
This article was downloaded by: [128.103.193.188] On: 17 December 2019, At: 12:36
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Journal on Optimization

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Data-Driven Percentile Optimization for Multiclass
Queueing Systems with Model Ambiguity: Theory and
Application
Austin Bren, Soroush Saghafian

To cite this article:
Austin Bren, Soroush Saghafian (2019) Data-Driven Percentile Optimization for Multiclass Queueing Systems with Model
Ambiguity: Theory and Application. INFORMS Journal on Optimization 1(4):267-287. https://doi.org/10.1287/ijoo.2018.0007

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2019, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/ijoo.2018.0007
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org


INFORMS JOURNAL ON OPTIMIZATION
Vol. 1, No. 4, Fall 2019, pp. 267–287

http://pubsonline.informs.org/journal/ijoo ISSN 2575-1484 (print), ISSN 2575-1492 (online)

Data-Driven Percentile Optimization for Multiclass Queueing
Systems with Model Ambiguity: Theory and Application
Austin Bren,a Soroush Saghafianb

a School of Computing, Informatics, andDecision Systems Engineering, Arizona State University, Tempe, Arizona 85287; bHarvardKennedy
School, Harvard University, Cambridge, Massachusetts 02138
Contact: austin.s.bren@asu.edu (AB); soroush_saghafian@hks.harvard.edu, http://orcid.org/0000-0002-9781-6561 (SS)

Received: September 29, 2017
Revised: March 10, 2018; July 13, 2018
Accepted: August 27, 2018
Published Online in Articles in Advance:
April 29, 2019

https://doi.org/10.1287/ijoo.2018.0007

Copyright: © 2019 INFORMS

Abstract. Multiclass queueing systems widely used in operations research and man-
agement typically experience ambiguity in real-world settings in the form of unknown
parameters. For such systems, we incorporate robustness in the control policies by ap-
plying a data-driven percentile optimization technique that allows for (a) expressing a
controller’s optimism level toward ambiguity and (b) utilizing incoming data to learn the
true system parameters.We show that the optimal policy under the percentile optimization
objective is related to a closed-form, priority-based policy. We also identify connections
between the optimal percentile optimization and cμ-like policies, which, in turn, enables us
to establish effective but easy-to-use heuristics for implementation in complex systems.
Using real-world data collected from a leading U.S. hospital, we also apply our approach
to a hospital emergency department setting and demonstrate the benefits of using our
framework for improving current patient flow policies.

Supplemental Material: The online appendices are available at https://doi.org/10.1287/ijoo.2018.0007.

Keywords: model ambiguity • data-driven optimization • ED operations

1. Introduction
Multiclass queueing systems require dynamic control in environments in which servers must process multiple
types of jobs that vary with respect to holding costs, service rates, and other defining characteristics. These types of
queueing systems are widely used to model call centers, hospitals, manufacturing lines, and service operations, in
which elements in the queue can be classified based on differing levels of urgency, processing time, or other
attributes. For example, in a hospital emergency department (ED), patients are classified through a triage system,
which differentiates them based on their severity, medical complexity, or other conditions (see, e.g., Saghafian et al.
2012, 2014, and the references therein). Hence, a natural way to analyze ED patient flow is via amulticlass queueing
system that separates patients based on their attributes.1

In such systems, when all parameters are known, many well-established policies, such as the cμ rule, have been
shown to be optimal for optimizing the system’s performance (see, e.g., Van Mieghem 1995 and Buyukkoc et al.
1985). However, the assumption that all the model parameters are perfectly known is often unrealistic, especially in
settings with little supporting data, inaugural system launch, or various other sources of ambiguity. A manager
with incorrect parameter specifications may enforce policies that perform poorly or may not have confidence in
using a policy that is obtained from a model with parameters that the manager does not fully trust. In an effort to
combat such mistrust, we consider a form of model ambiguity caused by the ambiguity in parameters termed
parameter ambiguity and develop strategies that directly take these into account.

