
2016

Notes: 2008-2016. September and October only. All regressions
include state-week and flu year fixed effects and weather controls.
The panel consists of the 28 states that have complete flu and
sunlight data. Robust standard errors clustered at the state level in
parentheses. *** p<0.01, ** p<0.05, * p<0.1

Appendix Table C12: Controlling for the Local Unemploy-
ment Rate

(1) (2) (3) (4) (5)
State level County level

Log sunlight for
that month and
the prior month

�1.824** �10.71*** �0.277*** �0.990*** �0.768***
(0.778) (1.432) (0.0342) (0.243) (0.108)

Unemployment
Rate

0.000463 0.152 0.0153*** 0.0132** 0.0105**

(0.0282) (0.123) (0.00351) (0.00622) (0.00512)
Dropping Outlier
Counties

X

Observations 2,072 2,072 20,651 3,139 3,087
R-squared 0.663 0.669 0.073 0.242 0.369
Years 2008-

2016
2008-
2016

2008-
2014

2008-
2014

2008-
2014

Months All Sep & Oct All Sep & Oct Sep-Oct

Notes: All regressions include flu year fixed effects and weather
controls. Columns (1) and (2) employ the 28 states that have
complete flu and sunlight data, use the flu index as the outcome
variable, and include state-week fixed effects and show robust
standard errors clustered at the state level in parentheses. Columns
(3)-(5) use the per-bed rate of influenza discharges as the outcome
variable, include county-week and show robust standard errors
clustered at the county level in parentheses. *** p<0.01, ** p<0.05, *
p<0.1

Appendix D. Tract Level Analysis

The state-week level sunlight data used in this paper is
calculated as a population weighted average of the sunlight at the
coordinates of the centroid for each county in each state. This is
purely for tractability, as sunlight and weather data (excluding
precipitation, which is from another source) must be downloaded
for each year for individual set of coordinates, and one can only
download 2000 files per IP address per day. With over 3000
counties in the U.S. and several years of data (including the placebo
years used in the analysis below) it took over a month to just
download the main data for the paper.

One may be worried, though, that for large counties using the

(1) (2) (3) (4) (5)

Log sunlight for that month
and the prior month

�10.56*** �10.59*** 0.0836 0.133
(1.438) (1.493) (0.777) (0.802)

Log sunlight for that month
and the prior month * low
match rate

0.450
(0.732)

�0.245
15
county centroid misses intra-county variation in sunlight. There
are 74,000 census tracks in the U.S (Census 2000) and so it is
infeasible to download sunlight data for all of their centroids for all
years.

In lieu of that, this appendix instead downloads sunlight and
weather data for each census tract in the 100 largest counties by
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and area in the U.S. (not including Alaska), only for calendar year
009 (which is the year that is driving our results). These counties
ange from San Bernardino in California (20,000 square miles) to
ane County in Utah (4000 square miles), across 16 states (Arizona,
alifornia, Colorado, Hawaii, Idaho, Maine, Minnesota, Montana,
ebraska, Nevada, New Mexico, Oregon, Texas, Utah, Washington,
nd Wyoming). Together they have 7200 census tracts.
This data is then aggregated up to the county level using the

ame method as the county to state aggregation in the rest of the
aper: a population weighted average. Appendix Figure D1 shows a
catter plot of this average sunlight based on tract data vs. sunlight
he county centroid for this 100 counties.

Appendix Figure D1: County Sunlight Averaged from Tracts
s. County Centroid

Notes: 100 larges counties in U.S., which are in Arizona,
alifornia, Colorado, Hawaii, Idaho, Maine, Minnesota, Montana,
ebraska, Nevada, New Mexico, Oregon, Texas, Utah, Washington,
nd Wyoming. Red line is best linear fit. 2009 only.
While there are a small number of outliers, the vast majority of

oints in this graph lie near the best fit line.
Then this county level data is combined with the main data for

he rest of the counties in each state and aggregated up the state
evel. Appendix Figure D2 shows the state level averages, with our
ormal data on the x-axis and the new data incorporating tract
evel sunlight on the y-axis.

Appendix Figure D2: State Sunlight Averaged from Tracts vs.
veraged from Counties

Notes: Arizona, California, Colorado, Hawaii, Idaho, Maine,
Minnesota, Montana, Nebraska, Nevada, New Mexico, Oregon,
Texas, Utah, Washington, and Wyoming. 2009. Red line is line of
best fit.

This data is very close to the 45 degree line; the correlation is
0.9996

We then repeat the main results of our paper, using the sunlight
and weather data from the tract centroids for the 100 largest
counties. (Given that the precipitation data is from weather
stations, we use the same precipitation as the main analysis.)

