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Reputations often guide sequential decisions to trust and to reward trust. We consider
situations where each player is randomly matched with a partner in every period. One
player – the truster – decides whether to trust. If trusted, the other player – the temptee –
has a temptation to betray. The strength of temptation, private information to the temptee,
varies across encounters. Betrayals are recorded as publicly known black marks. First, we
identify equilibria when players only condition on the number of a temptee’s black marks.
Second, we show that conditioning on the number of interactions as well as on the number
of black marks does not prolong trust. Third, we examine stochastic variations where black
marks may be forgotten. Perhaps surprisingly, such variations do not improve outcomes.
Fourth, when players condition on more general summary statistics of a temptee’s past,
we study equilibria where trust is suspended temporarily.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In a typical business transaction, one or both parties have the potential to betray. A supplier can produce low-quality
goods; a debtor can default; an employee can steal; or a contractor can break the deal. Betrayals are often avoided because
temptations are modest or nonexistent. But even when temptations are significant, reputations can keep untrustworthy
behavior in line. Thus, betrayal is deterred, lest we lose future business with others, find ourselves without future credit
or facing higher interest rates from any lender, or have great difficulty finding a job. Many economic models focus on
repeat play, but often interactions between players are fleeting and knowledge of reputation comes from the broader world.
Personal interactions, as between friends, present the same situation, with temptations, betrayals, and reputations all playing
important roles.

Reputations are hardly sufficient statistics. They rarely tell us everything or almost everything about an individual’s past
performance and actions, because it may be costly or impossible to collect all the information that is potentially relevant.
A typical employee reference in these litigious days is likely to be: “Joe worked here for 12 years, and there are no recorded
blemishes on his record.” Information on credit scores is equivalently crude. Repaying a loan counts the same whether the
terms were easy or harsh. If a minimum grade-point average is necessary to keep one’s scholarship, the difficulty of one’s
courses is irrelevant.
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Even when a lot of information on an individual’s past is available, it may be difficult to convey, or for recipients
to process all available information when making decisions. As a result, people tend to rely on summary statistics and
easily accessible information. For instance, even though electronic marketplaces, such as eBay and the Amazon Marketplace,
provide various summary statistics about sellers, buyers tend to rely on the information that is most prominently shown
(Cabral and Hortacsu, 2010). These observations motivate us to study settings where the past influences current play only
through its effect on certain summary statistics.

We focus on two-player situations, where one player – the truster – decides whether to trust, and the other player – the
temptee – has the temptation to betray when trusted. (Temptee is a neologism, but one whose meaning is readily grasped.)
In our model – as in real life – the strength of the temptation to betray will vary from encounter to encounter; formally, we
assume that it is i.i.d. across time and temptees. The tempted players could be suppliers who might breach a contract that
turns out to be too costly, contractors who might do a shoddy job if it saves a lot of effort, employees who might miss
work often when other responsibilities are pressing, or spouses who might stray from marital vows given highly attractive
opportunities.

We consider a population that consists of equal numbers of trusters and temptees. In every period, each truster is
randomly matched with a temptee, learns the temptee’s reputation score, i.e., a summary statistic of her past play, and then
decides whether to trust her. We study equilibria where players condition current play on the temptee’s reputation score
rather than the entire history. A reputation mechanism specifies the rules for calculating a temptee’s reputation score from
the history of her past play. We allow for imperfect recording, as various studies have shown that monitoring is often
imperfect in practice (Bolton et al., 2009; Dellarocas and Wood, 2008; Chwelos and Dhar, 2008), and refer to a recorded
betrayal of a temptee as a black mark.

We start by studying the Basic Black Mark Mechanism, where a temptee’s reputation is simply a tally of the number of
black marks that she has received. In a broad range of settings, the reputation mechanism only keeps track of the number of
infractions. For example, the Better Business Bureau has information on the number of complaints a particular business has
received, but not the number of interactions or volume of business that might have led to complaints. On the other hand, in
some instances, an infraction carries weight in and of itself, and people do not think (or recognize) that the number of trials
matters. This is in the spirit of criminal justice systems, where the judge learns the number of convictions in a defendant’s
past before sentencing, or some systems of sexual morality which look at the number of partners someone has had. More
generally, the Basic Black Mark Mechanism approximates settings where people focus on the number of negatives – even
if more reputation information is provided. Such behavior is related to the Availability Heuristic (Tversky and Kahnenman,
1973), which leads individuals to judge the frequency of an event by how easily they can bring an instance to mind and, as
a result, leads individuals to give significant weight to extreme bad outcomes.

We study properties of the equilibria that arise from the interactions between trusters and temptees when the Basic
Black Mark Mechanism is in place. We show that in any pure equilibrium the greater the number of black marks, the
less likely a temptee is to betray. Equilibria have a cutoff structure: a temptee is trusted as long as her number of black
marks remains below some cutoff, but is never trusted once she reaches the cutoff. We consider the set of cutoffs that can
arise in equilibrium and study which one is preferred by each side of the market, and which is socially optimal. We also
present comparative static results identifying how the maximum number of black marks a temptee is allowed in equilibrium
depends on the monitoring technology, on the distribution of the temptation to betray, and on how much temptees discount
future payoffs.

We next study the Enhanced Black Mark Mechanism, where an individual’s reputation consists of both the number of
black marks that she has received and the total number of interactions that she has been involved in. Equilibria are again
characterized by cutoffs, but now trusters may use different cutoffs depending on the total number of interactions of a
temptee. Interestingly, we show that these cutoffs are upper bounded by the maximum cutoff that can arise under the Basic
Black Mark Mechanism. In other words, including the number of interactions in one’s reputation does not prolong trust in
the sense that a temptee is not allowed to have a larger number of black marks than with the Basic Black Mark Mechanism.
Moreover, we show that equilibrium behavior in the long run is identical to equilibrium behavior under the Basic Black
Mark Mechanism.

With both the Basic Black Mark Mechanism and the Enhanced Black Mark Mechanism, once a temptee reaches a certain
number of black marks she is never trusted again. In short, she gets permanently excluded. We then consider more general
deterministic ways to aggregate the temptee’s history into a reputation score and identify equilibria where trust can be
suspended only temporarily. In closing, we discuss stochastic variations of the Basic Black Mark Mechanism that reset a
temptee’s reputation to zero black marks with some probability.

In many reputation contexts, agents differ in types, which get revealed through their behavior through a process of
adverse selection. (For a survey of such models see Mailath and Samuelson, 2006). In our model, a temptee does not have
a fixed (across periods) hidden type. All agents are identical. Reputation is only used to incentivize good behavior (as in
Dellarocas, 2005). On the other hand, our assumption of i.i.d. temptations means that we have repeated adverse selection,
that is, adverse selection within each individual trial. This is similar to Athey and Bagwell (2001), Athey et al. (2004) and
Hopenhayn and Skrzypacz (2004) who study collusion in a repeated oligopolistic game and in repeated auctions respectively.

The literature on repeated games and reputation typically assumes that players have access to the complete history
of past play. Only a few recent papers consider settings where players’ access to information is limited. These latter pa-
pers typically assume “finite memory”, that is, players observe the last few periods of play of an individual instead of
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Fig. 1. Extensive form representation of one-period interaction between a truster and a temptee after the temptee learns her temptation to betray x. The
truster’s choices are circles and the temptee’s are squares, and the truster’s payoff is listed first.

her full history (Barlo et al., 2009; Cole and Kocherlakota, 2005; Mailath and Olszewski, 2011; Liu and Skrzypacz, 2011).
Doraszelski and Escobar (2012) consider a general framework where players condition on summary statistics of past play
and apply a recursive characterization for the set of equilibrium payoffs. Ekmekci (2011) devises a complex rating system
that entails information censoring and Liu (2011) considers a setting where players need to pay to observe past behavior
of an individual. Our work relates as well to the literature on social norms and random matching (e.g., Kandori, 1992;
Okuno-Fujiwara and Postlewaite, 1995), where an agent is matched with a different partner in every period and dishonest
behavior against one partner leads to sanctions by other partners in the future, and on social norms in settings with fixed
matchings (Bendor and Mookherjee, 1990).

In contrast to prior work, we consider more general summary statistics on which players condition. The Basic and
Enhanced Black Mark Mechanisms have not been studied before even though they realistically model interactions in a
number of settings. Moreover, in contrast to the existing literature on finite memory and restricted feedback, we allow the
strength of one’s temptation to betray to vary from encounter to encounter, as is common in real life.

The remainder of the paper is organized as follows. The problem is formulated in Section 2. The Basic Black Mark
Mechanism is studied in Section 3. In Section 4, we study the Enhanced Black Mark Mechanism, where the truster knows
both the number of black marks and the number of interactions of the temptee. Then, we consider more general ways
of aggregating information on past black marks in Section 5. Stochastic variations of the Basic Black Mark Mechanism are
discussed in Section 6. Section 7 concludes. All proofs are provided in Appendices A and B.

2. Model

Players are divided into two roles, trusters and temptees. For expository ease, in this analysis, those who must decide
whether to trust – trusters – are males, and those who are subject to temptation – temptees – are females.

We model a one-period interaction between a truster and a temptee with the temptation game, shown in Fig. 1. The
temptee first privately observes the strength of her temptation to betray for this period, x, which is drawn from distribution
F independently across periods and temptees. Then, the truster decides whether to choose “safe” or “trust.” If the truster
plays “safe”, the temptee has no role, and both players receive zero payoff. If the truster plays “trust”, then the temptee can
play “reward” or “betray.” If the temptee rewards, then both the truster and the temptee get a unit payoff. If the truster
chooses to betray, then the temptee will get a (1 + x) of payoff and the truster gets a payoff of −1. We note that the scaling
of the payoffs is arbitrary. The analysis remains qualitatively the same if the truster gets a payoff of −y when the temptee
betrays, rather than −1, though of course the parameter values at equilibria will shift. There is no implied interpersonal
comparison. For example, in dollar value a truster may gain far more than a temptee when each goes from 0 to 1.

We assume that the distribution F has a strictly positive median, which we denote by m. Then, there is a unique
subgame perfect equilibrium of the one-shot temptation game where (i) the truster plays “safe” and (ii) if she were trusted,
the temptee would betray whenever she had strictly positive temptation to do so. We also assume that F has a finite mean.

We now consider the repeated game. In each period, there are equal numbers of temptees and trusters, and each truster
is randomly matched with a temptee. When a truster is matched with a temptee he learns her reputation score, i.e.,
a summary statistic of her past play, and then decides whether to trust her. The strength of the temptation to betray is and
remains unknown to trusters and therefore never becomes part of a temptee’s reputation.

