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Abstract

Markov Decision Processes (MDPs) have been widely used as invaluable tools in dynamic decision-
making, which is a central concern for economic agents operating at both the micro and macro levels. 
Often the decision maker’s information about the state is incomplete; hence, the generalization to Partially 
Observable MDPs (POMDPs). Unfortunately, POMDPs may require a large state and/or action space, creat-
ing the well-known “curse of dimensionality.” However, recent computational contributions and blindingly 
fast computers have helped to dispel this curse. This paper introduces and addresses a second curse termed 
“curse of ambiguity,” which refers to the fact that the exact transition probabilities are often hard to quantify, 
and are rather ambiguous. For instance, for a monetary authority concerned with dynamically setting the in-
flation rate so as to control the unemployment, the dynamics of unemployment rate under any given inflation 
rate is often ambiguous. Similarly, in worker-job matching, the dynamics of worker-job match/proficiency 
level is typically ambiguous. This paper addresses the “curse of ambiguity” by developing a generalization 
of POMDPs termed Ambiguous POMDPs (APOMDPs), which not only allows the decision maker to take 
into account imperfect state information, but also tackles the inevitable ambiguity with respect to the correct 
probabilistic model of transitions.

Importantly, this paper extends various structural results from POMDPs to APOMDPs. These results 
enable the decision maker to make robust decisions. Robustness is achieved by using α-maximin expected 
utility (α-MEU), which (a) differentiates between ambiguity and ambiguity attitude, (b) avoids the over 
conservativeness of traditional maximin approaches, and (c) is found to be suitable in laboratory exper-
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iments in various choice behaviors including those in portfolio selection. The structural results provided 
also help to handle the “curse of dimensionality,” since they significantly simplify the search for an optimal 
policy. The analysis also identifies a performance guarantee for the proposed approach by developing a 
bound for its maximum reward loss due to model ambiguity.
© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

A critical factor for economic agents operating at both the micro and macro levels is decision-
making in dynamic environments. Markov Decision Processes (MDPs) have been widely used 
for dynamic decision-making in such environments when two main assumptions hold: (1) the 
state of the system is completely known/observable at each decision epoch, and (2) the (Marko-
vian) state transitions can be probabilistically defined. Partially Observable MDPs (POMDPs) 
extend MDPs by relaxing the first assumption: POMDPs consider the case where the system’s 
state is not completely observable but there exist observations/signals which yield probabilistic 
beliefs about the hidden state, if the second assumption above holds. However, the second as-
sumption is unrealistic in most applications, and significantly limits the applicability of POMDPs 
in real-world settings.

In such settings, one might have access to some data, and to develop a POMDP, must first 
estimate core state and observation transition probabilities. This often comes with estimation 
errors and leaves the decision maker with inevitable model misspecification/ambiguity. We refer 
to this challenge as the curse of ambiguity, and address it by relaxing assumption (2) above. 
Hence, this paper extends POMDPs to a new dynamic decision-making framework that allows 
the decision maker to consider both imperfect state information and ambiguity with respect to the 
correct probabilistic model. We term this new framework as Ambiguous POMDP (APOMDP).1

To address the curse of ambiguity, we assume that the decision maker simultaneously faces 
(a) non-probabilistic ambiguity (a.k.a. Knightian uncertainty) about the true model, and (b) prob-
abilistic uncertainty or risk given the true model.2 As Arrow (1951) (p. 418) states: “There are 
two types of uncertainty: one as to the hypothesis, which is expressed by saying that the hypothe-
sis is known to belong to a certain class or model, and one as to the future events or observations 
given the hypothesis, which is expressed by a probability distribution.” Indeed, in this paper’s 
framework, the decision maker is faced with Knightian uncertainty regarding the true model, 
while under each potential model, he has a certain probabilistic understanding of how observa-
tions and the core system state evolve over time. This draws a line between ambiguity (lack of 

1 To highlight the importance of considering the “curse of ambiguity,” we note that the work of Savage and the applied 
statistical decision theory literature, which has been embraced by rational economists, suggests that probabilities should 
simply be estimated and that there should be no discount for ambiguity. However, the literature starting with Knight, and 
then dealing with the Ellsberg Paradox, and exploding on the scene with the work of Tversky and Kahneman recognizes 
that ambiguity plays an essential role in human decision-making.

2 See, e.g., Stoy (2011), for an axiomatic treatment of statistical decision-making under these conditions.
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knowledge about the true probability model) and risk (probabilistic consequences of decisions 
under a known probability model).

Another important element in dealing with ambiguity is the distinction between the ambiguity 
set of a decision maker (DM, “he” hereafter) and his attitude toward ambiguity. The former 
refers to characterization of a DM’s subjective beliefs (the set of possible probabilistic models) 
while the latter refers to his taste (his desire level for ambiguity). Given an ambiguity set, the 
maximin expected utility (MEU) theory assumes complete aversion to ambiguity and uses the 
so-called maximin or Wald’s criterion by maximizing utility with respect to the worst possible 
member of the ambiguity set. This, however, typically results in overly conservative decisions 
(for related discussions, see, e.g., Ghirardato et al., 2004, Delage and Mannor, 2010, Xu and 
Mannor, 2012, Saghafian and Tomlin, 2016, and Bren and Saghafian, 2016). Moreover, it is 
not consistent with several studies that find that the inclusion of ambiguity seeking features is 
behaviorally meaningful. For instance, Bhidé (2000) performs a survey of entrepreneurs which 
reveals that they exhibit a very low level of ambiguity aversion, and Heath and Tversky (1991)
demonstrate that individuals who feel competent are in favor of ambiguous scenarios.

In this paper, to (a) avoid overly conservative outcomes, (b) distinguish between ambiguity 
and ambiguity attitude, and (c) include more meaningful behavioral aspects, we utilize a gener-
alization of the MEU approach and allow the DM to take into account both the worst possible 
outcome and the best possible outcome. The preferences under this criterion are called α-MEU 
preferences (with “multiple-priors”), and are axiomatized in Ghirardato et al. (2004) (see also 
Marinacci, 2002). They are found to be suitable for modeling various choice behaviors including 
those in portfolio selection (see, e.g., Ahn et al., 2007).

The key results in allowing for both optimistic and pessimistic views of the world (in a static 
setting) were communicated by Hurwitcz and Arrow in early 1950s (see, e.g., Arrow and Hur-
wicz, 1997, and Hurwicz, 1951a,b). They discussed four axioms that a choice operator must 
follow, and demonstrated that under complete ignorance, one can restrict attention merely to 
the extreme outcomes (i.e., the best and the worst). The work of Hurwitcz and Arrow in early 
1950s constructed a collection of utility functions for a DM under ambiguity including a convex 
combination of the best and worst outcomes, as we consider in this paper.

Since (a) the α-MEU criterion includes Wald’s criterion (maximin) as a special case (when 
the weight assigned to the best possible outcome is zero), and (b) our work allows for incomplete 
dynamic information, the framework we develop in this paper extends the stream of studies on 
robust MDPs (see, e.g., Nilim and El Ghaoui, 2005, Iyengar, 2005, Wiesemann et al., 2013) in 
two main aspects: (1) it prevents overly conservative decisions by allowing for a controllable 
“pessimism factor” that can take values in [0, 1], unlike the studies above where it is constrained 
to be one. One immediate benefit is related to more realistic behavioral aspects of decision-
making discussed earlier. However, perhaps more importantly, our results show that if the DM 
is hypothetically allowed to optimize his pessimism factor so as to minimize his reward loss 
when facing model ambiguity, he should choose a mid-range value, i.e., a value that is neither 
zero nor one. (2) By allowing for incomplete information about the core state, unlike the above-
mentioned studies, our work is also applicable in several applications where the state is hidden 
to the decision maker (for some examples in the economics literature, see, e.g., Jovanovic, 1979, 
1982, Jovanovic and Nyarko, 1995, 1996, Hansen and Sargent, 2007, and Cogly et al., 2008). To 
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the best of our knowledge, our work is among the very first to allow for both incomplete state 
information and model ambiguity, both of which are inevitable in many real-world applications.3

Another challenge in dynamic programming in general, and in MDPs and POMDPs in par-
ticular, is the well-known curse of dimensionality. It refers to the computational challenges in 
solving large-scale and challenging dynamic programs. One successful method mainly used for 
MDPs is to use approximate dynamic programming and other related approximation techniques 
(see, e.g., Bertsekas and Tsitsiklis, 1996, de Farias and Van Roy, 2003, Si et al., 2004, and the 
references therein). A separate stream of research that is widely used for MDPs attempts to de-
velop meta-structural results (see, e.g., Smith and McCardle, 2002, and the references therein). 
There are also some limited results in this second vein for POMDPs (see, e.g., Lovejoy, 1987b
and Rieder, 1991). One of the main contributions of our work is to extend such meta-structural 
results from POMDPs to APOMDPs.

Specifically, after developing the APOMDP approach and presenting some of its basic prop-
erties including contraction mapping of its Bellman operator (on a complete metric space) and 
convergence of a finite-horizon setting to that of an infinite-horizon, we show that unlike the 
seminal result of Smallwood and Sondik (1973) (see also Sondik, 1971 and Sondik, 1978) who 
proved the convexity (and piecewise-linearity) of the value function for POMDPs, the APOMDP 
value function is not always convex: model ambiguity can cause non-convexity. Importantly, 
however, we provide sufficient conditions for the APOMDP value function to be piecewise-linear 
and convex. Thus, our result builds a bridge between APOMDPs and POMDPs by extending the 
prominent result of Smallwood and Sondik (1973) from POMDPs to APOMDPs. This, in turn, 
allows for a similar method of computing the value function as well as the optimal policy in 
APOMDPs to those already developed in the literature for POMDPs. Furthermore, using the 
Blackwell ordering (Blackwell, 1951a), which is often referred to as information garbling in the 
economics of information literature (see, e.g., Marschak and Miyasawa, 1968), and a variation 
of the Blackwell–Sherman–Stein sufficiency theorem (Blackwell, 1951a, 1953, 1951b; Stein, 
1951), we establish the connection of the required condition for the convexity of an APOMDP 
value function to a notion of model informativeness in the “cloud” of models considered by the 
DM. We also clarify the connection between our result and a different way of handling model 
misspecification, in which probabilistic beliefs (i.e., information states) are distorted using a mar-
tingale process (see, e.g., Hansen and Sargent, 2007).

We then generate insights into the conditions required to guarantee the convexity of optimal 
policy regions in the APOMDP framework. The existence of convex policy regions is an impor-
tant advantage, since it significantly simplifies the search for an optimal policy. We then shed 
light on the conditions required for an APOMDP value function to be monotone in the belief 
state space using Total Positivity of Order 2 (T P2) ordering. We do so by showing that mono-
tonicity of an APOMDP value function is indeed preserved under both pessimism and optimism 
(under some conditions), and hence, under the APOMDP Bellman operator.

We also provide a performance guarantee for the APOMDP approach by bounding the max-
imum reward loss of a DM who is facing model ambiguity but uses the APOMDP approach 
compared to an imaginary DM who is fully informed of the true model. Our result allows the DM 
to adopt an appropriate ambiguity set (i.e., a set of possible models) so as to achieve a required 
performance guarantee. Through a representative numerical experiment, we then show that the 
APOMDP approach is indeed robust to model misspecification. More importantly, we show that 

3 We will discuss a variety of such applications from economics and beyond in Sections 6 and 8.
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the proposed APOMDP approach provides more effective policies than those provided by tradi-
tional maximax or maximin criteria. Using the Hausdorff distance between policy regions ob-
tained by using the best pessimism level and those in a close neighborhood of it, we then provide 
insights into the robustness of an APOMDP optimal policy to the value of the DM’s pessimism 
level. Doing so, we demonstrate the equivalence of policy regions under close pessimism levels.

We next discuss a variety of applications of APOMDPs from economics and beyond. We 
argue that while POMDPs are widely used for such applications, the unambiguous knowledge 
about the core state and observation transition probabilities is an unrealistic assumption in most 
cases. Since APOMDPs extend POMDPs by relaxing this assumption, they provide a widely 
useful framework to make more realistic and robust decisions in a variety of applications. This is 
achieved by reducing the reliance on a specific probabilistic model.