Appendix Table D1: Main Results Using Census Tract Level
Sunlight for the Largest Counties

(1) (2) (3) (4)

Log sunlight for that month and
the prior month

�2.132*** �1.739** �6.297*** �10.14***
(0.509) (0.758) (1.399) (1.689)

Observations 20,870 12,068 3,537 2,072
R-squared 0.070 0.073 0.699 0.660
States All Non-

Missing
All Non-

Missing
Months All All Sep & Oct Sep & Oct

Notes: 2008-2016. September and October only. All regressions
include state-week and flu year fixed effects and weather controls.
The panel consists of the 28 states that have complete flu and
sunlight data. Robust standard errors clustered at the state level in
parentheses.

Here we see results that are almost identical to our main results.
Column (4) shows the coefficient (standard error) of our main
September/October result are -10.14*** (1.69), compared to
-10.56*** (1.44) from Table 3 above where the county centroid
data was used. So it makes our point estimate 4% smaller and our t-
stat remains overwhelmingly significant at 6.0 rather than 7.3.
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Appendix E. Mortality in 2009 and in the 1918 pandemic

Given the strong relationship between relative levels of
influenza cases and sunlight in 2009, one would think that
sunlight might also affect mortality rates per case. To study this
question, we conduct an analysis for mortality data for recent
years. We also repeat our analysis using historical mortality data
for the 1918 influenza pandemic.28

The methodology for the mortality analysis follows the format
above with a few necessary modifications. First, whereas we have
CDC influenza index data back to October of 2008, mortality data
specific to influenza and pneumonia are only available back to
October of 2009. We therefore re-estimate our main results using
1

the same period to show that they are consistent.
Second, working with the early 20th century data imposed a

number of limitations. The mortality data is at the annual level, and
not the month level. Given that 85% of the pandemic mortality
occurred between October 1918 and January 1919 (Almond 2006),
and based on our other results, we estimate the impact of either
6
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August-September or August-December sunlight from a given year
on the mortality for that year.

Finally, we have both sunlight and mortality data for very few
states before 1918. Thus, we average across all of the stations in a
given state and year, and only keeping states that have data for
1918. This provides a balanced panel of 29 states for the years 1918
to 1936.29

For mortality data, we use CDC data on both the absolute
number of individuals who die from influenza as well as
pneumonia in each state and week and the share they comprise
of total deaths. Both indicators are commonly reported by the
CDC,30 as some influenza deaths, are associated with secondary
complications of influenza, including pneumonia, and so are
recorded as such on the death certificate.31 Unlike the influenza
index described above, the CDC does not convert these numbers
into a 10-point index (CDC 2019).

Our mortality data for 1900-1936, by state, year, and cause of
death, comes from Cutler and Miller (2005) and Anderson, Charles,
and Rees (2018). Both sets of authors provided identical data. That
data only covers 10 states in 1900, but it gradually increases to 30
states in 1918 and 48 in 1936. Our sunlight data for 1891-1987 for
240 weather stations at the year and month level, is from Steurer
and Karl (2012).

Results: Mortality In the Modern Period
First, consider a figure analogous to Figure 1, but now for the

percentage of deaths from pneumonia or influenza.

Appendix Figure E1: Weekly % of National Deaths from
Influenza & Pneumonia

Panel A: From Pneumonia or Influenza
Notes: October 2009-2018. Whereas we have CDC influenza

index data back to October of 2008, mortality data specific to
influenza and pneumonia is only available back to October of 2009

Panel B:From Influenza

Notes: October 2009-2018. Whereas we have CDC influenza
index data back to October of 2008, we only have mortality data
back to October of 2009]

Similarly, in Panel B, we see that 2009 was also only an outlier in
timing and not in magnitude for deaths only from influenza.

We can also make a figure analogous to Figure 2 where we plot
the log difference in sunlight from the state-month mean for
sunlight and the percentage point difference in the share of deaths
from the state-month mean. Note that due to the mortality data
starting only in October of 2009, these graphs are only for mortality
data for the month of October for the years 2009-2016, and the
corresponding sunlight data in September-October of those
years.32

