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Using Machine Learning to Demystify Qs
Startups’ Funding, Post-Money

Valuation, and Success
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10.1 Introduction

In the modern economy, startups and entrepreneurship are viewed almost syn-
onymously, both resulting in technological innovation, economic growth, and jobs
creation. Touted as both a panacea for solving unemployment and a catalyst for
growth, it is unsurprising that major cities are vying to be the next Silicon Valley,
competing to attract innovative ideas, entrepreneurial talents, technology-driven
startups, and venture capital (VC) funding. Globally, startups have become an
increasingly prominent feature in the world economy, both as creators of economic
value and disruptors of existing industries. They also play significant roles in major
cities as important drivers of innovation and sources of next-generation ideas, in a
myriad of sectors, including healthcare, manufacturing, transportation, logistics, and
finance. Having a vibrant startup ecosystem, thus, increases the attractiveness of a
city for business investments that spur job growth or rejuvenate existing industries. It
is, therefore, unsurprising that the popular media is often filled with against-all-odds
success stories of startups. But are such startup success stories really against-all-
odds? Or are there measurable factors that can help to correctly predict the future
success of startups?

In recent years, academic research aimed at understanding the dynamics of
entrepreneurship have proliferated due to the growing role that startups play
(Shane & Ulrich, 2004), and financing/funding has been identified as a crucial
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factor in any successful startup ecosystem. On the one hand, startups—especially
technology-based firms—are often financially constrained (Carpenter & Petersen,
2002) requiring significant funding for research and development, customer acquisi-
tion, and marketing, among others. Startups that are well funded or VC-backed have
been reported to outperform their non-funded counterparts (Gompers & Lerner,
2001; Denis, 2004). Obtaining financing such as VC investments or follow-up
funding also contributes to the so-called signaling effect (Islam et al., 2018) helping
early-stage startups gain credibility as they progress from conceptualization to
commercialization. On the other hand, obtaining sufficient funding without early
signs of traction is often impossible. Funding and startup success, hence, can be
viewed as a chicken and egg problem.

This chicken and egg problem makes it often difficult to comprehend valuation
of startups and identify the key factors contributing to their success. For example,
will a startup with a given amount of Series A funding be eventually successful? Is it
possible to predict such startup’s likelihood of success with reasonable confidence,
given that success stories are typically rare events with about 90% of startups failing
on average? Answers to these types of questions can significantly assist various
players and decision-makers in the startup ecosystem, including entrepreneurs,
venture capitalists, policymakers, and researchers. For example, VCs are often
perceived as entities that fill the void in the innovation and commercialization
process. However, to ensure viability, VCs need to generate consistently superior
returns on investments, a significant challenge given the inherently risky nature of
early-stage companies. Since as high as 75% of venture-backed deals typically fail
to return the investment (Hoque, 2020), VCs rely on a small number of portfolio
investments to achieve outstanding paybacks—enough to cover for losses and
still produce substantial profits. Therefore, any data-driven method that can yield
superior investment decisions can be significantly valuable.

In this study, we review the entrepreneurial ecosystems and take stock of the
key fundraising activities in major cities around the world. We then construct two
models using modern machine learning approaches to predict startups’ potential
post-money valuation and probability of success using a dataset of funding activities
across different regions, sectors of the economy, and funding stages, observed over
a 10-year period (2009-2018).

Our study makes several contributions to the existing literature on startup and
entrepreneurship. First, we examine the startup financing landscape in the context
of different geographical regions and funding stages. In the ubiquitous, globalized
nature of modern technology-based startups and their products and services, there
is a need for research to shed light on how fundraising activities vary across cities.
This will also be beneficial for startups seeking funding as part of their internation-
alization strategy, and for venture funds targeting specific geographical regions and
financing stages. We also provide insights into statistical aspects of funding raised
in different regions and sectors of economy, including their distributional properties.
Second, we make use of some machine learning approaches to develop strong
prediction models that can (a) augment the myriad analysis and benchmarking
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typically done by venture funds, startups, or policymakers and (b) serve as basis
for further academic studies.

In what follows, we first review the startup financing landscape and introduce
our dataset. We then describe the methodology and approach behind our machine
learning models, and discuss the insights gained by making use of them on our
dataset. Finally, we conclude by (a) providing recommendations for various entities
involved in the startup ecosystem, including entrepreneurs and policymakers, (b)
identifying limitations of our work, and (c) summarizing potential avenues for future
work.