In particular, while some of our numerical experiments briefly illustrate the application of 
our APOMDP framework in dynamically adjusting inflation rate so as to control unemployment 
level, to further illustrate the advantages of the meta-structural results provided in the paper, 
we discuss two specific applications of APOMDPs in more detail. The first application is in 
job matching models. We extend the literature on such models by allowing for model ambigu-
ity. Specifically, we consider the discrete-time version of the well-known job matching model 
of Jovanovic (1979) (see also Sections 10.10 and 10.11 of Stokey et al., 1989), and provide an 
extension by considering the fact that the dynamics of worker-job match level often cannot be 
quantified via a single probabilistic model. We discuss how this extension can be modeled as an 
APOMDP, and how the structural results developed for general APOMDPs significantly simplify 
the complexity of identifying the optimal policy. We also show how the performance guarantee 
developed for general APOMDPs can be used to quantify a price of ambiguity in job matching 
problems with model ambiguity. The second application that we use to illustrate the advantage of 
our meta-structural results is the class of machine replacement problems which is concerned with 
optimal timing of replacing a general asset (“machine” hereafter); see, e.g., Cooper and Halti-
wanger (1993) and the references therein for applications of this class of problems in economic 
theory. The literature on this class of problems assumes a perfect knowledge on deterioration 
probabilities, while in real-world there exists considerable amount of ambiguity with respect to 
such probabilities. Thus, we use our proposed APOMDP framework to allow for this reality. 
Furthermore, based on the general structural properties established for APOMDPs, we shed light 
on conditions required for the existence of control-limit policies. Using a technique for ordering 
belief points on lines within the underlying simplex, we then provide a novel technique for ap-
proximating the control-limit threshold. In addition to these applications, we conclude this paper 
by shedding light on a variety of other applications where APOMDPs can be remarkably useful. 
These include areas such as strategic pricing, dynamic principal-agent models, inventory control, 
optimal search, medical decision-making,4 sequential design of experiments, Bayesian control, 
and bandit problems.

Finally, we briefly discuss a connection between APOMDPs and non-zero-sum dynamic 
stochastic games with perfect information and an uncountable state space. While several key 
studies are available for such games (see, e.g., Whitt, 1980, Nowak, 1985, Nowak and Szajowski, 
1999, Simon, 2007), various technical challenges remain unsolved, and we leave it to future re-
search to develop further structural results for APOMDPs using a game-theoretical perspective.

4 We have specifically observed the benefits of using the APOMDP framework proposed in this paper in a real-world 
medical decision-making problem faced by physicians in the Mayo Clinic (see, e.g., Boloori et al., 2018 for more details).
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The rest of the paper is organized as follows. In Section 2, we briefly review the related studies. 
The APOMDP framework is presented in Section 3. Section 4 presents the structural properties 
of APOMDPs, and Section 5 provides a performance guarantee. Section 6 discusses specific 
applications of APOMDPs, and Section 7 makes a connection between APOMDPs and stochastic 
games. Section 8 concludes the paper. All the proofs are presented in Online Appendix A, and 
Online Appendix B discusses two ways to guarantee dynamic consistency of preferences in the 
proposed APOMDP framework.

2. Literature review

A stream of research by Hansen and Sargent discusses model ambiguity and illuminates 
ways for creating robust frameworks (see, e.g., Hansen and Sargent, 2007, 2008, 2012). Dy-
namic decision-making under ambiguity has been studied under maximin expected utility with 
multiple-priors (see, e.g., Gilboa and Schmeidler, 1989 and Epstein and Schneider, 2003), mul-
tiplier preferences (see, e.g., Hansen and Sargent, 2001 and Strzalecki, 2011), and variational 
preferences (see, e.g., Maccheroni et al., 2006). When preferences are dynamically inconsistent, 
Siniscalchi (2011) provides a unique and in-depth decision-theoretic framework for studying 
dynamic choice.

The α-MEU preferences that we use in this paper is discussed and axiomatized in Marinacci 
(2002) and Ghirardato et al. (2004), and found to be suitable in laboratory experiments for mod-
eling choice behaviors in applications such as portfolio selection (see, e.g., Ahn et al., 2007). 
The α-MEU criterion generalizes the MEU preferences in which the DM only considers the 
worst-case outcome. MEU preferences are widely used in robust optimization and specifically in 
robust MDPs (see, e.g., Nilim and El Ghaoui, 2005, Iyengar, 2005, Wiesemann et al., 2013), but 
typically result in overly conservative policies (see, e.g., Delage and Mannor, 2010 and Xu and 
Mannor, 2012). The α-MEU criterion avoids this conservatism by considering both the best and 
the worst outcomes. Furthermore, the α-MEU criterion allows for a differentiation between the 
DM’s ambiguity and ambiguity attitude. This differentiation is also achieved in smooth model of 
decision-making under ambiguity proposed by Klibanoff et al. (2005) and Klibanoff et al. (2009), 
where smoothness is obtained by considering a “second order” belief that reflects the DM’s sub-
jective belief about the potential models. However, this requires consideration of all ambiguous 
outcomes and comes with extra computational burden,5 especially if used for POMDPs which 
are already computationally very complex. Since the α-MEU criterion only requires considering 
two ambiguous outcomes—the best and the worst—the additional computational burden is not 
as significant.

To the best of our knowledge, this paper is among the very first to develop a POMDP-type 
framework under ambiguity. Considering (a) the wide-range of applications of POMDPs in var-
ious fields including economics, operations research, medicine, biology, computer science, and 
engineering, among others, and (b) the fact that in most applications, model parameters cannot 
be exactly estimated (e.g., due to factors such as insufficient data, disagreement among experts, 
etc.), we believe the APOMDP framework and related structural results developed in this paper 
are of high value for many applications. A similar effort can be found in Itoh and Nakamura 
(2007), Hansen and Sargent (2007), and Osogami (2015). However, these papers differ from our 
work in two main ways: (a) they do not develop detail meta-structural results (e.g., convexity, 

5 The computational burden is lower in repeated but not fully dynamic decision-making settings; see, e.g., Saghafian 
and Tomlin (2016) for an application in a repeated newsvendor setting.
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monotonicity, etc.) that can simplify the search for optimal policies in various applications as is 
of our goals in this paper, and (b) the decision-making criterion and the framework developed in 
them is significantly different from our proposed APOMDP model.

In closing this section, we note that some papers assume perfect state information, but pursue 
the use of data and partial distributional information in a dynamic way to overcome model ambi-
guity through learning. For this stream of research, we refer interested readers to Saghafian and 
Tomlin (2016) (and the references therein), in which data and partial distributional information 
are dynamically used (via entropy maximization) to reduce the DM’s ambiguity over time. Us-
ing incoming data to learn about (and overcome) model ambiguities in a POMDP framework has 
also appeared in Bren and Saghafian (2016), where a specific decision-making context—control 
of multi-class queueing systems—is considered. Unlike such studies, and similar to the literature 
on robust MDPs, the goal in this paper is not to reduce or overcome ambiguity using incoming 
data (e.g., through learning). Unlike the literature on robust MDPs, however, we (a) allow for un-
observable states, and (b) consider both the best and worst outcomes to avoid over-conservatism, 
and thereby achieve policies that are behaviorally more relevant.

3. The APOMDP framework

A discrete-time, infinite-horizon, discounted reward APOMDP with finite actions and states is 
an extension of the classical POMDP, and can be defined by the tuple (α, β , S , O , A , G , P , R). 
In this definition (1) α and β denote the pessimism level and the discount rate, respectively. 
(2) S = {1, 2, · · · , n}, O = {1, 2, · · · , k}, and A = {1, 2, · · · , l} are finite sets representing state 
space, observation space, and action space, respectively. (3) G = {ga ∈ R

n : ∀a ∈ A } is the set 
of immediate rewards, where ga is a vector with ith element being the immediate reward of being 
at state i ∈ S when action a ∈ A is taken. (4) P and R are the ambiguity sets which represent 
the sets of possible transition probability matrices with respect to core states and observations, 
respectively.6,7

To construct a single ambiguity set and simplify our notation, we consider P × R, assume 
it is a finite set, and denote by m ∈ M � {1, 2, . . . , |P × R|} an index that uniquely repre-
sents its members.8 In this view, we consider M as a “cloud” of models (a new ambiguity 
set), with m being a specific model in the “cloud.” Thus, associated with each model m is a 

6 It should be noted that we focus on ambiguity with respect to core state and observation transition probabilities. This 
is because in robust dynamic programming settings under model ambiguity and expected discounted reward, the reward 
function can be assumed to be certain without loss of generality (see, e.g., Iyengar, 2005).

7 For general information regarding use and construction of ambiguity sets, we refer interested readers to studies such as 
Gupta (2018) and the references therein. Particularly, we note that there exist relatively standard methods for constructing 
the ambiguity sets with respect to transition probabilities using data and/or expert opinion (see, e.g., Wiesemann et al., 
2013, Nilim and El Ghaoui, 2005, Saghafian and Tomlin, 2016, and the reference therein). For instance, one can use 
data along with the Baum–Welch algorithm (see, e.g., Welch, 2003) to create point estimates for state and observation 
transition probabilities, and use such standard methods to create ambiguity sets around the point estimates. Using expert 
opinion (see, e.g., Saghafian and Tomlin, 2016) is another method to directly build the ambiguity sets. In Remark 3, we 
also briefly discuss the idea of using martingale distortions to indirectly build the ambiguity sets. However, to be general, 
we do not restrict our approach to a specific method of constructing the ambiguity sets.

8 The assumption that P × R, and hence M , is finite is only made for the ease of indexing, and is not a restrictive 
assumption; the majority of the structural results in this paper can be extended to cases with an infinite or even uncount-
able set M . It should be also noted that any continuous set of transition probabilities can be approximated via finite sets 
with any required precision. Thus, one can always consider a finite set M as a close approximation to a continuous one. 
However, increasing the size of M may affect the achievable performance guarantee; see, e.g., Corollary 1.
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set of the form Pm × Rm with Pm and Rm denoting the set of state and observation transition 
probabilities under model m, respectively. In this setting, Pm = {P a

m : a ∈ A }, where for each 
a ∈ A P a

m = [pa
ij (m)]i,j∈S is an n × n matrix with pa

ij (m) = Pr{j |i, a, m} denoting the prob-
ability that the system’s core state moves to j from i under action a and model m. Similarly, 
Rm = {Ra

m : a ∈ A }, where for each a ∈ A , Ra
m = [ra

jo(m)]j∈S ,o∈O is an n × k matrix with 
ra
jo(m) = Pr{o|j, a, m} denoting the probability of observing o under action a and model m

when the core state is j .
For any real-valued finite set �, we let �� denote the probability simplex induced by �. In 

particular, we let �S denote the (n − 1)-simplex representing the probability belief space about 
the system’s state. We denote by T � {0, 1, . . . , T } the decision epochs, where T is the time 
horizon. We also let I � [0, 1], and assume throughout the paper that α ∈ I and β ∈ [0, 1).

If M was a singleton with its only member being m (i.e., under a complete confidence about 
the model), the optimal reward and policy for any t ∈ T and π ∈ �S could be obtained by 
a traditional POMDP Bellman equation (along with the terminal condition V m

0 (π) = π ′g0 for 
some g0 ∈R

n):

V m
t (π) = max

a∈A

{
π ′ga + β

∑
o∈O

Pr{o|π , a,m}V m
t−1(T (π , a, o,m))

}
, (1)

where all the vectors are assumed to be in column format, “ ′ ” represents a transpose, ga repre-
sents a vector of size n with elements being expected single-period reward of being at each state 
under action a, Pr{o|π, a, m} = ∑

i

∑
j π ip

a
ij (m)ra

jo(m) is the probability of observing o under 
belief π , action a, and model m. The belief updating operator T : �S × A × O × M → �S
in (1) is defined by the Bayes’ rule (in the matrix form):

T (π , a, o,m) =
(
π ′P a

mRa
m(o)

)′

Pr{o|π, a,m} , (2)

where Ra
m(o) � diag(ra

1o(m), ra
2o(m), . . . , ra

no(m)) is the diagonal matrix made of the oth column 
of Ra

m. Letting

ĥt−1(π , a,m)�
∑
o∈O

Pr{o|π, a,m}V m
t−1(T (π , a, o,m)) (3)

denote the “reward-to-go” function, the POMDP optimality equation for model m can be written 
as

V m
t (π) = max

a∈A

{
π ′ga + βĥt−1(π , a,m)

}
. (4)

Using the preliminaries above, we now consider the APOMDP case. In particular, we note that 
in an APOMDP, the DM is faced with model misspecification and only ambiguously—not even 
probabilistically9—knows m: he only knows that m ∈ M . Hence, the reward and policy cannot 
be simply obtained from (4). How can the DM derive a policy then that is optimal without adding 
much to the underlying computational complexity?

