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Abstract. Problem definition: Organ-transplanted patients typically receive high amounts
of immunosuppressive drugs (e.g., tacrolimus) as a mechanism to reduce their risk of organ
rejection. However, because of the diabetogenic effect of these drugs, this practice ex-
poses them to a greater risk of new-onset diabetes after transplantation (NODAT), and
hence, becoming insulin dependent. We study and develop effective medication man-
agement strategies to address the common conundrum of balancing the risk of organ
rejection versus that of NODAT. Academic/practical relevance: Our research contributes
to the healthcare operations management literature by developing a robust stochastic
decision-making framework that allows for incorporating (1) false-positive and false-
negative errors of medical tests, (2) inevitable estimation errors when data sets are used,
(3) variability among physician’ attitudes toward ambiguous outcomes, and (4) dynamic
and patient risk-profile-dependent progression of health conditions. Methodology: We
apply an ambiguous partially observable Markov decision process (APOMDP) approach
where dynamic optimization with respect to a “cloud” of possible models allows us to
make decisions that are robust to potential misspecifications of risks. Results: We first
provide various structural results that facilitate characterizing the optimal medication
policies. Utilizing a clinical data set, we then compare the performance of the optimal
medication policies obtained from our APOMDP model with the policies currently used
in the medical practice. We observe that, in one year after transplant, our proposed
policies can improve the life expectancy of each patient up to 4.58%, while reducing the
medical expenditures up to 11.57%. Managerial implications: Balancing the risks of organ
rejection and diabetes complications and considering factors such as physicians’ attitudes
toward ambiguous outcomes, partial observability of medical tests, and patient-specific
risk factors are shown to result in more cost-effective strategies for management of
post-transplant medications compared with the current medical practice. Finally, simul-
taneous management of medications can facilitate the care coordination process between
transplantation/nephrology and endocrinology departments of a hospital that are typi-
cally in charge of administering such medications.
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1. Introduction
As reported by the United Network of Organ Sharing
(2018), nearly 20,000 kidney transplantations were
conducted in the United States in 2017 (140,992 cases
since 2010). According to the Organ Procurement and
Transplantation Network (2011), the average cumu-
lative probability of 1-to-10-year organ rejection after
kidney transplantation is estimated to be 6.35%–48.7%.
To reduce the risk of organ rejection after transplant,
physicians typically use an intensive amount of an
immunosuppressive (also known as anti-rejection) drug

(e.g., tacrolimus). However, because of the well-known
diabetogenic effect, excessive exposure to an immuno-
suppressive drug may induce new-onset diabetes after
transplantation (NODAT), which refers to incidence of
diabetes in a patient with no history of diabetes prior
to transplantation (Chakkera et al. 2009).
To illustrate this point, we use a data set of 407

patients who had kidney transplant surgery at our
partner hospital between 1999 and 2006. Based on this
data set, Figure 1 depicts the empirical cumulative
distribution functions (cdfs) of blood glucose levels
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(measured by the hemoglobin A1c (HbA1c) test) right
before and one month after transplantation for pa-
tients who had no prior history of diabetes. As can be
seen, more than 80% (20%) of patients who undergo
transplantation are in danger of becoming pre-diabetic
(diabetic), mainly because of intensive amounts of an
immunosuppressive drug used in practice. Consid-
ering the total number of transplantations carried out
worldwide, this can account for more than 90,000 new
patients per year who are in danger of elevated blood
glucose levels.

Elevated blood glucose levels, in turn, increase the
risk of organ rejection and may result in retrans-
plantation, which is a costly operation (Bentley and
Hanson 2011). To control the risk of elevated blood
glucose levels, a patient may need diabetes medica-
tions (e.g., insulin). However, in the current practice,
immunosuppressive drugs and diabetes medications
are typically prescribed by different departments
(transplantation/nephrology and endocrinology, re-
spectively) of a hospital. This, in turn, results in a se-
quential management of these medications, which
may reduce the efficacy of treatments. In addition,
diabetes medications cannot be prescribed arbitrarily,
because unnecessary use of such medications is harm-
ful (Kromann et al. 1981). Therefore, the use of a di-
abetes medication should be coordinated with the
intensity of the immunosuppressive drug used. De-
spite guidelines on how to manage these medications
separately, there is currently no clear guideline on
how to coordinate these regimens (i.e., how to simul-
taneously manage these medications). Our goal in this
paper is to address this deficit while taking into ac-
count the following issues:

Measurement errors. Blood glucose levels are mea-
sured by test procedures such as fasting plasma glucose
(FPG) and HbA1c, which have a wide range of false-
positive and false-negative errors (Bennett et al. 2007).
In addition, the concentration of immunosuppressive

drugs is measured in practice through test procedures
such as the Abbott Architect and magnetic immunoas-
say, which are similarly error prone (Bazin et al. 2010).
Estimation errors. Estimating various parameters

(e.g., the probabilistic consequences of various medi-
cations on a patient’s future health) from data sets is
typically subject to errors for a variety of reasons
including lack of comprehensive data and data entry
errors among others. Furthermore, medication strate-
gies are typically optimized with respect to such esti-
matedparameters. Thus, unless carefully adjusted, they
may not represent patients’ best medical interest.
Ambiguity attitudes. Incomplete/imprecise infor-

mation (which results in the foregoing estimation er-
rors) typically makes physicians face ambiguity with
respect to unknown consequences of treatment choices
and their impact on a patient’s health outcomes.
Furthermore, physicians have a range of ambiguity
attitudes in prescribing treatments: whereas some
show high conservatism (high ambiguity aversion),
others may exhibit low conservatism (low ambiguity
aversion; see, e.g., Han et al. 2009, Arad and Gayer
2012, Berger et al. 2013).
Static and dynamic risk factors. Both static/time-

invariant (e.g., race and gender) and dynamic/time-
variant (e.g., blood pressure (BP) and body mass
index (BMI)) risk factors play an important role in ef-
fective coordination of post-transplant medication reg-
imens, because they both affect organ rejection and/or
diabetes complications.
Ignoring any of the abovementioned issues can yield

suboptimal medication strategies that may harm pa-
tients. Thus, in finding a solution for the conundrum
discussed earlier, one also needs an approach that al-
lows addressing such issues in an integrated way. To
this end, we use a dynamic decision-making approach,
termed the ambiguous partially observable Markov
decision process (APOMDP), an extension of the tra-
ditional POMDP approach recently proposed by
Saghafian (2018). Utilizing the APOMDP approach
allows us to find a dynamically optimal way of co-
ordinating immunosuppressive and diabetes med-
ications during each patient visit while accounting
for (1) imperfect state information about the patient’s
health (caused by measurement errors), (2) model
misspecifications (caused by estimation errors), (3) a
range of attitudes toward model misspecifications
(caused by physicians’ ambiguity attitudes), and (4) sev-
eral dynamic and/or static risk factors (age, gen-
der, race, diabetes history, BMI, BP, total cholesterol
(Chol), high-density lipoprotein (HDL) cholesterol,
low-density lipoprotein (LDL) cholesterol, triglyceride
(TG), and uric acid (UA)). This approach enables us to
provide the first study (to the best of our knowledge)
that (a) simultaneously analyzes two medical condi-
tions with conflicting risks (i.e., post-transplant organ

Figure 1. (Color online) Empirical Cdfs of Patients’ HbA1c
Levels in Our Data Set: An Illustration of the Diabetogenic
Effect of Immunosuppressive Drugs

Note. The left (right) vertical dotted line shows the threshold for
prediabetes (diabetes) as defined by American Diabetes Association
(2012).
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rejection versusNODAT) and (b) integrates such risks
with both static and dynamic patient-dependent
characteristics.

Our study contributes to both theory and applica-
tion. From the application perspective, we contribute
to the medical literature by presenting new clinically
relevant findings:

1. We calibrate our APOMDP model based on a
clinical data set. Utilizing this data set, we first esti-
mate unobservable disease progression rates, inaccura-
cies of medical test procedures, and reward-related
parameters (e.g., quality of life (QOL) and life ex-
pectancy). Using these estimations along with the
APOMDP approach, we then generate risk-specific
medication strategies for use in practice.

2. For non-white patients with age ≥ 50, no diabetes
history, and low-risk levels of cholesterol, HDL, LDL,
triglyceride, and uric acid, we find that, under the op-
timal medication policy, a more conservative physician
prescribes more intensive regimens of immunosup-
pressive drugs as well as diabetes medications than
a less conservative one. This implies that for patients
with these risk factors, a more conservative physician
should be more concerned about both risks of organ
rejection and NODAT compared with a less conserva-
tive physician. However, this does not hold for male
patients with age < 50, diabetes history, hypertension,
and high-risk levels of cholesterol, HDL, and LDL.

3. Variations in physicians’ attitudes toward ambi-
guity will not have a homogeneous impact on the in-
tensity of drugs prescribed under the optimal policy.
Thus, drug intensification (i.e., use of intensified levels
ofmedication regimens) observed in the current practice
should not be attributedmerely to physicians’ behavior
toward ambiguity. Our result suggests that lack of
adherence to (or knowledge of) the optimalmedications
is the main contributor to using intensive regimens.

4. Our study sheds light on the predictors of tacro-
limus dose variability. Specifically, we find that risk
factors such as age, gender, race, BMI, blood pressure,
HDL, and LDL make patients more vulnerable to the
risk of organ rejection. Furthermore, the diabetogenic
effect of tacrolimus is more likely to influence male pa-
tients with age≥ 50, diabetes history, hypertension, high
cholesterol, and low HDL. This implies that when using
high-dose tacrolimus, such patients become more de-
pendent on diabetes medications than others.

5. We compare the performance of the optimal
medication policies that we obtain from the APOMDP
approach with (a) benchmarks from the current medi-
cal practice and (b) medication policies that arise
when one uses a traditional POMDP approach. We con-
sider performance measures such as quality-adjusted
life expectancy (QALE), medical expenditure, and the
intensity of prescribed medications. Some of the main
insights generated from our comparison are as follows:

• Compared with the current medical practice,
and depending on different risk factors, our optimal
medication policies can improve (per patient per year)
the average (a) QALE up to 4.58% and (b) medical
expenditures up to 11.57%. In particular, for cohorts of
patients formed by age, diabetes history, blood pres-
sure, cholesterol, HDL, and triglyceride, our proposed
medication strategies yield the highest improve-
ments in QALE while incurring the least amount of
medical expenditure, providing more cost-effective
ways of managing medications.