10.1.1 Financing

Funding is a vital resource for startups; financing and equity investments through
government grants, accelerators/incubators, angel investors, and venture funds are
key resources that can shape a startup’s development trajectory. These funds
are typically utilized to support critical activities such as product development,
marketing, research and development, and staffing. Recognizing the importance
of financing, governments, and policymakers around the world have developed
their own funding programs, such as independent government-sponsored funds
(Alperovych et al., 2015), co-investment/co-financing vehicles, and grants, among
the many instruments designed to catalyze the startup ecosystem. These accompany
private entrepreneurial investments by venture capitalist, corporate venture capital
funds, startup accelerators/incubators and angels, as well as relatively newer
financing modalities such as equity crowdfunding (Drover et al., 2017). Naturally,
most of the financing activities gravitate and converge towards major cities. The
geographical region in which a startup is located, hence, can play an important role
in the investment amounts it can attract.

Besides the geographical region, the investment amounts a startup can attract
typically vary significantly across funding stages. In most geographical regions and
entrepreneurial ecosystems, seed funding is usually the first institutional funding
received by a startup, although many venture funds are now looking at pre-seed due
to the competitive nature of seed investments. The name of this round, seed funding,
is self-explanatory: it is used to take a startup from ideation to some early traction,
such as initial product development, market research, or validation for product-
market fit. A seed funding round typically ranges between $100,000 and $2 million,
depending on the type of startup and the geographical region. The typical valuation
for a startup raising seed ranges between $3 million and $6 million (Reiff, Nathan,
2020). Unfortunately, many startups run out of seed funding before they can gain
sufficient traction. For example, data from the market research firm CB Insights
obtained by tracking a cohort of 1100 startups that raised seed rounds in the USA
shows that less than 50% managed to raise a second round of funding. Furthermore,
only 15% of these startups eventually raised a fourth round (which corresponds to
Series C), and 67% either ended up dead or became self-sustaining (CB Insights,
2017).
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Once a seed stage startup gains sufficient traction—measured in terms of com-
mon key performance indicators such as revenue or user acquisition—it moves to
raise Series A funding. In this round, startups are expected to have a viable business
model and sufficient traction, since investors want to assure more substantive
development and growth. As the name suggests, series funding consists of a series
of startup funding rounds that follow one after the other (Yuen, 2020), generally
with increased valuation in each subsequent round. Typical rounds include Series
A, B, C, D and sometimes E and F, and these rounds of funding are typically raised
through venture capital firms (or other institutional investors). The different rounds
are intended to also reflect the startup’s status, performance, and valuation (Williams
etal., 2013). A prospering and well-performing startup will have its company stock
valued higher in a Series B round than A, and higher still in a Series C round. A
startup not performing well may still obtain Series financing rounds, but subsequent
Series rounds will often value the company at a lower stock price (a “downround”).
Currently, the mean Series A funding round is valued at around $10-$15 million in
the USA, a figure that has been growing steadily (Fundz Research, 2020). The mean
Series B round currently stands at around $32 million, with a median pre-money
valuation of $58 million (Fundz Research, 2020). However, these overall averages
are highly contextualized and differ significantly across countries, different regions
(even within the same country), and startup types.

Although the exact juncture is not specifically defined, typically after the second
and/or third capital injection, startups enter a growth stage where funding serves
to propel rapid growth and expansion rather than ignition. This usually entails
internationalization (e.g., expansion to addition markets), diversification of product
lines, aggressive marketing, or new manufacturing and production locations. With
a commercially viable product and product-market-fit, a startup at this stage should
have a good source of revenue and continue to attract new users/customers at
breakneck speed. Very few startups eventually reach the Series D stage, and the
amount raised by them as well as their valuations vary widely among them.

Finally, mezzanine financing and bridge loans are hybrid loan and equity financ-
ing mechanisms that prepare the startup for the final push for an exit. Mezzanine
financing is typically perceived as being riskier than other types of startup financing
due to higher interest rates. An initial public offering (IPO) is often the final stage
of funding that a startup goes through before it becomes an established company. A
startup may also be acquired along the way, regardless of funding stage, especially
if it has novel technologies or has established significant user base or data that are
of high value to the acquirer.

10.1.2 Post-Money Valuation

In the startup ecosystem, valuation is the process of quantifying the worth of
a company at specific junctures. Valuation is important to founders for various
reasons, including the fact that it determines the amount of equity they must give
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to investors in exchange for funds. Similarly, for investors, valuation helps to set
the shares they should receive in lieu of their investments during a financing round
(Miloud et al., 2012).