To answer this question, we consider the α-MEU criterion as follows. We let α ∈ I denote 
the pessimism factor, and denote by mt−1 and mt−1 the worst and best-case models (values of 
m ∈ M ) with respect to the (t − 1)-period’s expected reward-to-go function, respectively:

9 If it was probabilistically known, then the DM could form a prior about the true model and include that in the 
state space. This would transfer the problem back to a traditional POMDP (with an augmented state space) in which 
observations are used over time to learn about the true model.
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mt−1(π, a,α) � arg min
m∈M

ht−1(π , a,m,α), (5)

mt−1(π, a,α) � arg max
m∈M

ht−1(π , a,m,α). (6)

In this setting,

ht−1(π, a,m,α)�
∑
o∈O

Pr{o|π, a,m}Vt−1(T (π , a, o,m),α), (7)

and Vt−1(π , α) denotes the decision maker’s reward with t − 1 periods to go.10 Using this no-
tation, the DM can derive a policy by solving the following dynamic program11 (along with the 
terminal condition V0(π , α) = π ′g0 for some g0 ∈ R

n):

Vt (π , α) =max
a∈A

{
π ′ga + β

[
α ht−1(π , a,mt−1(π , a,α),α)

+ (1 − α)ht−1(π , a,mt−1(π , a,α),α)
]}

. (8)

We refer to (8) as the finite-horizon APOMDP Bellman equation, and call the policy obtained 
by solving it α-Hurwicz12 or Hα for short.13 For notational convenience, we define the utility 
function

Ut(π , α, a) =π ′ga + β
[
α ht−1(π, a,mt−1(π , a,α),α)

+ (1 − α)ht−1(π, a,mt−1(π , a,α),α)
]
, (9)

which allows us to concisely write the finite-horizon APOMDP Bellman equation as

Vt (π , α) = max
a∈A

Ut(π , α, a). (10)

However, when more convenient, we write the finite-horizon APOMDP Bellman equation (8)
in an operator form. To this end, we let Bα denote the set of real-valued bounded functions 
defined on �S × {α}, and define the operator Lα : Bα → Bα based on (7)–(8) such that Vt =
LαVt−1 for t = 1, 2, · · · , T . The following lemma shows that the operator Lα is a contraction 
mapping with modulus β on the complete metric space (Bα , dα) (see, e.g., Theorem 3.2 in 
Stokey et al. (1989) for a general contraction mapping result on complete metric spaces), where 
for any V, W ∈ Bα , the metric dα is defined as dα(V, W) � supπ∈�S

|V (π , α) − W(π , α)|. 
This will enable us to establish a fixed-point result for APOMDPs.

Lemma 1 (Contraction mapping Bellman operator). For all α ∈ I , the APOMDP Bellman op-
erator Lα is a contraction mapping with modulus β on the space (Bα , dα). That is, for any 
V, W ∈ Bα: dα(LαW, LαV ) ≤ β dα(W, V ).

10 Note that since the best and worst-case models are chosen independently of the previous periods best and worst-case 
model selections, our setting satisfies a similar requirement to the rectangularity assumption discussed by Epstein and 
Schneider (2003) in their recursive multiple-priors setting, and used by Nilim and El Ghaoui (2005) and Iyengar (2005)
for robust MDPs. See also Riedel (2009) for related discussions on the use of the rectangularity assumption for optimal 
stopping problems with multiple-priors.
11 For further discussion on the rationale for this dynamic program, see Remark 2 and Online Appendix B.
12 We adopt this terminology to emphasize the seminal work of Hurwicz (1951a) in decision-making under complete 
ignorance.
13 It should be clear that H 0 and H 1 policies are the widely used maximax and maximin (Wald’s) criteria, respectively.
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The following result uses Lemma 1, and sheds light on the connection between finite-horizon 
and infinite-horizon APOMDPs by using the Banach’s Fixed-Point Theorem on the complete 
metric space (Bα , dα). To consider infinite-horizon APOMDPs, we let T = ∞ and denote the 
infinite-horizon APOMDP value function by V∞(π , α).

Proposition 1 (APOMDP convergence). For all π ∈ �S and α ∈ I , V∞(π, α) is the 
unique solution to LαV∞(π , α) = V∞(π, α). Furthermore, for all π ∈ �S and α ∈ I , 
limt→∞ Vt(π , α) = V∞(π, α), where the convergence is uniform (in dα).

Remark 1 (Stochastic games with perfect information). It is noteworthy that the APOMDP 
framework introduced above (in both finite and infinite-horizon cases) can also be viewed as 
a non-zero-sum sequential stochastic game with perfect information and an uncountable state 
space. We briefly discuss this connection in Section 7.

Remark 2 (Dynamic consistency). As some studies including Ghirardato et al. (2008) discuss, 
the presence of ambiguity in some dynamic settings might lead to violations of dynamic consis-
tency in preferences. However, as we discuss in detail in Online Appendix B, dynamic consis-
tency in our APOMDP framework, if needed, can be obtained in at least two ways. First, attention 
can be restricted to specific values of pessimism level (e.g., α = 0, α = 1, and some ranges in-
cluding them) for which dynamic consistency of preferences is preserved (see also footnote 10
for a related discussion on a special case with α = 1 and fully observable core states). Second, 
the DM can be allowed to dynamically adjust his pessimism level. While we only consider a 
static pessimism factor in this paper, our results in Section 5 show that small adjustments to the 
pessimism level do not affect the adopted policy by the DM. Dynamic consistency provides a 
rationale to solve a multiple-period problem via dynamic programming. Nevertheless, dynamic 
programming can typically be used to derive effective policies. Indeed, it should be noted that 
although in Online Appendix B we discuss in detail two ways to guarantee dynamic consistency 
in our proposed APOMDP approach, the issue of dynamic consistency of preferences is not of 
first order importance in our work. The main reason is that, motivated by various applications 
(see, e.g., Section 6), our goal in this paper is to consider a DM who is facing both ambiguity 
and imperfect state information, and prescribe a policy which is (a) behaviorally meaningful, 
and (b) effective in dealing with ambiguity. The policy that is obtained by solving the APOMDP 
Bellman equation introduced above achieves both of these goals. In particular, while in earlier 
sections we discussed the literature addressing the behavioral aspects of considering both the best 
and worst-case outcomes, in later sections we show (both analytically and numerically) the ef-
fectiveness of an APOMDP policy in dealing with ambiguity. Hence, the policies obtained from 
solving our APOMDP program can be regarded as useful polices for various applications, even in 
special cases where the DM preferences do not exhibit dynamic consistency. Further discussions 
about dynamic consistency can be found in Online Appendix B.

4. Basic structural results for APOMDPs

4.1. Convexity

Solving the APOMDP functional equation (8) can be complex in general. In particular, in 
contrast to the seminal result of Smallwood and Sondik (1973) who proved the convexity of 
the value function for POMDPs (in finite-horizon settings), we observe that the APOMDP value 
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function is not always convex in π ∈ �S . Hence, unlike POMDPs, the APOMDP value function 
does not always admit the desirable form Vt(π , α) = maxψ∈�t,α {π ′ψ} for some finite set of 
vectors �t,α . We illustrate this through the following example.

Example 1 (Non-convex value function). Consider a representative APOMDP with n = k = l = 3
(i.e., three states, three observations, and three actions). For instance, the core states in this 
APOMDP may represent three levels of unemployment (e.g., low, medium, high), the obser-
vations may represent the imperfect signals that a monetary authority receives about the state of 
the unemployment being at any of the three levels, and the actions may represent three levels of 
inflation (e.g., low, medium, high) that can be targeted by the authority.

Suppose there are three models, m = 1, m = 2, and m = 3, with representative transition 
probabilities given for each model in a separate row below.

P 1
1 =

⎛
⎝ 0.3 0.5 0.2

0.1 0.6 0.3
0.2 0.3 0.5

⎞
⎠P 2

1 =
⎛
⎝ 0.1 0.6 0.3

0.5 0.2 0.3
0.4 0.3 0.3

⎞
⎠P 3

1 =
⎛
⎝ 0.3 0.3 0.4

0.1 0.7 0.2
0.5 0.3 0.2

⎞
⎠

R1
1 =

⎛
⎝ 0.4 0.3 0.3

0.1 0.8 0.1
0.1 0.2 0.7

⎞
⎠R2

1 =
⎛
⎝ 0.1 0.3 0.6

0.4 0.3 0.3
0.2 0.1 0.7

⎞
⎠R3

1 =
⎛
⎝ 0.5 0.2 0.3

0.4 0.4 0.2
0.3 0.1 0.6

⎞
⎠

P 1
2 =

⎛
⎝ 0.3 0.6 0.1

0.3 0.6 0.1
0.1 0.1 0.8

⎞
⎠P 2

2 =
⎛
⎝ 0.2 0.7 0.1

0.5 0.2 0.3
0.3 0.2 0.5

⎞
⎠P 3

2 =
⎛
⎝ 0.2 0.5 0.3

0.1 0.5 0.4
0.2 0.2 0.6

⎞
⎠

R1
2 =

⎛
⎝ 0.5 0.3 0.2

0.4 0.3 0.3
0.1 0.1 0.8

⎞
⎠R2

2 =
⎛
⎝ 0.1 0.4 0.5

0.5 0.2 0.3
0.3 0.1 0.6

⎞
⎠R3

2 =
⎛
⎝ 0.2 0.2 0.6

0.4 0.1 0.5
0.6 0.2 0.2

⎞
⎠

P 1
3 =

⎛
⎝ 0.2 0.6 0.2

0.2 0.4 0.4
0.2 0.4 0.4

⎞
⎠P 2

3 =
⎛
⎝ 0.6 0.1 0.3

0.4 0.4 0.2
0.5 0.1 0.4

⎞
⎠P 3

3 =
⎛
⎝ 0.1 0.8 0.1

0.2 0.7 0.1
0.2 0.2 0.6

⎞
⎠

R1
3 =

⎛
⎝ 0.3 0.3 0.4

0.4 0.3 0.3
0.1 0.1 0.8

⎞
⎠R2

3 =
⎛
⎝ 0.2 0.4 0.4

0.6 0.2 0.2
0.8 0.1 0.1

⎞
⎠R3

3 =
⎛
⎝ 0.2 0.2 0.6

0.5 0.2 0.3
0.6 0.2 0.2

⎞
⎠

The existence of different models may represent the fact that the exact probabilistic dynamics 
of unemployment levels under any targeted inflation rate is not completely known, and is subject 
to misspecifications. Also, let the representative (scaled) rewards obtained under any state-
action pair (e.g., unemployment-inflation level) be g0 = (1.0, 1.1, 1.0)′, g1 = (1.5, 1.8, 1.6)′, 
g2 = (1.7, 1.4, 1.5)′, g3 = (1.6, 1.7, 1.5)′, and assume T = 3, and β = 0.9.

Fig. 1 illustrates the value function for α = 0.95 and t = 3 (V3(π , 0.95) for various belief 
points π = (π1, π2, π3 = 1 −π1 −π2) ∈ �S ). As Fig. 1 shows, the value function is not convex: 
model ambiguity causes non-convexity. However, in what follows we show that, under a condition 
on the ambiguity set defined below, the seminal result of Smallwood and Sondik (1973) for 
POMDPs can be extended to APOMDPs.

Definition 1 (Belief-Independent Worst-Case (BIWC) member). The ambiguity set M is said to 
have a belief-independent worst-case (BIWC) member if mt(π , a, α) is constant in π (∀t ∈ T , 
∀a ∈ A , ∀α ∈ I ).
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Fig. 1. The APOMDP value function of Example 1.

Proposition 2 (Piecewise-linearity and convexity). If the ambiguity set M has a BIWC member, 
then Vt(π , α) for any t ∈ T and α ∈ I is piecewise-linear and convex in π , and hence admits 
Vt (π , α) = maxψ∈�t,α {π ′ψ} for some finite set of vectors �t,α .

Proposition 2 extends the seminal result of Smallwood and Sondik (1973) from POMDPs 
to APOMDPs. The importance of this result is that it allows solving APOMDPs in a similar 
manner to POMDPs: one only needs to characterize the ψ -vectors introduced above, which are 
often referred to as α-vectors in the traditional POMDP literature (see, e.g., Monahan, 1982 for 
a review of related approaches).

We note that (a) the condition in Proposition 2 is only on the worst-case scenario: no condition 
on the best-case is required, and (b) Definition 1 allows the BIWC member to be different in each 
period, or change based on the action or conservatism level. However, to guarantee a convex value 
function of π for any14 value of conservatism level α and for the very general APOMDP ap-
proach introduced earlier, Proposition 2 requires the adversary (but not necessarily the ally) part 
of the nature to act independently of the DM’s belief, π . For instance, the DM may share its belief 
only with the ally part of the nature. Importantly, however, the ambiguity set can have a BIWC 
member under various situations, and hence, the condition in Proposition 2 is not that restrictive. 
An important example is related to the notion of model informativeness introduced below.

Definition 2 (Model informativeness). A model m∗ ∈ M is said to be less informative than an-
other model m ∈ M under action a ∈ A , if there exists a k by k transition probability kernel Qa

m

such that P a
m∗Ra

m∗ = P a
mRa

mQa
m.