Traditionally, robust optimization protects against parameter ambiguity by utilizing a minimax objective on
an ambiguity set of parameters that are assumed to contain the true system parameters. However, this type of
robustness (a) can result in overly pessimistic policies and (b) ignores the significant potential to learn about the true
system parameters from data acquired both before and after system launch. Even when this pessimism is reduced
by choosing tighter ambiguity sets, the policies generated are not capable of learning from incoming data. To avoid
these deficiencies, wemodel parameter ambiguity via a partially observableMarkov decision process (POMDP), an
extension of Markov decision processes (MDPs), which allows for (a) imperfect state knowledge and (b) learning in
a Bayesian manner. A POMDP supports the distribution of the underlying system parameters, known as the belief
space, and updates this distribution to reflect received observations. This is ideal from a learning perspective;
however, in a POMDP, the decision maker is assumed to have an initial prior belief, which is often a subjective
value, guided by scarce data, error-prone expert opinion, intuition, or instinct. For these reasons, Bayesian critics
distrust such learning mechanisms, citing the unreliability of the prior specification in real-world applications.2
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To incorporate robustness to such a prior belief (hence, gaining robustness to parameter ambiguity), we integrate
our POMDP model with a percentile optimization approach. Percentile optimization is traditionally used to avoid
overly conservative policies by offering a certain level of performance over a percentage of the ambiguity set (see,
e.g., Delage andMannor 2010 andNemirovski and Shapiro 2006).We extend percentile optimization to incorporate
robustness to the belief about the model parameters rather than relying on a robustness generated directly from the
parameters themselves. In this way, we investigate strategies in which the controller learns the main model
parameters (e.g., unknown service rates) while simultaneously controlling the underlying system for superior
performance, which contrasts with robust techniques that only focus on parameter ambiguity sets. Thus, our
framework allows generating policies that are robust to parameter ambiguities (considering a manager’s pessi-
mism level) while simultaneously learning about the true model from data/observation of the system’s perfor-
mance in a Bayesian manner.

Our main contributions stem from extending the robust percentile optimization approach for integration with
POMDPs. We find that the percentile optimization objective reduces to the minimax and minimin objectives when
the optimism level is set to its lowest and highest values, respectively, and show that the optimal policies under
these objectives are myopic cμ priority policies. Understanding the nonrobust problem (which assumes a specified
initial belief) proves to be essential in finding robust policies in which the belief is subject to ambiguity.We find that
optimal robust policies can be formed using specific nonrobust policies via a geometric structure known as the
convex floating body. Therefore, to solve the robust percentile problem, we first solve the nonrobust problem that has
a known initial belief. As the rate of observations increases, we find that a priority-based policy that acts as an
extension of the well-known cμ rule becomes asymptotically optimal to the nonrobust problem. This policy, which
we term Ecμ, is myopic and prioritizes the class with the largest expected cμ value. The proposed Ecμ policy utilizes
incoming data for learning (unlike the traditional cμ rule) and is extremely simple to implement.

Because of its foundation in POMDPs, the robust framework we consider is computationally ambitious and
necessitates finding tractable methods for implementation. Using the analytical insights gained from the con-
nection between nonrobust and robust policies, constraints via the convex floating body, and the relation of Ecμ to
the nonrobust objective, we develop a heuristic for the robust problem that (a) is highly scalable to large problem
instances and (b) shows strong performance in extensive simulation experiments. We also develop analytical
bounds to the nonrobust problem based on queueing systems with fully known parameters. These bounds are (a)
tight under a variety of conditions and (b) can be used to more effectively compute optimal robust policies.
Furthermore, because the bounds are based on nonlearning policies, they can be computed in an efficient manner.

Finally, we demonstrate the benefits of our approach in a real-world setting by utilizing data that we have
collected from a leading U.S. hospital and by establishing the advantages of using our framework in improving the
current ED patient-flow policies. Our percentile optimization framework is the first study in the literature to yield
data-driven policies for use in EDs that hedge against parameter ambiguity. We find that highly congested EDs are
well suited to our percentile optimization framework, especially in geographical areas with uncertain/unstable
patient population characteristics. Additionally, our approach explicitly avoids overly conservative policies that
focus only on the worst-case scenarios. As a result, we find that percentile optimization performs well over a
large spectrum of optimism/pessimism. In particular, our simulations calibrated with hospital data suggest that, by
using our approach, an ED manager can significantly improve performance regardless of the manager’s disposition.

The rest of the paper is organized as follows. In Section 2, we provide a literature review of the related studies.
Section 3 introduces the nonrobust, continuous-time formulation of our problem, which is uniformized into a
discrete-time problem in Section 3.1 and lays the foundation for the percentile framework developed in Section 3.2.
We provide the majority of our analytical insights in Sections 4 and 5, in which we establish optimal policies for the
nonrobust and robust formulations and identify upper/lower bound results. Section 6 introduces a heuristic to the
robust problem that is rooted in the analytical insights generated from Section 4. In Section 7, we present various
numerical experiments, discuss the application of our work for improving patient flow in EDs, and use real-world
data obtained from a leading U.S. hospital to evaluate the potential benefits of our approach. Finally, in Section 8,
we present our concluding remarks.