Valuation often has two stages: pre-money and post-money valuation. Pre-
money valuation typically refers to the value of a company before—and not
including—the latest funding round in question. Thus, pre-money valuation can be
roughly described as how much a startup is worth prior to the current round of
investments. Post-money valuation, however, refers to the value of the startup after
receiving investments (Frei & Leleux, 2004). Both pre- and post-money valuation
are usually affected by a variety of factors, including the sector of the economy
the startup belongs to, its technology, revenue, reputation, and level of traction.
Valuation methods can be broadly grouped into two main categories: qualitative and
quantitative. The former—qualitative method—is more prevalent in assessing early-
stage startups due to the lack of sufficient information at that point early on. The
latter—quantitative method—is used more often in later stages, as more information
(e.g., financial) becomes available at such stages.

One common method in valuation is the discounted cash flow method (Festel
et al.,, 2013), which estimates how much cash flow the company is slated to
produce. This estimation is obtained by making use of a reasonable, expected rate
of investment return. A higher discount rate is typically associated with startups that
have higher risks. This method relies partly on an investment analyst’s ability to
make sound and accurate assumptions on a startup’s growth trajectory. A second
popular method, which is usually utilized for pre-revenue and early-stage startups,
is the Berkus Method, named after investor David Berkus (Berkus, 2016). This
approach makes use of a general rule of thumb to estimate the value of the startup,
since current pre-revenue forecasts rarely turned out to be accurate. Other commonly
used methods include the First Chicago method, the venture capital method, the
Comparables method, the Book Value method, the Scorecard method, and the
Risk Factor Summation method (Nasser, 2017). As many valuation exercises are
subjective, especially in early-stage investment, and the exact method utilized are
often undisclosed, we avoid developing models that rely on any of these methods
of valuation. Instead, we make use of machine learning algorithms and train them
on actual post-money values in our data. These algorithms then learn to predict the
post-money valuation of startups using their early-stage raw data.

10.1.3 Success

The definition of a successful startup is in general elusive and subjective. For
investors, however, the notion of success is relatively straightforward, because they
usually value return on investment. Thus, from an investor’s perspective, the holy
grail is a profitable exit, such as a successful acquisition or IPO. An exit is also
often the only realistic way for professional or institutional investors to significantly
profit from an investment. However, success is more complicated from the founders’
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perspective. Some founders, and especially serial entrepreneurs, seek financial gain,
and pursue profitable exits after gaining significant visibility. Others value success
on more introspective terms, such as creating social good. Moreover, there can be a
long incubation time between the founding of a startup and its acquisition or IPO.
Thus, labelling startups that are on their way to success but have not achieved it as
unsuccessful is often an unfair assessment of their potential. These make studying
success among startups a perplexing task.

For the goals of this study, we start by considering the conventional, investor-
based definition of success: whether a startup will be acquired or will launch an
IPO. We then expand our definition of success to also include startups that are able to
raise follow-on funding amounts that are greater than their previous funding rounds,
since such startups tend to grow over time. We make use of this definition of success
to train a neural network model to classify startups into two categories: successful
and unsuccessful. This classification is done based on predicting the probability of
success using features such as geographic region, sector, stage, and funding, among
others. Once it is trained, our neural network model is able to accurately predict if
a startup (not included in the training data) will eventually be successful given its
features.

10.2 Data

The primary dataset for this study comprises startup funding instances obtained
from Crunchbase, with supplementary data on the companies, IPOs, and acquisi-
tions. Crunchbase is a platform that aggregates business information about private
and public companies. Originally built to track startups, Crunchbase now contains
information on startups, venture funds, and companies on a global scale. Crunchbase
sources their data through many channels, including an in-house data team, their
venture program, and the community. We accessed Crunchbase data using a
REpresentational State Transfer (REST) Application Programming Interface (API)
user-key, to access compressed Tape Archive Files (TAR) that contains various raw
data on companies and funding rounds globally, starting from 1915. The data from
various files were matched using the unique identifier generated for each startup
and investor. The resultant dataset reflects a 10-year period from 2009 to 2018,
with a total of 290,707 observations of startups funding instances around the world.
From these 290,707 observations, we retained 46,025 observations after (a) filtering
for empty fields, mismatching, or corrupted data, and (b) focusing on observations
related to one of the top 15 cities that have the highest number of startups. These
allowed us to maintain a reasonable number of datapoints in each region, and
consequently, perform analysis that are robust (and not affected by issues such as
sparsity).

While there are other platforms and databases that tracks startup financing,
including Pitchbook, AVCJ, and CB Insights, the data aggregating methodologies
used in them are different. It is, therefore, unfeasible to simply merge data
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Fig. 10.1 Top 15 cities with the highest number of startups in our dataset

from different sources, especially if consistency is to be maintained. Furthermore,
global financing data is often incomplete in practice, since a significantly number
of transactions are undisclosed, and many startups operate in stealth mode for
confidentiality. Therefore, we consider our Crunchbase dataset as relatively repre-
sentative, even as the final dataset, after data wrangling, may be a relatively small
sub-sample of the entire startup population.