After each round, each temptee has a known probability of surviving to the next period, s ∈ (0,1). We leave aside
discounting, except as it arises through a temptee’s survival concerns. Then, the survival probability s represents how much
the temptee discounts future payoffs. In effect, as the survival probability increases, the temptee discounts future payoffs
less. After each round, if a temptee dies, she will be replaced by another temptee who enters with a blank reputation record.
If the reputation of a temptee ensures she will no longer be trusted, then she is not trusted until she dies (and is replaced by
a new temptee with blank reputation only after she dies). We further assume that all players are risk-neutral. The temptee’s
goal is to maximize her expected payoff until she dies or is no longer trusted. The truster’s goal is to maximize his expected
payoff each period. Note that the survival probability for trusters is nonmaterial.
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We refer to a recorded betrayal of a temptee as a black mark. We allow for imperfect recording; that is, a temptee may
receive a black mark after rewarding and/or may not receive a black mark after betraying. In particular, if a temptee betrays
in this period, she gets a black mark with probability 1 − r and does not get a black mark with probability r. If a temptee
rewards, then she does not receive a black mark with probability 1 − q, but does receive a black mark with probability q.
Perfect monitoring is a special case with r = q = 0. In order to rule out settings with uninteresting equilibria for the repeated
game, we assume that the imperfect monitoring probabilities are not too large, namely, r + q < 1.

We are interested in equilibria where a truster and a temptee that have been matched together in this period condition
current play on the temptee’s reputation score (i.e., the statistic on the temptee’s past history that is shown to the truster
when he encounters her) rather than the entire history. We thus restrict attention to Markov Perfect Equilibria (MPE) where
the state is the temptee’s reputation score. In other words, the past influences current play only through its effect on
reputation scores. Note, however, that in our setting payoffs are not state (i.e., reputation score) dependent. This is along
the lines of the state-strategy equilibrium framework of Doraszelski and Escobar (2012).

A reputation mechanism specifies the rules for calculating a temptee’s reputation score from the history of her past play.
Consider a specific temptee and let ρt represent her reputation score in period t . The reputation score could be a scalar
or a vector. Let τ t be the indicator variable of whether the temptee was trusted by the truster she was matched with in
period t , that is, τ t = 1 if she was trusted and τ t = 0 otherwise. Similarly, denote by βt the indicator variable of whether
the temptee received a black mark in period t; βt = 1 if yes, βt = 0 otherwise. A reputation mechanism is a function that
determines the temptee’s reputation score in period t + 1 from the tuple (ρt , τ t , βt).

Formally, if the reputation score takes values from some set P , then the reputation mechanism is a function h : P ×
{0,1} × {0,1} → P and the reputation score at time t + 1 is ρt+1 = h(ρt , τ t , βt). Note that even though the reputation
mechanism is a deterministic function, the reputation score at time t + 1 may not be deterministically determined by the
reputation score and the action profile at time t because βt records imperfectly whether the temptee betrayed at time t .

The first reputation mechanism we study is the Basic Black Mark Mechanism (BM), where ρt ∈ N and h(ρt , τ t , βt) =
ρt + βt . We then study the Enhanced Black Mark Mechanism (EM), where ρt ∈ N

2 and h(ρt , τ t , βt) = ρt + (βt , τ t).
A temptee’s reputation could also consist of her whole feedback history; however, we do not study this extreme reputation
mechanism in this paper.

The MPE that arise depend on which reputation mechanism is in place. We observe that there always exists a degenerate
MPE where trusters never trust and temptees never reward when the temptation to betray is positive, that is, in every
period players play the unique subgame perfect Nash equilibrium of the one-shot temptation game. Throughout the paper,
we focus on pure equilibria, because mixed equilibria provide no additional insights. Mixed-strategy equilibria are discussed
in Aperjis et al. (2013).

3. Basic Black Mark Mechanism

In this section, we consider the Basic Black Mark Mechanism (BM), where a temptee’s reputation is simply the number of
black marks she has received in the past. We denote the number of black marks by b. We start by characterizing the (pure)
MPE that arise under the BM.

3.1. Characterization of equilibria

A temptee’s strategy is to choose whether she rewards as a function of her reputation b and her temptation to betray x
in that period. A truster’s strategy consists of whether he trusts a temptee as a function of her reputation.

We denote the trusters’ strategy by the set {z∗
b,b ∈ N}, where z∗

b = 1 if trusters trust a temptee with b black marks and
z∗

b = 0 otherwise. Define b∗ ≡ min{b : z∗
b = 0}; as a result, trusters trust when b < b∗ and do not trust when b = b∗ . Since a

temptee with b∗ black marks is not trusted, a temptee will never have more than b∗ black marks;2 we thus refer to b∗ as
the cutoff. The cutoff b∗ summarizes the information from the trusters’ strategy that affects the temptees’ optimal strategy.3

We first consider the best response of a temptee to a cutoff b∗ . Let v(b) be the maximum expected infinite horizon
payoff to the temptee when her reputation score is b black marks. Since the cutoff is b∗ , the trusters will never trust the
temptee once her reputation becomes b∗ , and thus

v
(
b∗) = 0. (1)

For b ∈ {0,1, ...,b∗ − 1}, v(b) is given by the following dynamic program4

2 As a result, we essentially have “ostracism”; see Ali and Miller (2013) for communication incentives related to ostracism in a different setting than
ours.

3 Note, however, that the truster’s strategy {z∗
b ,b ∈N} could be such that z∗

b = 1 for b > b∗ , even though by definition z∗
b∗ = 0.

4 In our setting, it is easier to study directly the dynamic program that represents the temptee’s problem than it is to apply a generalization of the
methods of Abreu et al. (1990) or Doraszelski and Escobar (2012), partly because we do not assume that players can coordinate using a randomization
device.
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v(b) =
∫

max
{

1 + x + s
(
(1 − r) · v(b + 1) + r · v(b)

)
,1 + s

(
(1 − q) · v(b) + q · v(b + 1)

)}
dF (x)

In particular, given that her temptation to betray is x, the temptee chooses the action that maximizes her expected payoff.
Should she choose to betray, her expected payoff is 1+ x+ s((1− r) · v(b +1)+ r · v(b)), since she receives 1+ x now and her
reputation deteriorates to b + 1 black marks with probability 1 − r and remains the same (i.e., stays at b black marks) with
probability r. On the other hand, if the temptee chooses to reward, her expected payoff is 1 + s((1 − q) · v(b) + q · v(b + 1)),
since she receives 1 now and her reputation remains the same with probability 1 − q and deteriorates to b + 1 black marks
with probability q. Note that the continuation value is either v(b) or v(b + 1), since the temptee’s total number of black
marks either remains the same or increases by one.

Let

x∗
b ≡ s(1 − r − q) · (v(b) − v(b + 1)

)
. (2)

Straightforward calculations show that v(b) satisfies the following recursion:

(
1 − s(1 − q)

)
v(b) = sq · v(b + 1) + 1 +

∞∫
x∗

b

(
y − x∗

b

)
dF (y) (3)

It is optimal for the temptee to reward if her temptation to betray is x ≤ x∗
b and betray if x > x∗

b . The temptee is indifferent
between rewarding and betraying when x = x∗

b . For simplicity, we will assume that she chooses to reward if and only
if x ≤ x∗

b .5 This simplifies the presentation because now the set of thresholds {x∗
b,b = 0,1, ...,b∗} characterizes the best

response of the temptee. However, this assumption is not essential for our results. Since the temptee gets strictly positive
immediate payment whenever she is trusted, the value v(b) is strictly decreasing for b ≤ b∗ . Moreover, the assumption
r + q < 1 implies that x∗

b is strictly positive for b ∈ {0,1, ...,b∗ − 1}.
We next consider the strategy of trusters. Consider a truster who is matched with a temptee who has b black marks in

this period. Given x∗
b , his expected payoff is 2F (x∗

b) − 1 if he trusts; and 0 otherwise. We conclude that the truster trusts
(i.e., y∗

b = 1) if F (x∗
b) > 1/2; does not trust (i.e., y∗

b = 0) if F (x∗
b) < 1/2; and is indifferent between trusting and not trusting

if F (x∗
b) = 1/2.6 Note that the condition F (x∗

b) ≥ 1/2 is equivalent to x∗
b ≥ m, where m is the median of the distribution F .

It is important to emphasize here that because each truster is randomly matched with a temptee in every period, each
truster is essentially myopic in the sense that in every period his strategy only depends on the temptee that he is matched
with.

We conclude that {x∗
b,b ∈ N} and {z∗

b,b ∈ N} constitute an MPE under the BM if (i) there exists a function v : N → R

such that (1), (2) and (3) hold, and (ii) F (x∗
b) ≥ 1/2 for b < b∗; F (x∗

b∗ ) ≤ 1/2, where b∗ ≡ min{b : z∗
b = 0}.

3.2. Betrayal as a function of reputation

This section considers how reputations work when the BM is in place. We find that temptees are less likely to betray
when they have more black marks, and that (for a plausible class of distribution functions) the likelihood of betraying
decreases faster when the temptee’s reputation consists of a larger number of black marks. The following proposition states
this result formally.

Proposition 1. For every MPE under the BM, x∗
b is strictly increasing and convex in b for b ∈ {0, ...,b∗ − 1}.

The following corollary of Proposition 1 characterizes the probability of rewarding F (x∗
b) as a function of the number of

black marks.

Corollary 1. For every MPE under the BM:

(i) the probability of rewarding F (x∗
b) is increasing in b for b ∈ {0, ...,b∗ − 1};

(ii) if F is linear or convex, then F (x∗
b) is convex in b for b ∈ {0, ...,b∗ − 1}.

It may seem counterintuitive at first glance that those with worse reputations would behave better. However, since the
truster is using a cutoff strategy and the temptee survives after every period with probability s < 1, when the temptee has
more black marks she is more likely to use up all her black marks up to the cutoff before she dies. Thus, it is optimal for

5 In most cases, it is not essential to specify what the temptee does when her temptation to betray is exactly x∗
b , because this occurs with probability

zero. This is clearly true for a continuous distribution. On the other hand, when the distribution is discrete, then x∗
b is usually at a point of zero mass.

6 The number 1/2 arises because we are assuming that the truster’s payoff is equal to −1 when the temptee betrays. More generally, if the truster got a
payoff of −y (instead of −1) when the temptee betrayed, our subsequent analysis would go through with 1/2 replaced by y/(y + 1).
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her to be more thrifty with black marks, to betray with a smaller probability (that is, only for very large temptations), when
her reputation becomes worse. Equivalently, when the temptee is far from the cutoff, she can “afford” to spend black marks
more freely, to succumb to temptation to a greater extent.