2. Literature Review
The literature surrounding multiclass queueing systems aims to analyze complex structures and discover their
optimal control policies, such as the cμ policy and its variations (see, e.g., Buyukkoc et al. 1985, VanMieghem 1995,
and Saghafian and Veatch 2016 and the references therein). A common tool used to analyze and control such
systems is MDPs. However, their use is limited to the unrealistic case in which the decision maker is assumed to
completely know all the parameters of the model (e.g., service rates). Most notably, this includes a perfect
knowledge assumption of the transition matrices that guide a system’s state transitions. This assumption can be
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problematic in various practical applications in which service rates (or other parameters) are not perfectly known.
Mannor et al. (2007) and Nilim and El Ghaoui (2005) find that small changes in such parameters can result in
significant differences in decision-making strategies. However, a synthesis of most studies on dynamic control in
queueing systems indicates the use of tools that heavily rely on a full knowledge about the system’s parameters.
This is despite the fact that, in practice, such parameters are typically unknown and often hard to estimate.

Robust methods applied to queueing models are largely involved with reducing the computational burden of
characterizing queueing metrics and policies. Su (2006) studies a fluid approximation of a multiclass queueing
model’s holding cost under a robust paradigm established by Bertsimas et al. (2004) and Bertsimas and Sim (2004).
Bertsimas et al. (2011) focus on finding bounds for performance measures through a method rooted in robust
optimization and study the performance of this method on tandem and multiclass single-server queueing net-
works. Jain et al. (2010) find that a queueing network with control over traffic intensities has a simple threshold-
type policy under a robust objective. For more recent studies on robust techniques used in queueing systems, we
refer to Pedarsani et al. (2014), Bandi and Bertsimas (2012), and Bandi et al. (2015) and the references therein. This
stream of research is mainly aimed at increasing tractability by focusing on worst-case (i.e., fully pessimistic)
scenarios and establishing related performance metrics. Unlike this stream, our goal is to provide policies that (a)
are more optimistic (i.e., less conservative) and (b) incorporate learning from online, system-run data/observations.

Adding robustness when facing parameter ambiguity is a topic of significant interest to a variety of fields,
including economics, operations research/management, computer science, and decision theory among others.
Typically, robustness inMDPs is added using aminimax objective because this often results in tractable analyses as
shown in Nilim and El Ghaoui (2005) and Iyengar (2005) and the references therein. Other studies, such as Chen
and Farias (2013), deal with ambiguities by considering policies that offer guarantees on expected performance. Still
other methods of incorporating robustness include regret minimization (Lim et al. 2012), relative entropy (Bagnell
et al. 2001), andmartingale-based approaches (Hansen and Sargent 2007) that provide less conservative and, hence,
potentially more realistic alternatives to minimax techniques. In particular, Delage and Mannor (2010) identify a
robust approach applied to MDPs called percentile optimization that effectively avoids overconservatism (see also
Nemirovski and Shapiro 2006 and Wiesemann et al. 2013 for related studies). Instead of finding policies that are
tailored to work well in worst-case scenarios, the percentile optimization method finds policies that maximize
performance with respect to a level of belief about the true parameters for a given level of optimism.

Chow et al. (2018) also utilize this type of robustness to develop risk-constrained policies for MDPs. However, a
significant deficit in current percentile optimization approaches is the lack of ability to learn about the true pa-
rameters over time. Delage and Mannor (2007) work to fill this gap via a similar formulation to our approach, and
find second-order approximations to MDPs that experience transition parameter uncertainty. However, the
Dirichlet-type uncertainty assumed in transition parameters does not fit our queueing problem, and in our work,
we extend the percentile optimization approach with respect to ambiguity in the initial belief. Thus, system data/
observations can be used for learning the true operational model, and as we show, this ability to learn itself adds a
strong layer of robustness for controlling queueing systems (e.g., hospital patient flows) that face parameter
ambiguity. Learning to overcome ambiguities is also discussed in Bassamboo and Zeevi (2009), which models a call
center application using a data-driven technique. However, their work (a) does not include any notion of ro-
bustness and (b) focuses on near-optimal policies with performance bounds. Our work differs in modeling ap-
proach by our joint focus on learning and robustness and inmethodology by our contributions in characterizing the
exact optimal policies.