Figure 10.1 shows the top 15 major cities with the highest number of startups in
our dataset. In these cities, most startups are still operational, ranging from 83% of
the startups in the San Francisco Bay Area to 92% in New Delhi. Figure 10.2 shows
the status of startups in these major cities. Unsurprisingly, we see that San Francisco
Bay Area not only has the largest number of startups but also the highest percentage
of startups that are either acquired or have launched IPO (11%). Other cities with
relatively high percentages of startups that were acquired or launched IPO include
Toronto (11%) and Paris (10%).

Our preliminary exploratory analysis of the investment stage of startups revealed
over 25 funding stages in our dataset, ranging from pre-seed stage to Series J and
even post-IPO. Much of the data in many regions and in the later stages are sparse,
containing very few data points. For consistency and rigor of our machine learning
models, we used a subset of the overall data comprising funding information for the
top 15 regions, as well as the following stages: grant, angel round, seed, series A,
series B, series C, series D, and series E. Figure 10.3 shows the amount of funding
raised based on region and funding stage.

To better understand the nature and properties of post-money valuations, we
assessed their distributional properties across regions and funding stages using
kernel density estimation (KDE). KDE is a non-parametric method commonly
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employed to approximate the probability density function (PDF) of continuous
values (Parzen, 1962) such as funding (Carayannis et al., 2018) or startup valuation
(Quintero, 2019). Figures 10.4 and 10.5 show the KDE for the amount raised
(on a logarithmic scale) based on region and funding stage, respectively. Funding
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05 Funding Stage
—— grant
- angel
— seed
04 —— series_a
— series_b
— Series_c
0.3 e series_d
£ — series_e
2
a
0.2
0.1
0.0
25 5.0 7.5 10.0 125 15.0 17.5 20.0 225

Amount Raised in USD - Log Scale

Fig. 10.5 KDE for funding amount raised (using numpy’s logarithmic scale) based on funding
stage

amount raised and post-money valuation in venture capital are typically power-law
distributed (Korver, 2018), and may be subject to the “Babe Ruth Effect” (Dixon,
2015). While most funding raised and valuations are situated at lower values,
there may exist a long tail of exceptionally high funding amount raised or post-
money valuations (Quintero, 2019). Thus, the natural logarithm of these quantities
is typically normally distributed. This also exemplifies the known fact that returns
are highly concentrated on “home run” investments.
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Fig. 10.6 Heatmap for funding amount (logarithmic scale) based on region and funding stage

Figure 10.6 illustrates the heatmap (in logarithmic scale) of funding stage and
region. The darker colors represent higher funding amounts raised. As can be seen,
the early-stage rounds are approximately similar, with New Delhi having more
funding in terms of grants. Boston and San Francisco have more Series A funding,
while Chicago, London, Singapore, and Bangalore have higher Series E funding
compared to other cities. However, since the heatmap aggregates total funding over
stages, the results could be dominated by outliers, e.g., a few companies raising
significantly higher funding of startups based on the region and funding stage,
respectively.

Figures 10.7 and 10.8 present the KDE of post-money valuations. First, most
regions have a bimodal log-normal distribution, but it is evident that the second
mode in San Francisco Bay Area has relatively higher density than the other
regions. Second, there is significant overlap in post-money valuations between
angel and seed rounds, as well as series C, series D, and series E. This suggests
that while the differentiations between seed, and A and B funding rounds seem
to be relatively clear, subsequent rounds for growth stage companies are relatively
difficult to differentiate based on valuation alone. Quintero (2019) also provides a
similar observation regarding the overlap between post-money valuation of startups
in angel, pre-seed, and seed rounds. As Quintero (2019) discusses, this phenomenon
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is likely due to the changing definition of a seed round, and/or more institutional
VCs participating in early-stage pre-seed rounds.

Finally, Fig. 10.9 illustrates the relationship between the post-money valuations
(logarithmic scale) and the funding amount raised (logarithmic scale) separately
for each region. Beyond the power-law connection, we observe from Fig. 10.9 that
in general there is a positive relationship between the post-money valuation and
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funding amount, and that the magnitude of this relationship is relatively consistent
across different regions.