This insight is relevant for the design of reputation mechanisms in electronic marketplaces. For instance, EachNet, a Chi-
nese auction site, implemented a warning system where a seller found guilty upon buyers’ complaints received a warning
and a seller with three warnings had to leave EachNet (Cai et al., 2011). eBay is implementing a similar warning system
to complement its reputation mechanism. Corollary 1(i) suggests that a given seller would be less likely to betray for each
warning she received.7

More generally, the structure of the temptation game resembles settings where players have a choice between playing
safe at some cost, or taking a risk of adding a “black mark.” Examples include the California criminal justice system, driver’s
license suspension, and several sports. For instance, California has a three-strikes-and-you-are-out rule for criminals: one
who gets convicted of three felonies gets jailed for life. In each period, a person can decide whether to commit a crime
or not. If she commits a crime, there is a chance of being caught. Following our model, as she comes closer to getting put
away for life, she is less likely to commit a crime. Consistent with our model, she could have a payoff from the crime if
she does not get caught, her temptation, which might be the expected amount of money she would steal. Corollary 1(i)
suggests that recidivism rates in California should reveal a lesser propensity to criminal activity after two felony convictions.
Indeed, recent literature has found reduced participation in criminal activity among second and third time offenders (e.g.,
see Iyengar, 2008, and the references therein). However, we note that our model does not capture certain aspects of this
setting, such as the possibility to migrate to other states or multiple levels of crime severity.

3.3. Maximum equilibrium cutoff

In this section we study the properties of the maximum cutoff that can arise in a (pure) MPE; we denote this cutoff
by B∗ . In general, if there exists an MPE with cutoff b∗ = k, there also exists an MPE with cutoff b∗ = k′ , where k′ < k; thus,
the set of equilibrium cutoffs is {0,1, ..., B∗}. The value of B∗ depends on the distribution F , the survival probability s, and
the imperfect monitoring probabilities r and q.

We first observe that B∗ is finite for any fixed survival probability s < 1; that is, the temptee is not allowed an infinite
number of black marks in equilibrium. In particular, if a temptee knew that she would be trusted even after an infinite
number of black marks, then her best response would be to always betray whenever her temptation is positive. However,
the truster’s best response would then be to never trust, because we are assuming that the distribution F has a positive
median. Intuitively, if a temptee was trusted irrespectively of her number of black marks, then she would not be incentivized
to reward trust sufficiently often.

We next show that B∗ increases without bound as s approaches 1. For the purposes of this result, we write B∗(s) to
denote that the maximum equilibrium cutoff B∗ depends on the survival probability s. We also show that when there is
imperfect monitoring with q > 0, B∗(s) scales asymptotically like 1/(1 − s).

Proposition 2. Suppose r, q, F are fixed and B∗(s) ≥ 1 for some s < 1. Then:

(i) B∗(s) is non-decreasing in s and B∗(s) → ∞ as s ↑ 1.
(ii) If q > 0, there exist constants c1, c2 > 0 and a threshold s̃ < 1 such that B∗(s) ∈ [c1/(1 − s), c2/(1 − s)] for s ∈ [s̃,1).

Proposition 2(i) implies that the number of periods for which cooperation is sustained (in the sense that the temptee
is trusted) increases without bound as the temptee’s survival probability approaches 1. Recall that the survival probability
essentially represents how much the temptee discounts future payoffs. Thus even though the cutoff B∗(s) is finite for
any fixed s < 1 and is often reached with probability 1 (e.g., when q > 0 or F (x∗

B∗−1) < 1), the time it takes to reach the
maximum cutoff increases without bound as the temptee discounts future periods less. This limit applies for any distribution
F and regardless of whether monitoring is imperfect.

Proposition 2(ii) considers settings of imperfect monitoring where a temptee may get a black mark after rewarding,
i.e., q > 0. For this case, we can characterize how the maximum equilibrium cutoff scales with the survival probability
s when s is close to 1. The fact that B∗(s) scales asymptotically like 1/(1 − s) implies that there exist MPE where the
temptee’s normalized discounted payoff8 is bounded away from 0. This result contrasts with a grim trigger equilibrium for
the prisoner’s dilemma with imperfect monitoring, where the timing of the switch to a punishment phase is independent
of how patient the players are and, as a result, a player’s normalized expected payoff approaches 0 as the discount factor

7 We note that this does not necessarily imply that real world sellers with more warnings are less likely to betray than a seller with fewer warnings,
because adverse selection effects could be affecting these probabilities. That is, sellers may differ in terms of payoff structure, self-control, or the distribution
of the temptation to betray. Therefore, Corollary 1 does not contradict the finding of Cabral and Hortacsu (2010) that on eBay the interarrival time between
the first and second negative is shorter than the arrival time of the first negative. As discussed in Aperjis et al. (2013), it is possible to include multiple
types of temptees in our model and study adverse selection effects.

8 The normalized discounted payoff is equal to the infinite horizon discounted payoff when the temptee has no black marks (i.e., v(0)) times 1 − s. The
value v(0) depends on the attributes of the temptees (i.e., s, r, q, and F ) and the cutoff b∗; it is maximized when b∗ = B∗(s).
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approaches 1 (e.g., see Mailath and Samuelson, 2006, p. 235). In the case of the BM, this inefficiency does not intrude –
despite having restricted the information to simply the number of black marks.

We note that when q = 0, the temptee’s maximum normalized discounted payoff is always bounded away from 0 as
s ↑ 1; specifically, it is lower bounded by 1. In particular, if the temptee always rewards she gets a payoff of 1 in every
period, never receives a black mark (because q = 0) and is therefore trusted until she dies. The optimal strategy will give
a normalized discounted payoff that is at least as large. Finally, using similar arguments to those used in the proof of
Proposition 2, we can show that if q = 0 and r is sufficiently small,9 then B∗(s) scales asymptotically like 1/(1 − s).

We next study the dependence of the maximum equilibrium cutoff on the imperfect monitoring probabilities, for a fixed
survival probability s < 1. The following proposition considers r, that is, the probability that a temptee escapes a black mark
despite betraying.

Proposition 3. Suppose s, q, F are fixed. Then, B∗ is non-increasing in r.

Intuitively, if a temptee is less likely to receive a black mark when she betrays, she will find it advantageous to betray
more often. Knowing this, a truster needs to decrease the maximum number of black marks he will allow in equilibrium if
he is to avoid a negative expected payoff whenever he trusts a temptee. The result is that the maximum equilibrium cutoff
is non-increasing in r.

We next consider q, that is, the probability that a temptee receives a black mark after rewarding. Interestingly, the
dependence of B∗ on q may be non-monotonic. In particular, the maximum equilibrium cutoff may increase for small
values of q and then decrease for large values of q. That is, it is possible that a temptee is allowed more black marks in
equilibrium for some q > 0 than when q = 0, as the following example illustrates.

Example 1. Assume that s = 0.98, r = 0 and the temptation to betray is uniformly distributed on [0,30]. If q = 0, then
B∗ = 10. On the other hand, for q = 0.01 we have that B∗ = 11, that is, the maximum equilibrium cutoff increases even
though the noise increased. For larger values of q, B∗ is non-increasing and becomes 0 for q ≥ 0.23.

A larger q might increase the number of black marks allowed in equilibrium because when a temptee is more likely to
get a black mark despite rewarding, in marginal cases she may be more careful and reward rather than betray. However, in
most cases, a larger q is associated with a smaller B∗ .

We now study how the maximum equilibrium cutoff B∗ depends on the distribution F . The following proposition con-
siders the case that F is the uniform distribution.

Proposition 4. Suppose s, r, q are fixed, and F (x) = x/A for x ∈ [0, A]. Then, the maximum equilibrium cutoff B∗ is non-increasing
in A.

Note that when A′ > A, the uniform distribution on [0, A′] stochastically dominates the uniform distribution on [0, A].
Intuitively, when A increases, temptations are stronger overall, and a temptee will give in to temptation more frequently.
This result does not generalize to non-uniform distributions. Thus, it is possible to have two distributions, F and G , such
that G stochastically dominates F , yet the temptee is less likely to betray at b black marks when the temptation to betray
is drawn from G . That is because she would be giving up more in terms of opportunity cost in the future. Example 2
illustrates.

Example 2. Suppose that s = 0.6 and r = q = 0. With distribution F , the temptation to betray equals 1 with probability 0.4
and equals 2 with probability 0.6. With distribution G , the temptation to betray equals 2 with probability 0.9 and equals 10
with probability 0.1. Clearly, G stochastically dominates F . If the temptation to betray is drawn from G , then the maximum
equilibrium cutoff is 1. (If b∗ = 1 and the temptee currently has no black marks, it is optimal for her to reward if x = 2 and
betray if x = 10. That is, she betrays with probability 0.1.) On the other hand, if the temptation to betray is drawn from F ,
then the maximum equilibrium cutoff is 0. If the temptee were trusted, it would be optimal for her to reward if x = 2; that
is, she would betray with probability 0.6 or higher. But then the truster would be better off not trusting her, so B∗ = 0.

Example 2 shows that the maximum equilibrium cutoff does not necessarily decrease when the temptation distribution
“increases” in the sense of (first-order) stochastic dominance. We next show that (under some conditions) second-order
stochastic dominance implies that the maximum equilibrium cutoff decreases. Equivalently, when the temptation distribu-
tion is more likely to take on “extreme” values, then the maximum equilibrium cutoff increases. The reason is that higher
variability in the temptation to betray is associated with higher opportunity costs which incentivize a temptee to betray less
frequently.

9 The condition for this is r/(1 − r) <
∫ ∞

m (y − m)dF (y).
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Proposition 5. Consider two distributions F1 , F2 with the same median m and the same mean. Let B∗
i be the maximum equilibrium

cutoff when Fi is the distribution of the temptation to betray. If F1 second-order stochastically dominates F2 and F1(x) ≥ F2(x) for all
x ≥ m, then B∗

2 ≥ B∗
1 .

For instance, Proposition 5 implies that the maximum equilibrium cutoff is at least as large when the temptation is
uniformly distributed on {1,2,3,4} as when it is uniformly distributed on {2,3}.

3.4. Optimal cutoffs

This section identifies the (pure) MPE that are most favorable for the trusters, most favorable for the temptees, and that
optimize social welfare. The socially optimal equilibrium emerges when a third party, perhaps a government agency or an
e-commerce site, proposes a set of strategies and associated equilibrium to optimize a weighted sum of the payoffs going
to trusters and temptees.10

A truster’s payoff in a given period depends heavily on the number of black marks of the temptee that he interacts with.
In particular, when matched with a temptee with b black marks, the truster gets a positive expected payoff of 2F (x∗

b) − 1
if b < b∗ and a zero payoff if b = b∗ . As far as a truster is concerned, the number of black marks of any temptee evolves
according to a Markov chain. The state is the temptee’s number of black marks, which either increases by 1 (if the temptee
is trusted and a betrayal is recorded), or remains the same (if either the temptee is trusted and a reward is recorded
or the temptee is not trusted), or becomes 0 (if the temptee dies and thus is replaced with a new player with a blank
reputation).11 Let π denote the stationary distribution of this Markov chain and assume that the Markov chain has reached
stationarity.12 Then, a truster’s expected payoff from every temptee that he may interact with in a given period is equal to∑b∗−1

b=0 πb(2F (x∗
b) − 1). We do not include a term for b = b∗ in the sum, because a truster gets zero payoff when matched

with a temptee who has b∗ black marks.
We define b∗

C and b∗
D to be the optimal cutoffs for trusters and temptees respectively, that is, the cutoffs of the equilibria

that maximize the corresponding payoffs. We let b∗
S (α) denote the cutoff that maximizes the sum of the trusters’ payoff

and α times the temptees’ payoff, where α ≥ 0. Recall that the set of equilibrium cutoffs is {0,1,2, ..., B∗}. The following
proposition shows that the optimal cutoff will be greatest for the temptee, least for the truster, and in between for the
social optimum.