Appendix Figure E2: State-Week Deviations for Mortality
and Sunlight, October

Panel A: From Pneumonia or Influenza

Notes: Red Circles = 2009; Orange Diamonds = 2010, Yellow
28 th
We know of no data on cases of influenza for the early 20 century period, and
so unfortunately cannot also repeat our cases-level analysis.
29 California, Colorado, Connecticut, Illinois, Indiana, Kansas, Kentucky, Louisiana,
Massachusetts, Maryland, Maine, Michigan, Minnesota, Missouri, Montana, North
Carolina, New Jersey, New York, Ohio, Oregon, Pennsylvania, Rhode Island, South
Carolina, Tennessee, Utah, Virginia, Vermont, Washington, and Wisconsin.
30 E.g., see https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm
31 https://www.cdc.gov/flu/about/burden/faq.htm

17
Triangles = 2011, Green Squares = 2012, Blue Pluses = 2013, Purple
32 Appendix Figure B2 shows Fig. 2 for influenza cases for only the month of
October (and therefore September-October sunlight), and demonstrates that the
main relationship found in this paper is still present.
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’s = 2014, Brown Small Circles = 2015, Black Small Diamonds =
016. Line is linear best fit for 2009. Vertical axis is the residual
fter regressing difference in state-week mean flu index on
ifference in state-week mean weather controls.
Panel B: From Influenza

Notes: Red Circles = 2009; Orange Diamonds = 2010, Yellow
riangles = 2011, Green Squares = 2012, Blue Pluses = 2013, Purple
’s = 2014, Brown Small Circles = 2015, Black Small Diamonds =
016. Line is linear best fit for 2009. Vertical axis is the residual
fter regressing difference in state-week mean flu index on
ifference in state-week mean weather controls.
Unlike in Fig. 2, above, here we do not see a negative

elationship, and conceivably even a weak positive relationship
etween relative levels of sunlight and mortality.
Appendix Table E1 then repeats our above analysis for the

ortality data. Here we use October mortality data for 2009-2016,
nd September mortality data for 2010-2016.
Appendix Table E1: Results of Sunlight on Flu Mortality,

eptember and October
(1) (2) (3) (4) (5)

Cases (Flu
Index)

% of Deaths from Flu &
Pneumonia

% of Deaths from Flu

Log sunlight for
that month
and the prior
month

�6.589*** 0.316 �0.430 0.271 �0.180
(1.454) (1.002) (1.153) (0.197) (0.158)

Observations 1,848 2,860 1,820 2,860 1,820
R-squared 0.762 0.154 0.163 0.493 0.519
States Non-

Missing
cases data

(28)

All with
mortality

data

Non-
Missing
cases

data (28)

All with
mortality

data

Non-
Missing
cases

data (28)

Notes: All regressions include state-week and flu year fixed
ffects and weather controls. September (2010-2016) and October
nly (2009-2016). Robust standard errors clustered at the state
evel in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Column 1 shows our main result from Column 6 of
ppendix Table C5, estimated for the same months as the
ortality regressions. While we lose an order of magnitude when

true regardless of whether one only uses states with non-missing
data or all states, or either outcome measure.

To better understand this null result, we combine the two
panels of Appendix Figure E1 with Fig. 1 to calculate deaths per
case by week and year. The panel A shows deaths for pneumonia or
influenza, where Panel B shows only deaths from influenza. The
denominator is the same in both graphs, namely cases of influenza.

Appendix Figure E3: Deaths per Influenza Case
Panel A: Deaths from Pneumonia or Influenza

Panel B: Deaths from Influenza

These figures help us solve the puzzle of why sunlight and cases
are so closely related in the fall of 2009 but sunlight and mortality
are not. The answer is that mortality per case is in general much
lower in the fall than it is in the winter. The cases for 2009 were
overwhelmingly in the fall.

Historical Mortality, Starting with 1918
We now turn to the mortality analysis for the 1918 influenza
ropping September 2009, our result is still large and statistically
ignificant.
Columns 2-5 show small and statistically insignificant coef-

cients for the effects on the share of deaths from influenza. This is
1

pandemic. We first create figures analogous to Fig. 2 and
Appendix Figure E2, albeit at the month level. Given that there
are 19 years of data, we color all years other than 1918 the same for
clarity.
8
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Appendix Figure E4: State-Year Deviations for Mortality and
Sunlight, August-September Sunlight

Panel A: From Pneumonia or Influenza

Panel B: From Influenza

Notes: Red Circles = 1918; Black x’s: 1919-1936. Line is linear
best fit for 1918.

First, is it clear from both pictures that the 1918 flu represents a
large deviation from the average. In that year, the share of deaths
from influenza was 15-20 percentage points higher than subse-
quent years.

Appendix Table E2 shows analogous null regression results. This
is the case regardless of whether sunlight for only August-
September or for August-December is used.