• We find that deriving optimal strategies via
a traditional POMDP instead of using the APOMDP
approach (i.e., ignoring inevitable parameter ambigu-
ities) may cause a patient to lose between 1.04 and 4.68
weeks of QALE over the course of first year post-
transplant, while imposing between $31 and $214
more medical expenditures per patient to the system
during the same time.
From the theory perspective, our contributions are

twofold: (1) We demonstrate the use of the APOMDP
approach to make robust dynamic decisions under
both imperfect state information and model mis-
specifications. Because both imperfect state infor-
mation and model misspecifications are inevitable in
many applications including those in the general field
of medical decision making, our work sheds light on
the advantages of an applicable new tool. Specifically,
our approach empowers a decision maker (DM) who
is facing hidden states to dynamically optimize ac-
tions under a variety of possible models (a “cloud” of
models as opposed to a single model), and thereby
gain robustness to potential model misspecifications.
Importantly, this removes the need to perform sensi-
tivity analyses on such potentialmisspecifications. (2)We
develop a closed-form expression for the optimal value
function (based on the piecewise-linearity and convex-
ity property), which enables us to solve our APOMDP
formulation optimally. We also establish (a) an ana-
lytical link between the decision maker’s ambiguity
attitude and the intensity of optimal medication reg-
imens, (b) monotonicity results for the optimal med-
ication policy, and (c) a lower bound for the optimal
value function.
In closing this section, we provide a road map for

the implementation of our APOMDP approach in the
management of post-transplant medications. Figure 2
shows a data-driven decision support system (DSS)
that not only can assist physicians in their post-
transplant medications management decisions, but
can also influence medical guidelines. This DSS can
achieve these goals by using our proposed approach
to better balance risks of organ rejection and diabetes
complications (based on each patient’s characteristics),
while incorporating physicians’ attitudes toward am-
biguous outcomes along with various other factors
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such as false-positive and false-negative error rates
of medical tests and lack of data for valid estimation.

The rest of this paper is organized as follows. In
Section 2, we provide a brief literature review. In
Section 3, we present our APOMDP approach, and
in Section 4, we demonstrate some of its theoretical/
structural properties. Our numerical study including
our clinical data set and parameter estimations as
well as the resulted findings are described in Section 5.
Finally, we conclude the paper in Section 6 and dis-
cuss some avenues for future research.

2. Related Studies
We divide the related studies into six categories and
describe each separately below.

2.1. Studies on Medical Decision Making
for Diabetes

The main body of literature analyzing diabetes from
a decision-making perspective uses Markov decision
process (MDP) models to focus on optimal initiation
time of statin (see, e.g., Denton et al. 2009) and optimal
interval for other diabetes medications (see, e.g.,
Mason et al. 2014). Unlike this stream of research, we
(1) address the management of diabetes medications
in the presence of an opposing medication (i.e., an
immunosuppressive drug) and (2) consider partial
observability of health states that arises due to the
inevitable measurement errors in medical tests (e.g.,
FPG and HbA1c). Furthermore, the above studies
require incorporating dynamic risk factors as part of
the state space definition, which may aggravate the
so-called curse of dimensionality. Instead, our pro-
posed approach directly incorporates such factors
into optimal medication strategies.

2.2. Operations Research/Management Science
Studies on the Pretransplant Period

The majority of operations research (OR)/management
science (MS) studies on transplantation focus on the
pretransplant period and typically study mecha-
nisms to facilitate a better match between supply and

demand of organs (see, e.g., Su and Zenios 2005,
Bertsimas et al. 2013, Ata et al. 2016). To the best of our
knowledge, our paper is among the first in the OR/MS
literature to consider post-transplantation decisions.

2.3. Studies on POMDP Applications in Healthcare
In the medical decision-making field, POMDP
models have been applied mainly for cancer screen-
ing research. Examples include mammography screen-
ing inbreast cancer (see, e.g.,Ayer et al. 2012), screening
in prostate cancer (see, e.g., Zhang 2011), and colo-
noscopy screening in colorectal cancer (see, e.g.,
Erenay et al. 2014). Compared to this stream, our pro-
posed APOMDP approach (1) provides optimal poli-
cies that are robust to model misspecifications, (2) in-
corporates physicians’ behavioral attitudes toward
model misspecifications, and (3) is customized with
eleven static/dynamic risk factors. From the medical
perspective, the latter is an improvement, because
age and history of screening/treatment are the typ-
ical risk factors that have been considered thus far in
the extant literature.

2.4. Studies on Robust Dynamic Decision Making
Among theoretical studies addressing robustness
in dynamic decision making, we refer to those solv-
ing MDPs with respect to a worst-case scenario (i.e.,
utilizing a max-min approach) within the set of pos-
sible transition probabilities (see, e.g., Iyengar 2005,
Nilim and El Ghaoui 2005, Xu and Mannor 2012).
However, as noted by Delage and Mannor (2010),
generated policies under a max-min approach are
often too conservative. To address this, Saghafian
(2018) proposes an APOMDP approach, where a
controller makes decisions based on a weighted av-
erage of both the worst and the best possible outcomes.
Moreover, unlike the abovementioned literature on
robust MDPs, the APOMDP approach allows for
making robust decisions under partial observability
of system states. This is an important advantage for
various applications, including our focus in this paper
where measurement errors are inevitable (e.g., because

Figure 2. Data-Driven DSS for Post-Transplant Medication Management: An Implementation Road Map
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of false positive/negative errors of medical tests).
Considering the worst and the best possible outcomes
(as opposed to all possible outcomes) is also important
for partially observable systems, because it does not
add much to the computational complexity.

Applications of robust dynamic decision making
in medical problems have been centered around ro-
bust MDP formulations. Goh et al. (2018) develops a
robust Markov chain framework for analyzing cost-
effectiveness of colorectal cancer screening policies.
Steimle et al. (2018) proposes a multimodel MDP for
managing blood pressure and cholesterol, where
model ambiguity is considered by averaging the
performance of a given policy across different MDP
models. Kaufman et al. (2011) and Zhang et al. (2017)
model max-min MDPs for optimizing decisions on
liver transplantation and glycemic control in diabetes
management, respectively, where transition proba-
bilities can vary within an uncertainty set. Com-
pared to this stream, our work is the first study of a
medical decision-making problem that considers both
(1) model ambiguity and (2) behavioral attitudes of
physicians toward ambiguity.

2.5. Studies on Measuring Ambiguity Attitudes
The ambiguity attitude of a decision maker can be
characterized by either parametric or nonparametric
methods. In the former, the ambiguity attitude is
represented by utility-based models from the eco-
nomics literature (see, e.g., Arad and Gayer 2012,
Peysakhovich and Karmarkar 2015), whereas in
the latter, it is measured by using behavioral scales
based on sociodemographic characteristics of decision
makers (see, e.g., Han et al. 2009). Our APOMDP
framework is a parametric approach based on the so-
called α-maxmin expected utility (α-MEU) prefer-
ences (Ghirardato et al. 2004), which measure a con-
vex combination of the lowest (i.e., maxmin) and the
highest (i.e., maxmax) possible outcomes based on the
parameter α ∈ [0, 1]. The parameter α captures a range
of individuals’ attitudes toward ambiguity, such that
its high (low) values represent high (low) levels of
ambiguity aversion (for empirical investigations of
the α-MEU function, see Ahn et al. 2014 and the ref-
erences therein).

The so-called range of ambiguity attitude has been
estimated or set by the extant literature endoge-
nously or exogenously. In the former, this parameter
is inferred by conducting hypothesis testing with
survey/questionnaire-based experiments (see, e.g.,
Chen et al. 2007). However, in the latter, this pa-
rameter is set without resorting to empirical experi-
ments (see, e.g., Ahn et al. 2014). Compared with this
stream, we can employ the DSS (shown in Figure 2)
to implement our APOMDP approach and optimize
decisions (about medication regimens) for any level

of ambiguity attitude in [0, 1]. Therefore, our meth-
odology can also be used to determine the best level
of ambiguity attitude (i.e., the one that yields the
highest QALE among all possible levels). Based on this
premise, our findings in this paper are not predictive
of physicians’ behavior. Instead, they are prescriptive:
they generate insights into what physicians should be
targeting in their practice (both given their own level of
ambiguity attitude and across all such possible levels).

2.6. Other Studies from the Medical Literature
We note that our work is also related to three streams
in the medical literature: (1) incorporating the mea-
surement errors of medical tests in decision making
for medication regimens (see, e.g., Bennett et al. 2007),
(2) analyzing the diabetogenic effect of immuno-
suppressive drugs (see, e.g., Chakkera et al. 2009,
Boloori et al. 2015), and (3) customizing tacrolimus
dose variability based on different risk factors (see,
e.g., Yasuda et al. 2008). Utilizing the APOMDP ap-
proach along with our clinical data set, we contribute
to all of these three streams.

3. The Ambiguous POMDP Approach
We use a discrete-time, finite-horizon APOMDP
approach (see Saghafian 2018) to determine optimal
decisions that maximize QALE of a patient with
respect to risks of organ rejection and NODAT
complications. At each patient’s visit, a decision
maker—typically a physician—measures the pa-
tient’s (1) lowest concentration of tacrolimus (in the
body) known as the trough level, or C0, and (2) blood
glucose level. Then, after evaluating whether the
patient has a low, medium, or high C0 and whether
he or she is diabetic, pre-diabetic, or healthy, the
DM needs to make two decisions: (a) whether to use
a low, medium, or high dosage of tacrolimus and
(b) whether to put the patient on insulin. As noted
earlier, these decisions need to be made jointly and in
an orchestrated way. This is mainly due to the inter-
actions between tacrolimus and insulin as well as their
joint effect on the patient’s health state. If prescribed,
any medication will be used over the course of one
month until the patient’s next visit. As a result, the
patient’s health state with respect to both his or her
C0 level and diabetes condition may move to a new
state in the next visit, and this routine continues
throughout the planning horizon.
In addition to identifying optimal decisions and

investigating their cost-effectiveness, we use this set-
ting to study unnecessary intensification of prescribed
medications. We do so by comparing the effect of
using (a) lower dosages of tacrolimus and (b) using
insulin versus not using it. Furthermore, our notion of
simultaneous prescriptions facilitates the care coor-
dination between the transplantation/nephrology and
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endocrinology departments of a hospital, which are
typically in charge of administering tacrolimus and
insulin, respectively.

3.1. The Elements of the APOMDP Approach
The elements of our APOMDP approach are as follows:
decision epochs, core state space, observation state
space, action space, ambiguity set, core state transition
probability, observation probability, information space,
belief space, immediate reward, lump-sum reward,
ambiguity attitude set, and discount factor. All vectors
are considered to be in a column format, and “ ’ ” rep-
resents the matrix transpose operator.

Decision epochs. Decision epochs correspond to a
patient’s visits and are denoted by n � 1, 2, . . . ,N,
where n represents the number of months since
transplant.We consider one year post-transplant as our
planning horizon (N � 12), because it represents the
time period during which medication management
strategies are (a) most important and (b) most variable
among physicians particularly for tacrolimus regimens
(see, e.g., Staatz and Tett 2004, Schiff et al. 2007).