Proposition 6. If B∗ ≥ 1, then 1 ≤ b∗
C ≤ b∗

S(α) ≤ b∗
D = B∗ for any α ≥ 0.

Proposition 6 tells us that the first-best equilibrium for temptees has the maximum possible cutoff. Intuitively, a temptee
prefers to be trusted longer.

Proposition 6 also says that the first-best equilibrium cutoff for trusters is in {1,2, ..., B∗}. There are two effects that
influence a truster’s expected payoff. On the one hand, if he is matched with a temptee whom he decides to trust, he is
better off if the cutoff is small because then that temptee is more likely to reward trust. On the other hand, when the cutoff
is smaller, the truster is less likely to be matched with a temptee who is below the cutoff. If the former (resp., latter) effect
dominates, then the first-best equilibrium for the truster involves a smaller (resp., larger) cutoff.

The following example demonstrates that even for the extremely simple case where temptations are uniformly dis-
tributed, the first-best equilibrium cutoff for trusters b∗

C may take any value in {1,2, ..., B∗}. In other words, it can involve
the minimum non-trivial equilibrium cutoff, the maximum equilibrium cutoff, or any value in between.

Example 3. Assume that s = 0.95, r = 0.1, q = 0.01 and the temptation to betray is uniformly distributed on [0, A]. Fig. 2
shows the optimal cutoffs of trusters and temptees for various values of A. We observe that when A = 10, a truster’s
payoff is maximized at b∗

C = 1, that is, the one-betrayal-and-you-are-out strategy is best for trusters. This is the strategy
that many societies have employed to deal with marital infidelities, particularly those of women. A temptee’s payoff on the
other hand is maximized at b∗

D = 4. Thus, in this case, 1 = b∗
C < b∗

D = 4. We next observe that when A = 20 we have that
1 < b∗

C = 2 < b∗
D = B∗ = 4. Finally, for A ∈ {49,50, ...,82}, we have that for any α ≥ 0, b∗

C = b∗
S (α) = b∗

D = B∗ = 3, that is,
both trusters and temptees prefer the same equilibrium cutoff.

10 We note that the third party could also propose an equilibrium that achieves some other goal, e.g., if Amazon could specify the equilibrium that buyers
and sellers play in the Amazon Marketplace, it would perhaps choose the equilibrium that maximizes Amazon’s revenue. We do not consider that situation
in this paper.
11 A truster does not care how long a specific temptee lives, because he is guaranteed to meet a new temptee each period.
12 Because trusters are essentially myopic maximizers, the set of equilibria we derive in Section 3.1 does not depend on the reputation distribution of

the population of temptees. We have the same set of equilibria irrespectively of whether the reputation distribution has reached stationarity. This result
contrasts with the norm equilibrium of Okuno-Fujiwara and Postlewaite (1995), where players effectively play a best response to the stationary distribution.
We only use the stationary distribution in this section because it is natural to define a truster’s expected payoff and optimal cutoff with respect to this
distribution.
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Fig. 2. Optimal cutoffs for trusters and temptees when s = 0.95, r = 0.1, q = 0.01 and the temptation to betray is uniformly distributed in [0, A].

In addition to the distribution of the temptation to betray, the optimal cutoffs for trusters and temptees also depend on
the parameters s, r, and q. From Proposition 6 we know that b∗

D = B∗ . Thus, Propositions 2 and 3 imply that the optimal
cutoff for temptees is increasing in the survival probability s and decreasing in r. Furthermore, it follows from Example 1
that b∗

D may be non-monotonic in q. On the other hand, the optimal cutoff for trusters b∗
C is generally non-monotonic

in each of the parameters s, r, and q, because of its dependence on the distribution of black marks in the population of
temptees.

We conclude this section by considering the effect of the imperfect monitoring probabilities on the players’ expected
payoffs. This is important not merely to understand comparative statics, but to know what choices both classes of players
might want to make to improve monitoring capabilities. Thus, if we had a tradeoff between accuracy on q and r (which
would seem quite reasonable, as there are often tradeoffs between type 1 and type 2 errors), then we provide the ingredi-
ents to determine how a temptee would tune r and q within the technological constraint and what it would be worth to
temptees to have a more accurate system.

We first observe that for a fixed cutoff, a temptee is better off when r is larger, that is, when her betrayals are less likely
to be recorded, and worse off when q is larger, that is, when she is more likely to get a black mark despite rewarding.
However, r and q also affect the maximum equilibrium cutoff, which is the preferred equilibrium cutoff for temptees.

There are two effects as r increases: the temptee gets a higher expected payoff for any fixed cutoff b∗ , but at the same
time the maximum cutoff B∗ may decrease (by Proposition 3). As a result, a temptee’s maximum equilibrium payoff, i.e., her
payoff at her preferred equilibrium, increases in an interval over which the maximum equilibrium cutoff remains the same,
then drops whenever the maximum equilibrium cutoff decreases. That is, the temptee’s maximum payoff is non-monotonic
in r. (See Fig. 5 in Appendix B.) Therefore, if the maximum equilibrium cutoff is played, in some cases the temptee may
prefer a larger r at which her betrayals are less accurately recorded. But it is also possible that the temptee is better off
when betrayals are more accurately recorded.

Interestingly, a temptee’s maximum equilibrium payoff may increase for small values of q. This may occur when the
maximum equilibrium cutoff increases for small values of q, as in Example 1. However, in most cases a temptee is worse
off when q increases. In general, there are jumps in the temptees’ maximum equilibrium payoff when B∗ changes, but there
are downward drifts for any given B∗ with increases in q and upward drifts within any B∗ for increases in r. We provide
some examples in Appendix B. We conjecture that trusters are worse off whenever monitoring becomes less accurate, i.e.,
when either r or q increases. We thus expect that trusters would prefer to improve the monitoring technology as long as it
is not too costly to do so.

4. Enhanced Black Mark Mechanism

Thus far, we have considered the Basic Black Mark Mechanism (BM), which tracks only the number of black marks. In
this section, we study the Enhanced Black Mark Mechanism (EM), which in addition to the number of black marks also reveals
the number of interactions, that is, the number of times that the temptee has been trusted in the past. Our main result in this
section is that the EM has the same maximum equilibrium cutoff as the BM. That is, including the number of interactions
in the temptee’s reputation does not prolong trust.

We denote a temptee’s reputation score by (b,n), where n is the number of interactions that she has completed.
A temptee’s strategy will consist of a threshold x∗

b,n for every possible reputation (b,n). That is, when a temptee has b black
marks in n interactions, then she betrays if the strength of her temptation to betray exceeds the threshold x∗

b,n . On the other
hand, a strategy of the trusters in this more general model can be represented by {z∗

b,n,b,n ∈N}, where z∗
b,n = 1 if a truster

trusts a temptee with reputation (b,n) and z∗
b,n = 0 otherwise. With a slight abuse of notation, let b∗(n) ≡ min{b : z∗

b,n = 0}
be the cutoff for n interactions, that is, a truster trusts a temptee with reputation (b,n) if b < b∗(n) but not if b = b∗(n). We
refer to b∗(n) as the cutoff function.

The strategies {x∗ ,b,n ∈N} and {z∗ ,b,n ∈N} constitute a (pure) MPE under the EM if:
b,n b,n
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(a) There exists a function v :N2 →R such that (i) v(b∗(n),n) = 0 for all n ∈N and (ii) for b < b∗(n) and n ∈N:

v(b,n) = 1 + s · (1 − q) · v(b,n + 1) + s · q · v(b + 1,n + 1) +
∞∫

x∗
b,n

(
y − x∗

b,n

)
dF (y),

where x∗
b,n ≡ s · (1 − r − q) · (v(b,n + 1) − v(b + 1,n + 1)).

(b) For all n ∈ N: (i) F (x∗
b,n) ≥ 1/2 when b < b∗(n) and (ii) F (x∗

b∗(n),n) ≤ 1/2.

Condition (a) guarantees that the set of thresholds {x∗
b,n,b,n ∈ N} is a best response of temptees to the cutoff function, and

condition (b) guarantees that the trusters are playing a best response.
The derivation of these equilibrium conditions parallels that of the derivation for the BM in Section 3.1. Moreover, if we

set b∗(n) = b∗ for some cutoff b∗ ≤ B∗ , then the EM essentially reduces to the BM. In this case, b∗(n) is a constant that does
not vary with the number of interactions n. However, under the EM there also exist equilibria where b∗(n) varies with n. In
that case, trusters are effectively using a moving quota of permitted betrayals and do not trust if there are b∗(n) betrayals in
n interactions. As a result, we get a larger set of equilibria with the EM (than with the BM), because there is more available
information on which players can condition their strategies.

We next show two fundamental properties of the cutoff function; the first intuitive, the second less so. First, b∗(n) is
non-decreasing in n: the larger the number of interactions of a temptee, the larger the number of black marks that a truster
will tolerate. Second, b∗(n) is bounded above by B∗ , i.e., the maximum cutoff for which there exists a (pure) equilibrium
when reputation only consists of the number of black marks. That is, including the number of interactions in the reputation
information does not increase the maximum number of black marks that a temptee will be allowed in equilibrium.

Proposition 7. At any MPE under the EM:

(i) b∗(n) is non-decreasing;
(ii) b∗(n) ≤ B∗ for all n.

The fact that b∗(n) is upper-bounded by B∗ may at first seem counterintuitive. One could expect that a truster would
allow a temptee more black marks when he knows that she has completed a very large number of interactions than when
he has no information on the number of interactions. However, if the trusters tolerated a larger number of black marks,
a temptee would not be properly incentivized in the sense that her probability of betraying would be greater than 1/2;
thus, a truster would be better off not trusting her. This result critically depends on the fact that, because of the random
matching and because MPE are conditioned on (b,n), trusters are essentially myopic in our model.

Intuitively, for a temptee’s incentives, the only thing that matters is how far she is (in terms of black marks) from no
longer being trusted. This distance depends on the cutoff function b∗(n) and the temptee’s current reputation. If the temptee
knows that she can get an additional B∗ black marks and still be trusted, then the punishment of no longer being trusted
will arrive too far into the future, and the temptee is not properly incentivized. This means that in equilibrium the temptee
cannot be further than B∗ black marks from no longer being trusted. But if a temptee has no black marks, then the distance
in terms of black marks from no longer being trusted is lower bounded by b∗(n). This implies that b∗(n) cannot exceed B∗ ,
no matter how large is the number of past interactions n.