Appendix Table E2: Results of Sunlight on Flu Mortality,1918-
1936

(1) (2) (3) (4)
% of deaths from

flu
% of deaths from flu

& pneumonia

Log sunlight for August and September 0.462 1.229
(0.654) (0.762)

Log sunlight for August-December �0.577 0.376
(0.757) (0.864)

Observations 551 551 551 551
R-squared 0.911 0.911 0.932 0.932

Notes: All regressions include state and year fixed effects.
Robust standard errors clustered at the state level in parentheses.
*** p<0.01, ** p<0.05, * p<0.1.

As shown above, we find no impact of relative sunlight on
mortality rates. This would suggest that the fewer cases we find
came from the most healthy individuals (who were unlikely to die
from influenza) and not from the least healthy (who were most
likely to die) or equally from the entire distribution.
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Appendix F. Placebo Tests Utilizing Data from Other Years

To provide an additional check on the robustness of our results,
we conduct placebo tests using sunlight data from other years to
predict influenza rates for a particular year. Appendix Table F1
parallels Table 3. It adds lagged sunlight and weather controls for
years before the treatment period and leads of sunlight and
weather controls for years after treatment period to provide those
tests. Our primary coefficient retains its statistical significance,
even when multiple other independent variables are included.
Moreover, adding these variables only provides a modest upward
nudge to the R-square values.
19
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Appendix Table F1: Retrospective Placebo Results for
eptember and October Flu

This placebo test does identify statistically significant coef-
cients on other years, most notably on one year forward. For this
est to be meaningful requires two previously unstated assump-
ions. First, the sunlight in a placebo year could not possibly
nfluence the flu in the studied year. Second, sunlight in a placebo
ear, when looking across states, could not be strongly correlated
ith sunlight in the studied year.
Unfortunately, the sunlight data fails the second assumption, as

here are multiple correlated years, the most extreme being the fall
f 2009 and 2010. The following figures show those correlations.
he figures show differences from the mean, as that is analogous to
u year fixed effect structure of the regressions. To avoid a
echanism correlation, the differences are relative to the 2003-
007 state-month mean.
First, Appendix Figure F1 shows a scatter plot of state level

ifference 2009 vs 2010, where September is in red and October
s in blue. There are 100 pairs of points, as we including
ashington, D.C. but excluding Alaska, consistent with our
ata.
Appendix Figure F1: State Differences in Sunlight in 2009 vs

010

Notes: Differences from state-month mean for 2003-2007. Red
dots are September and blue dots are October. Green line is linear
best fit for the pooled data set of both months,

Surprisingly, the deviations in sunlight in 2010 are strongly
negatively correlated with the deviations in 2009, the overwhelm-
ingly relevant year. The correlation between the differences from
the mean in the two years is -0.45, which is statistically significant
at the 1% level. That implies that employing one-year ahead as a
placebo year would be inappropriate.

Appendix Figure F2 then shows the September and October
average differences from the mean for each state and each year.

Appendix Figure F2:
Panel A: Sunlight in September & October 2009, Differences from

the mean

Panel B: Sunlight in September & October 2010, Differences from
the mean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Log sunlight for that month and the
prior month

Treatment year �16.48*** �17.89*** �17.38*** �14.71*** �13.91*** �14.84*** �16.49*** �14.76*** �11.38*** �12.86*** �15.35***
(2.063) (1.820) (1.895) (2.578) (2.633) (2.532) (2.311) (2.249) (2.192) (2.924) (2.379)

Year -1 �4.938*** �4.356** �1.856 �2.524 �1.120 �0.308 �4.082
(1.414) (1.776) (1.912) (2.490) (2.621) (3.506) (2.782)

Year -2 �1.902 0.0675 �1.186 0.598 1.243 �1.416
(2.234) (2.245) (2.839) (2.799) (3.245) (3.034)

Year -3 2.818 2.237 3.445 3.565 2.555
(2.315) (2.538) (2.780) (2.750) (2.666)

Year -4 1.532 2.999 �0.452 3.144
(2.946) (3.155) (2.734) (2.836)

Year -5 3.381 5.703** 3.317
(3.034) (2.529) (2.568)

Year +1 10.69*** 8.034*** 9.335*** 10.44***
(2.518) (2.671) (2.573) (2.597)

Year +2 �3.046 �1.396 �4.411 �8.064**
(3.980) (3.030) (3.428) (3.242)

Year +3 �0.455 �2.308 �5.814
(3.342) (3.651) (3.633)

Observations 1,120 1,120 1,120 1,120 1,120 1,120 1,120 1,120 1,120 1,120 1,120
R-squared 0.716 0.746 0.754 0.763 0.768 0.774 0.739 0.772 0.786 0.822 0.808

Notes: Flu years 2008-2012. All regressions include state-week and flu year fixed effects and weather controls. September and October
nly. Robust standard errors clustered at the state level in parentheses. The panel consists of the 28 states that have complete flu and
unlight data. *** p<0.01, ** p<0.05, * p<0.1
20
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Notes: Lighter colors mean more relative sunlight, darker colors
mean less relative sunlight. Scale is the same in both figures.