The above definition of model informativeness is equivalent to Blackwell Ordering (Black-
well, 1951a, 1953 and Sulganik, 2003), which is often referred to as information garbling in 
the economics of information literature (see, e.g., Marschak and Miyasawa, 1968). The property 

14 For special cases of α milder conditions are sufficient. For instance, with α = 0, no condition is required: Vt (π, 0) is 
always convex in π even when M does not have a BIWC member.
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above can be understood by noting that P a
mRa

m is a matrix of signals or conditional probabili-
ties of the form [Pr{i|o}]i∈S ,o∈O under model m. The above definition describes that model 
m∗ ∈ M is less informative than model m, if m∗ provides signals that are weaker than those 
under m, in that the signals (about core states) received under m∗ are only “garbled” (through 
channel/transformation Qa

m) versions of signals received under m. That is, one could retrieve the 
signals under m∗ if s/he had access to signals under m. Thinking of these signals as outputs of 
statistical experiments under m∗ and m, we first state the following variation of the Blackwell–
Sherman–Stein sufficiency theorem15 to connect model informativeness in our framework with 
convex stochastic ordering16 (denoted by 	cx ) of the posterior likelihood distributions defined 
by the operator in (2). This will then allow us to connect model informativeness to the existence 
of a BIWC member.

Lemma 2 (Model informativeness ordering). Suppose model m1 ∈ M is less informative than 
model m2 ∈ M under an action a ∈ A . If observation O is considered as a random variable, 
then:

T (π, a,O,m1) 	cx T (π , a,O,m2). (11)

The above lemma is equivalent to the following statement: model m1 ∈ M being less infor-
mative than model m2 ∈ M under an action a ∈ A results in

EO|π,a,m1 [f (T (π , a,O,m1)] ≤ EO|π,a,m2 [f (T (π, a,O,m2)], (12)

for any real-valued convex function f defined on �S . In other words, any utility maximizer 
with a convex utility f , that depends on the posterior belief, prefers the statistical experiment 
governed by m2 than one governed by m1 (under action a). Using this result, we can state the 
following:

Proposition 3 (Model informativeness and BIWC member). Fix α ∈ I and suppose that under 
each action a ∈ A , one of the models denoted by m∗(a) is less informative than all the other 
models in M . Then M has a BIWC member. Furthermore, mt(π , a, α) = m∗(a) for all t ∈ T .

An important aspect of the above result is that the required condition only depends on the 
DM’s ambiguity set and not his ambiguity attitude. This is because the proposed APOMDP 
framework allows for a separation between ambiguity and ambiguity attitude as discussed in 
Section 1. Moreover, when one of the models is less informative than the rest, Proposition 3
shows that the adversary part of the nature acts independently of the DM’s belief, and hence, the 
ambiguity set will have a BIWC member. The following remark describes yet another important 
aspect of Proposition 3.

Remark 3 (Martingale distorted beliefs). It should be noted that convex stochastic ordering is 
closely related to martingale representations (see, e.g., Theorem 3.A.4 of Shaked and Shan-
thikumar, 2007). In particular, (11) holds if, and only if, there are two random variables X
and Y defined on the same probability space such that (1) X =s.t. T (π, a, O, m1) and Y =s.t.

T (π , a, O, m2), and (2) {X, Y } is a martingale (i.e., E[Y |X] = X a.s.). This means that (11) and 

15 The result is originally due to Blackwell (1951a, 1953, 1951b) and Stein (1951).
16 For more details about convex stochastic ordering, see, e.g., Chapter 3 of Shaked and Shanthikumar (2007).
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Proposition 3 can be viewed as follows. Suppose at each period, the DM uses a model m∗(a) as 
his reference model under action a ∈ A to form a nominal posterior distribution over the hidden 
state (conditioned on his current belief). He then uses a martingale distortion of this posterior 
distribution as the set of possible posterior distributions, since he does not fully trust his refer-
ence model m∗(a). That is, all his posterior distributions over the hidden state (i.e., under any 
m ∈ M \ m∗(a)) represent martingale distorted versions of the posterior distribution formed un-
der m∗(a). If the “cloud” of models, M , is built indirectly in this way (as opposed to directly 
considering different state and observation transition kernels), then our results above indicate 
that M will still have a BIWC member, and most of our main results will still hold. This builds a 
subtle bridge between the “cloud” of models, M , considered in this paper and the idea of using 
martingale distortions (without commitment to previous period distortions) to represent model 
misspecification that has appeared in Hansen and Sargent (2007).

We now turn our attention to the properties of the optimal APOMDP policy. Let the mapping 
a∗
t : �S × I → A denote the optimal APOMDP policy with t periods to go, and define the 

sets �∗
t,a(α) � {π ∈ �S : a∗

t (π , α) = a}, which we refer to as policy regions. The search for an 
optimal policy can be significantly simplified if policy regions are convex.

First, we note that even in a traditional POMDP, the policy regions may not be convex unless 
some specific conditions hold (see, e.g., Ross, 1971, White, 1978, Lovejoy, 1987a). We illustrate 
through the following example that the same observation holds for APOMDPs.

Example 2 (Policy regions). Consider the representative APOMDP of Example 1. Fig. 2 illus-
trates the policy regions at t = 3 for various levels of pessimism, α. As can be seen from parts (a), 
(c), and (d) of this figure, the policy regions are not always convex. Moreover, a maximin DM 
(Fig. 2 part (d)) will use action 1 (e.g., a low inflation target) unless he is somehow confident that 
the system is at state 1 (e.g., a low unemployment rate). Such a DM will use action 1 more than 
any other DM. In contrast, a maximax DM (Fig. 2 part (a)) uses action 3 (e.g., a high inflation 
target) more than any other DM. An Hα optimizer (with a mid range α), however, will make a 
careful balance between using actions 1 and 3.

While the policy regions under Hα are not necessarily convex, the following result presents 
sufficient conditions for their convexity.

Proposition 4 (Convex policy regions). If (a) the ambiguity set M has a BIWC member, and (b) 
under an action a ∈ A , the value function Vt−1(T (π , a, o, m), α) under both mt−1 and mt−1 is 
constant in π , then �∗

t,a(α) is a convex set (∀α ∈ I ).

Condition (a) of the above proposition holds if, for instance, under each action one of the 
models is less informative than the rest (Proposition 3). It should be also noted that condition (b) 
of the above proposition appears in many applications. For instance, in Section 6.1 we will show 
how the structural properties established in this section can be used to significantly reduce the 
complexity of solving an extension of job matching problems that, unlike the traditional litera-
ture, allows for model ambiguity. As we will see, for these problems, when the worker decides 
to switch jobs, his updated belief T (π , a, o, m) is independent of his prior belief π (although 
it depends on the underlying model, m). As another example that will discuss later, in machine 
replacement problems (see, e.g., Cooper and Haltiwanger, 1993 for introduction and applica-
tions in economic theory), machine (i.e., a general asset) deterioration is typically ambiguous 
and hard to define through one probabilistic model, making the proposed APOMDP framework 
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Fig. 2. Policy regions of the APOMDP for various levels of pessimism, α.

an attractive decision-making tool. However, when the machine is replaced or fully inspected, the 
system’s core state becomes fully observable to the DM. Hence, under this action, T (π , a, o, m)

lies on a corner of the (n − 1)-simplex �S regardless of π . In Section 6.2, we will discuss this 
class of problems in more depth, and we will show how the structural properties established in 
this section can significantly simplify solving such a challenging class of problems.

Remark 4 (APOMDP approximation). As discussed earlier, the BIWC member condition re-
quired in several results in this section is not that restrictive, and holds under various conditions 
and in many applications. However, even for APOMDPs in which the ambiguity set does not have 
a BIWC member, our results can be used to provide effective approximations. For instance, one 
can enlarge the ambiguity set by adding fictitious members so that it satisfies the BIWC member 
requirement. Then, considering the APOMDP with the new ambiguity set as an approximation 
for the original APOMDP problem, one can use the results of this section to (a) approximate 
the value function with a piecewise-linear and convex function (Proposition 2), (b) calculate the 
approximated value function through characterizing the ψ -vectors (Proposition 2), (c) derive 
convex policy regions (Proposition 4), and (d) gain some insights into effective and yet well-
structured control policies.

4.2. Monotonicity

In this section, we explore conditions under which one can guarantee the monotonicity of 
the APOMDP value function. Such results allow a DM to gain insights into the structure of the 
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optimal policy without any computational effort. We start by stating the monotonicity of the 
APOMDP value function in the DM’s pessimism level.

Proposition 5 (Monotonicity: pessimism level). The value function Vt(π , α) is non-increasing in 
α (∀t ∈ T , ∀π ∈ �S ).

A more important monotonicity result is related to the DM’s information state (belief vector). 
To compare two elements of the information state space �S , one needs to use a stochastic 
ordering which is preserved under the Bayesian operator (2). Total Positivity of Order 2 (T P2) is 
the natural choice for this purpose.

Definition 3 (Total Positivity of Order 2 (T P2), Karlin and Rinott, 1980). Denote by f and g two 
real-valued ν-variate functions defined on X = X1 × X2 × . . . × Xν where each Xi is totally 
ordered. f is said to be larger than or equal to g in (multivariate) Total Positivity of Order 2 
sense (g 	T P2 f ) if for all x, y ∈ X : f (x ∨ y) g(x ∧ y) ≥ f (x) g(y), where ∨ and ∧ are the 
usual (componentwise max and min) lattice operators. Similarly, for two probability vectors (or 
multi-dimensional mass functions) π = (π i : i ∈ S ) ∈ �S and π̂ = (π̂ i : i ∈ S ) ∈ �S , we 
use the notation π 	T P2 π̂ , if π i π̂ î

≥ π
î
π̂ i whenever i ≤ î and i, ̂i ∈ S .

The T P2 ordering defined above reduces to the Monotone Likelihood Ratio (MLR) ordering 
for univariate functions (i.e., when ν = 1), and so is also known as strong MLR ordering (Whitt, 
1982). However, it should be noted that, unlike MLR ordering, T P2 is not reflexive, which causes 
additional challenges in partially observable systems.17

Definition 4 (T P2 transition kernels). For a given model m ∈ M , the set of state transition 
probability kernels Pm = {P a

m : a ∈ A } is said to be T P2, if the function pa
ij (m) = Pr{j |i, a, m}

defined on X = S ×S is T P2 for all a ∈ A .18 Similarly, for a given model m ∈ M , the set of 
observation transition probability kernels Rm = {Ra

m : a ∈ A } is said to be T P2 if the function 
ra
jo(m) = Pr{o|j, a, m} defined on X = S × O is T P2 for all a ∈ A .

We also need to define the set of real-valued T P2-nondecreasing functions induced by �S .

Definition 5 (Real-valued T P2-nondecreasing functions). The set of real-valued T P2-nonde-
creasing functions induced by �S , denoted by F�S , is the set of all real-valued functions 
defined on �S × X1 × X2 × . . . × Xν (for some arbitrary ν ∈ N and sets X1, . . . , Xν ) such 
that f ∈ F�S if f (π , . . . , .) ≤ f (π̂ , . . . , .), whenever π 	T P2 π̂ and π, π̂ ∈ �S .

In a POMDP, it is known that the value function belongs to F�S under some specific con-
ditions (see, e.g., Proposition 1 of Lovejoy, 1987b, or Theorem 2.4 of Rieder, 1991). A natural 
question is whether or not the APOMDP value function belongs to F�S . To provide an an-
swer, we start with the following lemma, which shows that the set F�S is closed under both 
pessimism and optimism.

17 A function f is said to be reflexive T P2 (or, for simplicity, T P2) if f 	T P2 f .
18 This is equivalent to all the second-order minors of matrix Pa

m = [pa (m)]i,j∈S being non-negative for all a ∈ A .

ij
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Lemma 3 (Closedness of F�S under pessimism and optimism). If ht(π , a, m, α) ∈ F�S for 
all m ∈ M , then ht (π , a, mt(π , a, α), α) ∈ F�S and ht (π , a, mt(π, a, α), α) ∈ F�S .

In Online Appendix A, we also establish the closedness of F�S under observation-based 
expectation operators (see Lemma EC.1). Using these results, we now first show that under some 
conditions the set F�S is closed under APOMDP value iteration. This, in turn, will allow us to 
establish important monotonicity results for the APOMDP value function. In what follows, we 
let ↑Rn denote the set of all vectors in R

n with an ascending order of elements.19

Proposition 6 (Monotonicity preservation in APOMDP). Suppose the set of kernels Pm and Rm

are T P2 for all m ∈ M .
(i) If Vt−1(π , α) ∈ F�S , then ht−1(π, a, m, α) ∈ F�S for all m ∈ M .
(ii) If Vt−1(π , α) ∈ F�S and ga ∈↑

R
n for all a ∈ A , then Vt(π , α) ∈ F�S .