Core state space. S � {Δ,∇} ∪ 6, where 6 � si, i � 1,{
2, . . . , 9} and si’s are as described in Table 1. In ad-
dition, Δ and ∇ represent “death” and “organ re-
jection,” respectively. We note that ∇ and Δ are fully
observable and absorbing states: the decision pro-
cess ends if either of these two states is reached prior
to the end of planning horizon.

Observation state space. O � {Δ,∇} ∪ 2, where 2 �
oi, i � 1, 2, . . . , 9}{ , and oi is the observation made by
the DM leading him to think that the patient is in the
ith core state. For instance, o1 is the observation that
the patient is in s1: medical tests suggest a low C0 level
while having organ survival and diabetic conditions.

Action space. A � ai, i � 1, 2, . . . , 6{ }, where ai’s are
described in Table 1. Letting a � â represent the fact
that a is more intensive than â (or â is less intensive
than a), it can be seen from Table 1 that a1 � a2 � a3,
a4 � a5 � a6, a1 � a4, a2 � a5, a3 � a6, and a1 � a6. Thus,
a1 (a6) corresponds to administrating the most (least)
intensive medication regimen. Similarly, we use the
notation aM â to represent situations where a � â
does not hold (i.e., when either â � a or when there
is no ordering between the two).
Ambiguity set (cloud of models).M � {m1,m2, . . . ,mK},

where K is the number of models in the cloud. As
mentioned in Section 1, estimating transition and
observation probability matrices from a data set is
subject to errors. This, in turn, results in model mis-
specifications which warrants the cloud of models
(as opposed to a single model). Each model in M rep-
resents a different estimation for the core state tran-
sition and observation probability matrices (defined
below). In Section 5.1, we describe how we have
used a clinical data set, obtained from our partner
hospital, to construct this cloud of models.
Core state transition probability. Pm � {Pa

m : a ∈ A},
where for each a ∈ A, Pa

m � [pam(j|i)]i,j∈S, and pam(j|i) �
Pr{j|i, a,m} is the probability of moving from state i
to state j when taking action a under model m ∈ M.
Observation probability.Qm � {Qa

m : a ∈ A}, where for
each a ∈ A,Qa

m � [qam(o|j)]j∈S,o∈O, and qam(o|j) �Pr{o|j,a,m}
is the probability of observing o under model m and
action a when being at core state j.
Information space. Π � {π � πi[ ]i∈S ∈ R|S| :∑|S|

i�1 πi �
1,π1,π2 ∈ {0, 1},π3, . . . ,π11 ∈ [0, 1]}, where π is an in-
formation vector over the state space S. Because Δ
(death) and ∇ (organ rejection) are fully observable
states, π � 1, . . . , 0[ ]′ and π � 0, 1, . . . , 0[ ]′ represent
death and alive with organ rejection, respectively.
Belief space. In order to distinguish between fully

and partially observable states, we define a belief
vector b such that, for any π 	� 1, 0, . . . , 0[ ]′ or π 	�
0, 1, . . . , 0[ ]′, b � 0, 0, b3, . . . , b11[ ] � π (i.e., DM’s belief
about C0 and blood glucose levels in an alive pa-
tient without an organ rejection). We also let ΠPO be
the set of all such belief vectors. (PO stands for par-
tially observable.)
We use Bayes’ rule in a matrix format to update

the elements of the belief vector b under a model
m when action a is taken and observation o is made:

B b, a, o,m( ) � b′Pa
mQ

a,o
m

( )′
Pr{o|b, a,m} , (1)

where B b, a, o,m( ) : ΠPO × A ×O ×M → ΠPO is the be-
lief updating operator, Qa,o

m is the diagonal matrix
formed by the column o of Qa

m, and

Pr{o|b, a,m} � ∑
i∈S

bi
∑
j∈S

pam(j|i) qam(o|j) (2)

Table 1. Description of Parts of Core Health States and
Actions

State Transplant conditiona (tacrolimus C0) Diabetes condition

s1 Low Diabetes (type II)
s2 Medium
s3 High
s4 Low Prediabetes
s5 Medium
s6 High
s7 Low Healthy
s8 Medium
s9 High

Action Prescription
Tacrolimus dose Insulin use

a1 High Yes
a2 Medium
a3 Low
a4 High No
a5 Medium
a6 Low

aWith the patient experiencing an organ survival.
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is the conditional probability that the DM will make ob-
servationogiventhebeliefvectorb, action a, andmodelm.

Immediate reward. rn(a) � rn(s, a) ≥ 0[ ]s∈S for a ∈ A,
where rn(s, a) is the quality of life that a patient accrues
when in state s ∈ S and taking action a in period n<N
(based on experiencing death, an organ rejection, or
an organ survival while having different blood glu-
cose levels). Note that a patient experiencing death
does not gain any immediate reward (i.e., rn(Δ, a) � 0)
and 0 ≤ rn(∇, a) ≤ rn(s, a) for all a ∈ A and s ∈ 6.

Lump-sum reward. Rn � Rn(s) ≥ 0[ ]s∈S, where Rn(s) is
a lump-sum reward (in QALE) gained by a patient
whenever she or he leaves the decision process at state s.
This can happen either (1) at the end of the planning
horizon (n � N), when this value serves as a terminal
reward that the patient accrues for his or her remaining
lifetime, or (2) during the planning horizon (n<N),
if she or he experiences a death or an organ rejection,
where Rn(Δ) � 0 and 0 ≤ Rn(∇) ≤ Rn(s) for all s ∈ 6.

Ambiguity attitude set. Λ � {λ : 0 ≤ λ ≤ 1}, where λ
represents the DM’s conservatism level and captures
his or her range of attitude toward ambiguity. We
note that this is the same as parameter α in the
α-MEU function described in Section 2.

Discount factor. β ∈ [0, 1], which allows us to obtain
the present value of QALE gained in future.

Using the elements of the APOMDP approach de-
scribed above, we now present its optimality equa-
tion. For the information vector π, DM’s conservatism
level λ, and any period n ≤ N, we have

Vn π, λ( ) �
Rn(Δ), if π � 1, . . . , 0[ ]′,
Rn(∇), if π � 0, 1, . . . , 0[ ]′,
Vn b, λ( ), otherwise,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (3)

where

Vn b, λ( ) �
b′RN , if n � N,

max
a∈A

Un b, a, λ( ){ }, if n<N.

{
(4)

In (4), the utility function Un b, a, λ( ) is defined as

Un b, a, λ( ) � b′rn(a) + λmin
m∈M Hn b, a,m, λ( ){ }

+ (1 − λ)max
m∈M Hn b, a,m, λ( ){ }, (5)

where

Hn(b, a,m, λ) � β
∑
o∈O

Pr{o|b, a,m}Vn+1 B b, a, o,m( ), λ( ).
(6)

The first term on the right-hand side (RHS) of (5)
represents the expected current reward (in QALE)
in period n when the belief vector is b and the action
is a. The other terms on the RHS of (5) denote the
expected reward-to-go for period n, which is calcu-
lated as the weighted average of the worst and the
best possible expected rewards that can be obtained

in future. In (5), as λ increases (decreases), the utility
function becomes more (less) dependent on the worst
total reward that can be achieved in the cloud of
models. Thus, a higher (lower) λ represents the am-
biguity attitude of a more (less) conservative DM
(see, e.g., Chen et al. 2007, Ahn et al. 2014). By varying
λ, our framework allows us to capture the behav-
ioral attitudes of physicians and evaluate their effects
on the intensity ofmedications administered.We note
that λ � 1 represents an extension of existing robust
dynamic programming approaches (see, e.g., Iyengar
2005, Nilim and El Ghaoui 2005) to settings with
partially observable states.
Finally, we define the worst model and the best

model in period n as the minimizer and maximizer of
Hn b, a,m, λ( ) defined in (6), respectively:

mn b, a, λ( ) � argmin
m∈M

Hn b, a,m, λ( ){ } and

mn b, a, λ( ) � argmax
m∈M

Hn b, a,m, λ( ){ }. (7)

For the ease of notation, we may refer to these worst
and best models as m and m, respectively.

4. Structural Results
We now establish some structural properties, which
allow us to analyze our APOMDP model, and thereby
gain insights into the simultaneous management of
post-transplant medications. Compared to the earlier
work of Saghafian (2018) that establishes structural
results for general APOMDPs, we make use of the
specific properties of the medical problem under
consideration and provide (1) a closed-form expres-
sion for the piecewise-linear and convex (PLC) value
function, (2) an analytical link between the DM’s
conservatism level and his actions (i.e., the intensity
of prescribed medications), (3) a lower bound for the
optimal value function, and (4) specific monotonicity
results for the optimal policy.

4.1. Piecewise Linearity and Convexity of
Value Function

Unlike traditional POMDPs, it is known that the value
function in an APOMDP is not necessarily piecewise-
linear and convex in the belief vector (Saghafian 2018).
This may prevent us from using solution algorithms
(similar to those used for POMDPs), because many of
them rely on the piecewise-linearity and convexity
property of the value function. Thus, to guarantee
the piecewise-linearity and convexity property for
the value function in our problem, we make use
of the definition of a belief-independent worst-case
(BIWC) member in the cloud of models M.

Definition 1 (Saghafian 2018). Model mn b, a, λ( ) ∈ M
defined in (7) is said to be a BIWC member of M if it is
constant in the belief vector b.
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This implies that, irrespective of the DM’s belief
about a patient’s health state, there exists a set of tran-
sition and observation matrices (given the action and
conservatism level) that yields the least total reward (in
QALE). If such amodel exists inM, then the optimal value
function is PLC in the belief vector b (see Saghafian
2018, proposition 2), and hence can be written as

Vn b, λ( )� max
ψ∈Ψn,λ

{b′ψ} ∀ b ∈ ΠPO, ∀ λ ∈ Λ, ∀ n ≤ N,

(8)
whereΨn,λ is some finite set. Equation (8) is analogous
to the use of POMDPs proposed by Smallwood and
Sondik (1973). Based on (8), to characterize the value
function, one needs only to characterize the set Ψn,λ.

Although the existence of a BIWC member in the
cloud of models M can be a relatively restrictive as-
sumption, we are able to provide a sufficient condi-
tion. We do so by benefiting from the notion of model
informativeness (as a generalization of Blackwell or-
dering): if, under an action a ∈ A, Pa

mQ
a
m � Pa

m̂Q
a
m̂W for

some stochastic matrix W, then model m is said to be
less informative than model m̂. (For notational sim-
plicity, we suppress the dependency on a.) It follows
that if one model is less informative than the others,
then it is a BIWC member in M (see Saghafian 2018,
proposition 3). Utilizing our clinical data set in Online
Appendix B.3, we discuss scenarios where the model
informativeness condition (and thus the existence of
a BIWC member) is satisfied in our setting. In other
settings where this property does not hold, one can
extend the ambiguity set so that it includes a BIWC
member. This will substantially reduce the underly-
ing computational complexity by ensuring that (8)
holds, and can provide a close approximation.