10.3 Methodology

10.3.1 Sectoral Clustering: Latent Dirichlet Allocation

While the dataset provides us with information on the sectors of economy each
startup belongs to, the data in the category and description columns are manually
entered or selected, with inconsistencies across the entire dataset. To overcome this
issue, we employed a commonly used unsupervised learning approach in Natural
Language Processing (NLP), topic modelling, and related fields: the Latent Dirichlet
Allocation (LDA) method (Blei et al., 2003). LDA was first used in the context of
population genetics (Pritchard et al., 2000). In machine learning, it is often viewed as
a generative probabilistic model of a collection of composites of discrete parts/data
such as text corpora. In particular, it is a three-level hierarchical Bayesian model,
where each item in a collection is modelled as a finite mixture over an underlying
set of topics, which is in turn modelled as an infinite mixture over an underlying set
of topic probabilities (Blei et al., 2003).

LDA Algorithm

LDA (as introduced in Blei et al. 2003) involves the following generative process
for each document in a corpus:

1. Choose N ~ Poisson(§)
2. Choose 8 ~ Dir(a)
3. For each of the N words wy,:

a. Choose a topic z,, ~ Multinomial(6)
b. Choose a word w,, from p(w,|z,, 8), a multinomial probability conditioned
on the topic z, and model parameter .

In the context of topic modelling, the composites are typically documents and
the parts are words and/or phrase. Thus, LDA represents documents as mixtures
of topics that churn out observable words based on random variables drawn from
specific distributions (see the LDA algorithm above). For this study, we use LDA
to group the startups into various sectoral clusters, based on (a) keywords in their
categories or descriptions, and (b) probabilities of the keywords being associated
with specific sectoral clusters. The optimal number of clusters is decided based on
coherence scores for number of clusters (between 5 and 50). We then assign each
startup to a cluster based on the LDA results and keyword probability assignments.
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10.3.2 Predicting Post-money Valuation: ElasticNet

ElasticNet (Zou & Hastie, 2005) is a regularized linear model that employs both
l1-norm and l-norm penalization to achieve better mean-square prediction error
performance compared to either pure Least Absolute Shrinkage and Selection
Operator (LASSO) or Ridge regression. We use it to form a baseline model for
predicting post-money valuations. The relative weight between /1-norm and /»-
norm penalization as well as the overall penalization factor in ElasticNet are
hyperparameters that we tune using five-fold cross-validation.

10.3.3 Predicting Post-money Valuation: XGBoost

XGBoost (Chen & Guestrin, 2016), short for eXtreme Gradient Boosting, is a
recent optimized distributed gradient boosting technique that has been widely used
in applied machine learning and online data science competitions, especially for
structured or tabular data. XGBoost is an implementation of gradient boosted
decision trees which is designed for enhanced speed and performance by making
use of parallel tree boosting.

In this study, we deploy the XGBoost regressor to model the post-money
valuation of startups in logarithmic scale. The feature set includes sector (obtained
from LDA), region, funding amount raised, number of investors in the round, and
funding stage as well as engineered features representing lag and growth.

10.3.3.1 Hyperparameter Tuning for XGBoost Using Bayesian
Optimization

Common techniques for obtaining optimal hyperparameters include random search
and grid search, but these techniques can be inefficient and slow. One reason is
that they typically do not take advantage of the information learned during previous
optimization rounds. For this study, we make use of Bayesian optimization (Snoek
et al., 2012), which constantly learns from previous optimization stages to find
the best set of hyperparameters. This gives Bayesian optimization the ability to
require fewer samples and iterations to obtain the best set of hyperparameter values
compared to some other methods (e.g., random search or grid search).

Bayesian optimization involves constructing a posterior distribution that
improves as the number of observations grows. When used for hyperparameter
tuning, the algorithm gets closer to the optimized set of hyperparameter values as the
parameter space worth exploring shrinks. Bayesian optimization for hyperparameter
tuning takes into account the classic exploration versus exploration paradigm and
seeks to balance needs between both. A typical method is to fit a Gaussian process
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to the known samples for every iteration. The posterior distribution is then utilized
to determine the next point to be explored.

In our test runs, where we used Bayesian optimization on XGBoost, our models
generally converged in less than 10 iterations, compared with much longer search
durations for cross-validated grid or randomized search. The resultant model
accuracies were, however, approximately similar across cities. Nevertheless, we
chose Bayesian optimization instead of typical methods of tuning such as cross-
validated grid or randomized search due to its clear advantage in computational
efficiency.

10.3.4 Predicting Success: Neural Network

To predict success of startups, we make use of a feed-forward neural network and
train in it using our dataset. Mindful of the size our dataset, we restrict our neural
network to two hidden layers. We also employ drop-out layers (Srivastava et al.,
2014) between the dense layers to regularize our model and avoid over-fitting.