The figure shows the strong negative correlation between
relative sunlight in the fall of 2009 and the fall of 2010. Given that
the 2009 flu season was overwhelmingly responsible for our
results, the one-year ahead lead is not an appropriate placebo test
for our results.

In the final column of Appendix Table F1, we remove the one-
year-ahead independent variables, and include only the previous

five years and two and three years ahead. Here, our main
coefficient is still highly statistically significant, and has a
magnitude close to our main result. While we do see one other
placebo result that is statistically significant, it is only at the 5%
level and so unlike the main result would not survive an
adjustment for testing multiple hypotheses.

Finally, Appendix Table F2 repeats the analysis in
Appendix Table F1 for the New York State county-level data.

Appendix Table F2: Retrospective Placebo Results for September and October Flu for County-Level New York Data
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Log sunlight for that month and the prior month
Treatment year �0.984*** �0.886*** �0.781*** �0.694*** �0.482*** �0.448*** �0.771*** �0.835*** �0.644*** �0.324**

(0.244) (0.239) (0.199) (0.220) (0.160) (0.157) (0.225) (0.227) (0.145) (0.131)
Year -1 0.395*** 0.247*** 0.00642 0.123* 0.196** �0.0146

(0.100) (0.0660) (0.0738) (0.0659) (0.0813) (0.153)
Year -2 �0.261*** �0.367*** �0.135 �0.313** �0.332**

(0.0934) (0.134) (0.0951) (0.131) (0.136)
Year -3 �0.261* �0.00242 0.00781 0.122

(0.140) (0.0797) (0.0761) (0.0960)
Year -4 0.503*** 0.377*** 0.389***

(0.148) (0.124) (0.108)
Year -5 �0.325*** �0.385***

(0.0866) (0.0953)
Year +1 0.0160 0.0901 0.256* 0.0117

(0.0558) (0.0686) (0.139) (0.0823)
Year +2 �0.626*** �0.556*** �0.308***

(0.0993) (0.0714) (0.0857)
Year +3 �0.615*** �0.650***

(0.189) (0.204)
Observations 3,196 3,196 3,196 3,196 3,196 3,196 3,196 3,196 3,196 3,196
R-squared 0.239 0.254 0.283 0.297 0.341 0.350 0.264 0.282 0.303 0.383

Notes: Flu years 2008-2014. Per-bed rate of influenza discharges. All regressions include county-week and flu-year fixed effects and
weather controls (except precipitation which is missing data 2007). Robust standard errors clustered at the county level in parentheses. ***
p<0.01, ** p<0.05, * p<0.1

As in Appendix Table F1, we see numerous statistically significant coefficients throughout the table. Also as in Appendix Table F1, our
main result is still statistically significant even after adding so many other lead and lags.
21



R

A

A

A

A

B

B

B

B

B

B

B

B

B

B

B

C

C

C

C

C

C

C

C

C

C

C

D

D

F

G

H

D.J.G. Slusky and R.J. Zeckhauser Economics and Human Biology 40 (2021) 100942
eferences

dda, J., 2016. Economic Activity and The Spread of Viral Diseases: Evidence From
High Frequency Data. Quarterly Journal of Economics 131 (2), 891–941.

lexander, D., Currie, J., 2017. Are publicly insured children less likely to be admitted
to hospital than the privately insured (and does it matter)? Economics & Human
Biology 25, 33–51.

lmond, D., 2006. Is the 1918 Influenza Pandemic Over? Long-Term Effects of In
Utero Influenza Exposure in the Post-1940 U.S. Population. Journal of Political
Economy 114 (4), 672–712.

sfaw, A., Rosa, R., Pana-Cyan, R., 2017. Potential Economic Benefits of Paid Sick
Leave in Reducing Absenteeism Related to the Spread of Influenza-Like Illness.
Journal of Occupational Environmental Medicine 59 (9), 822–829.

armby, T., Larguem, M., 2009. Coughs and sneezes spread diseases: An empirical
study of absenteeism and infectious illness. Journal of Health Economics 28,
1012–1017.

arreca, A.I., 2012. Climate change, humidity, and mortality in the United States.
Journal of Environmental Economics and Management 63 (1), 19–34.