Finally, the following theorem presents conditions for both finite and infinite-horizon settings 
under which the value function of an APOMDP is monotonic. Notably, it provides a general-
ization for Proposition 1 of Lovejoy (1987b) and Theorem 4.2 of Rieder (1991) which establish 
monotonicity results for traditional POMDPs. We again highlight that the structural results we 
have established in this and previous section have important implications in a variety of applica-
tions in economics and beyond, some of which we will discuss in Section 6.

Theorem 1 (Monotonicity in APOMDP). Suppose the set of kernels Pm and Rm are T P2 for all 
m ∈ M and ga ∈↑

R
n for all a ∈ A .

(i) If T < ∞ and g0 ∈↑
R

n, then Vt(π , α) ∈ F�S for all t ∈ T and α ∈ I .
(ii) If T = ∞, then V∞(π , α) ∈ F�S for all α ∈ I .

5. Performance guarantee and robustness of the APOMDP policy

We now first explore the effectiveness of the policy obtained by solving an APOMDP in 
dealing with ambiguity. In particular, we consider the optimal APOMDP policy (Hα), and derive 
a bound for the maximum reward loss that may occur when there is model ambiguity and Hα is 
implemented compared to when the correct model is completely known and an optimal POMDP 
policy is used (i.e., the absolute best-case under no model ambiguity). In this way, we provide 
a performance guarantee for using Hα when facing model ambiguity. As we will see, this will 
also enable the DM to investigate whether the ambiguity set he is using is “tight” enough. We 
then explore the robustness of the Hα policy to variations in the pessimism level, α.

To provide a performance guarantee, we need some preliminary definitions and results. First, 
we need a measure for the “tightness” of the ambiguity set.

Definition 6 (ε-Tightness). The ambiguity set M is said to be ε-tight if for any two m1, m2 ∈ M :

|pa
ij (m1)r

a
jo(m1) − pa

ij (m2)r
a
jo(m2)| ≤ ε ∀i, j ∈ S , ∀o ∈ O, ∀a ∈ A . (13)

An APOMDP is said to be ε-tight if its ambiguity set is ε-tight.20

19 For instance, (1, 2, . . . , n − 1, n)′ ∈↑
R

n, (1, 1, . . . , 1, 1)′ ∈↑
R

n, but (1, 2, . . . , n, n − 1)′ /∈↑
R

n.
20 By this definition, a 0-tight APOMDP is a POMDP. It should be also noted that a larger “cloud” of models (i.e., a 
larger M ) typically (but not necessarily) results in a weaker level of tightness.
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The notion of ε-tightness defined above can also be viewed as a way of measuring the “diam-
eter” of the ambiguity set M . Using this notion, we now bound the maximum difference in the 
vector of conditional observation probabilities Pr(o|π, a, m) � (P r{o|π , a, m1} : o ∈ O) caused 
by model ambiguity.

Lemma 4 (L1-norm bound). For any ε-tight APOMDP:

||Pr(o|π , a,m1) − Pr(o|π , a,m2)||1 ≤ ξ ∀m1,m2 ∈ M ,∀π ∈ �S ,∀a ∈ A ,

where || · ||1 is the L1-norm,21 ξ = min{k n ε, 2}, n = |S |, and k = |O|.

When the DM is facing ambiguity, his belief about the core state (i.e., his information state 
π ∈ �S ) at any decision epoch might be distorted compared to when he knows the exact model. 
We next present a similar result to that of Lemma 4, but by considering the case where the DM’s 
belief state is distorted.

Lemma 5 (Belief distortion). For any two belief states π, π̂ ∈ �S :

||Pr(o|π , a,m) − Pr(o|π̂ , a,m)||1 ≤ ||π − π̂ ||1 ∀m ∈ M ,∀a ∈ A .

In addition, if the APOMDP is ε-tight, then:

||Pr(o|π , a,m1) − Pr(o|π̂ , a,m2)||1 ≤ ξ + ||π − π̂ ||1 ∀m1,m2 ∈ M ,∀a ∈ A ,

where ξ is defined in Lemma 4.

We next consider the effect of belief distortion by assuming that a model m ∈ M is indeed 
the true model. For generality, we allow the DM to follow any arbitrary policy (within the class 
of deterministic and Markovian policies) η : �S ×I → A , and denote by V m,η

t (π) the reward 
obtained under such policy when m is the true model and the belief is π ∈ �S . Assuming model 
m is the true model, we let V m,η

t (π̂) denote the reward obtained under the same actions used to 
calculate V m,η

t (π), but when the belief is π̂ ∈ �S instead of π ∈ �S (i.e., a distorted belief).
Moreover, without loss of generality and for clarity, we assume g0 = 0 in the rest of this 

section.22

Lemma 6 (Max reward loss – distorted belief). Under any policy η:

|V m,η
t (π) − V

m,η
t (π̂)| ≤ (1 − βt+1) g

(1 − β)2 ||π − π̂ ||1 ∀π , π̂ ∈ �S ,∀m ∈ M ,

where g = maxa∈A ||ga ||∞ (with || · ||∞ denoting the L∞-norm).

Next, we need to bound the maximum difference between the reward obtained from the 
APOMDP versus that obtained from a POMDP, when the DM uses the same policy in both: when 
using a fixed policy, what is the maximum reward loss caused by model ambiguity? To provide 

21 For any real vector x = (x1, x2, · · · , xn) ∈ R
n and real number p ≥ 1, the Lp-norm is ||x||p = (|x1|p + |x2|p +

· · · + |xn|p)1/p . In this paper, we use the L1-norm (i.e., the rectilinear distance) and the L∞-norm (i.e., the limit of Lp

as p → ∞, or equivalently ||x||∞ = max{|x1|, |x2|, · · · , |xn|}).
22 Extending the results to g0 �= 0 is straightforward and is left to reader.
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the answer, we let V η
t (π, α) denote the APOMDP value function under policy η, and compare it 

with the corresponding POMDP value function under η and model m, denoted by V
m,η
t (π).

Lemma 7 (Max reward loss – arbitrary policy). If the APOMDP is ε-tight, then under any pol-
icy η:

|V m,η
t (π) − V

η
t (π , α)| ≤ ξ̄ β (3 − β)(1 − βt ) g

(1 − β)3 ∀m ∈ M ,∀π ∈ �S ,∀t ∈ T ,∀α ∈ I ,

where ξ̄ = min{k n ε, 3 (1−β)
3−β

}, n = |S |, and k = |O|.

Finally, we present our main performance guarantee result by bounding the maximum reward 
loss that may occur by following the Hα policy instead of the optimal policy of the no-ambiguity 
case. This bounds the maximum reward loss of the Hα policy when evaluated in (and com-
pared to) any of the POMDP models in the ambiguity set.

Theorem 2 (Max reward loss – optimal policy). If the APOMDP is ε-tight, then

V m
t (π) − V

m,Hα

t (π) ≤ 3 ξ̄ β (3 − β)(1 − βt ) g

(1 − β)3 ∀m ∈ M ,∀π ∈ �S ,∀t ∈ T ,∀α ∈ I ,

where ξ̄ is defined in Lemma 7.

The bound provided in Theorem 2 is tight. For instance, it goes to zero as ε → 0. In various 
applications, this allows the DM to quantify a useful performance guarantee (see, e.g., Section 6.1
where we develop a “price of ambiguity” in a job matching application). Importantly, Theorem 2
also allows a DM (who is facing model ambiguity but follows Hα) to determine if his ambiguity 
set is tight enough: for a desired performance guarantee (maximum reward loss), he can deter-
mine the required “tightness” of the ambiguity set (regardless of its cardinality). This insight is 
established in the following result, where it is assumed g �= 0 and β �= 0 to avoid trivial cases.

Corollary 1 (Performance guarantee). Suppose, facing model ambiguity, the DM follows the Hα

policy over t periods. If M is chosen so that it is ε-tight for some ε ≤ ε, where

ε = (1 − β)3 δt

3 k nβ (3 − β)(1 − βt ) g
(g �= 0, β �= 0),

then a performance guarantee (maximum reward loss) of δt is ensured.

The above results provide a performance guarantee for following the Hα policy when facing 
model ambiguity. We generate more insights into the robustness of such policy under model 
ambiguity through the following experiment.

Example 3 (Robustness under Hα). We use the representative APOMDP of Example 1, and to 
gain insights into the performance of the Hα policy, we consider different DMs (e.g., monetary 
authorities trying to dynamically set the inflation rate to control unemployment) and uniformly 
distribute them over the simplex �S . The location of each DM represents his starting belief 
point (e.g., initial prior on the state of unemployment). We do this by creating grids of 0.05 
in the belief simplex and by locating a DM on each grid point. This results in considering the 
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Fig. 3. The reward loss with model ambiguity under the Hα policy for various levels of α. Dynamic versions of widely 
used maximin (α = 1) and maximax (α = 0) policies are dominated by the Hα policy for some mid-level α (e.g., 
α ∈ [0.6, 0.9]).

performance of 
(20+3−1

3−1

) = 231 different DMs.23 Every time, we give a specific value to α and 
ask all the DMs to follow the Hα policy with the given value of α. For each DM in this setting, we 
calculate the average reward loss by assuming that any of the models in the ambiguity set can be 
the true model. Since the DMs do not have any knowledge about which model is the true model, 
we assume each of the models can be the true model with an equal chance. We then consider the 
total average reward loss (due to model ambiguity) among all the DMs, when they follow the Hα

policy (obtained by solving an APOMDP for each DM), as our performance metric. An important 
point to notice is that, for each DM, we are able to calculate the Hα policy as well as its average 
reward loss exactly (no approximation). Fig. 3 illustrates the performance for various values 
of α. From our experiment, we gain the following insights. (a) Maximin (α = 1) and maximax 
(α = 0) policies are dominated by Hα policies with some mid-level α (e.g., α ∈ [0.6, 0.9]). 
Hence, the Hα policy is a valuable generalization of policies such as maximin and maximax 
as it provides more robustness. (b) The maximin criterion (widely used in robust optimization) 
performs better than the maximax one, but as discussed in (a), both can be improved by using a 
mid-level pessimism factor. (c) While there exists an optimal level α∗ (= 0.7 in this example), 
the performance of Hα is quite robust when α is in a range close to α∗. Hence, we observe that, 
even if a DM’s pessimism level is not exactly α∗ but is close to it, his policy performs well.24

The latter observation (part (c)) can be established more formally. In fact, we can show that 
if a DM’s pessimism level is not exactly α∗ but is “close” to it, then his policy regions are 
no different than those defined by α∗. To this end, we use the following way of measuring the 
distance between two sets, which is essentially the maximum distance of a set to the nearest point 
in the other set.

Definition 7 (Hausdorff distance). Consider two non-empty sets �1, �2 ⊂ R
n. The Hausdorff 

distance between �1 and �2 (with L∞-norm) is

dH (�1, �2)� max
{

sup
ξ1∈�1

inf
ξ2∈�2

||ξ1 − ξ2||∞, sup
ξ2∈�2

inf
ξ1∈�1

||ξ1 − ξ2||∞
}
. (14)

23 The number of distinct nonnegative integer solutions satisfying 
∑n

i=1 xi = c is 
(c+n−1

n−1
)
.

24 While these insights are presented here for a specific example (setting of Example 1), we have observed similar 
insights from tests under various other different settings. So the result seems to hold widely.
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It should be noted that dH (�1, �2) = 0 if, and only if, �1 and �2 have the same closures. In 
particular, if �1 and �2 are closed sets, then dH (�1, �2) = 0 if, and only if, �1 = �2.

Using the above definition, we can now show the following result, which establishes the equiv-
alence between optimal policy regions under α∗ and those of any α in a neighborhood of α∗.

Proposition 7 (Robustness in pessimism level). For all t ∈ T and α∗ in the interior of I , there 
exists ε > 0 such that

max
a∈A : �∗

t,a(α∗)�=∅
dH

(
�∗

t,a(α
∗),�∗

t,a(α)
) = 0, (15)

and �∗
t,a(α) �= ∅ whenever �∗

t,a(α
∗) �= ∅, for all α ∈ I satisfying |α∗ − α| < ε.

6. Applications of APOMDPs

In this section, we consider a few important applications of APOMDPs from economics (and 
beyond). As mentioned earlier, our work is widely applicable in various applications of dy-
namic decision-making where (a) the state is hidden to the decision maker (for some examples 
in the economics literature, see, e.g., Jovanovic, 1979, 1982, Jovanovic and Nyarko, 1995, 1996, 
Hansen and Sargent, 2007, and Cogly et al., 2008), and (b) the decision maker is facing model 
ambiguity/misspecification, and hence, wants to be robust to such ambiguity.