Observe that there always exists an equilibrium with b∗(n) = B∗ for all n. Thus, Proposition 7(ii) implies that the max-
imum equilibrium cutoff under the EM is equal to B∗ , i.e., the same as for the BM. Then, Propositions 2, 3, 4 and 5 also
characterize how the maximum equilibrium cutoff of the EM depends on s, r and F . Moreover, similarly to Proposition 6, we
can say which equilibrium cutoff functions each side of the market prefers when the EM is in place. The best equilibrium
cutoff function for the temptees is b∗(n) = B∗ . Trusters also prefer b∗(n) = B∗ in some cases, but in other cases their best
cutoff function takes lower values.

Given that b∗(n) is increasing but upper bounded (by Proposition 7), we conclude that b∗(n) is constant for all large n,
which implies that the number of interactions plays no role after some point. Then, the thresholds x∗

b,n correspond to
thresholds that arise with the BM and Proposition 1 applies. Thus, after that point a temptee is less likely to betray when
she has more black marks; in other words, x∗

b,n is increasing in b when n is sufficiently large. However, x∗
b,n may not be

increasing in b for small values of n when there is a high probability of misrecording a betrayal and the cutoff function
b∗(n) is not constant.13

5. Temporary exclusion

With both the Basic Black Mark Mechanism (BM) and the Enhanced Black Mark Mechanism (EM), once a temptee reaches
a certain number of black marks she is never trusted again. That is, she is permanently excluded once she reaches a cutoff.

13 We thank John H. Lindsey II for constructing an example where x∗
b,n > x∗

b+1,n and b + 1 < b∗(n) at an equilibrium.
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Another possibility is temporary exclusion, that a temptee is temporarily not trusted but later she is trusted once again. In
other words, with temporary exclusion the temptee is essentially “punished” by not being trusted for a number of periods,
and is trusted again once this punishment phase is over.

In this section, we consider all reputation mechanisms that are represented by some function that determines ρt+1

from (ρt , τ t , βt), as defined in Section 2, and examine which mechanisms in this class give rise to MPE with temporary
exclusion. We next show that given the attributes of a temptee (i.e., s, r, q, and F ), we can compute the minimum length
of punishment that can arise in an MPE with temporary exclusion.

Proposition 8. An MPE with temporary exclusion exist if and only if the reputation information allows the trusters to punish the
temptee (by not trusting her) for at least

T ∗(s, r,q, F ) ≡
⌈

log

(
1 − 1/s − 1

(1 − r − q)(1 + ∫ ∞
m (x − m)dF (x))/m − q

)
/ log s

⌉

periods after every black mark.

In other words, we can have equilibria where trust is not lost forever if and only if the reputation mechanism provides
sufficient information to allow trusters to punish a temptee after a black mark for at least T ∗ periods. If the reputation
mechanism does not provide enough information to allow trusters to punish a temptee for T ∗ periods, then we either have
a unique MPE where trusters never trust temptees, or there also exist MPE with permanent exclusion, as with the BM and
the EM.

We note that the minimum punishment length T ∗ is increasing in both r and q, that is, a longer punishment is required
when recording is less accurate. On the other hand, T ∗ decreases when the term gF ≡ (1 + ∫ ∞

m (x − m)dF (x))/m increases.
To obtain the underlying intuition, consider two distributions F1 and F2 with the same median and the same mean. If F1
second-order stochastically dominates F2, then gF2 ≥ gF1 and, as a result, when the temptation to betray is given by F2
it is possible to have an equilibrium with shorter punishments after every black mark. In other words, greater variability in
the temptation to betray allows for equilibria with shorter punishments. This is along the lines of Proposition 5, where greater
variability in the temptation to betray allows for equilibria with larger cutoffs. Intuitively, when the distribution is more
variable, by betraying now the temptee would be giving up more in terms of opportunity cost in the future.

Observe that trusters cannot coordinate a punishment of T ∗ periods with the BM or the EM, since these mechanisms
provide no information about when black marks occurred. For instance, consider the BM and suppose a truster is matched
with a temptee who has one black mark. The truster has no way of knowing whether the temptee has already been
punished for that black mark and whether he should trust her in this period. We next provide examples of reputation
mechanisms for which temporary exclusion may arise in equilibrium.

Example 4. Consider a finite memory mechanism where a temptee’s reputation score consists of her history of play in
the last K periods, that is, ρt = (τ t−1, βt−1, τ t−2, βt−2, ..., τ t−K , βt−K ). In this case, P = {0,1}2K . Proposition 8 tells us for
which values of K there exist MPE with temporary exclusion. In particular, if K < T ∗(s, r,q, F ), there exists a single MPE
where players play the equilibrium of the one-shot temptation game in every period and thus trusters never trust. On the
other hand, if K ≥ T ∗(s, r,q, F ), there also exist MPE with temporary exclusion where a truster trusts the temptee only if
she has not received a black mark in the last T periods. There may also exist other MPE, e.g., where a temptee is allowed
b > 1 consecutive black marks (with no punishment inbetween) and a punishment of T ′ > T ∗(s, r,q, F ) periods afterwards.

Example 5. Consider a reputation mechanism where the reputation score in period t + 1 is a weighted average of the
reputation score in period t and the indicator βt , that is, h(ρt , τ t, βt) = (1 − α)ρt + αβt for some parameter α ∈ (0,1). In
this case, P = [0,1]. Thus, the reputation score is a scalar taking values in [0,1] and α measures how strongly recent black
marks affect the reputation score. This updating rule is a good model of how people update their impressions without a
reputation mechanism in place (Anderson, 1981; Hogarth and Einhorn, 1992; Kashima and Kerekes, 1994). Note that with
this mechanism a larger value of ρt is worse, as with the BM. Suppose that a truster trusts a temptee at time t if and only
if her reputation score is ρt < α(1 − α)T . Then, a temptee is not trusted for at least T periods after she gets a black mark.
Thus, we can have MPE with temporary exclusion for any α ∈ (0,1). Moreover, if α > 1/2, we can guarantee that a temptee
is not trusted for exactly T periods after she receives a black mark.

6. Stochastic Black Mark Mechanisms

A reputation mechanism specifies the rules for calculating a temptee’s reputation score from the history of her past
play. Throughout this paper, we have considered mechanisms that can be represented by a (deterministic) function h :
P × {0,1} × {0,1} → P and the reputation score at time t + 1 is ρt+1 = h(ρt , τ t , βt); see Section 2 for details. More
generally, the reputation score at time t + 1 could stochastically depend on ρt , τ t and βt .

In this section, we consider stochastic variations of the Basic Black Mark Mechanism (BM) that may forget black marks,
may reset a temptee’s reputation to zero black marks, or may not record some black marks. The temptee prefers these



C. Aperjis et al. / Games and Economic Behavior 87 (2014) 70–90 81
Fig. 3. Equilibrium payoffs under the BM (stars) and the Two-State Stochastic Mechanism (curve) when s = 0.96, r = 0 and the temptation to betray is
uniformly distributed on [0,30]; in the left plot q = 0, in the right q = 0.1.

mechanisms compared to the BM, because she essentially lives longer. On the other hand, the truster is usually worse off
with these stochastic variations. We thus compare different mechanisms with respect to Pareto efficiency.

Let PE denote the set of payoffs of all Pareto efficient equilibria of the BM. We say that the BM Range Pareto dominates a
stochastic variation if for any payoffs (xi, yi) ∈ PE and any equilibrium payoffs (x, y) of the stochastic variation with x = xi

we have that yi > y. Moreover, we say that the BM is not dominated by some stochastic variation if that variation has no
equilibrium that dominates all points in PE. Both of these properties hold in all examples we have explored.

We conjecture that – despite its simplicity – the BM enjoys efficiency benefits compared to stochastic variations. In the
following sections, we give some representative examples from two classes of stochastic mechanisms.

6.1. Two-State Stochastic Mechanism

In this mechanism, the temptee’s reputation score is either 0 or 1. If ρt = 0 and the temptee gets a black mark (i.e.,
βt = 1), then ρt+1 = 1 with probability γ . If ρt = 1, then ρt+1 = 0 with probability ζ . In equilibrium, the temptee is trusted
when ρt = 0 and she is not trusted when ρt = 1.

Think of ρt = 0 as a state of cooperation and ρt = 1 as a state of punishment; black marks are followed by a stochastic
switch to the punishment state followed by a stochastic return to cooperation. The equilibria are similar to those of Green
and Porter (1984). This mechanism is a variation of the BM with cutoff b∗ = 1, where a black mark is recorded with
probability γ and forgotten with probability ζ .

We are interested in the set of payoffs that each player can achieve. It turns out that we can set ζ = 0 without loss
of generality.14 In words, it suffices to consider two-state stochastic mechanisms with no return to cooperation. For the
remainder of this section, we assume that ζ = 0 for simplicity and thus only consider the dependence on the parameter γ .

Fig. 3 shows the feasible equilibrium payoffs under the BM and the Two-State Stochastic Mechanism for two representa-
tive examples. For the BM we have B∗ points, one for each cutoff that can arise in equilibrium. For the Two-State Stochastic
Mechanism we have a curve, since the parameter γ takes values in [0,1]. When γ = 0, we essentially have the BM with
b∗ = 1.

Observe that if we exclude the far left point where the two mechanisms coincide (i.e., γ = 0 and b∗ = 1), the points
(of the BM) lie above the curve (of the Two-State Stochastic Mechanism). This implies that the BM Range Pareto dominates
the Two-State Stochastic Mechanism when γ �= 0. For instance, when b∗ = 3, the payoffs of the temptee and the truster are
(71.53, 0.28). To achieve a payoff of at least 71.53 for the temptee under the Two-State Stochastic Mechanism, the truster’s
payoff needs to be at most 0.087, which is significantly smaller than 0.28. This inefficiency of the Two-State Stochastic
Mechanism arises because reputation scores are restricted to only take two values.

The left plot in Fig. 3 gives an example with perfect monitoring (i.e., r = q = 0). In this case, the two players have strictly
opposing interests under the Two-State Stochastic Mechanism: a larger payoff for the temptee implies a smaller payoff for
the truster. The right plot in Fig. 3 gives an example with imperfect monitoring. In this case, the BM with cutoff b∗ = 1
is Pareto dominated by the Two-State Stochastic Mechanism for some values of γ , but those points are in turn Pareto
dominated by the BM with cutoff b∗ > 1.15 Intuitively, when q > 0, the truster may want to forgive some black marks in
order to sustain cooperation for longer; however, longer cooperation can be better achieved with a larger cutoff, and thus a
larger cutoff dominates. We conjecture that the BM is not dominated by the Two-State Stochastic Mechanism.