arreca, A.I., Clay, K., Deschenes, O., Greenstone, M., Shapiro, J.S., 2016. Adapting to
Climate Change: The Remarkable Decline in the US Temperature-Mortality
Relationship over the 20th Century. Journal of Political Economy 124 (1),105–159.

arreca, A.I., Deschenes, O., Guldi, M., 2018. Maybe Next Month? The Dynamic
Effects of Ambient Temperature on Fertility. Demography 55 (4), 1269–1293.

arreca, A.I., Shimshack, J.P., 2012. Absolute Humidity, Temperature, and Influenza
Mortality: 30 Years of County-Level Evidence from the United States. American
Journal of Epidemiology 176 (7), S114–S122.

each, J.P., Ferrie, Saavedra, M.H., 2018. Fetal Shock or Selection? The 1918 Influenza
Pandemic and Human Capital Development Brian. NBER Working Paper No.
24725. .

orradale, D., Isenring, E., Hacker, E., Kimlin, M.G., 2014. Exposure to solar ultraviolet
radiation is associated with a decreased folate status in women of childbearing
age. Journal of Photochemistry and Photobiology B: Biology 131 (5), 90–95.

randa, R.F., Eaton, J.W., 1978. Skin color and nutrient photolysis: an evolutionary
hypothesis. Science 201 (4356), 625–626.

rown, R., Thomas, D., 2018. On the Long Term Effects of the 1918 U.S. Influenza
Pandemic. Working paper available at https://clas.ucdenver.edu/ryan-brown/
working-papers (last accessed July 6, 2020). .

ruce, D., Ooi, J.H., Yu, S., Cantorna, M.T., 2010. Vitamin D and host resistance to
infection? Putting the cart in front of the horse. Experimental Biology and
Medicine 235 (8), 921–927.

ureau of Labor Statistics, 2020. Local Area Unemployment Statistics. . (last
accessed September 30, 2020) https://www.bls.gov/lau/.

DC, 2017a. Influenza-Like Illness (ILI) Activity Level Indicator Determined by Data
Reported to ILINet. . (last accessed July 6, 2020) https://gis.cdc.gov/grasp/
fluview/main.html.

DC, 2017b. National, Regional, and State Level Outpatient Illness and Viral
Surveillance. . (last accessed July 6, 2020) https://gis.cdc.gov/grasp/fluview/
fluportaldashboard.html.

DC, 2017c. Overview of Influenza Surveillance in the United States. . (last accessed
July 6, 2020) https://www.cdc.gov/flu/weekly/overview.htm.

DC, 2018. Transcript for CDC Update on Flu Activity. . (last accessed July 6, 2020)
https://www.cdc.gov/media/releases/2018/t0126-flu-update-activity.html.

DC, 2019. Behavioral Risk Factor Surveillance System. . (last accessed July 6, 2020)
https://www.cdc.gov/brfss/annual_data/annual_data.htm.

ensus, 2010. US Population Weighted Center. . (last accessed July 6, 2020) https://
www2.census.gov/geo/docs/reference/cenpop2010/county/
CenPop2010_Mean_CO.txt.

harland, K.M.L., Buckeridge, D.L., Sturtevant, J.L., Melton, F., Reis, By., Mandl, K.D.,
Brownstein, J.S., 2009. Effect of environmental factors on the spatio-temporal
patterns of influenza spread. Epidemiol. Infect 137, 1377–1387.

lay, K., Lewis, J., Severnini, E., 2018. Pollution, Infectious Disease, and Mortality:
Evidence from the 1918 Spanish Influenza Pandemic. Journal of Economic
History 78 (4), 1179–1209.

lay, K., Lewis, J., Severnini, E., 2019. What explains cross-city variation in mortality
during the 1918 influenza pandemic? Evidence from 438 U.S. cities. Economics
& Human Biology 35, 42–50.

ohn, B.A., 2002. Sunlight, skin color, and folic acid. Journal of the American
Academy of Dermatology 46 (2), 317–318.

onway, K.S., Trudeau, J., 2019. Sunshine, fertility and racial disparities. Economics &
Human Biology 32, 18–39.

eschenes, O., 2013. Temperature, human health, and adaptation: A review of the
empirical literature. Energy Economics 46 (C), 609–619.

uarte, F., Kadiyala, S., Masters, S.H., Powell, D., 2017. The Effect of the 2009
Influenza Pandemic on Absence from Work. Health Economics 26 (12), 1682–
1695.

letcher, J., 2018. New Evidence on the Impacts of Early Exposure to the 1918
Influenza Pandemic on Old-Age Mortality: A Research Note. Biodemography
and Social Biology 64 (2), 123–126.