Assuming that M is such that it has a BIWC mem-
ber, we now establish a closed-form analytical repre-
sentation for the set of ψ-vectors, Ψn,λ. This, together
with (8), enables us to characterize and solve the
optimal value function in our problem. All the proofs
are provided in Online Appendix A.

Proposition 1 (Representation of ψ-Vectors). Suppose M
is such that it has a BIWCmember. Let m andm be the BIWC
member and the best-case model ofM defined by (7). Then, the
set of ψ-vectors (Ψn,λ) in (8) can recursively be obtained as

ΨN,λ � {RN} ∀ λ ∈ Λ, (9)

Ψn,λ �
{
ψ ∈ R|S| : ψ � rn(a) + λ

(
β
∑
o∈O

Pa
mQ

a,o
m ψ b,a,o( )

m

)
+ (1 − λ)

(
β
∑
o∈O

Pa
mQ

a,o
m ψ

b,a,o( )
m

)
,

a ∈ A, ψ b,a,o( )
m ,ψ b,a,o( )

m ∈ Ψn+1,λ
}

∀ λ ∈ Λ,

∀ n<N, (10)

where

ψ b,a,o( )
m � argmax

ψ∈Ψn+1,λ
b′Pa

mQ
a,o
m ψ

{ } ∀ b ∈ ΠPO, ∀ a ∈ A,

∀ m ∈ M, ∀ o ∈ O.

(11)

The characterization of the set of ψ-vectors in Prop-
osition 1 depends on identifying both models m and
m. Although m can be obtained in the ambiguity set
M without the need for solving the APOMDP model
(see our discussion above), m cannot be identified a
priori. To address this, we present the following al-
ternative approach for characterizing the ψ-vectors:

Ψ̃n,λ �
{
ψ̃ ∈ R|S| : ψ̃ � rn(a) + λ

(
β
∑
o∈O

Pa
mQ

a,o
m ψ̃ b,a,o( )

m

)
+ (1 − λ)

(
β
∑
o∈O

Pa
mQ

a,o
m ψ̃ b,a,o( )

m

)
,

a ∈ A,m ∈ M \ {m}, ψ̃ b,a,o( )
m , ψ̃ b,a,o( )

m ∈ Ψ̃n+1,λ
}

∀ λ ∈ Λ,∀ n<N.

(12)

Then,Ψn,λ in (10) can be obtained from Ψ̃n,λ in (12) by
applying theMonahan’s (1982) algorithm. Equation (12)
implies that, even if we consider all models in
M \ {m}, by using theMonahan’s (1982) algorithm,we
can shrink the set of the ψ-vectors to those attrib-
uted only to m and m.

4.2. Effect of DM’s Conservatism Level on
Drug Intensification

As noted earlier, the DM’s conservatism (i.e., ambiguity
attitude) may affect the intensification of medica-
tion regimens. To study this phenomenon, we start
by defining the following conditions. In Online Ap-
pendix B.5, we also numerically test the validity of
conditions in this section using our clinical data set,
and discuss whether and when such conditions hold.

Condition 1 (Monotonicity of Reward). (i)Under any action
a ∈ A, the immediate reward vector rn(a) is nondecreasing in
state s ∈ S, and (ii) the lump-sum reward vector Rn is non-
decreasing in state s ∈ S.

Condition 1 implies that better health states have
higher immediate and lump-sum rewards (in QALE).
For example, compared to a patient with an organ
rejection, a patient with an organ survival is expected
to have a higher quality of life (all else equal).

Condition 2 (TP2 Transitions). For all m ∈ M and a ∈ A,
the kernels Pa

m and Qa
m are TP2 (i.e., all their second-order

minors are nonnegative).

Condition 2 imposes a specific ordering between each
two consecutive rows of P and Q matrices. For example,
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this condition implies that, upon taking the same medi-
cation regimen, a patient with a better health state is
more likely to move to a more favorable state than
another patient who is in a worse health state (all
else equal).

For later use, here we also define the well-known
TP2 stochastic ordering between two belief vectors.
Because each belief vector b yields a probability mass
function, TP2 ordering (shown as �TP2 ) is equivalent to
the weak monotone likelihood ratio (MLR) ordering.

Definition 2 (Whitt 1982). A belief vector b is said to be
dominated by another belief vector b̂ in the MLR-
ordering sense (shown as b �r b̂) if the ratio b̂/b is
nondecreasing in its elements.

From the medical standpoint, Definition 2 implies
that a patient with associated belief vector b̂ is more
likely to be in a better health state than another patient
with associated belief vector b. We also need to define
the following condition, where, for notational simplicity,
we let m(a, λ) � mn b, a, λ( ) and m(a, λ) � mn b, a, λ( ) for
any action a and conservatism level λ. In addition,
B b, a, o,m( ) is the belief-updating operator defined in
Equation (1). Similarly, we denote by Pr{o|b, a,m}[ ]o∈O
the vector of observation probabilities, where
Pr{o|b, a,m} is the conditional probability that a DM
will make observation o given the belief vector b,
action a, andmodelm (see Equation (2) in Section 3.1).

Condition 3. Fix belief vector b ∈ ΠPO and time period
n<N. Then, for all a, â ∈ A with aM â, there exists a
conservatism level λ* ∈ Λ such that, for all λ ≥ λ*, we have

(i) Pr{o|b, â,m(̂a,λ*)}[ ]
o∈O�TP2 Pr{o|b,a,m(a,λ*)}[ ]

o∈O,
Pr{o|b,a,m(a,λ)}[ ]o∈O�TP2 Pr{o|b, â,m(̂a,λ)}[ ]o∈O;
(ii) B b, â, o,m(̂a, λ*)( ) �TP2 B b, a, o,m(a, λ*)( )

, B b, a, o,(
m(a, λ)) �TP2 B b, â, o,m(̂a, λ)( ); and

(iii) parts (i) and (ii) also hold for the best model m.

To better understand Condition 3, let DMbase rep-
resent a baseline DM with the conservatism level λ∗
introduced in Condition 3. Also, we denote by DMgen

a general DM with a conservatism level λ such that
λ ≥ λ* (i.e., DMgen is more conservative than DMbase).
Then, part (i) of Condition 3 has the following im-
plication for the medical practice: DMbase (DMgen) is
more (less) likely to have a better medical observation
if prescribing a less intensive medication regimen
(compared to a more intensive one). Furthermore,
part (ii) of Condition 3 implies that DMbase (DMgen)
has a better (worse) updated belief about a patient’s
health state (in the TP2 sense) when taking less in-
tensive (than more intensive) medications. Parts (i)
and (ii) of Condition 3 also require different uti-
lizations of models (from the ambiguity set) under
different conservatism levels: for any a ∈ A and
any λ, λ̂ ∈ Λ such that λ 	� λ̂, m(a, λ) 	� m(a, λ̂) and

m(a, λ) 	� m(a, λ̂). Otherwise, unlike our results in
Theorem 1 or Corollary 1 (discussed below), the level
of conservatism would have no impact on the in-
tensity of medication regimens.

Theorem 1 (Effect of λ on Drug Intensification). Let
a∗n b, λ( ) be the optimal medication action for any belief vector
b ∈ ΠPO, conservatism level λ ∈ Λ, and time period n<N.
Also, let λ* represent the baseline conservatism level in-
troduced in Condition 3. Then, under Conditions 1–3, for any
λ ≥ λ*, we have a*n(b, λ) � a*n(b, λ*).
Theorem 1 provides insights into conditions under

which the optimal medication regimen becomes more
intensive as the DM’s conservatism level increases
compared to a baseline level. This result, however,
may not hold for all patients, because the sufficient
conditions in Theorem 1 may not hold for them. In
particular, in Corollary 1, we show that if for some
patients Condition 3 is reserved (i.e., the reverse
of orderings and inequalities in parts (i) and (ii) of
Condition 4 hold), then the optimal medication reg-
imen for them becomes less intensive as the DM’s
conservatism level increases. Thus, while under the
optimal policy for some patients a more conservative
physician prescribes more intensive medications than
a less conservative one, for some patients this result
might be reversed. In Section 5.2.1, we make use of
our clinical data set and shed more light on patient
characteristics for which either of these two cases holds.

Corollary 1. Under Conditions 1 and 2 and the reverse
of 3, for any λ ≥ λ*, we have a*n(b, λ*) � a*n(b, λ).

4.3. Monotonicity of the Optimal Medication Policy
When the optimal policy is monotone, a simple control-
limit policy becomes optimal, making the complex
search for an optimal medication policy a much simpler
task. Furthermore, as we will discuss, the control-limit
policy provides an easy-to-implement guideline for the
medical practice. To establish the monotonicity of the
optimal policy, we need the following condition.

Condition 4. Suppose the value function is PLC and de-
fine vectors φ(b,a)

m � ∑
o∈O Pa

mQ
a,o
m ψ(b,a,o)

m (for all b ∈ ΠPO,
a ∈ A, and m ∈ M), where ψ b,a,o( )

m is defined as in (11).
Then, for any a, â ∈ A such that a � â and λ ∈ Λ, vectors
φ(b,â)
m(b,â,λ) − φ(b,a)

m(b,a,λ) and φ(b,â)
m(b,â,λ) − φ(b,a)

m(b,a,λ) are nondecreas-
ing in their elements.

Conditions 4 implies that,when takinga less intensive
medication regimen compared with a more intensive
one, the resulted difference between the reward to-go (in
QALE) is nondecreasing along core health states.

Theorem 2 (Monotone Optimal Medication Policy). Let
a*n b, λ( ) be the optimal medication action for period n. Then,
under Condition 4, b �TP2 b̂ yields a*n(b, λ) � a*n (̂b, λ).
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Theorem 2 simplifies the search for an optimal
medication policy. For instance, consider two patients,
Patients 1 and 2, where patient 2 is believed to be in a
better health condition than Patient 1 (in the TP2 sense).
Then, if the optimal medication policy for Patient 1
is “tacrolimus: low dosage” and “no insulin,” then
Patient 2 should be prescribed with the same regimen.
On the other hand, if Patient 2 is optimally prescribed
by “tacrolimus: high dosage” and “insulin,” then
Patient 1 must follow the same prescription. In gen-
eral, Theorem 2 transfers the typically complex search
for an optimal medication policy to a much simpler
monotonic search. In particular, under the condition
of Theorem 2, the optimal policy will be of control-
limit (or switching-curve to be more precise) type,
where we only need to impose limits on the be-
lief state and change the action as we pass the limits.
This provides an easy-to-implement guideline for use
in practice.