14 We derived the payoffs of the truster and the temptee in equilibrium under the Two-State Stochastic Mechanism, similarly to the derivation in Section 3.
Each player’s payoff depends on (γ , ζ ) only through γ /(1 − s + sζ ), a term that takes values in [0,1/(1 − s)]. Note that if we set ζ = 0, we can still get all
the values in that range by varying γ between 0 and 1. On the other hand, we cannot set γ = 1 without loss of generality.
15 Note that the BM with cutoff b∗ = 1 is not in PE.
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Fig. 4. Equilibrium payoffs under the BM and the BM-Stochastic Reset when s = 0.96, r = 0 and the temptation to betray is uniformly distributed on [0,30];
in the left plot q = 0, in the right q = 0.1.

6.2. BM-Stochastic Reset

As in the BM, the temptee’s reputation score takes values in N and the reputation score increases by 1 whenever
a temptee receives a black mark. The difference in this stochastic mechanism is that whenever the reputation score is
non-zero, it resets to 0 with some probability ζ . If ζ = 0, resets do not occur and the BM-Stochastic Reset reduces to the BM.

Fig. 4 shows the feasible equilibrium payoffs under the BM-Stochastic Reset in two representative examples. Each curve
corresponds to a different equilibrium cutoff. The star on the far left point of each curve represents the payoffs of the
corresponding BM; this is the point for which the temptee’s payoff is minimum because resets do not occur. Observe that
the BM Range Pareto dominates the BM-Stochastic Reset when ζ �= 0. In the case of imperfect monitoring (i.e., the right
plot in Fig. 4), when b∗ = 1 it is possible to improve the payoffs of both players by setting ζ > 0. But in those cases, both
payoffs can be improved at a larger b∗ with ζ = 0. Therefore, the BM is not dominated by the BM-Stochastic Reset.

In the BM-Stochastic Reset, the probability of resetting is the same at all reputation scores. We have also looked at
examples where the probability of resetting depends on the temptee’s current reputation score; in those examples, again
(1) the BM was Range Pareto Dominant and (2) the BM was not dominated by the stochastic variation.

7. Conclusion

This paper studies how trusters and temptees interact in equilibrium when past play influences current play only through
its effect on certain summary statistics. The Basic Black Mark Mechanism (BM) establishes the equilibria that emerge when
players condition their strategies solely on the number of recorded betrayals of a temptee. The Enhanced Black Mark Mech-
anism allows players to condition on both the number of recorded betrayals and the number of interactions of a temptee.
The same qualitative results apply, and the maximum number of black marks a temptee can get in equilibrium does not
increase when the number of interactions is recorded. The paper also considers more general summary statistics and iden-
tifies conditions under which there exist equilibria where trust is only suspended temporarily. In closing, we illustrate that
simple stochastic variations of the BM do not improve efficiency, indeed they are Pareto dominated over the range where
the BM applies.

Throughout, the paper considers a setting with multiple trusters and multiple temptees, where in every period each
truster is randomly matched with a temptee. That is, one engages with another party for just one period, and then moves on.
However, our results also apply to long-term interactions between one truster and a large number of temptees. In this
setting, the truster interacts with multiple temptees simultaneously (in each period). For instance, the truster might be a
big employer interacting with multiple employees, a university interacting with many students, or a state interacting with
a large number of citizens.

Two further extensions immediately suggest themselves. First, some relationships have a natural termination or sunset
date quite apart from black marks. Thus, for a college and a student, rule infractions, e.g., plagiarism or disorderly behavior,
would be the equivalent of betrayals. But once graduation occurs, the relationship ends no matter what and past black
marks become irrelevant. Second, many long-term relationships – and some one-time-only relationships – have both parties
trusting and both parties tempted. Thus, a business and its supplier or a husband and wife may both rely on each other;
each has a reputation, each can trust, and each can betray.

Across a wide swath of societal concerns, we live with the notion that a single betrayal does not end a relationship. Thus,
there are second chances (and possibly more). Religions routinely allow for forgiveness. “The God I believe in is a God of
second chances,” Bill Clinton once said (Clinton, 1994). And George W. Bush, not known for being soft on crime, observed:
“America is the land of second chance – and when the gates of the prison open, the path ahead should lead to a better life”
(Bush, 2004). That is the way two successive Presidents outlined the theme that motivates this analysis: The game of life
accommodates betrayals, but not without putting betrayers on warning.
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Appendix A. Proofs

Proof of Proposition 1. Let

g(y) ≡ 1 +
∞∫

y

(x − y)dF (x).

We observe that g′(y) = −(1 − F (y)). This implies that g′(y) is negative and increasing in y, and thus g is decreasing and
convex.

We first show that x∗
b is strictly increasing in b for b ∈ {0, ...,b∗ − 1}. From (2) and (3) we have

1 − s(1 − q)

s(1 − r − q)
x∗

b + (1 − s)v(b + 1) = g
(
x∗

b

)
. (4)

Let b1 < b2, and let x1 = x∗
b1

and x2 = x∗
b2

be the corresponding solutions of (4). Then,

1 − s(1 − q)

s(1 − r − q)
x1 + (1 − s)v(b1 + 1) = g(x1), (5)

1 − s(1 − q)

s(1 − r − q)
x2 + (1 − s)v(b2 + 1) = g(x2). (6)

Suppose that x1 ≥ x2. Then,

1 − s(1 − q)

s(1 − r − q)
x2 + (1 − s)v(b2 + 1)

<
1 − s(1 − q)

s(1 − r − q)
x1 + (1 − s)v(b1 + 1)

= g(x1)

≤ g(x2),

which contradicts (6). We note that the first inequality follows because v is decreasing in b and s < 1; the equality follows
from (5), and the second inequality holds because x1 ≥ x2. We conclude that x1 < x2, and thus x∗

b is strictly increasing in b
for b ∈ {0,1, ...,b∗ − 1}.

We next show that x∗
b is convex in b for b ∈ {0, ...,b∗ − 1}. From (4) we find that

1 − s(1 − q)

s(1 − r − q)

(
x∗

b − x∗
b−1

) + (
g
(
x∗

b−1

) − g
(
x∗

b

)) = (1 − s)
(

v(b) − v(b + 1)
)

Moreover, by (2) we have that v(b) − v(b + 1) = x∗
b/(s(1 − r − q)). Thus,

1 − s(1 − q)

s(1 − r − q)

(
x∗

b − x∗
b−1

) + (
g
(
x∗

b−1

) − g
(
x∗

b

)) = 1 − s

s(1 − r − q)
x∗

b .

Let b1 < b2. Since x∗
b is increasing in b (by the first part of this proof), we have that

1 − s(1 − q)

s(1 − r − q)

(
x∗

b1
− x∗

b1−1

) + (
g
(
x∗

b1−1

) − g
(
x∗

b1

))
<

1 − s(1 − q)

s(1 − r − q)

(
x∗

b2
− x∗

b2−1

) + (
g
(
x∗

b2−1

) − g
(
x∗

b2

))
(7)

Suppose that x∗
b1

− x∗
b1−1 > x∗

b2
− x∗

b2−1. Then, by the convexity of g we have that

g
(
x∗

b1−1

) − g
(
x∗

b1

)
≥ g

(
x∗

b2−1

) − g
(
x∗

b2−1 + (
x∗

b1
− x∗

b1−1

))
≥ g

(
x∗

b2−1

) − g
(
x∗

b2−1 + (
x∗

b2
− x∗

b2−1

))
≥ g

(
x∗ ) − g

(
x∗ )
b2−1 b2
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which contradicts (7). We note that the first inequality holds because g is convex, the second inequality is a consequence
of x∗

b1
− x∗

b1−1 > x∗
b2

− x∗
b2−1, and the third inequality holds because g is decreasing. Thus, x∗

b − x∗
b−1 is nondecreasing in b

and x∗
b is convex for b ∈ {0,1, ...,b∗ − 1}. �

Proof of Proposition 2. Throughout the proof, we use the notation B∗(s) and x∗
i (s) to denote the dependence on the survival

probability s. We assume that r,q and F are fixed.
We first show that B∗(s) is increasing in s. Consider some fixed cutoff b∗ and suppose that s1 < s2. We will show that

x∗
i (s1) ≤ x∗

i (s2) for i = 0,1, ...,b∗ − 1, which implies that B∗(s1) ≤ B∗(s2). (2) and (3) imply that for any i ≤ b∗ − 1

1 − s(1 − q)

s(1 − r − q)
x∗

i (s) + 1 − s

s(1 − r − q)

b∗−1∑
j=i+1

x∗
j (s) = 1 +

∞∫
x∗

i (s)

(
y − x∗

i (s)
)
dF (y). (8)

Let

gi(s; x) ≡ s(1 − r − q)

1 − s(1 − q)

(
1 +

∞∫
x

(y − x)dF (y)

)
− 1 − s

1 − s(1 − q)

b∗−1∑
j=i+1

x∗
j (s).

Then x∗
i (s) is the unique fixed point of gi(s; x), that is, x∗

i (s) = gi(s; x∗
i (s)). First observe that gb∗−1(s2; x) > gb∗−1(s1; x) for all

x, which implies that x∗
b∗−1(s1) ≤ x∗

b∗−1(s2). We use this as the induction basis and show that x∗
i (s1) ≤ x∗

i (s2) for i = b∗ − 2,

b∗ − 3, ...,0 using backward induction. Suppose that x∗
i (s1) ≤ x∗

i (s2). Then, because both gi(s; x) and gi(s2; x) − gi(s1; x) are
decreasing in x, we have that:

1 − s2

1 − s2(1 − q)
x∗

i (s2) − 1 − s1

1 − s1(1 − q)
x∗

i (s1)

<
1 − s1

1 − s1(1 − q)

(
x∗

i (s2) − x∗
i (s1)

)
≤ x∗

i (s2) − x∗
i (s1)

= gi
(
s2; x∗

i (s2)
) − gi

(
s1; x∗

i (s1)
)

≤ gi
(
s2; x∗

i (s2)
) − gi

(
s1; x∗

i (s2)
)

≤ gi(s2; x) − gi(s1; x) for all x ∈ [
0, x∗

i (s2)
]

This implies that gi−1(s1; x) ≤ gi−1(s2; x) for all x ∈ [0, x∗
i (s2)]. From Proposition 1 we know that x∗

i−1(s1), x∗
i−1(s2) ∈

[0, x∗
i (s2)]. We therefore conclude that x∗

i−1(s1) ≤ x∗
i−1(s2), which shows the induction step. Thus, we have shown that

B∗(s) is increasing in s.
We now show that B∗(s) → ∞ as s ↑ 1. First consider the case that q = 0. We will show that for every finite N

there exists an sN < 1 such that B∗(sN ) ≥ N . We fix the cutoff to be b∗ = N and consider the thresholds x∗
i (s) for

i ∈ {0,1,2, ....,b∗ − 1} that represent the temptee’s best response. It suffices to show that there exists s < 1 such that
F (x∗

i (s)) ≥ 1/2 for i ∈ {0,1,2, ....,b∗ − 1}. Since q = 0, (8) can be written as

1 − s

s(1 − r)

b∗−1∑
j=i

x∗
j (s) = 1 +

∞∫
x∗

i (s)

(
y − x∗

i (s)
)
dF (y). (9)

We will use backward induction to show that for i = b∗ − 1,b∗ − 2, ... we have that (i) F (x∗
i (s)) ≥ 1/2 for sufficiently large s

and (ii) 1−s
s(1−r)

∑b∗−1
j=i x∗

j (s) → 1 as s ↑ 1.
Basis: We start with i = b∗ − 1. From (9) we have that

x∗
b∗−1(s) = s(1 − r)

1 − s

(
1 +

∞∫
x∗

i (s)

(
y − x∗

i (s)
)
dF (y)

)
≥ s(1 − r)

1 − s
→ ∞ as s ↑ 1,

which implies that (i) holds for i = b∗ − 1 and that

∞∫
x∗

b∗−1(s)

(
y − x∗

b∗−1(s)
)
dF (y) → 0 as s ↑ 1.