To illustrate the advantage of the results developed in previous sections, in what follows we 
first discuss an extension of the celebrated job matching model of Jovanovic (1979) in discrete 
time, where unlike the existing literature we allow for model ambiguity. As noted earlier, allow-
ing for model ambiguity enables making robust decisions by reducing the reliance on a single 
probabilistic model. We show how this extension of the job matching problem can be modeled 
as an APOMDP, and how the structural results developed in the previous sections can be used 
to significantly reduce the complexity of characterizing the value function as well as the opti-
mal policy. As another application, we next provide an extension for the widely studied class of 
machine/asset replacement problems, where unlike the extant literature we allow deterioration 
probabilities to be ambiguous (see, e.g., Cooper and Haltiwanger, 1993 for applications in set-
tings without ambiguity in economic theory). Similar to the job matching problem, we then show 
how the structural results provided in the earlier sections help to simplify solving this challenging 
class of problems.

6.1. Job matching problems with model ambiguity

Models of job matching typically assume that a worker-task match can be fully defined via 
a single probabilistic model. Consider, for example, the following discrete-time version of the 
job matching model of Jovanovic (1979) (see also Sections 10.10 and 10.11 of Stokey et al., 
1989). A worker can choose among different tasks, and each task has a worker-task match 
level, θ ∈ [0, 1], which represents the proficiency of the worker at that specific task. Suppose 
the worker-task match can be at one of the n different levels25: θ ∈ {θi : i = 1, 2, · · · , n}. With-
out loss of generality, assume these levels are labeled such that 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θn ≤ 1. The 
worker does not know his proficiency on a given task, and has to try it out, observe the returns, 

25 The number of levels, n, can be set to an arbitrarily high number to closely approximate models with continuous 
worker-task proficiency.
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and form beliefs. At any given period, when working on a task with worker-task match θi , the 
worker produces a return of 1 with probability θi or a return of 0 with probability 1 − θi , where 
returns on a given task are serially independent.26 Upon observing the return at each period, the 
worker can decide to stay with the same job, or receive an average compensation, c ∈ R (with 
c = 0 as a special case27), and draw a new θ in the next period (e.g., do a job search and engage 
in a new job with a potentially different worker-task match level).

The above setting represents a relatively general model of job matching in discrete time (es-
pecially in the spirit of Jovanovic, 1979). However, the literature on this type of models typically 
assumes that the worker can fully specify a single probabilistic model (e.g., a single probability 
mass function on θ denoted by μ(θ)) that defines for him the distribution of tasks among dif-
ferent worker-task match levels. This assumption is, however, strong and is unlikely to hold in 
realistic scenarios. What if the worker is ambiguous about this, and wants to take this ambiguity 
into account? That is, what if instead of a single probabilistic model he is facing a “cloud” of 
models? In particular, what if he cannot assign a single probability mass function μ on θ , and 
only knows that μ ∈ {μm : m = 1, 2, · · · , |M |} for some |M | ∈ Z+?28

In what follows, we show how the decision-making problem faced by the worker can be 
formulated as an APOMDP, and how our results in the previous section can be applied to de-
rive the worker’s optimal policy. To this end, similar to the general framework introduced in 
Section 3, let the core state space be S � {1, · · · , n}, where the core state represents the cur-
rent task. That is, the core state is i ∈ S if the worker is engaged in a task with worker-task 
match θi . This core state is, however, hidden to the worker. Thus, we let π ∈ �S denote his 
belief about the core state, where as before �S denotes the (n − 1)-simplex induced by S . By 
trying the task, the worker can observe the returns, which server as his observations. Hence, 
we let the observation space be O � {1, 2}, where o = 1 represents a “failure” observation 
(return of zero) and o = 2 represents a “success” observation (return of one).29 Similarly, the 
action space is A � {1, 2}, where a = 1 represents the “continuing” action (staying with the 
current task) and a = 2 represents the “switching” action (drawing a new θ from μ(θ)). We 
let the ambiguity set (i.e., the “cloud” of models) be indexed by m ∈ M � {1, 2, · · · , |M |}, 
where μ = μm under model m. Using the notation of the general framework introduced in Sec-
tion 3, for this job matching model, the core state transition probabilities under action a = 1
is given by p1

ij (m) � Pr{j |i, a = 1, m} = 1{i=j} for all i, j ∈ S , and under action a = 2 by 

p2
ij (m) � Pr{j |i, a = 2, m} = μm(θj ). The observation transition probabilities under action 

a = 1 are defined by r1
j1(m) � Pr{o = 1|j, a = 1, m} = 1 − θj and r1

j2(m) � Pr{o = 2|j, a =
1, m} = θj , and under action a = 2 as r2

j1(m) � Pr{o = 1|j, a = 2, m} = 1 − Eμm[θ ] and 

r2
j2(m) � Pr{o = 2|j, a = 2, m} = Eμm[θ ], where Eμm[θ ] � ∑

i∈S θi μm(θi). Finally, we let 

26 This serially independent type of return is a common assumption in the literature (see, e.g., p. 311 of Stokey et al., 
1989) that we also follow for simplicity. However, our APOMDP framework only requires Markovian dependencies, and 
can be used for modeling such extensions (e.g., when the worker’s proficiency improves due to learning-by-doing).
27 The majority of the literature considers the special case with c = 0 (see, e.g., Sections 10.10 and 10.11 of Stokey 
et al., 1989). Here, we allow for a general c ∈ R. We also note that an extension to the case where the compensation 
depends on the match level is straightforward.
28 Probability mass functions in {μm : m = 1, 2, · · · , |M |} need not be from the same family of distributions.
29 The extension of our model to settings with more than two observations is straightforward. We use the binary obser-
vations here for simplicity and to match the literature (see, e.g., Sections 10.10 and 10.11 of Stokey et al., 1989).
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the immediate reward under action a ∈ A be defined by ga ∈ R
n, where g1 is a vector with ith 

element equal to θi , and g2 is a vector with all elements equal to c.30

With these, we can write the underlying APOMDP Bellman equation using (8) as:

Vt (π , α) = max
a∈A

{
π ′ga + β

[
α ht−1(π, a,mt−1(π , a,α),α)

+ (1 − α)ht−1(π, a,mt−1(π , a,α),α)
]}

= max
{
Eπ [θ ] + β

[
α ht−1(π ,1,mt−1(π,1, α),α)

+ (1 − α)ht−1(π,1,mt−1(π ,1, α),α)
]
,

c + β
[
α ht−1(π ,2,mt−1(π ,2, α),α)

+ (1 − α)ht−1(π,2,mt−1(π ,2, α),α)
]}

, (16)

and solve it along with the terminal condition V0(π, α) = 0, which assumes (without loss of 
generality) that no return is collected at the end of the horizon. In (16), Eπ [θ ] � ∑

i∈S πi θi , and 
the function Vt(π , α) represents the optimal overall return of the worker (also referred to as the 
DM hereafter) when there are t periods to go, his belief is π ∈ �S , and his pessimism factor 
is α. Furthermore, similar to (7), in (16) we have

ht−1(π, a,m,α)�
∑
o∈O

Pr{o|π, a,m}Vt−1(T (π , a, o,m),α), (17)

where

Pr{o|π , a,m} =
∑
i∈S

∑
j∈S

π ip
a
ij (m)ra

jo(m) =

⎧⎪⎪⎨
⎪⎪⎩

1 −Eπ [θ ] : o = 1, a = 1,

Eπ [θ ] : o = 2, a = 1,

1 −Eμm[θ ] : o = 1, a = 2,

Eμm[θ ] : o = 2, a = 2,

and the belief updating operator T (π, a, o, m) can be calculated based on (2):

T (π, a, o,m) =
(
π ′P a

mRa
m(o)

)′

Pr{o|π, a,m}

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π̂ �
(

π1(1−θ1)
1−Eπ [θ] ,

π2(1−θ2)
1−Eπ [θ] , · · · ,

πn(1−θn)
1−Eπ [θ]

)′ : o = 1, a = 1,

π̃ �
(

π1 θ1
Eπ [θ] ,

π2 θ2
Eπ [θ] , · · · , πn θn

Eπ [θ]
)′ : o = 2, a = 1,

π0
m �

(
μm(θ1),μm(θ2), · · · ,μm(θn)

)′ : o = 1, a = 2,

π0
m �

(
μm(θ1),μm(θ2), · · · ,μm(θn)

)′ : o = 2, a = 2.

(18)

Thus, based on (17) we have:

ht−1(π, a,m,α) =
{ (

1 −Eπ [θ ])Vt−1(π̂, α) +Eπ [θ ]Vt−1(π̃, α) : a = 1,

Vt−1(π
0
m,α) : a = 2.

(19)

Therefore, the APOMDP Bellman equation (16) has a simple form:

Vt (π , α) = max
{
Eπ [θ ] + β

[(
1 −Eπ [θ ])Vt−1(π̂, α) +Eπ [θ ]Vt−1(π̃, α)

]
,

c + β
[
α min

m∈M
Vt−1(π

0
m,α) + (1 − α) max

m∈M
Vt−1(π

0
m,α)

]}
. (20)

30 To avoid the trivial case where receiving compensation c is optimal in each period, we shall assume c is small enough. 
In particular, we assume c is not greater than θ .
n



24 S. Saghafian / Journal of Economic Theory 178 (2018) 1–35
Finally, letting m and m be the minimizer and the maximizer in the second line of (20), 
respectively, we can write the APOMDP Bellman equation as:

Vt(π , α) = max
{
Eπ [θ ] + β

[(
1 −Eπ [θ ])Vt−1(π̂ , α) +Eπ [θ ]Vt−1(π̃ , α)

]
,

c + β
[
αVt−1(π

0
m,α) + (1 − α)Vt−1(π

0
m,α)

]}
. (21)

Importantly, we note that the first line of (21) (which corresponds to a = 1) is independent of the 
model m, and m in the second line of (21) (which corresponds to a = 2) is independent of the 
DM’s belief, π . Thus, the ambiguity set M has a BIWC member (see Definition 1). Therefore, 
the majority of the structural results developed in the previous sections for a general APOMDP 
hold for this setting. In the next section, we discuss such results in more detail, and show how 
they can be used to characterize the DM’s value function and optimal policy.

6.1.1. Structural results: job matching with model ambiguity
It follows from Lemma 1 that the Bellman operator in (21) is a contraction mapping with 

modulus β on the complete metric space (Bα , dα). Hence, if we consider the job matching 
problem in infinite-horizon by setting T = ∞, taking the limit as t → ∞ in (21), and denoting 
the infinite-horizon value function by V∞(π , α), from Proposition 1 we immediately have that for 
all π ∈ �S and α ∈ I the value function V∞(π, α) is unique and satisfies limt→∞ Vt(π , α) =
V∞(π, α).

Since the ambiguity set M has a BIWC member, we observe from Proposition 2 that for all 
t ∈ T (i.e., for every period), Vt (π , α) defined in (21) is both piecewise-linear and convex in π

for all α, and therefore, can be simply written as Vt(π , α) = maxψ∈�t,α {π ′ψ}. Furthermore, we 
note that based on the functions pa

ij (m) and ra
jo(m) defined earlier for the underlying job match-

ing problem, the set of core state and observation transition kernels (Pm and Rm, respectively) are 
T P2 (see Definition 4) for all m ∈ M . Using this fact along with Theorem 1 and Proposition 5, 
we can establish the following monotonicity result.

Proposition 8 (Job matching: monotonicity). The value function of the job matching problem 
under model ambiguity has the following monotonicity properties:

(i) Vt (π, α) ∈ F�S for all t ∈ T and α ∈ I , and V∞(π, α) ∈ F�S for all α ∈ I .
(ii) For all π ∈ �S and t ∈ T , Vt (π, α) is non-increasing in α. Similarly, for all π ∈ �S , 

V∞(π, α) is non-increasing in α.

The first part of the above result states that the value function in the job matching problem is 
T P2-nondecreasing (see Definition 5) in both finite-horizon and infinite-horizon settings. This 
means that, all else equal, a higher belief (in the T P2 sense) yields a (weakly) higher overall 
return for the worker. The second part of the above result states that, in both finite-horizon and 
infinite-horizon settings, a higher pessimism factor results in a (weakly) lower overall return. 
Hence, all else equal, the overall return cannot be higher for a more pessimistic worker than a 
more optimistic one.

Next, we turn our attention to the properties of the optimal policy. To provide insights into 
the structure of the optimal policy, we need the following definition of the set of real-valued 
T P2-nonincreasing functions, which relies on Definition 5.

Definition 8 (Real-valued T P2-nonincreasing functions). The set of real-valued T P2-nonin-
creasing functions induced by �S , denoted by F̂� , is the set of all real-valued functions 
S
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defined on �S × X1 × X2 × . . . × Xν (for some arbitrary ν ∈ N and sets X1, . . . , Xν ) such 
that f ∈ F̂�S if −f ∈ F�S .