4.4. Bounds for the Value Function
For our numerical experiments, we solve our APOMDP
model optimally based on Proposition 1. However,
the time complexity of finding an optimal policy (at
any period n and for any conservatism level λ) is
O |M||A|( |S||Ψn+1,λ||O|) (for discussions about the time
and space complexities of [PO]MDPs, seePapadimitriou
and Tsitsiklis 1987, Hauskrecht 2000). Although we
alleviate this effect by implementing the Monahan’s
(1982) algorithm to eliminate dominated ψ-vectors,
to further streamline computational burdens, we
now develop a bound for the value function in (4).
We let Jn b, λ( ) be the approximate value function, and
let a∗,J b, λ( ) be its corresponding action (denoted by
aJ for the ease of notation). In the optimal value
function Vn b, λ( ), the DM computes the expected fu-
ture reward based on his or her updated belief about
the patient’s health state (i.e., expected reward-
to-go). However, in the approximate value func-
tion Jn b, λ( ), the DM first obtains his or her expected
belief (over all updated belief vectors), and then the
reward based on the expected belief:

Jn b, λ( ) � b′rn(aJ) + λmin
m∈M βJn+1

(
b′PaJ

m, λ
){ }

+ (1 − λ)max
m∈M βJn+1 b′PaJ

m, λ
( ){ }

,
(13)

where we obtain b′PaJ
m from

∑
o∈O Pr{o|b, aJ ,m} B b, aJ ,

(
o,m) by following the Bayesian update in Equation (1)
and the fact that

∑
o∈O Qa,o

m � I, where I is an identity
matrix. Proposition 2 shows that the optimal value
function Vn b, λ( ) is tightly bounded from below by
the approximate value function Jn b, λ( ).
Proposition 2 (Performance Bound). Suppose (i) the am-
biguity set M has a BIWC member, (ii) |pam(j|i) − pam̂(j|i)| ≤ η

for some η ≥ 0 (∀ a ∈ A, ∀ m, m̂ ∈ M, ∀ i, j ∈ S), and (iii) r is
the maximum possible reward in each period. Also, let εn+1 �
εq

∑N−n−1
l�0 βl + εrβN−n, where εq and εr are upper bounds for

the quality of life and lump-sum reward, respectively. Then,
we have

Vn b, λ( ) − Jn b, λ( ) ≤ min
β η εn+1 |S|

1 − β
,
r 1 − βN
( )
1 − β

{ }
∀ b ∈ ΠPO,∀ λ ∈ Λ,∀ n<N. (14)

In Proposition 2, εq is a bound for the QOL score, which
is a score between 0 and 1. Similarly, εr is a bound on
the lump-sum reward, which is a function of residual
life expectancy (RLE) and a discount rate, such that as
the discount rate approaches 1, the lump-sum reward
approaches QOL (see Section 5.1 for more details
regarding these reward parameters). We note that the
bound provided by εn+1 is relatively tight. For ex-
ample, it goes to 0 as β → 0, and to (N−n−1)εq+εr
as β→ 1. Also, for β∈ [0,1), this bound asymptoti-
cally approaches εq

1−β as N→∞. Furthermore,
Proposition 2 implies that, when the DM follows aJ

instead of the optimal policy a*, the reward loss (in
QALE) will be less than or equal to the RHS of (14).
We note that, under the following conditions, Jn b,λ( )
converges toVn b,λ( ), making the performance bound
in (14) completely tight: (1) when transition proba-
bilities under different models get closer to each other
(i.e., different models in the cloud of models M be-
come more similar), η approaches 0; (2) when β ∈ [0,1)
and the time horizon increases, εn+1 asymptotically
approaches εq

1−β, which, in turn, approaches 0 as a
patient’s health status gets aggravated; and (3) when β
approaches 0 (i.e., the DM decides on medications
regimens in a myopic approach). Furthermore, when
β approaches 1, the performance bound in (14) ap-
proaches Nr, which is small when N or r is small. In
general, the bound in (14) is advantageous for the
DM, because it enables him or her to obtain a near-
optimal performance.

5. Numerical Experiments
In this section, we first explain the following elements
from our clinical data set: the main risk factors af-
fecting NODAT patients, the estimation of the set of
transition and observation probability matrices using
our data set, the estimation of the reward functions
(in QALE), and the mechanism used to validate our
estimated parameters. We then describe the results
we have obtained fromour numerical experiments and
shed light on their implications for researchers, prac-
titioners, and those influencing medical guidelines.

5.1. Data and Parameter Estimation
5.1.1. The Clinical Data Set. The clinical data set we
use in this study contains information of 407 patients
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who had a kidney transplant operation over a period
of seven years (1999–2006) at our partner hospital.
The information pertains to each patient’s visit at
months 1, 4, and 12 after transplant and includes the
following attributes: (1) demographic (e.g., age, race,
gender, etc.), (2) clinical (e.g., blood pressure, BMI,
cholesterol level, etc.), (3) immunosuppressive drugs
(e.g., tacrolimus) and diabetes medications (e.g., in-
sulin) prescribed by physicians, and (4) results of
medical tests (FPG, HbA1c, and Architect). Fur-
ther details about our data set can be found in our
earlier study (Boloori et al. 2015).

5.1.2. Interpolation and Imputation. Becauseourdata set
includes only information at months 1, 4, and 12 after
transplant, we employ the cubic spline interpolation
method (see, e.g., Alagoz et al. 2005) to simulate the
natural clinical history of patients for months 1 to
12 after transplant. Prior to that, to replace missing
values in the data entries, we employ multiple impu-
tations by chained equations by the R computing pack-
age (for more details, see, e.g., Buuren and Groothuis-
Oudshoorn 2011).

5.1.3. Risk Factors. As noted earlier, our goal is to
derive robust optimal medication policies based on
different risk factors. Table 2 summarizes the main
risk factors affecting NODAT patients, where each
risk factor is considered to be low or high. In this table,
(1) age is classified based on a 50-year-old threshold,
making an almost equal percentage of patients in each
age category (the median age of patients in our data
set is 53 years, and 40% of patients are below 50);
(2) non-white race includes Hispanic, black, and Native
American; (3) diabetes history refers to the existence of
diabetes prior to the time of transplant (among 407
patients, there were 115 patients (28%) with a history
of diabetes before or at the time of transplant); (4) the
thresholds for classifying risk factors (except for
age, gender, race, and blood pressure) as low/high
are based on MedPlus (2018); and (5) blood pres-
sure is defined as low for patients with systolic and

diastolic blood pressure of <120 and <80 mm Hg,
respectively, whereas it is defined as high when at least
one of these conditions is violated (American Heart
Association 2018).

5.1.4. Choice ofMedicationRegimens andHealth States.
To gain insights into effective post-transplant medi-
cation management strategies, we consider tacroli-
mus as the primary immunosuppressive drug. We
do so because (1) it has been shown that tacrolimus
is superior to other immunosuppressive drugs (e.g.,
cyclosporine) in preventing organ rejection for kid-
ney transplantations (see, e.g., Bowman and Brennan
2008), and (2) tacrolimus is the main immunosup-
pressive drug used in our partner hospital: based on
our data set, 95% of patients are put on tacrolimus. We
also observe from our data set that 94% of patients
who are put on diabetes medications post-transplant
(a) are prescribed insulin, and (b) are put on a fixed
dosage of it. Therefore, we (a) consider insulin as the
main diabetes medication and (b) assume it is pre-
scribed in a fixed dosage (for a similar assumption,
see also Denton et al. 2009, Mason et al. 2014).
Unlike insulin, which is prescribed in a fixed dos-

age, physicians prescribe tacrolimus based on C0
(trough level). A lower (higher) C0 is known to be as-
sociated with a higher (lower) risk of organ rejection
(see, e.g., Staatz et al. 2001). The target therapeutic
range of C0 at our partner hospital is 10–12 mg/dL
(month 1 after transplant), 8–10 mg/dL (month 4
after transplant), and 6–8 mg/dL (month 12 after
transplant). Thus, we label any C0 ∈ [4, 8), [8, 10), and
[10, 14] mg/dL as “low,” “medium,” and “high,”
respectively. Similarly, we use labels “low,” “me-
dium,” and “high” to refer to tacrolimus prescription
dosages [0.05,0.10], (0.10,0.20], and (0.20,0.25] mg/
kg/day, respectively. These discrete settings are con-
sistent with the literature on therapeutic monitoring
of immunosuppressive drugs (see, e.g., Schiff et al.
2007). Also, from the diabetes perspective, blood glucose
levels are measured by FPG and HbA1c tests, where a
patient with FPG ≥ 126 (100 ≤ FPG < 126) mg/dL

Table 2. Description of Main Risk Factors and Their Levels (See Also Boloori et al. 2015)

Risk factor Unit Low level High level Static (S)/dynamic (D)

Age Years <50 ≥50 S
Gender Female Male S
Race White nonwhite S
Diabetes history No Yes S
Body mass index kg/m2 <30 (nonobese) ≥30 (obese) D
Blood pressure Normal Hypertension D
Total cholesterol mg/dL <200 ≥200 D
High-density lipoprotein mg/dL ≥40 <40 D
Low-density lipoprotein mg/dL <130 ≥130 D
Triglyceride mg/dL <150 ≥150 D
Uric acid mg/dL <7.3 ≥7.3 D
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or HbA1c ≥ 6.5% (5.7≤ HbA1c < 6.5%) is labeled
diabetic (pre-diabetic), whereas one with FPG <
100 mg/dL or HbA1c < 5.7% is labeled healthy
(American Diabetes Association 2012).

5.1.5. Estimation of Probability Matrices and Cloud
Construction. For each cohort of patients in Table 2,
we construct a cloud of probabilistic models in
two phases.

Phase 1: Point Estimates. We employ the Baum–
Welch (BW) algorithm (Welch 2003) to obtain point
estimations for core state transition and observation
probabilitymatrices (lines 6–9 in Table 3). As inputs to
this algorithm, we use (1) the sequence of medical
observations (tacrolimus C0 and blood glucose levels)
and actions (prescribed medications) from our clini-
cal data set and (2) initial transition and observation
probability matrices. We note that the BW algorithm
is iterated 1,000 times to account for the inevitable
variability caused by considering random initial prob-
ability matrices. Thus, we treat the average outputs of
the BW algorithm over all iterations as our point esti-
mates. Despite 1,000 iterations, the resulted point es-
timates may not be reliable. Thus, we address this
issue by constructing the cloud of models.