The previous limit together with (9) imply that (ii) holds for i = b∗ − 1.
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Inductive Step: Suppose that (ii) holds for i = b + 1. If the distribution F has unbounded support then (9) and the inductive
hypothesis imply that x∗

b(s) → ∞ as s ↑ 1; it follows that both (i) and (ii) hold for i = b. We now consider the case that
the distribution F is supported on a bounded interval and let M ≡ min{x : F (x) = 1} be the maximum point in the support.
Then it follows from (9) and the inductive hypothesis that x∗

b(s) ↑ M as s ↑ 1, so (ii) trivially holds for i = b. Then, if F
is continuous at M we have that F (x∗

b(s)) ↑ 1 as s ↑ 1, i.e., (i) holds for i = b. On the other hand, if F has a jump at M
then F (x∗

b(s)) → limx→M− F (x) as s ↑ 1. We observe that if B∗(s) ≥ 1 for some s, it must be that limx→M− F (x) ≥ 1/2 and
therefore (i) holds for i = b.

Thus, we have shown that lims↑1 B∗(s) = ∞ when q = 0. To conclude the proof, it suffices to show (ii), since (ii) implies
that lims↑1 B∗(s) = ∞ when q > 0.

We now consider the general case where q is not restricted to be equal to 0. Define

c(s) ≡ 1 +
∞∫

m

(y − m)dF (y) − 1 − s(1 − q)

s(1 − r − q)
m.

Then, (8) implies that F (x∗
i (s)) ≥ 1/2, or equivalently x∗

i (s) ≥ m, if and only if

c(s) ≥ 1 − s

s(1 − r − q)

b∗−1∑
j=i+1

x∗
j (s).

If the maximum equilibrium cutoff is B∗(s), then it must that x∗
i (s) ≥ m for i = 0,1, ..., B∗(s) − 1 and

1 − s

s(1 − r − q)

B∗(s)−1∑
j=1

x∗
j (s) ≤ c(s) <

1 − s

s(1 − r − q)

B∗(s)−1∑
j=0

x∗
j (s).

(If the second inequality did not hold, then the maximum equilibrium cutoff would be strictly greater than B∗(s).) We then
have that:

1

1 − s

(1 − r − q)sc(s)

max j x∗
j (s)

< B∗(s) <
1

1 − s

(1 − r − q)sc(s)

min j x∗
j (s)

≤ 1

1 − s

(1 − r − q)sc(s)

m
(10)

We observe that c(s) is increasing in s and upper-bounded by 1 + ∫ ∞
m (y − m)dF (y) < ∞. Moreover, if B∗(s) ≥ 1 then

c(s) > 0. Choose some s̃ < 1 such that B∗(s̃) ≥ 1 (such an s̃ exists by the assumption of the proposition). Observe that if
q > 0, for every i ∈ {0,1,2, ...., B∗(s) − 1}

0 ≤ x∗
i (s) ≤ x∗

B∗(s)−1(s) = s(1 − r − q)

1 − s(1 − q)

(
1 +

∞∫
x∗

B∗(s)−1(s)

(
y − x∗

B∗(s)−1(s)
)
dF (y)

)

<
1 − r − q

q

(
1 +

∞∫
0

ydF (y)

)
,

where the second inequality follows from Proposition 1 and the equality from (8). This implies that each x∗
j (s) is upper

bounded by some constant (independent of s) when q > 0. Set

c1 = qs̃c(s̃)

1 + ∫ ∞
0 ydF (y)

; c2 = (1 − r − q)c(1)

m

Note that 0 < c1 < c2, because c(s̃) > 0. (10) implies that

c1

1 − s
≤ B∗(s) ≤ c2

1 − s

for s > s̃, which concludes the proof. �
Proof of Proposition 3. Throughout the proof, we use the notation B∗(r) and x∗

i (r) to denote the dependence on r. We
assume that s,q and F are fixed. Consider some fixed cutoff b∗ and suppose that r1 < r2. We will show that x∗

i (r1) ≥ x∗
i (r2)

for i = 0,1, ...,b∗ − 1, which implies that B∗(r1) ≥ B∗(r2).
From (2) and (3) we have that for any i ≤ b∗ − 1, x∗

i (r) is given by the solution to the following equation

(1 − s + sq)x = gi(r; x), (11)

where we define
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gi(r; x) ≡ s(1 − r − q)

(
1 +

∞∫
x

(y − x)dF (y)

)
− (1 − s)

b∗−1∑
j=i+1

x∗
j (r).

(This is equivalent to (8) from the proof of Proposition 2.) Note that gi(r; x) is decreasing in x.
We observe from (11) that if gi(r1; x∗

i (r1)) ≥ gi(r2; x∗
i (r2)) then x∗

i (r1) ≥ x∗
i (r2). We will show that for each i ≤ b∗ − 1

there exists Ai ≥ max{x∗
i (r1), x∗

i (r2)} such that gi(r1; x) ≥ gi(r2; x) for all x ∈ [0, Ai]. The proof uses backward induction
starting with i = b∗ − 1.

For i = b∗ − 1, the induction hypothesis trivially holds, since gb∗−1(r1; x) − gb∗−1(r2; x) ≥ 0 for all x.
Now suppose that the induction hypothesis holds for some i ≤ b∗ − 1. Then we have that x∗

i (r1) ≥ x∗
i (r2). We will

show that the induction hypothesis holds for i − 1 with Ai−1 = x∗
i (r1). This will conclude the proof since we know from

Proposition 1 that x∗
i−1(r) ≤ x∗

i (r). We have that

(1 − s)
(
x∗

i (r1) − x∗
i (r2)

) ≤ (1 − s + sq)
(
x∗

i (r1) − x∗
i (r2)

)
= gi

(
r1; x∗

i (r1)
) − gi

(
r2; x∗

2(r2)
)

≤ gi
(
r1; x∗

i (r1)
) − gi

(
r2; x∗

1(r2)
)

≤ gi(r1; x) − gi(r2; x) for all x ≤ x∗
i (r1) (12)

The first inequality holds because sq ≥ 0 and x∗
i (r1) ≥ x∗

i (r2). The equality follows from (11). The last two inequalities hold
because both gi(r; x) and gi(r1; x) − gi(r2; x) are decreasing in x. We therefore have that for x ≤ x∗

i (r1),

gi−1(r1; x) = gi(r1; x) − (1 − s)x∗
i (r1) ≥ gi(r2; x) − (1 − s)x∗

i (r2) = gi−1(r2; x),

where the equalities follow from the definition of gi and the inequality from (12). This concludes the proof. �
Proof of Proposition 4. Throughout the proof, we assume that s, r,q are fixed and use the notation B∗(A) and x∗

i (A) to
denote the dependence on A. Define y∗

i (A) ≡ x∗
i (A)/A, which represents the probability of rewarding at i black marks.

Consider some fixed cutoff b∗ and suppose that A1 < A2. We will show that y∗
i (A1) ≥ y∗

i (A2) for i = 0,1, ...,b∗ − 1, which
implies that B∗(A1) ≥ B∗(A2).

Since the temptation to betray is uniformly distributed on [0, A], we have that F (x) = x/A for x ∈ [0, A]. Then, from (2)
and (3) we have that for any i ≤ b∗ − 1

(1 − s + sq)

s(1 − r − q)
y∗

i (A) = ki(A) + 1

2

(
1 − y∗

i (A)
)2

, (13)

where

ki(A) ≡ 1

A
− 1 − s

s(1 − r − q)

b∗−1∑
j=i+1

y∗
j (A).

We observe from (13) that if ki(A1) ≥ ki(A2) then y∗
i (A1) ≥ y∗

i (A2). To conclude the proof we will show that ki(A1) ≥ ki(A2)

for i = b∗ − 1,b∗ − 2, ...,0 using backward induction. The induction basis trivially holds, because kb∗−1(A) = 1/A.
Now suppose that ki(A1) ≥ ki(A2) holds for some i ≤ b∗ −1. Then, y∗

i (A1) ≥ y∗
i (A2). Moreover, by the definition of ki(A),

we have that

ki−1(A1) − ki−1(A2) = ki(A1) − ki(A2) − 1 − s

s(1 − r − q)

(
y∗

i (A1) − y∗
i (A2)

)
.

We will show that ki(A1) − ki(A2) ≥ 1−s
s(1−r−q)

(y∗
i (A1) − y∗

i (A2)) which implies that ki−1(A1) ≥ ki−1(A2). Indeed, from (13),

ki(A1) − ki(A2) = 1 − s + sq

s(1 − r − q)

(
y∗

i (A1) − y∗
i (A2)

) + 1

2

(
1 − y∗

i (A2)
)2 − (

1 − y∗
i (A1)

)2

≥ 1 − s + sq

s(1 − r − q)

(
y∗

i (A1) − y∗
i (A2)

)
≥ 1 − s

s(1 − r − q)

(
y∗

i (A1) − y∗
i (A2)

)
where the first inequality holds because y∗

i (A1) ≥ y∗
i (A2) and the second because q ≥ 0. This concludes the proof. �

Proof of Proposition 5. By the definition of second-order stochastic dominance, we have that
∫

h(y)dF1(y) ≥ ∫
h(y)dF2(y)

for every concave function h (Mas-Colell et al., 1995). Setting h(y) = −max{y − x,0}, which is concave in y, we conclude
that for every x,
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∞∫
x

(y − x)dF2(y) ≥
∞∫

x

(y − x)dF1(y). (14)

Throughout the proof, we assume that s, r,q are fixed and use the notation x∗
i (F j) to denote the dependence on the

distribution. Given some cutoff b∗ , it suffices to show that x∗
i (F2) ≥ x∗

i (F1) for i = 0,1, ...,b∗ − 1. Similarly to the other
proofs on comparative statics (e.g., the one of Proposition 2), let

gi(F ; x) ≡ s(1 − r − q)

1 − s(1 − q)