We also need the following definition whose power is in yielding monotone optimal policies 
(see, e.g., Topkis, 1998).

Definition 9 (T P2-supermodularity and T P2-submodularity). When A = {1, 2}, the DM’s 
APOMDP utility function defined in (9) is said to be T P2-supermodular, if Ut(π, α, 2) −
Ut(π, α, 1) ∈ F�S (∀t ∈ T , ∀α ∈ I ). Similarly, when A = {1, 2}, the DM’s APOMDP utility 
function is said to be T P2-submodular, if Ut(π, α, 2) − Ut(π, α, 1) ∈ F̂�S (∀t ∈ T , ∀α ∈ I ).

We next establish that for job matching problem with model ambiguity, the DM’s utility func-
tion is T P2-submodular.

Lemma 8 (Job matching: T P2-submodular utility). For the job matching problem with model 
ambiguity, the DM’s utility function (in both finite-horizon and infinite-horizon settings) is 
T P2-submodular.

Since the utility function is T P2-submodular, we can show that the optimal policy a∗
t : �S ×

I → A is nonincreasing (in the T P2 sense). Thus, if the worker’s optimal action is to continue 
with the current task (a = 1) when his belief is π , his optimal action cannot be switching to a 
new task (a = 2) when his belief is π+, so long as π 	T P2 π+ (all else equal).

Theorem 3 (Job matching: monotone optimal policy). In the finite-horizon setting, a∗
t (π , α) ∈

F̂�S (∀t ∈ T , ∀α ∈ I ). Similarly, in the infinite-horizon setting a∗∞(π , α) ∈ F̂�S (∀α ∈ I ).

In addition, it follows from Proposition 4 that the region for which action a = 2 is optimal is 
a convex set.

Proposition 9 (Job matching: convex policy region). In the finite-horizon setting, �∗
t,2(α) � {π ∈

�S : a∗
t (π, α) = 2} is a convex set (∀t ∈ T , ∀α ∈ I ). Similarly, in the infinite-horizon setting, 

�∗∞,2(α) � {π ∈ �S : a∗∞(π , α) = 2} is a convex set (∀α ∈ I ).

The above results significantly reduce the complexity of characterizing the optimal policy. For 
example, it follows that at period t , there is a threshold surface ϒt(α) ⊂ �S which divides the 
information space �S into two regions: one in which action a = 1 is optimal (�∗

t,1(α)) and one 
which action a = 2 is optimal (�∗

t,2(α)). A schematic illustration of these regions are presented 
in Fig. 4. Since a∗

t (π , α) is monotone (Theorem 3), these results mean that ϒt(α) can be viewed 
as a control-limit on the DM’s belief π which fully prescribes his optimal action. Furthermore, 
since by Proposition 9 the policy region �∗

t,2(α) is a convex set, it follows that the threshold 
surface ϒt(α) is convex and almost everywhere differentiable. In addition, we can show that both 
policy regions �∗

t,1(α) and �∗
t,2(α) are connected sets31 (see the proof of Proposition 11). Due to 

these results, the threshold surface ϒt(α) can be characterized using an effective approximation 
technique (see Section 6.2.1 for more details).

31 A set is connected if it cannot be divided into two disjoint non-empty closed sets.
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Fig. 4. A schematic representation of the optimal policy regions and the threshold in the job matching problem with 
model ambiguity (n = 3, π = (π1, π2, π3)).

Finally, we note that the general results established in Section 5 can be used to provide a 
performance guarantee for a worker who is facing model ambiguity and follows the policy pre-
scribed by solving (21). To this end, suppose one of the models in M is indeed the correct model. 
Not knowing this, and facing model ambiguity, the worker follows the policy prescribed by the 
APOMDP formulation (21). What is the maximum overall return (i.e., over the entire horizon) 
that he may lose compared to an imaginary version of himself who knows the correct model? We 
refer to this quantity as the worker’s price of ambiguity, and provide an upper bound for it in the 
following proposition which is established using Theorem 2.

Proposition 10 (Job matching: price of ambiguity). For any two models m1, m2 ∈ M , define

γ (θj ,m1,m2)� max
{ ∣∣μm1(θj )(1 −Eμm1

[θ ]) − μm2(θj )(1 −Eμm2
[θ ])∣∣,

∣∣μm1(θj )Eμm1
[θ ] − μm2(θj )Eμm2

[θ ]∣∣}. (22)

(i) The ambiguity set for the Job Matching Problem is ε∗-tight (see Definition 6), where ε∗ �
maxθj ,m1,m2 γ (θj , m1, m2).

(ii) The worker’s price of ambiguity over a horizon of T periods is no more than

3 ξ∗ β (3 − β)(1 − βT ) θn

(1 − β)3 , (23)

where ξ∗ � min{2nε∗, 3(1−β)
3−β

}.

The result above suggests that the worker’s price of ambiguity is relatively low: following the 
policy obtained from the APOMDP formulation enables the worker to make robust decisions. As 
(23) shows, the price of ambiguity is especially low for a worker who has a low ε∗, θn, and/or β .
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6.2. Machine replacement problems with ambiguous deterioration

An important assumption in studies related to machine replacement problems is that ma-
chine deterioration probabilities (or that of any general asset under consideration) are completely 
known. However, this is a strong assumption and is often not encountered in practice. The 
proposed APOMDP approach provides a natural framework to relax such an assumption, and 
provide robust policies that do not heavily rely on a given probability transition matrix. This is 
an important advantage considering that deterioration probabilities are hard (and often impossi-
ble) to quantify in practice.

To gain deeper insights, and show the use of the structural properties provided earlier in this 
paper, we consider machine replacement problems in which A = {1, 2}. Considering this special 
class allows us to gain deeper insights into effective methods for characterizing optimal policies 
in APOMDPs. We note that, with general number of actions, a simple characterization of the 
optimal policy may not be achievable even for traditional POMDPs which ignore the underlying 
ambiguity. For instance, Ross (1971) shows that even for a two-state POMDP, the optimal policy 
may be complex, and may not have a control-limit structure. Here, we consider the more general 
class of APOMDPs by allowing for model ambiguity and general number of states, but focus 
on binary action cases. We present conditions under which a control-limit policy is optimal for 
any α ∈ I (including special cases of robust optimization or maximax approaches introduced 
earlier). Furthermore, we present a tractable procedure to directly approximate the control-limit 
thresholds, which significantly reduces the computational difficulty in characterizing the optimal 
policy.

We start by introducing the class of Binary Action Monotone Machine Replacement 
(BAMMR) APOMDPs.

Definition 10 (BAMMR APOMDPs). An APOMDP is called a Binary Action Monotone Machine 
Replacement (BAMMR), if it satisfies the following conditions: (a) A = {1, 2}, (b) the set of 
kernels P 2

m and R2
m are T P2 for all m ∈ M , (c) p1

ij (m) = 1{j=s(m)} for all i, j ∈ S , all m ∈ M , 

and some (potentially model-dependent) s(m) ∈ S , and (d) g1, g2, g2 − g1 ∈↑
R

n.

To present structural results, we first show that the DM’s APOMDP utility function for 
BAMMR APOMDPs is T P2-Supermodularity (see Definition 9).

Lemma 9 (Supermodularity of BAMMR APOMDPs). For any BAMMR APOMDP:
(i) If T < ∞ and g0 ∈↑

R
n, then the DM’s utility is T P2-supermodular.

(ii) If T = ∞, then the DM’s utility is T P2-supermodular.

The following result presents sufficient conditions for the existence of optimal control-limit 
policies for BAMMR APOMDPs. It provides an important extension for the available results on 
machine replacement problems without model ambiguity.

Theorem 4 (Control-limit policy). For any BAMMR APOMDP:
(i) If T < ∞ and g0 ∈↑

R
n, then a∗

t (π, α) ∈ F�S for all t ∈ T and α ∈ I . Furthermore, if 
M has a BIWC member, then �∗

t,1(α) is a convex set (∀t ∈ T , ∀α ∈ I ).
(ii) If T = ∞, then a∗∞(π, α) ∈ F�S for all α ∈ I . Furthermore, if M has a BIWC member, 

then �∗ (α) is a convex set (∀α ∈ I ).
∞,1
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The above result provides conditions under which a BAMMR APOMDP has an optimal 
control-limit policy. However, the T P2 ordering in the above result is stronger than what is 
needed, and does not help to characterize the threshold surface, since it only induces a partial 
ordering32 on �S . However, we can restrict our attention to T P2 ordering on lines, which will 
resolve the issue.33 To this end, let ei ∈ �S represent a vector with a one as the ith element 
and zeros elsewhere, denote the convex hull of e1, e2, · · · , en−1 by C, and let L (π̃) be the line 
in �S that connects π̃ ∈ C to en:

L (π̃) � {π ∈ �S : π = λπ̃ + (1 − λ)en, π̃ ∈ C, λ ∈ I }.

Definition 11 (T P2 ordering on lines). Vector π ∈ �S is said to be less than or equal to vector 
π̂ ∈ �S in the T P2 ordering sense on lines (denoted by π 	T P2−L π̂ ) if π 	T P2 π̂ and π, π̂ ∈
L (π̃) (i.e., if π and π̂ are on the same line connecting en to a point in π̃ ∈ C). Moreover, a 
real-valued function f is said to be T P2 nondecreasing on lines denoted by f ∈ FL

�S
, if the 

condition π 	T P2 π̂ in Definition 5 is replaced with π 	T P2−L π̂ .

Theorem 4 enables us to state that for any BAMMR APOMDP (a) a∗
t (π, α) ∈ FL

�S
, and 

(b) for each α, there exists a threshold surface ϒt(α) that partitions the information space 
�S into two individually connected sets such that a∗

t (π, α) = 1 if π is in the first region and 
a∗
t (π, α) = 2 otherwise,34 even if the ambiguity set M does not have a BIWC member.

Proposition 11 (Connectedness). For any BAMMR APOMDP:
(i) If T < ∞ and g0 ∈↑

R
n, then the policy regions �∗

t,1(α) and �∗
t,2(α) are both connected 

sets (∀t ∈ T , ∀α ∈ I ).
(ii) If T = ∞, then the policy regions �∗∞,1(α) and �∗∞,2(α) are both connected sets 

(∀α ∈ I ).
(iii) If M has a BIWC member, then �∗

t,1(α) is a convex set (∀t ∈ T , ∀α ∈ I ). Thus, the 
threshold surface ϒt(α) is convex and almost everywhere differentiable (∀t ∈ T , ∀α ∈ I ).

When a∗
t (π, α) ∈ FL

�S
and the policy regions are connected sets, to characterize the pol-

icy regions for a BAMMR APOMDP, an algorithmic procedure can move from en to a member 
of C (a decreasing direction in the T P2 − L sense) and find the point after which the optimal 
action changes from 2 to 1 (the control-limit point). If this procedure is repeated for all the 
members of C, the set of all control-limit points form the threshold surface ϒt(α). While the-
oretically sound, this can be computationally intractable. Thus, we next present a technique to 
effectively approximate ϒt(α). This will provide an easy-to-calculate method to characterize 
the policy regions. For simplicity, we present the method for the infinite-horizon case, i.e., to 
approximate ϒ∞(α). For the ease of notation, we use ϒ(α) instead of ϒ∞(α) in what follows.

6.2.1. Approximating the threshold
We now present a method to calculate the best linear approximation for the threshold ϒ(α)

in any BAMMR APOMDP (a similar method can be used for the job-matching problem of 

32 One cannot always compare two members of �S , using the T P2 ordering, and hence, [�S , 	T P2−L] is a poset.
33 See Krishnamurthy and Djonin (2009) for similar results in a POMDP application on radar resource management.
34 The infinite-horizon case is similar after setting t = ∞.
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Section 6.1 after some straightforward adjustments). To this end, consider the vector ϒ̂(α) =
(ϒ̂i(α) : i ∈ S ) ∈ R

n+, and let the corresponding policy defined by it be:

aϒ̂(α)(π , α) =
{

1 : π ′ ϒ̂(α) ≤ 1,

2 : π ′ ϒ̂(α) > 1.
(24)

The choice of 1 in the RHS of (24) and the condition ϒ̂(α) ∈ R
n+ are both made for uniqueness 

purposes. In fact, the choice of 1 avoids non-uniqueness that may occur due to scaling, and is 
without loss of generality. The condition ϒ̂(α) ∈ R

n+ is added, because in the Euclidean space 
one can always add a vector with the same elements to an existing vector to make it positive.