Phase 2: Cloud Construction. We construct an ambi-
guity set as a cloud of probabilistic models surround-
ing the point estimates resulted from Phase 1. We first
identify the set of all probabilitymatrices that arewithin an
ε-distance from the points estimates. To this end, we
characterize the distance by the Kullback–Leibler (KL)
divergence criterion (also known as relative entropy),

which is applied on each row of probability matrices
(see Table 3 for the notation used):

dKL v,Pa
BW(i)( ) � ∑

j∈S
v(j) log2

( v(j)
paBW( j|i)

)
∀ v ∈ V,∀ a ∈ A,∀ i ∈ S \ {Δ,∇}, (15)

where Pa
BW � paBW(j|i)[ ]

i,j∈S is the point estimate re-
turned by the BW algorithm, and Pa

BW(i) is the ith
row in matrix Pa

BW (the same procedure is used for
matrixQa

BW � qaBW(o|j)[ ]
j∈S,o∈O). We note that we do not

apply the KL distance in (15) for the absorbing states
(i.e., death Δ and organ rejection ∇) in probability ma-
trices. Instead, we simply consider a unit row vector
for the first two rows in these matrices.
Because of the KL divergence in (15), the cloud

of models is an infinite set (line 12 in Table 3). How-
ever, because we require the existence of a BIWCmem-
ber in the cloud (see Section 4), we randomly select a
finite number (i.e., |M|) of samples from this set, such
that the BIWC member condition is satisfied (lines
13–15 in Table 3). This, in turn, makes the cloud of
models a finite set. In Online Appendix B.3, we
provide further details on the existence of a BIWC
member in our clinical data set, and in Online Ap-
pendix B.4, we validate our estimations of the set
of transition and observation probability matrices.

5.1.6. Estimation of the Initial Observation Probability
Matrix. Our partner hospital conducts two tests to
measure blood glucose levels: if HbA1c is≥6.5% (5.7 ≤
HbA1c < 6.5%) or FPG is ≥126 mg/dL (100 mg/dL ≤
FPG < 126 mg/dL), then the patient is said to have
diabetes type II (pre-diabetes). Each of these tests have

Table 3. A Pseudocode for Constructing the Cloud of Models (Transition and Observation Probability Matrices)
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their own specificity and sensitivity values (see, e.g.,
Bennett et al. 2007). Using the notations in Table 4, we
then have

spH � 1 − spA1C5.7 (1 − spFPG100 ) + spFPG100 (1 − spA1C5.7 )(
+ (1 − spFPG

100 )(1 − spA1C
5.7 )), (16a)

snPD � snFPG100 (1 − snA1C5.7 ) + snA1C5.7 (1 − snFPG100 )
+ snFPG100 sn

A1C
5.7 . (16b)

Note that spPD is obtained by (16a), and snD is ob-
tained by (16b), where, the cutoff values of 5.7 and 100
are replaced by 6.5 and 126, respectively. Letting QD �
[qDij ]i,j∈{1,2,3} and QT � [qTij]i,j∈{1,2,3} be the diabetes, trans-
plant, and overall initial observation probability matri-
ces, respectively, we have

QD �

snD snPD 1 − snD
( )

1 + snPDsnD

− snPD + snD
( )

spH 1 − spPD
( )

spPDsnPD spPD spH − snPD
( )

− spH + 1
1 − spH
( )

1 − spPD
( )

1 − spH
( )

spPD spH

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

QT �

spT8 1 − spT8
( )

spT10 1 − spT8
( )

1 − spT10
( )

spT10 spT8 − snT8
( )

− spT8 + 1 spT10sn
T
8 spT8 1 − spT10

( )
1 + snT8 sn

T
10

− snT8 + snT10
( )

snT8 1 − snT10
( )

snT10

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Q �

1 0 0 0 0 . . . 0 0 0
0 1 0 0 0 . . . 0 0 0
0 0 qT11q

D
11 qT11q

D
12 qT11q

D
13 . . . qT13q

D
11 qT13q

D
12 qT13q

D
13

..

. ..
. ..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 qT31q
D
31 qT31q

D
32 qT31q

D
33 . . . qT33q

D
31 qT33q

D
32 qT33q

D
33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

There is no consensus in the medical literature about
the specificity/sensitivity of the foregoing medical

tests. However, the specificity (sensitivity) usually
increases (decreases) with increasing cutoff points.
This is reflected in the values in Table 4. We note
that, using our APOMDP approach, we can account
for other reasonable values.

5.1.7. Estimation of Immediate and Lump-SumRewards.
As introduced in Section 3, the immediate reward,
rn(s, a), represents the quality of life that a patient
receives in period n based on core health state s ∈ S
and the action taken a ∈ A. We obtain these rewards
based on the quality of life (qol), which is a score in [0, 1],
where 0 (1) represents death (full health). Let a core
health state be dichotomized into transplant- and
diabetes-related states, sT and sD, and let rn(sT, a) and
rn(sD, a) be the corresponding immediate rewards for
these health states, respectively. Also, let x, y

〈 〉
denote

the average of two real numbers, x and y. Then we
have, for all a ∈ A and n ≤ N − 1, rn(s, a) � rn(sT, a),〈
rn(sD, a)〉, where

rn(sT, a) �
qol(organ rejection)/12,

if sT � organ rejection,
qol(organ survival)/12,

if sT � organ survival (different C′
0s);

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(17a)

rn(sD, a) �
qol(diabetes)/12, if sD � diabetic,
qol(prediabetes)/12, if sD � prediabetic,
qol(healthy)/12, if sD � healthy.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(17b)

In (17a) and (17b), we note that the length of each
period in our problem is one month, and thus the
corresponding qol scores are converted to a monthly
basis (i.e., divided by 12).

Table 4. Parameters for Calculating Specificity (Spec) and Sensitivity (Sens) of Observing
Medical Test Results

Notation Description Value

spFPG100 Spec: healthy (FPG < 100 mg/dL) 85%
spFPG126 Spec: healthy/prediabetes (FPG < 126 mg/dL) 90%
snFPG100 Sens: prediabetes/diabetes (FPG ≥ 100 mg/dL) 90%
snFPG126 Sens: diabetes (FPG ≥ 126 mg/dL) 85%
spA1C5.7 Spec: healthy (HbA1c < 5.7%) 85%
spA1C6.5 Spec: healthy/prediabetes (HbA1c < 6.5%) 90%
snA1C5.7 Sens: prediabetes/diabetes (HbA1c ≥ 5.7%) 90%
snA1C6.5 Sens: diabetes (HbA1c ≥ 6.5%) 85%
spH Spec: healthy (based on FPG and HbA1c) see (16a)
spPD Spec: healthy/prediabetes (based on FPG and HbA1c) see (16a)
snPD Sens: prediabetes/diabetes (based on FPG and HbA1c) see (16b)
snD Sens: diabetes (based on FPG & HbA1c) see (16b)
spT8 Spec: low C0 (Architect threshold < 8 mg/dL) 85%
spT10 Spec: low/mediumC0 (Architect threshold < 10mg/dL) 90%
snT8 Sens: medium/high C0 (Architect threshold ≥ 8 mg/dL) 90%
snT10 Sens: high C0 (Architect threshold ≥ 10 mg/dL) 85%
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Furthermore, the lump-sum reward denoted by
Rn(s) is the QALE that a patient receives based on the
core state s whenever she or he leaves the decision
process (e.g., organ rejection or at the end of time
horizon). Let RLE(s,n) ≥ 0 be the residual life ex-
pectancy score (i.e., the expected remaining life years
at any point of time) attributed to core state s in pe-
riod n. Following Sassi (2006), we assume

Rn(s) � qol(s) 1 − e−r RLE(s,n)
( )

r
∀ s ∈ S,∀ n ≤ N, (18)

where r is a discount rate that accounts for degra-
dation of the core health state over the remaining
lifetime of a patient. In (18), qol(s) � qol(sT),〈

qol(sD)〉,
and RLE(s, n) � RLE(sT, n), RLE(sD, n)〈 〉

, where
RLE(sT, n) and RLE(sD, n) are defined as in (17a) and
(17b). Further details about estimating the required
parameters (e.g., qol and RLE scores) can be found in
Online Appendix B.1. When comparing our optimal
policies with other benchmarks in Section 5.2.2, we
perform sensitivity analyses on the estimated reward
parameters by changing the values of qol and RLE (see
Online Appendix E). Moreover, although in our base
estimates we assign an equal weight to diabetes and or-
gan rejection outcomes (by taking the average of their
related rewards), in our sensitivity analyses (Online
Appendix E), we consider different values for qol
and RLE such that organ rejection outcomes can have
a higher impact compared to diabetes outcomes.

5.2. Numerical Results, Guidelines, and
Policy Implications

In this section, we present our numerical results in-
cluding the robust optimal medication policies for
different cohorts of patients (Section 5.2.1) and com-
parison of our optimal policies with other policies
including the current medical practice (Section 5.2.2).
As we will discuss, these results have important
implications for guideline makers as well as indi-
vidual physicians and patients.

5.2.1. Robust Optimal Medication Policies. We obtain
optimal medication policies from our APOMDP ap-
proach separately for 22 cohorts of patients based on
the risk factors in Table 2. To illustrate our results for
each of these cohorts and for computational tracta-
bility, we consider three different values for the DM’s
conservatism level (i.e., λ ∈ {0.0, 0.5, 1.0}) and three
models for the ambiguity set (i.e., |M| � 3). We also set
the KL divergence bound ε in Table 3 as 0.05. We
consider 0.05 instead of lower values such as 0.01 or
0.02 simply to increase the likelihood of satisfying the
model informativeness condition. Furthermore, we
use a 2-simplex to represent a cut of the belief space
under a specific concentration of tacrolimus. For ex-
ample, a2-simplexunder“lowC0” indicates b3, b6, b9 ≠ 0

and b4, b5, b7, b8, b10, b11 � 0 (i.e., the patient is alive
and is believed to have organ survival with low C0,
although the exact diabetes status is not perfectly
known). Although we calculate optimal medications
over the entire belief space ΠPO, which is an 8-sim-
plex, we choose these cuts to understand the in-
teraction of two medications under different risks of
organ rejection and diabetes complications. We aim
to provide insights for the medical practice into the
following questions:
Question 1. What is the impact of risks of organ

rejection and diabetes complications on the optimal
medication regimens?
Question 2. What is the impact of various patient

risk factors on the optimal medication regimens?
Question 3. What is the impact of DM’s conser-

vatism levels on the optimal medication regimens?
To address these three questions, we summarize

our main findings in Observations 1–3 and discuss
their implications for the medical practice.

Remark 1. Based on the discussion in Section 2, our ob-
servations and implications here are not predictive of
what a physician will do under a specific conservatism
level. They are rather prescriptive in that they shed
light on what a physician should be doing (given his
or her conservatism level) based on the optimal poli-
cies we find from our APOMDP approach. Because
we are able to characterize the optimal policy for any
given level of conservatism, we are also able to shed
light on the optimal policy that is based on the best
conservatism level.