Huetal, G., Miller, N.H., Molitor, D., 2020. Adaptation and the Mortality Effects of
Temperature Across U.S. Climate Regions. Forthcoming. Review of Economics
and Statistics .

Jones, G., 2008. Pharmacokinetics of vitamin D toxicity. Am J Clin Nutr 88 (2), 582S–
586S.

Jones, P., Lucock, M., Veysey, M., Beckett, E., 2018. The Vitamin D�Folate Hypothesis
as an Evolutionary Model for Skin Pigmentation: An Update and Integration of
Current Ideas. Nutrients 10 (5), 554.

Khare, D., Godbole, N.M., Pawar, S.D., Mohan, V., Pandey, G., Gupta, S., Kumar, D., Dhole,
T., Godbole, M.M., 2013. Calcitriol [1, 25[OH]2 D3] pre- and post-treatment
suppresses inflammatory response to influenza A (H1N1) infection in human lung
A549 epithelial cells. European Journal of Nutrition. 52 (4), 1405–1415.

Kwong, J.C., Schwartz, K.L., Campitelli, M.A., Chung, H., Crowcroft, N.S., Karnauchow,
T., Katz, K., Ko, D.T., McGeer, A.J., McNally, D., Richardson, D.C., Rosella, L.C.,
Simor, A., Smieja, M., Zahariadis, G., Gubbay, J.B., 2018. Acute Myocardial
Infarction after Laboratory-Confirmed Influenza Infection. New England Journal
of Medicine 378 (4), 345–353.

Lin, M.J., Liu, E.M., 2014. Does in utero exposure to Illness matter? The 1918
influenza epidemic in Taiwan as a natural experiment. Journal of Health
Economics 37, 152–163.

Martineau, A.R., Jolliffe, D.A., Hooper, R.L., Greenberg, L., Aloia, J.F., Bergman, P.,
Dubnov-Raz, G., Esposito, S., Ganmaa, D., Ginde, A.A., Goodall, E.C., Grant, C.C.,
Griffiths, C.J., Janssens, W., Laaksi, I., Manaseki-Holland, S., Mauger, D., Murdoch,
D.R., Neale, R., Rees, J.R., Simpson, S., Stelmach, I., Kumar, G.T., Urashima, M.,
Camargo, C.A., 2017. Vitamin D supplementation to prevent acute respiratory
tract infections: systematic review and meta-analysis of individual participant
data. BMJ 356, i6583.

Momplaisir, F., Frank, I., Meyer, W., Kim, D., Kappes, R., Tebas, P., 2012. Vitamin D
Levels, Natural H1N1 Infection and Response to H1N1 Vaccine among HIV-
Infected Individuals. Journal of AIDS & Clinical Research 3 (4), 152.

Maurer, J., 2009. Who has a clue to preventing the flu? Unravelling supply and
demand effects on the take-up of influenza vaccinations. Journal of Health
Economics 28, 704–717.

Mawer, E.B., Schaefer, K., Lumb, G.A., Stanbury, S.W., 1971. The metabolism of
isotopically labelled vitamin D3 in man: the influence of the state of vitamin D
nutrition. Clin Sci 40, 39–53.

NREL, 2018. National Solar Radiation Database. . (last accessed July 6, 2020) https://
nsrdb.nrel.gov/.

NOAA, 2017. Federal Climate Complex Global Surface Summary of Day Data. . (last
accessed July 6, 2020) ftp://ftp.ncdc.noaa.gov/pub/data/gsod/readme.txt.

New York State Department of Health, 2015. Statewide Planning and Research
Cooperative System (SPARCS). . (last accessed July 6, 2020) https://www.health.
ny.gov/statistics/sparcs/.

New York State Department of Health, 2016. NY State Health Profiles. . (last accessed
July 6, 2020) https://profiles.health.ny.gov/hospital/alpha.

Pichler, S., Ziebarth, N.R., 2016. The Pros and Cons of Sick Pay Schemes: Testing for
Contagious Presenteeism and Noncontagious Absenteeism Behavior. Journal of
Public Economics 156, 14–33.

Pichler, S., Wen, K., Ziebarth, N.R., 2020. Positive Health Externalities of Mandating
Paid Sick Leave. Available at https://www.researchgate.net/publication/
336832189_Positive_Health_Externalities_of_Mandating_Paid_Sick_Leave (last
accessed July 6, 2020). .