To train our neural network, we use two measures of startup success (as noted
earlier). The first measure is based on whether a startup eventually make it to an
exit by being acquired or by launching IPO. However, we also recognize that many
startups in our study period may still be on their way being acquired or lunching
IPO. Thus, we augment our definition of success by considering startups that are
continuing to grow in terms of the amount of funding that they are able to raise. The
second definition of success not only covers all firms that meet the first definition
(being acquired or lunching IPO) but also includes all firms that have not exhibited
signs of stagnation.

10.4 Results

10.4.1 Sectoral Clustering

Our LDA model found 16 sectoral clusters to be the optimal number of clusters.
Figure 10.10 provides a wordcloud visualization of each sectoral cluster using
the Python WordCloud package (Mueller, 2020). Words in this figure represent
keywords with the highest probability of being in each sector cluster (generated
by the LDA analysis) and the size of the font is proportional to this probability.
The sectors obtained using LDA and visualized in Fig. 10.10 are rather evident.
For example, sectoral cluster one comprises startups in retail, fashion, and e-
commerce. Similarly, sectoral cluster four comprises startups mainly in the domains
of artificial intelligence, machine learning, and data analytics, while sectoral cluster
fourteen comprises startups in medical technology, healthcare, and pharmaceuticals.
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However, since LDA is primarily an unsupervised approach, the results contain
some keywords which do not fit quite well in particular clusters. An example is the
inclusion of the word “insurance” in sector cluster six, which comprises primarily
“energy” and “industrial” related startups.

Figure 10.11 shows the topic model visualization using the pyLDAv1 s package.
The left visualization depicts the clustering of each of the topics, where the size
of the circle is proportional to overall prevalence of the topic in the corpus.
The distance between each of the topics is measured by calculating the Jensen-
Shannon divergence, a measure of similarity between two probability distributions.
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Fig. 10.11 pyLDAvis topic model visualization

Multidimensional scaling is used to project the distances onto two dimensions. It is
desirable to have little to no overlap of the topic circles. The visualization on the
right depicts the most important words of each topic.

10.4.2 Predicting Post-Money Valuation

Our ElasticNet model (tuned using cross-validation) chose an /;-norm to />-norm
ratio of 1.0, effectively representing a LASSO regression model. In addition, it chose
arelatively low penalization rate of 0.00652. With these hyperparameters, the model
was able to achieve an excellent accuracy of 96.275% and a mean absolute error of
0.589 on our test (i.e., out-of-sample) data.

We examined the coefficients of the predictors in our ElasticNet model to
gain an initial understanding of the predictors that were the most important for
the model. Figure 10.12 shows that (log) raised amount was the most decisive
factor within the ElasticNet model, followed by the investment type. We also
observe that the later series rounds types of investments have a positive association
with post-money evaluation, while the earlier rounds investments have a negative
association. Furthermore, the growth in raised amount as well as employee count
seem to be positively associated with post-money valuation. However, the size of
the coefficients depicted in Fig. 10.12 suggests that past performance and growth
have a higher influence on the post-money valuation of a startup compared to the
startup’s size (measured by employee count).
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Fig. 10.12 Top 10 ElasticNet coefficients by size

Our tuned XGBoost model achieved an outstanding accuracy score of 96.45%
and low mean absolute error of 0.550 on our test (i.e., out-of-sample) data.
Figure 10.13 shows the plot of the true values (logarithm scale) and predicted values
(logarithmic scale) in the test set (using our XGBoost model), with a high R? value
of 0.9 when fitting a linear function. Our results indicate that our XGBoost model
outperforms the ElasticNet approach. The increased accuracy and decreased mean
absolute error achieved by the XGBoost model compared to ElasticNet suggest
that the relationship between post-money valuation and its determinants is rather
complex and most likely non-linear.

Using our XGBoost model, we next generate insights into the most important
factors in predicting post-money valuation of startups. In Figs. 10.14 and 10.15, we
illustrate a representative boosted tree and the feature importance of the predictors in
the model, respectively. These figures show that funding amount raised is the most
important predictor of post-money valuation, followed by the investor count. The
observation that funding amount raised is the most important feature is consistent
with the findings of our baseline ElasticNet model. The difference in second-most
important feature (i.e., investor count in the XGBoost model versus the investment
stage in the ElasticNet approach) could be due to a high correlation between
investment stage and funding amount, which is accounted for in the XGBoost model
in a non-parametric manner.

Finally, to test the robustness of our XGBoost model and its potential over-
reliance on particular predictor(s), we first removed the top continuous predictors,
and reran it. Between several runs, the resultant model only showed an accuracy
decline of around 3-5%, with the LDA sectors remaining as the most important
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features. The resultant plot of true and predicted values in our test data is shown
in Fig.10.16, with a R? of 0.8 for the fitted linear function. As can be seen
from this figure, the points are more widely scattered and dispersed across the
values compared to our original XGBoost model (see Fig.10.13, and compare
with Fig. 10.16). Nonetheless, the low level of degradation in predictive power
suggests that our XGBoost model can be used as an effective tool even in other
datasets in which some of the important variables are not available.