Observation 1 (Optimal Medication Policies). (i) Under
low or medium C0, the optimal tacrolimus regimen is
to use the high dose as long as the risk of diabetes is
not very high. However, as this risk increases, using
less intensive tacrolimus regimens (e.g., medium or low
dose) becomes optimal. (ii) Under high C0, it is optimal
to use low-dose tacrolimus regardless of the underly-
ing risk of diabetes. (iii) When tacrolimus is prescribed
in medium or high dose, insulin should be used to
avoid the potential onset of diabetes, even when
the patient has a considerable chance of being di-
abetes-free.

To better understand Observation 1, let us con-
sider (a) different levels of C0 (to reflect on different
risks of organ rejection), and (b) four patients each
corresponding to a specific belief vector (to represent
different risks of diabetes complications). These pa-
tients are identified in Figure 3 (and Figure EC.3 in
Online Appendix C) via vectors b̃. For example, pa-
tient 1 has b̃ � [0.80, 0.15, 0.05] (i.e., 80%, 15%, and 5%
risks (perceived by the DM) of being diabetic, pre-
diabetic, and healthy, respectively). Patients 1, 2, and
3 have high risks of being diabetic, pre-diabetic, and
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healthy, respectively, whereas patient 4 has an equal
risk among these three conditions. We present the
following results from Figure 3 and Figure EC.3:

Low C0. When the risk of diabetes is not very high
(e.g., for Patients 2–4), the optimal tacrolimus regi-
men is the high dose, which is consistent with the
current practice. However, unlike the current practice,
we observe that for patients with a high risk of diabetes
(e.g., Patient 1) the optimal tacrolimus regimen is the
medium dose (for all patient cohorts). In addition, the
optimal insulin regimen for Patient 1 (3) is to use (not
use) insulin. However, unlike the current practice, in-
sulin is the optimal regimen even when the risk of di-
abetes is lowered compared with Patient 1: Patient 2
under all cohorts and Patient 4 under all cohorts ex-
cept being nonwhite and female with no diabetes his-
tory and normal levels of Chol, HDL, and LDL.

Medium C0. When C0 is medium, usingmedium-dose
tacrolimus is the first choice in the current practice.
However, we find that when the risk of diabetes is low
(e.g., Patients 2 and 3), the optimal tacrolimus regimen
is the high dose (for all patient cohorts). As the diabetes
risk increases (e.g., Patients 1 and 4), we find that the
optimal tacrolimus regimen becomes the low/medium
dose for non-obese, female patients with age < 50, hy-
pertension, normal HDL, and high levels of LDL and
TG. In addition, as for patients with lowC0, we observe
that for patients with medium C0, it is optimal to use
insulin even when the diabetes risk is relatively low
(unlike the current practice). For example, in addition

to Patient 1, we find that Patients 2 and 4 (i.e., those
with lower risk of diabetes compared with Patient 1)
should also be prescribed insulin (for patient co-
horts formed by high levels of all risk factors ex-
cept Chol).
High C0. When C0 is high, organ rejection is unlikely,

and hence using a low (or medium) dose of tacrolimus
is recommended over a high dose in medical practice.
Our results confirm the optimality of this recommen-
dation for all patient cohorts. However, as the diabetes
risk is lowered (e.g., Patients 3 and 4), using low/
medium-dose tacrolimus is optimal only for specific
patient cohorts (e.g., nonwhite patients with age < 50
and normal levels of BP and Chol). Also, unlike the cur-
rent practice, we find that even for patients whose risk
of diabetes is not very high (e.g., Patients 2 and 4),
it is optimal to use insulin (for obese, female patients
with age ≥ 50, diabetes history, and high LDL).
In Observation 1, we addressed Question 1 (i.e.,

how the optimal medication regimens are affected
by different risks of organ rejection and diabetes
complications). In the next two observations, we ex-
plore the impact of variations in risk factors (Ques-
tion 2) and the DM’s conservatism level λ (Question 3)
on medication regimens. Therefore, instead of spe-
cific belief vectors (e.g., Patients 1–4 in Observation 1),
we consider all belief vectors (i.e., all patients). In
particular, we utilize the optimal policy regions de-
picted in Figure 3 (and Figure EC.3 in Appendix C)
and make the following observation.

Figure 3. Optimal Medication Policy Regions (Numbers 1–6) for the First Visit Based on Different Risks of Organ Rejection (C0

Levels) and Diabetes Complications

Note. The terms e1, e2, and e3 represent diabetic, prediabetic, and healthy conditions, respectively; ej denotes a unit vector with the jth element
equal to 1 and other elements equal to 0. Results are for λ � 0.5.
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Observation 2 (Tacrolimus Requirement and the Diabe-
togenic Effect). Under any conservatism level λ, (i) the
optimal policy region for using high-dose tacrolimus
is larger for non-white, male, obese patients with age ≥
50, hypertension, low HDL, and high LDL (compared
to cohorts formed by the opposing risk levels along
each of these risk factors), and (ii) the optimal policy
region for using insulin (along with high/medium-dose
tacrolimus) is larger for male patients with age ≥ 50,
diabetes history, hypertension, high Chol, and low
HDL (compared with cohorts formed by the opposing
risk levels along each of these risk factors).

It is known in the medical literature that age and race
can be predictors of tacrolimus dose variability (see,
e.g., Yasuda et al. 2008). However, Observation 2(i)
suggests that the dosage of tacrolimus should be ad-
justed based on other risk factors such as age, gender,
race, BMI, blood pressure, HDL, and LDL. This im-
plies that such risk factors could make patients more
vulnerable to the risk of organ rejection, and hence, to
offset this effect, the optimal tacrolimus regimens put
more emphasis on higher dosages of tacrolimus for
such patients. In addition, regarding Observation 2(ii),
Figure 3 and Figure EC.3 show (as an example) that
the policy regions for actions a1 and a2 (i.e., using insulin
along with a medium/high dosage of tacrolimus) are
larger for patients with age ≥ 50 compared with those
with age < 50. Observation 2(ii) reveals risk factors
under which the diabetogenic effect of tacrolimus is
stronger. These findings address Question 2 and are
useful for the medical practice, especially because they
highlight that the blood glucose level of patients with
specific risk factors should be monitored more closely
than other patients in the post-transplant period.

Finally, we address Question 3 by making the fol-
lowing observation.

Observation 3 (The Effect of Conservatism Levels).
Increasing the conservatism level, λ, results in using
(i) more intensive medication regimens (for both
tacrolimus and insulin) for non-white patients with
age ≥ 50, no diabetes history, and low-risk levels of
Chol, HDL, LDL, TG, UA, and BMI (both non-obese
and obese), and (ii) less intensive tacrolimus regi-
mens for male patients with age < 50, diabetes history,
hypertension, and high-risk levels of Chol, HDL,
and LDL. However, increasing λ does not change
the intensity of medication regimens for patients with
white race, female gender, normal blood pressure, and
high-risk levels of TG and UA.

For example, as can be observed from Figure 4(b),
for a non-white patient, a higher conservatism level
results in larger optimal policy regions for using high-
dose tacrolimus (as opposed to medium dose) and
insulin (as opposed to not using it). On the other hand,
based on Figure 4(a), (c), and (d), we find that for a

patient with age < 50, diabetes history, or hyperten-
sion, increasing the conservatism level results in
smaller optimal policy regions in which higher dose
of tacrolimus is prescribed. Regarding this obser-
vation, in Section 4, we explored relevant analytical
results via Theorem 1 and Corollary 1. In particular,
we presented sufficient conditions under which an
increase in the conservatism level λ (compared to a
baseline level) results in more (or less) intensive medi-
cations regimens (equivalently, a larger (or smaller)
optimal policy region for such regimens).
Observation 3 has other implications for the med-

ical practice. For non-white patients with age ≥ 50, no
diabetes history, and normal levels of Chol, HDL,
LDL, TG, and UA, Observation 3 implies that a more
conservative DM should be more concerned about
both risks of organ rejection and NODAT compared
to a less conservative DM (which, in turn, results in
elevating the intensity of both regimens). However,
for male patients with age < 50, diabetes history,
hypertension, and high-risk levels of Chol, HDL, and
LDL, a more conservative DM should be more con-
cerned about the potential risk of NODAT than that
of organ rejection compared to a less conservative
DM. This may be due to the diabetogenic effect of
tacrolimus, which could make the more conserva-
tive DM prescribe less intensive tacrolimus regimens.
Also, for white, female patients with normal blood
pressure and high-risk levels of TG and UA, increas-
ing the conservatism level does not drastically affect
the intensity of prescribed medications under the
optimal policy. This, in turn, implies that for these
cohorts, there is no significant difference between a
more conservative DM and a less conservative one
in utilizing medications optimally to balance risks
of organ rejection and diabetes complications.
Finally, Observation 3 reveals that variations in

physicians’ attitudes toward ambiguity will not show
a homogeneous pattern with respect to the intensity
of the drugs used, if physicians follow the optimal
policy. Thus, drug intensification (i.e., use of intensified
levels of medication regimens) observed in the current
practice should not be attributed merely to physicians’
behavior toward ambiguity. Instead, our findings
suggest that lack of adherence to (or knowledge of)
the optimal medications might be the main cause of
using intensive regimens in the current practice.

5.2.2. Comparison of Optimal Policies with the Current
Practice. We aim to show the potential impact of
considering the ambiguity caused by model mis-
specifications and the partial observability of medical
tests. To this end, we have developed a microsimulation
model (see Online Appendix D) to simulate costs and
patients’ life expectancies during the planning hori-
zon under (1) the optimal policies obtained from our
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APOMDP approach, (2) four benchmark policies that
resemble the current medical practice under different
scenarios, and (3) a policy that is obtained by a tradi-
tional POMDP (i.e., by ignoring the underlying ambi-
guity; see Online Appendix D for more details).