(
1 +

∞∫
x

(y − x)dF (y)

)
− 1 − s

1 − s(1 − q)

b∗−1∑
j=i+1

x∗
j (s)

so that x∗
i (F ) is the unique fixed point of gi(F ; x). Observe that gi is decreasing in x. From (14) it follows that gb∗−1(F2; x) ≥

gb∗−1(F1; x) for all x and therefore x∗
b∗−1(F2) ≥ x∗

b∗−1(F1).
Using backward induction, we will now show for i ≤ b∗ − 1 that if x∗

i (F2) ≥ x∗
i (F1) then gi−1(F2; x) ≥ gi−1(F1; x) for

all x ≤ x∗
i (F2), which in turn implies that x∗

i−1(F2) ≥ x∗
i−1(F1). By the Leibniz integral rule we have that the derivative of

gi(F j; x) with respect to x is equal to −(1 − F j(x)). Thus, if z > x > m, we have that

gi(F1; x) − gi(F1; z) =
z∫

x

(
1 − F1(y)

)
dy ≤

z∫
x

(
1 − F2(y)

)
dy = gi(F2; x) − gi(F2; z), (15)

where the inequality follows from the assumption that F1(y) ≥ F2(y) for y ≥ m. Therefore,

1 − s

1 − s + sq

(
x∗

i (F2) − x∗
i (F1)

) ≤ x∗
i (F2) − x∗

i (F1)

= g
(

F2; x∗
i (F2)

) − g
(

F1; x∗
i (F1)

)
≤ g

(
F2; x∗

i (F2)
) − g

(
F1; x∗

i (F2)
)

≤ gi(F2; x) − gi(F1; x)

for x ∈ [m, x∗
i (F2)]. The first inequality holds because q ≥ 0, the equality by the definition of g , the second inequality because

g is decreasing and x∗
i (F2) ≥ x∗

i (F1), and the last inequality follows from (15). The previous inequality together with the
fact that gi−1(F j; x) = gi(F j; x) − (1 − s)/(1 − s + sq)x∗

i (F j) implies that gi−1(F2; x) ≥ gi−1(F1; x) for all x ≤ x∗
i (F2). This

concludes the proof. �
Proof of Proposition 6. We first show that b∗

D = B∗ . Let u(b,b∗) be equal to v(b) when the cutoff b∗ is used. We observe
that u(b,b∗) only depends on the difference b∗ − b (given the same F , s, r and q), and is increasing in b∗ − b. Thus, u(0,b∗)
is maximized when b∗ is maximized.

Now that we have shown that b∗
C ≤ b∗

D , how about the socially optimal equilibrium b∗
S (α) which optimizes the weighted

return of trusters and temptees? Because the return for temptees decreases when b∗ decreases, it is not possible that
b∗

S (α) < b∗
C , because both players would be better off with b∗

S (α) = b∗
C . It is also not possible that b∗

S(α) > b∗
D , because

b∗(D) is the highest cutoff possible in the equilibrium set. Then we have b∗
C ≤ b∗

S(α) ≤ b∗
D for all α ≥ 0. To conclude the

proof we note that a truster gets zero payoff when b∗ = 0; thus if B∗ ≥ 1, the truster strictly prefers b∗ = 1 to b∗ = 0.
Therefore, 1 ≤ b∗

C ≤ b∗
S (α) ≤ b∗

D = B∗ for all α ≥ 0. �
Proof of Proposition 7. With the EM an MPE consists of (1) a cutoff function b∗(·) (which represents the trusters’ strategy)
and (2) a set of thresholds {x∗

b,n,b = 0,1, ...,b∗(n),n ∈ N} (which represents the temptees’ strategy). For brevity we denote
an MPE by (b∗(·), {x∗

b,n}). Recall that the distribution of the temptation to betray, F , is assumed to have a strictly positive
median which we denote by m. At an MPE, we have that

x∗
b,n ≥ m for b < b∗(n). (16)

We show (i) using proof by contradiction. We consider an MPE (b∗(·), {x∗
b,n}) and suppose that for some n̂ we have

b∗(n̂) > b∗(n̂ + 1). Denote b̂ ≡ b∗(n̂ + 1) and consider a temptee with reputation score (b̂, n̂), that is, she has b̂ black marks
and n̂ interactions. Depending on whether she gets a black mark now, in the next period the temptee’s reputation score will
be either (b̂, n̂ + 1) or (b̂ + 1, n̂ + 1); in either case, she will have at least b̂ ≡ b∗(n̂ + 1) black marks in n̂ + 1 interactions, so
the truster will not trust her. Thus, at reputation score (b̂, n̂), it is optimal for the temptee to betray when her temptation
to do so is positive. In other words, x∗

b̂,n̂
= 0 < m. This contradicts the assumption that (b∗(·), {x∗

b,n}) is an MPE because

b̂ < b∗(n̂) (see (16)). Therefore, we have shown that at any MPE the cutoff function b∗(·) is non-decreasing.
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The proof of (ii) consists of two steps. We first show that at any MPE the cutoff function is upper-bounded by some
constant that is independent of the number of interactions (Step 1). We then show that the cutoff function is upper-bounded
by B∗ (Step 2).
Step 1: Throughout this step, we fix a distribution F and a probability s. Let EX ≡ ∫

xdF (x) denote the expected value of
the temptation to betray, and define

K ≡ max

{
log

(
m(1 − s)

1 +EX

) /
log(s),1

}
. (17)

We will show that at any MPE (b∗(·), {x∗
b,n}), b∗(n) ≤ K for all n. For the sake of contradiction, suppose that there exists

some n̂ with b∗(n̂) > K . Consider a temptee with reputation score (0, n̂) and observe that:

(a) The temptee will be trusted for at least K more periods. (Even if she gets a black mark in every period from now on,
in K periods her reputation score will be (K , n̂ + K ); and b∗(n̂ + K ) ≥ b∗(n̂) > K .)

(b) 1 +EX is the maximum expected payoff that the temptee can get per period (she gets this payoff by betraying).
(c) Once the temptee reaches a cutoff, the infinite horizon discounted expected payoff that she misses is upper-bounded

by (1 +EX)/(1 − s).

(a) and (c) imply that if the temptee betrays now, i.e., at reputation score (0, n̂), her future discounted expected payoff will
decrease by at most sK

1−s (1+EX), compared to the case that she rewards now. Suppose that the current temptation to betray
is x. By betraying now, the temptee’s current payoff will increase by x, compared to the case that she rewards now. We
conclude that if x > sK

1−s (1 +EX), then the temptee will betray. Thus, x∗
0,n̂

≤ sK

1−s (1 +EX) < m, where the second inequality
follows from (17). However, we know from (16) that x∗

0,n̂
< m cannot occur at an MPE. We conclude that b∗(n) ≤ K for all

n.
Step 2: At an MPE, the cutoff function b∗(·) is non-decreasing (by (i)) and bounded (by Step 1). Hence, there exist n̄, b̄
such that b∗(n) = b̄ for n ≥ n̄. Without loss of generality, we can restrict the set of possible reputation scores to {(b,n) : b ≤
b∗(n),n < n̄} ∪ {(b, n̄) : b ≤ b̄}. For n = n̄, the equilibrium conditions are v(b̄, n̄) = 0 and,

v(b, n̄) = 1 + s · (1 − q) · v(b, n̄) + s · q · v(b + 1, n̄) +
∞∫

x∗
b,n̄

(
y − x∗

b,n̄

)
dF (y) for b < b̄;

x∗
b,n̄ = s(1 − r − q) · (v(b, n̄) − v(b + 1, n̄)

)
for b < b̄.

Observe that the variable n̄ does not affect the recursion in the previous equations, since it appears in all the terms. Hence,
these equilibrium conditions are equivalent to (1)–(3), i.e., the equations we had under the BM. This observation implies
that b̄ ≤ B∗ . Therefore, b∗(n) ≤ B∗ for all n, which concludes the proof for (ii). �
Proof of Proposition 8. Suppose that every time the temptee receives a black mark, she is not trusted for T consecutive
periods. Let V be the maximum infinite horizon discounted payoff to the temptee if she will be trusted in the current
period. Then,

V = 1 +
∫

max
{

x + srV + sT +1(1 − r)V , s(1 − q)V + sT +1qV
}

dF (x),

since is the temptee gets a black mark now she will not be trusted until T + 1 periods later. Equivalently, (1 − s(1 − q) −
sT +1q)V = 1 + ∫ ∞

x∗ (y − x∗)dF (x), where x∗ ≡ s(1 − r −q)(1 − sT )V is the threshold above which it is optimal for the temptee
to betray. It then follows that

x∗ 1 − s + sq(1 − sT )

s(1 − sT )(1 − r − q)
= 1 +

∞∫
x∗

(
y − x∗)dF (x).

Observe that x∗ is increasing in T . In order to have an equilibrium, we need that x∗ ≥ m, so that the temptee rewards
with probability greater or equal to 1/2 whenever she is trusted. Observe that the LHS is increasing and continuous in x∗ ,
whereas the RHS is decreasing and continuous in x∗ . Thus, x∗ ≥ m if and only if T is large enough so that

m
1 − s + sq(1 − sT )

s(1 − sT )(1 − r − q)
≤ 1 +

∞∫
m

(y − m)dF (x).

The latter is equivalent to T ≥ T ∗(s, r,q, F ), where T ∗ is given in the statement of the proposition. This concludes the
proof. �
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Fig. 5. Temptee’s normalized expected payoff at her preferred equilibrium as a function of r when s = 0.98 and the temptation to betray is uniformly
distributed on [0,30]. In the left plot, q = 0; in the right q = 0.1.

Fig. 6. Temptee’s normalized expected payoff at her preferred equilibrium as a function of q when r = 0 and the temptation to betray is uniformly
distributed on [0,30]. In the left plot, s = 0.95; in the right s = 0.98.

Appendix B. Monitoring and the temptee’s maximum payoff

Fig. 5 shows the temptee’s maximum payoff, i.e., her payoff when the maximum equilibrium cutoff is used, as a function
of r for two examples. Each jump corresponds to an decrease in the maximum equilibrium cutoff (per Proposition 3). In each
interval between two consecutive jumps, the maximum equilibrium cutoff is constant. Thus, between each two consecutive
jumps, the temptee’s payoff increases monotonically in r.

Fig. 6 shows the temptee’s maximum payoff as a function of q for two examples. Each jump corresponds to a change
in the maximum equilibrium cutoff. In most cases, a jump corresponds to a decrease of the maximum equilibrium cutoff
and thus the temptee’s expected payoff decreases. However, it is possible that an increase in q leads to an increase in the
maximum equilibrium cutoff, implying that the temptee’s payoff increases. This is the case for the first jump of the right
plot of Fig. 5, which corresponds to Example 1. In each interval between two consecutive jumps the maximum equilibrium
cutoff is constant and therefore the temptee’s payoff decreases monotonically in q.
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