10.4.3 Predicting Success

To test the performance of our neural network in predicating success, we first
performed a random training/validation split of 80-20 on our data. After training
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our neural network on the training part, we gauged its prediction accuracy on
the validation set. We observed an accuracy of 92.48% when we used the first,
stricter definition of success (i.e., defining success only based on acquisition or
IPO). However, when we broadened the definition of success to startups that were
still growing, we observed a prediction accuracy (on the validation set) of 81.21%.
This reduction in prediction accuracy highlights the challenge of evaluating startup
success. Specifically, focusing only on startups that eventually exit via an IPO
or acquisition makes it difficult to make use of data on early-stage startups, and
broadening the definition of success does not seem to help since the prediction
performance suffers. This alludes to our earlier discussion in Sect. 10.3 that startup
success is typically less straightforward to define.
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10.5 Recommendations

In this section, we leverage our findings to provide broad recommendations
for (a) entrepreneurs, (b) venture capital or investors, and (c) policymakers or
governments seeking to improve the startup ecosystem. First, our results suggest that
entrepreneurs seeking to maximize their post-money valuation should avoid trend-
chasing (e.g., targeting a specific sector of economy) and instead focus on ideas
or efforts that can generate the most amount of funding. Specifically, our findings
suggest that trend-chasing may not maximize post-money valuation: no specific
sector of economy is specifically significant in predicting post-money valuation, at
least not compared to the total funding and investor counts. Besides the idea behind
the startup, our findings suggest that fundraising efforts can also be significantly
important in achieving high post-money valuation. Startups that are unable to gain
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and maintain momentum via fundraising activities are likely to suffer in their post-
money valuation. Second, we observe that the investor count has a significant
impact on post-money valuation, as exemplified by its high feature importance. A
closer examination of some startups which raised significant amounts of funding
also suggests that having “branded” investors can have a positive impact. This is
most likely due to a “signaling effect:” investors often follow their high profile
counterparts, since financial commitments from high profile investors are often
interpreted by other investors as a sign of a startup’s probable future success. Having
a high profile investor on board or even leading the round leads to an increased
probability of success and higher expected post-money evaluation. Finally, we also
observe that there are significant agglomeration effects from being in top startup
regions such as the San Francisco Bay Area or New York, although the effect of
being in a particular region shows a diminishing rate of return as one moves through
the list of top performing cities.

In the same vein as the above, we broadly recommend for startups to develop an
internationalization strategy and consider expanding internationally at a relatively
early stage, primarily for enhanced exposure, market access, and traction. It can be
inferred from our exploratory data analysis and findings that domestic markets in
most regions serve to be particularly advantageous only for certain sectors and for
startups of certain sizes (or at certain stages). With the increasingly open nature
of most startup ecosystems around the world, innovative companies backed by
technology will be able to gain foothold quickly in different regions that place
particular emphasis on the sector(s) that they belong to, and thereby obtain an
early competitive advantage. Domestically, startups should gain access to credible
reference customers in their respective sector(s) as early as possible, especially if
they are developing innovative products or providing innovative services that require
early adopters. Regions with a large base of multinational corporations and even
small and medium-sized enterprises in the same sector can provide the necessary
network effect to catalyze traction, which can in turn result in rapid revenue growth.

On the contrary, we recommend that venture funds (especially those dedicated
to early-stage startups) focus their investments on specific areas/sectors of interest
or expertise, rather than adopting a broad mandate which may potentially result in
“thinning out” and subsequently hurt returns. Venture funds can be broadly classi-
fied as generalist, thesis-driven, or sector-focused. With the increased competition
across funding stages and regions, it may be advantageous—especially for early-
stage funds—to be sector specific. This coincides with our observation and analysis
that apart from top startup hubs such as San Francisco Bay Area, different regions
seem to “favor” different sectoral clusters. The key benefits of focusing on specific
sectors are three-fold. First, sector-specific domain expertise and intelligence allow
the fund to source for higher quality deal flows, and maximize value capture with
the same dollar value. Within-sector network effects such as partnerships with
corporates may also give these funds an edge over broad-based generalist VCs, and
provide the fund an edge in sourcing for high potential startups to invest in. Second,
unless the fund has celebrity or renowned General Partners (GP) or investors,
having sector-specific domain intelligence and expertise will help the fund establish
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credibility and gain confidence from Limited Partners (LP)—a factor crucial in the
hyper-competitive nature of this industry. Third, our feature importance analysis
shows that the ability to predict startup success does not improve when we broaden
our definition of success to take advantage of available data points related to
early-stage startups. This suggests that it is difficult to assess the merits of early-
stage startups using purely quantitative measures, which necessitates deeper subject
matter or sectoral analysis.