Now, consider the optimization program

ϒ̂∗(α) = arg max
ϒ̂(α)∈Rn+

V ϒ̂(α)∞ (·, α)

s.t. ||ϒ̂(α)||∞ = ϒ̂n(α), (25)

where V ϒ̂(α)∞ (·, α) denotes the infinite-horizon BAMMR APOMDP value function under the 
policy defined by (24). We claim that the above optimization program yields the best linear 
threshold surface for the BAMMR APOMDP resulting in a T P2 − L nondecreasing policy. 
To show this claim, we demonstrate that the condition of optimization program (25), which 
is a “maximum-last-element” requirement, is both necessary and sufficient for characterizing 
control-limit policies that are T P 2 − L in any BAMMR APOMDP. Hence, it guarantees (a) in-
clusion of all the T P2 − L nondecreasing policies, and (b) exclusion of all policies that are not 
T P2 − L nondecreasing.

Proposition 12 (T P2 − L threshold). aϒ̂(α)(π , α) ∈ FL
�S

if, and only if, ||ϒ̂(α)||∞ = ϒ̂n(α).

Remark 5 (Computing the approximate threshold). Based on the result above, program (25)
yields the best linear approximation for the BAMMR APOMDP threshold. Solving this program 
is, however, computationally challenging because it involves computing the APOMDP objec-
tive function for various policies. But similar to Krishnamurthy and Djonin (2009) who study 
the application of a POMDP (not an APOMDP) on radar management, one can use simula-
tion optimization to efficiently solve program (25), thereby characterizing an effective policy for 
the underlying BAMMR APOMDP. To this end, the objective function of program (12) can be 
replaced with the expected value of its sample path counterpart obtained from simulating the 
APOMDP, creating a stochastic optimization program. Moreover, it should be noted that the 
constrained program (25) can be easily transferred to an unconstrained one. For instance, one 
can use the change of variable ϒ̂n(α) = (

ϒ̃n(α)
)2 and ϒ̂i(α) = (

ϒ̃n(α) sin(ϒ̃i(α))
)2. Then, the 

nonnegativity and the maximum-last-element requirements of program (25) are automatically 
satisfied after the program is written in terms of the new vector ϒ̃(α) = (ϒ̃i(α) : i ∈ S ). Finally, 
a gradient-based algorithm can be used to efficiently solve the underlying stochastic optimization 
problem. We refer interested readers to Section III.C of Krishnamurthy and Djonin (2009) for 
more details about these steps and efficiency of this approach.

Example 4 (Approximating the threshold). We consider a BAMMR APOMDP with n = 3 states 
and |M | = 3 models. We let g0 = (1.0, 1.0, 1.1)′, g1 = (1.60, 1.80, 1.89)′, g2 = (1.60, 1.80,

1.90) so that g0, g1, g2, g2 − g1 ∈↑
R

n. We also let p1 (m) = 1{j=s(m)} for all i, j ∈ S , where 
ij
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Fig. 5. Threshold approximation for a BAMMR APOMDP.

s(1) = 1, s(2) = s(3) = 2. We set A = {1, 2}, α = 0.4, and choose the rest of parameters similar 
to those used in Example 1. The optimal APOMDP policy regions for this setting are shown 
in Fig. 5 (a). The best linear threshold obtained is depicted in Fig. 5 (b). As can be seen, the 
best linear threshold closely approximates the optimal threshold shown in Fig. 5 (a). Indeed, 
the approximation provides an effective control policy for the BAMMR APODMP problem. 
Fig. 5 (a) also shows that the policy region for action 1, �∗

t,1(α), is a convex set, and that the 
threshold is continuous and almost everywhere differentiable (as predicted by Proposition 11
part (iii)).

7. Connection to stochastic games with perfect information

We now briefly discuss an interesting connection between APOMDPs and nonzero-sum se-
quential games with perfect information and an uncountable state space. Consider a game with 
two players, player 1 (the DM) and player 2 who has two types: type 1 (adversary) and type 2 
(ally). In state π ∈ �S , player 1 chooses an action a ∈ A and receives a reward of π ′ga . Si-
multaneously, a biased coin that has probability α ∈ I of yielding head is tossed. The state of 
the system becomes (π, a, ω), where ω ∈ � � {H, T } is the outcome of the coin toss. If the 
outcome is head (tail), a type 1 (type 2) player plays (determines the model that dictates the ob-
servation and state transition probabilities). Consequently, the DM receives a signal/observation, 
and the new state becomes π ′, but this does not result in any reward for the decision maker. 
Each two sequential stages in this stochastic game correspond to one period in the APOMDP 
((2t, 2t + 1) can be used to denote the stages of the stochastic game corresponding to period t of 
the APOMDP).

We note that, although the APOMDP is a sequential decision-making processes with imper-
fect information, the corresponding game is of perfect information.35 To observe this, fix the 
pessimism factor α ∈ I and define the game’s state space as �̄S = �S ∪ (�S ×A ×�). For 
all π ∈ �S ⊂ �̄S , let player 1 action space be A and that of player 2 be an arbitrary singleton. 
For all π ∈ �S ×A ×� ⊂ �̄S , let player 1 action be an arbitrary singleton and that of player 2 
be m ∈ M . This shows that the game has a perfect information (with an uncountable state space).

35 A two-player stochastic game is said to have perfect information if its state space can be partitioned into two subsets 
such that the action set for player 1 is a singleton on one partition and the action set for player 2 is a singleton on the 
other partition (see, e.g., p. 72 of Fudenberg and Tirole, 1991, or p. 275 of Iyengar, 2005).
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Since the game is not necessarily zero-sum (unless α = 1), the game falls within the class 
of sequential non-zero-sum games with perfect information and an uncountable state space. We 
refer to Whitt (1980), Nowak (1985), Nowak and Szajowski (1999), Simon (2007), and the ref-
erences therein for some technical results on such games. Since the literature on these games 
is still limited and many technical challenges remain unsolved, we leave it for future research 
to use the above-mentioned link between APOMDPs and stochastic games to generate further 
structural results for APOMDPs.

8. Concluding remarks

Motivated by various real-world applications, we develop a new framework for dynamic 
stochastic decision-making termed APOMDP, which allows for both incomplete information 
regarding the system’s state and ambiguity regarding the correct model. The proposed frame-
work is a generalization of both POMDPs and robust MDPs, in that the former does not allow 
for model misspecification, and the latter does not allow for incomplete state information. In ad-
dition, unlike the literature on robust MDP studies, the proposed approach in this paper considers 
a combination of worst and best outcomes (α-MEU preferences) with a controllable level of pes-
simism. This (a) results in a differentiation between ambiguity and ambiguity attitude, (b) avoids 
the over-conservativeness of traditional maximin approaches widely used in robust optimization 
approaches, and (c) is found to be suitable in laboratory experiments in various choice behaviors 
including portfolio optimization as well as several other empirical studies that find that the in-
clusion of ambiguity seeking features is behaviorally meaningful. The α-MEU preferences also 
do not add much to the high computational complexity of dynamic models under incomplete 
information, especially in comparison to other preferences that may require consideration of all 
ambiguous outcomes (and not only the best and the worst).

To facilitate the search for optimal policies, we present several structural properties for 
APOMDPs. We find that model ambiguity in APOMDPs may result in non-convexity of the value 
function, hence deviating from the seminal result of Smallwood and Sondik (1973), who estab-
lished the convexity of POMDP value functions (in finite-horizon settings). However, we present 
conditions under which this convexity result can be extended from POMDPs to APOMDPs. 
We do this by using the Blackwell Ordering (Blackwell, 1951a) and a variation of Blackwell–
Sherman–Stein sufficiency theorem (Blackwell, 1951a, 1953, 1951b; Stein, 1951) to connect the 
required condition to the notion of “model informativeness” in the “cloud” of models considered 
by the DM. We also briefly connect our result to a different way of handling model misspecifica-
tion appeared in studies such as Hansen and Sargent (2007), in which beliefs are distorted due to 
model ambiguity using a martingale process. In addition to the value function, we also presented 
conditions for policy regions to be convex. These convexity results can significantly simplify the 
search for optimal policies in APOMDPs. For instance, the convexity of the value function in an 
APOMDP allows using similar computational methods to those already available for POMDPs 
(see, e.g., the discussion following Proposition 2) and the convexity of policy regions allows 
characterizing them via efficient optimization programs (see, e.g., Section 6.2.1).

Using the T P2 stochastic ordering, we present conditions under which monotonicity is pre-
served under both pessimism and optimism, and hence under the APOMDP Bellman operator. 
We also provide a performance guarantee for the maximum reward loss of a DM who uses the 
proposed APOMDP approach compared to an imaginary DM who does not have any model am-
biguity. We generate further insights into the benefit and robustness of the proposed APOMDP 
approach through a representative numerical experiment. We show that, if hypothetically the DM 
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is allowed to optimize his pessimism level, he would not choose extreme values corresponding 
to maximax or maximin preferences. An important implication of this result is that it sheds light 
on the importance of deviating from a worst-case view of the world, which has widely appeared 
in the robust optimization literature.

We also discuss in detail the specific applications of APOMDPs and their structural results 
in (a) job matching, and (b) machine replacement problems. However, we note that APOMDPs 
can be used in a variety of other applications in economics and beyond, since in many such 
applications a decision-maker faces both hidden sates and model misspecification. One example 
that we briefly mention in some of our numerical experiments is that of a monetary authority who 
cannot fully observe the exact level of unemployment. He dynamically receives imperfect signals 
about the unemployment level and wants to accordingly set the inflation rate so as to control the 
unemployment level. For such an authority, the dynamics of unemployment rates under any given 
inflation rate is often ambiguous and cannot be defined via a single probabilistic model.

Other examples where APOMDPs can be applied include: (1) Dynamic Principal-Agent Mod-
els: Principal-agent models in dynamic settings have been extensively studied by economists 
since the 1970s (see, e.g., Holmstrom, 1979). POMDP-type models are used to address the 
underlying information asymmetry and/or moral hazard aspects in dynamic settings (see, e.g., 
Zhang and Zenios, 2008 and Saghafian and Chao, 2014). The APOMDP approach of this paper 
can extend such models by allowing the transition probabilities to be ambiguous instead of fully 
known. (2) Stochastic Inventory Control: Minimax and Bayesian solutions are vastly studied 
for inventory control problems perhaps starting from the early work of Scarf (1958) and Scarf 
(1959). Recently, a variety of papers have developed POMDPs to study inventory control for 
systems in which inventory is not fully observable (e.g., due to record inaccuracy). Unrealisti-
cally, however, the literature assumes that the demand distribution is fully known (see Saghafian 
and Tomlin, 2016 and the references therein for more discussions). The APOMDP approach pro-
posed in this paper allows relaxing this assumption, and provides a method to develop inventory 
control strategies that do not rely on a particular demand distribution. (3) Strategic Pricing and 
Revenue Management: Strategic pricing and revenue management are widely studied in eco-
nomics and related fields. Studies such as Aviv and Pazgal (2005) develop POMDP models for 
dynamic pricing problems in revenue management. Again, using an APOMDP model instead 
of a POMDP allows a DM to reduce the dependency of the model to a specific demand dis-
tribution and/or market dynamics. (4) Medical Decision-Making: POMDPs are widely used in 
the medical decision-making field. The patient’s “health state” is typically not observable since 
medical tests are subject to false-positive and false-negative errors. Thus, one is inclined to use 
a POMDP approach. However, to do so, the core state and observation transition probabilities 
need to be estimated from data sets or through methods such as simulation. This typically results 
in estimation errors. In fact, in many medical decision-making applications, some actions (e.g., 
treatment options) are not commonly used by physicians in practice, and hence, there is only 
a very limited data (if any) regarding patient health transition probabilities under such actions. 
The APOMDP approach allows incorporating the resulted model misspecifications, and taking 
medical actions that are robust. (5) Optimal Search: Search for a hidden object is an important 
problem with various applications in economics, operations research, national security, and re-
lated fields. Existing models assume that the movements of the object are probabilistically known 
to the searcher. However, in most applications the searcher does not have any way of determining 
such probabilities, especially since the object is hidden. APOMDPs provide a natural tool to find 
effective search policies without relying on a specific probabilistic model. (6) Sequential De-
sign of Experiments: Various papers including Rieder (1991) and Krishnamurthy and Wahlberg 
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(2009) discuss the connection between POMDPs, the sequential design of experiments, bandit 
problems, and more generally the class of Bayesian control models. APOMDPs can be used for 
such applications as well to take into account the inevitable model misidentifications, and thereby 
reduce the dependency of actions to unknown probability measures.

We leave it to future research to pursue the use of APOMDPs in various applications. In light 
of our promising findings for policies obtained via APOMDPs, this can provide an influential 
path for future research. Future research can also develop approximations, bounds, myopic, or 
other suboptimal policies for APOMDPs to further facilitate solving them. Another fruitful area 
of research is to use and advance results in non-zero sum stochastic games with uncountable state 
spaces to generate more insights into the structure of APOMDPs. Given various applications of 
APOMDPs including those briefly discussed above, we expect to see more results from future 
research in these directions.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /
j .jet .2018 .08 .006.
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