Polozov, I.V., Bezrukov, L., Gawrisch, K., Zimmerberg, J., 2008. Progressive ordering
with decreasing temperature of the phospholipids of influenza virus. Nature
Chemical Biology 4 (4), 248–255.

Sagripanti, J.L., Lytle, C.D., 2007. Inactivation of Influenza Virus by Solar Radiation.
Photochemistry and Photobiology 83, 1278–1282.

Schanzer, D.L., Schwartz, B., 2013. Impact of Seasonal and Pandemic Influenza on
Emergency Department Visits, 2003–2010, Ontario, Canada. Acad Emerg Med
20, 388–397.

Schwandt, H., 2017. The Lasting Legacy of Seasonal Influenza: In-utero Exposure and
Labor Market Outcomes. IZA Working Paper 10589.

Soebitantyo, R.P., Gross, D., Jorgensen, P., Buda, S., Bromberg, M., Kaufman, Z.,
Prosenc7, K., Socan, M., Alonso, T.V., Widdowson, M.A., Kiang, R.K., 2015.
Associations between Meteorological Parameters and Influenza Activity in
Berlin (Germany), Ljubljana (Slovenia), Castile and León (Spain) and Israeli
Districts. PLOSOne 10 (8) e0134701.

Sun, H., et al., 2020. Prevalent Eurasian avian-like H1N1 swine influenza virus with
2009 pandemic viral genes facilitating human infection. Forthcoming in. PNAS .

Trudeau, J., Conway, K.S., Menclova, A.K., 2016. Soaking Up the Sun: The Role of
Sunshine in the Production of Infant Health. American Journal of Health
Economics 2 (1), 1–40.

Urashima, M., Mezawa, H., Noya, M., Camargo Jr., C.A., 2014. Effects of vitamin D
supplements on influenza A illness during the 2009 H1N1 pandemic: a
randomized controlled trial. Food Funct. 5 (9), 2365–2370.

Viboud, C., Epstein, S.L., 2016. First flu is forever. Science 354 (6313), 706–707.
Wernerfelt, N., Slusky, D.J.G., Zeckhauser, R.J., 2017. Second Trimester Sunlight and

Asthma: Evidence from Two Independent Studies. American Journal of Health
W

Z

rant, W.B., Giovannucci, E., 2009. The possible roles of solar ultraviolet-B radiation
and vitamin D in reducing case-fatality rates from the 1918–1919 influenza
pandemic in the United States. Dermato-Endocrinology 1 (4), 215–219.

olick, M.F., 2007. Vitamin D deficiency. New England Journal of Medicine 357 (3),
266–281.
22
Economics 3 (2), 227–253.
hite, C., 2019. Measuring the Social and Externality Benefits of Influenza
Vaccination. Forthcoming in the. Journal of Human Resources .

hang, X., Wang, Y., Chen, X., Zhang, X., 2020. Prenatal Sunshine Exposure and Birth
Outcomes in China. Science of The Total Environment 713, 136472.

https://www.bls.gov/lau/
https://gis.cdc.gov/grasp/fluview/main.html
https://gis.cdc.gov/grasp/fluview/main.html
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://www.cdc.gov/flu/weekly/overview.htm
https://www.cdc.gov/media/releases/2018/t0126-flu-update-activity.html
https://www.cdc.gov/brfss/annual_data/annual_data.htm
https://www2.census.gov/geo/docs/reference/cenpop2010/county/CenPop2010_Mean_CO.txt
https://www2.census.gov/geo/docs/reference/cenpop2010/county/CenPop2010_Mean_CO.txt
https://www2.census.gov/geo/docs/reference/cenpop2010/county/CenPop2010_Mean_CO.txt
https://nsrdb.nrel.gov/
https://nsrdb.nrel.gov/
ftp://ftp.ncdc.noaa.gov/pub/data/gsod/readme.txt
https://www.health.ny.gov/statistics/sparcs/
https://www.health.ny.gov/statistics/sparcs/
https://profiles.health.ny.gov/hospital/alpha

	Sunlight and Protection Against Influenza
	1 Introduction
	2 Data
	3 Methodology
	4 Results
	5 Robustness Checks
	6 Additional Analysis
	7 Discussion
	7.1 Impact on welfare
	7.2 Herd Immunity
	7.3 Possible alternative mechanisms

	8 Conclusion
	Funding
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A The CDC Flu Index Calculation
	Appendix B Additional Figures
	Appendix C Additional Robustness Checks
	Appendix D Tract Level Analysis
	Appendix E Mortality in 2009 and in the 1918 pandemic
	Appendix F Placebo Tests Utilizing Data from Other Years
	References