Benchmark Policies. In the current medical practice,
the outcomes of medical tests (observations) are
treated as the actual health state of the patient (see,
e.g., Bennett et al. 2007), based on which physicians
prescribe medication regimens. Furthermore, tacro-
limus is typically administered based on a combi-
nation of an observation (i.e., C0 level) and time
elapsed since transplant. However, there is currently no
consensus among physicians on how C0 level and
elapsed time should be incorporated in prescribing
tacrolimus (see, e.g., Staatz and Tett 2004, Schiff et al.
2007). To address this variation among physicians,
we consider four different benchmark policies that
are typically used in the current practice (see Table 5).
As Table 5 shows, for the first three months after
transplant, tacrolimus is prescribed in high dosages in
all of these four benchmark policies. This is consis-
tent with the fact that in the current practice patients
are consistently kept on high levels of tacrolimus
during the first months post-transplant (see, e.g.,
Ghisdal et al. 2012) so as to avoid organ rejection.
However, after the first three months, the four policies
differ: Benchmark 1 (4) represents the most (least)
intensive policy for prescribing tacrolimus. For ex-
ample, when the patient is observed to have medium
C0 (i.e., observation o2, o5, or o8) during months 4–6
after transplant, the regimen under Benchmark 1 is to
use high dosage of tacrolimus (i.e., actions a1 or a4),
whereas the regimen under Benchmark 4 is to use
medium dosage of tacrolimus (i.e., actions a2 or a5).
Moreover, consistent with the current practice, in all
four benchmark policies, insulin is not prescribed for

a patient who is observed to be diabetic free (i.e., a
patient with FPG < 126 mg/dL or HbA1C < 6.5%).
We compare the APOMDP, POMDP, and bench-

mark approaches based on three performance mea-
sures: (1) average QALE achieved, (2) average medi-
cal expenditures (see Online Appendix B.2 for related
cost estimations), and (3) average number of times that
insulin and different dosage of tacrolimus are pre-
scribed (Tables 6 and 7 show the results). The latter
allows us to examine whether our methodology yields
less intensive medication regimens compared to the
current practice. Furthermore, because dynamic risk
factors are subject to change throughout the time
horizon, in our simulation we allow each dynamic
risk factor to take either a low or a high level in each
period (i.e., unlike static risk factors, we do not run the
simulation for each of low-risk and high-risk levels of

Figure 4. Variations in Optimal Medication Policies (in the Same Period) Based on Different Conservatism Levels

Note. The terms e1, e2,and e3 represent diabetic, prediabetic, and healthy conditions, respectively; ej denotes a unit vector with the jth element
equal to 1 and other elements equal to 0.

Table 5. Description of Benchmark Policies Based on
Medical Observations and Time Elapsed Since Transplant

Benchmark

Month Observation 1 2 3 4

1–3 o1 a1 a1 a1 a1
o2 a1 a1 a1 a1
o3 a1 a1 a1 a1

o4, o7 a4 a4 a4 a4
o5, o8 a4 a4 a4 a4
o6, o9 a4 a4 a4 a4

4–6 o1 a1 a1 a1 a1
o2 a1 a1 a2 a2
o3 a1 a2 a3 a3

o4, o7 a4 a4 a4 a4
o5, o8 a4 a4 a5 a5
o6, o9 a4 a5 a6 a6

7–12 o1 a1 a1 a2 a2
o2 a2 a2 a2 a3
o3 a2 a3 a3 a3

o4, o7 a4 a4 a5 a5
o5, o8 a5 a5 a5 a6
o6, o9 a5 a6 a6 a6
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dynamic risk factors, separately). Considering seven
dynamic and four static risk factors in our study, we
therefore have 7 + 4 × 2 � 15 (and not 22) cohorts of
patients in Tables 6 and 7. We make the following
observations from the results presented in Tables 6
and 7:

Observation 4 (Impact). During one year after trans-
plant, compared to other polices (i.e., Benchmarks 1–4
and POMDP), our optimal policy, on average, (i) im-
proves the QALE per patient up to 4.58%, (ii) reduces
the medical expenditures per patient up to 11.57%,
and (iii) prescribes high-dose tacrolimus up to 3.69
fewer times per patient, medium-dose tacrolimus up to
1.48 more times per patient, low-dose tacrolimus up to
2.09 fewer times per patient, and insulin up to 2.12
more times per patient.

Based on Observation 4 and the results provided in
Tables 6 and 7, we shed light on the following im-
plications for medical practitioners, as well as those
influencing medical guidelines and recommenda-
tions: (1) The improvements in QALE and cost made
by our optimal policy are not uniform across all co-
horts of patients. From Table 6, we observe that for
some cohorts of patients our approach yields the
most improvement in QALE while incurring the least
amount of medical expenditure. These cohorts in-
clude patients with (a) age < 50, (b) diabetes history,
(c) normal or hypertensive blood pressure, (d) normal
or high levels of cholesterol and triglyceride, and
(e) normal or low HDL. (2) Gains obtained by fol-
lowing our proposed policies compared to the current
practice are higher versus benchmark policies 1 and 2
than the other benchmark policies. The intensity of
medications prescribed under these policies could
be a contributing factor. For example, by following
benchmark policies 1 and 2 in one year (compared
to our optimal policy), a patient takes high-dose
tacrolimus up to 3.69more times, while taking insulin
up to 2.09 fewer times. As a result, the patient be-
comes more vulnerable against the diabetogenic ef-
fect of tacrolimus and NODAT complications. (3) The
comparison between our APOMDP approach and
the POMDP approach reveals that had we ignored
the underlying model misspecifications, each patient
would have lost between 0.02 and 0.09 QALE on
average (i.e., between 1.04 and 4.68 weeks), while
incurring between $31 and $214 more medical costs
during one year after transplant. This shows the
importance of considering model misspecifications that
are inevitable when data are used to estimate parame-
ters: one should not rely on a single model to derive
effective medication strategies. (4) The abovementioned
improvements in performance measures are obtained
overourplanninghorizon (i.e., oneyear after transplant).
Because, compared to other approaches, the APOMDP T
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approach could (a) result in better outcomes in each time
period and (b) move the patient to a better health state
over time, the potential improvements could be more
significant if thesemeasures are calculated over a longer
horizon (e.g., two years since transplant).

Finally, in Online Appendix E, we conduct sensi-
tivity analyses on the estimated reward values (where
both transplant- and diabetes-related parameters are
varied simultaneously) and find that the results dis-
cussed above are robust to the estimated values.

6. Conclusion
Immunosuppressive medications are currently inten-
sively prescribed in the post-transplant period to ensure
a low risk of organ rejection. However, this practice has
been shown to increase the risk of new-onset diabetes
after transplantation, which, in turn, necessitates the use
of medications such as insulin. To provide guidelines
for the simultaneous management of post-transplant
medications such as tacrolimus and insulin, we de-
velop an ambiguous POMDP model that maximizes
the QALE of patients while controlling the risk of
organ rejection and NODAT. Utilizing our APOMDP
approach along with a data set of patients who un-
derwent kidney transplantation at our partner hospital,
we establish a data-driven approach in which (1) the
physician’s ambiguity attitude toward model mis-
specifications is defined based on a combination of the
worst and the best possible outcomes in the “cloud”
of models, (2) core state and observation transition
probability matrices are patient-risk-factor specific but
subject to potential estimation errors, and (3) optimal
policies are customized for different cohorts of patients.

Analyzing the APOMDP model, we first present
some structural properties. These include piecewise
linearity and convexity of the value function, a theo-
retical link between a decision maker’s conservatism
level and the intensity of prescribed medications,
monotonicity of the optimal medication policy, and a
feasible bound on the value function as an approxi-
mation. We then perform various numerical experi-
ments using our clinical data set, and discuss their
implications. For example, we observe that under the
optimal policy for some patient cohorts (e.g., non-
white patients with age ≥ 50, no diabetes history, and
low cholesterol), a more conservative physician is
more concerned about both risks of organ rejection
and NODAT than a less conservative physician. Also,
for other patient cohorts (e.g., male patients with
age < 50, diabetes history, and hypertension), a more
conservative DM is more concerned (under the optimal
policy) about the risk of NODAT than that of organ
rejection compared with a less conservative physician.

We also compare our proposed optimal policies
with four benchmark policies that represent the
current medical practice (under different scenarios)

and a POMDP approach that ignores the underly-
ing model misspecifications. Our results show that,
depending on different risk factors considered for
each patient, in one year after transplant our opti-
mal policy (compared to other policies) (a) improves
the average QALE up to 4.58%, (b) reduces the medical
expenditures per patient up to 11.57%, and (c) prescribes
high-dose tacrolimus up to 3.69 fewer times per pa-
tient. The other important implications of the above-
mentioned results for practitioners and guideline
makers are as follows: (1) Cohorts of patients formed
by age, diabetes history, blood pressure, cholesterol,
HDL, and triglyceride will benefit most from our
methodology, because for such patients our approach
yields the most improvement in QALE while in-
curring the least medical expenditure. (2) Practitioners
orguidelinemakers shouldnot rely on a singlemodel to
derive effective medication strategies: had we ig-
nored the underlying model misspecifications, each
patient on average would have lost between 1.04
and 4.68 weeks of QALE during one year, while
incurring between $31 and $214 more medical costs
during the same period.
Our study has some limitations: (1) We consider 11

different risk factors, each having two levels (i.e., low
versus high). This creates as many as 211 � 2, 048 risk
profiles for patients. However, we consider 2 × 11 �
22 cohorts of patients by changing one risk factor at a
time. This allows us to focus on the effect of each
individual risk factor separately. However, this dis-
allows us to study the potential interactions between
the risk factors. To perform such a study, we note that
one needs to estimate transition and observation
probabilities for each of the 211 risk profiles, which, in
turn, requires data of about 10, 000 patients (i.e., more
than half of all kidney transplantations in the United
States in 2015; United Network of Organ Sharing
2018). This is much larger than the number of pa-
tients seen at our partner hospital. Furthermore, one
needs enough data to estimate the reward functions
(e.g., QALE values) for all of these 211 cohorts of
patients. Nevertheless, as noted earlier, we believe
that our approach of considering 22 cohorts of pa-
tients is strong enough to detect the impact of each
risk factor on optimal prescription of medications.
(2) We consider tacrolimus as the main immuno-
suppressive drug in this study, based on the practice
at our partner hospital. Some of our results might be
specific to tacrolimus and should not be extended to
other immunosuppressive drugs without additional
analysis. Furthermore, unlike the case at our partner
hospital, multiple immunosuppressive drugs may be
used in parallel in some medical practices. Including
all such drugs in our APOMDP approach will increase
state and action spaces, aggravating the so-called
curse of dimensionality. This will necessitate using
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some approximation schemes (e.g., utilizing a lower
bound approach similar to the one we discussed in
Section 4, or obtaining policies via approximate dy-
namic programming).

Future research can extend our work in two other
directions. First, our approach can be applied to other
solid organs (e.g., liver and pancreas) with the goal
of creating a multi-organ data-driven decision support
system. Compared with kidney transplantation, where
one can use dialysis when facing organ rejection, dialysis
is not feasible for other organs. As a result, risk of organ
rejection is expected to be higher for other organs com-
pared to kidney, and this, in turn, can affect optimal
medication policies. Second, future research may con-
sider a resource allocation problem for hospitals, where
the challenge is to effectively allocate limited resources
(e.g., insulin and tacrolimus along with nurses and beds)
to endocrinology and nephrology departments of hos-
pitals for managing NODAT patients. This will create
coordinated efforts between different parts of a hospital,
and hence may further reduce expenditures while im-
proving the care delivery process.
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