In providing recommendations for policymakers (and more broadly, govern-
ments) we note that they often would like to develop vibrant ecosystems, boost job
creation, and catalyze economic growth. Thus, they typically seek to promote the
creation or attraction of startups that have high potential and can grow to provide
substantial employment and/or value-add activities. Considering this, our results
have a few implications for them. First, policymakers should consider setting up co-
investment instruments or mechanisms with the private sector—while allowing the
private sector to take the lead in investing—especially in areas where there are gaps
in specific funding stages, or sectors which serve as important nodes linking various
economic activity or supply chains. Similarly, our KDE plots show that there is
some overlap between government grants and other funding mechanisms along the
same angel and seed stage(s). It can be a signal that government grants are directed
to the same space as private investments, which might not be the most efficient
use of resources, and might not result in desirable outcomes. It will be worthwhile
for policymakers and policy analysts to conduct further detailed analyses in this
regard. Second, policymakers should design policy levers to further entrench well-
performing (or priority) sectors, and anchor major players in the domain, including
not just multinational corporations but also small and medium-sized startups with
high-growth potential. Combining the two recommendations, policymakers should
develop a strategy or implement a program to systematically cultivate top global
entrepreneurial, technology, and investment talents, and attract them to establish
startups or investment vehicles. The incentives to do these do not necessarily have
to be directly monetary. For example, they could include a combination of market
or technology access, financing, network, or other forms of support.

Finally, our findings on predicting post-money valuation indicate that in some
cases, there may exist a disconnect between startup size and valuation. This can have
a few different implications for public policy decisions depending on policymakers’
objectives. If policymakers want to attract and encourage startups as a means of job
creation, they must bear in mind that startups that generate the most jobs may not
necessarily be those that are the most valued by the market. On the other hand, if
their objective is to target high-value startups that can serve as anchors for a vibrant
startup ecosystem, policymakers must accept that such a targeting strategy may not
yield as many jobs, at least in the short-term.
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10.6 Conclusions, Limitations, and Future Work

In this chapter, we analyzed the global startup landscape. We did so first by
providing descriptive statistical analyses and visualizations and then by building
predictive models using machine learning techniques. Our contribution lies in (a)
a novel processing of sectoral level data through collating text-based descriptions
into sectors of the economy, (b) making use of machine learning methods to predict
post-money valuation and startup success, and (c) identifying the most important
predictors of startups’ performance.

Our machine learning models enable predicting (within reasonable confidence)
a startup’s post-money valuation and success based on various variables such
as region, sector, and funding amount raised. Through our analysis of variable
importance, we find that startups across different regions performed relatively
similar in terms of post-money valuation. Thus, region is not a significant predictor
of startup performance. In contrast, however, startups’ post-money valuations differ
based on some other important features. Specifically, our results indicate that two
most important predictors of post-money valuation are the amount of funding raised
and investor count. As is expected, we also observe that startups’ post-money
valuation mildly differs based on the sector of economy and the funding stage.
However, we find that these variables (sector of economy and funding stage) are
not strong predictors of future performance of startups.

An entrepreneur, venture capital analyst, or policymaker can use our models to
predict the post-money valuation and success of a startup by simply specifying
features such as the region, sector, and funding amount raised. This prediction,
in turn, can be used to make better investment decisions, design more appropriate
economic policies, and/or implement superior evidence-based mechanisms that can
boost the overall startup ecosystem.

In closing, we note that our work has some important limitations that future
research can address. First, as we noted earlier, measuring performance of startups,
defining what success is, and how it can be quantified are perplexing tasks. We used
a few measures of performance and success that we could quantify based on our
data. We leave it to future work to validating our findings using other measures
of startup performance. Second, our work is focused on developing predictive
methods. Future research can combine our methods with prescriptive analyses to
develop strong tools aimed at identify the causal drivers of startups’ success. Third,
we used a single source of data. Future work can enhance our analyses as well
as the predictive power of our models by first combining this data with other
sources, and then training our models on the resultant larger dataset. Finally, as
more information about patents and the technical competency of startups become
available, future work can (a) assess the role that different startups play in the
technology translation process (e.g., from basic research to commercialization), and
(b) determine mechanisms through which this translation process impacts their post-
money valuation and success.
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