Data-driven parameter learning has been incorporated in POMDPs: Ross et al. (2011) explores a finite-horizon
POMDPmodel that updates a posterior of its parameter belief in a Bayesian manner, and Thrun (1999) investigates a
POMDP in continuous action and state spaces that relies on particle-filtering techniques to determine the belief state.
Unlike learningmechanisms, robust methods are almost nonexistent in POMDP frameworks. Osogami (2015) shows
that traditional minimax approaches with convex ambiguity sets can be extended to POMDPs while still retaining
their structural features (such as convexity). In a new approach, Saghafian (2018) extends POMDPs to a new class
termed ambiguous POMDPs (APOMDPs), which incorporates ambiguity in transition and observation probabilities
in a robust fashion. The robustness in Saghafian (2018) is achieved by considering α-maximin (α-MEU) preferences
and by incorporating the decision maker’s temperament toward model ambiguity. Different from the APOMDP
approach of Saghafian (2018), we utilize a percentile optimization objective to hedge against ambiguities.

3. The Multiclass Queueing Control Problem with Parameter Ambiguity
We begin by considering a continuous-time, multiclass, queueing-control problem with preemption, in which a
single server is responsible for serving n classes of customers over an infinite time horizon. Unlike the traditional
version of this model, we assume the controller does not know the main parameters of the system and, hence, is
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faced with parameter ambiguity. We focus on the case in which the ambiguity is on service rates. To this end, we
start by excluding dynamic arrivals to the system and instead consider a clearing system3 version of the problem.We
relax this assumption in Sections 7 andA.4 by allowing for dynamic arrivals and find that many of ourmajor results
are transferable from the clearing system. Our general approach can also be used for systems in which arrival rates
or other parameters are ambiguous by modifying the underlying dynamic program to include these components
along with their learning mechanisms. However, this appears to increase the problem’s complexity without
providing additional insights.

With 1 � 1, . . . ,n{ } denoting the set of customer classes, we assume each customer of class i ∈ 1 accrues a cost
ĉi > 0 for each unit of time spent in the system. Let ĉ � (ĉ1, ĉ2, . . . , ĉn) be the cost vector, α ∈ (0,∞) the discount rate,
and X(t) � (X1(t),X2(t), . . . ,Xn(t)) the vector of the number of customers in the system, where Xi(t) is number of
class i customers in the system at time t. In line with many robust approaches, we begin by outlining an ambiguity
set (i.e., a “cloud” of models) that is assumed to include the true model. To this end, and for tractability, we assume
service times for each class are independent and identically distributed exponential4 random variables with unknown
rates for each class. The true service rate for each class i ∈ 1 is chosen by nature at time t � 0 and lies within ambiguity
set }i � {μ̂i,1, . . . , μ̂i,mi}. We further assume that service times for different classes are independent. For future no-
tational convenience, we let )i � 1, . . . ,mi{ }. Throughout the paper, we assume mi ∈ N, and μ̂i,j �� μ̂i,k for each i ∈ 1
and distinct j, k ∈ )i. Although the ambiguity sets}i are discrete, the continuous case can be approximated arbitrarily
closely by increasing the number of potential service rates mi to make the mesh size of }i close to zero.

Over time, the controller can learn the true service rates by observing the process history, which includes all
previous service durations, control actions, and observations of service completions. For Markovian systems with
incomplete information, it has been shown in Bertsekas (1995) that the Bayesian belief on the unknown parameters
with respect to the observed process history is a sufficient statistic. We let@ be the set of all such sufficient statistics, that
is, the set of possible belief distributions on the system’s service parameters. Letting m � ∑

i∈1 mi, each b ∈ @ is an
m-dimensional vector of the form b � (b1,1, b1,2, . . . , b1,m1 , b2,1, . . . , bn,mn ) with the condition that each bi,j ≥ 0 and that∑mi

j�1 bi,j � 1 for each i ∈ 1. In this setting, if μ̂∗
i ∈ }i is the true (unknown) service rate for class i ∈ 1,

Pr(μ̂i,j � μ̂∗
i |b) � bi,j. We further assume that the observation made after serving one class does not affect the belief

about another. This is alignedwith the assumption that service time of one class is independent of that of another class.
To find policies that optimally prescribe which customer class the server should serve at any time given (a) the

available information summarized in the current belief about the service rates and (b) the number of customers in
each queue, it is known that one can restrict attention to policies that are deterministic, stationary, and Markovian
(see, e.g., Sondik 1971, Smallwood and Sondik 1973, and Bertsekas 1995). Consequently, an admissible non-
anticipative policy πmaps the current belief and queue-length information (information state) to the set of actions:
π : Zn+ ×@ → 1

⋃{0} with the additional condition that π can serve only customer classes that have nonempty
queues and serves the fictitious class “0”when the server is idled (e.g., when all the queues are empty). Our model
described is schematically illustrated in Figure 1.

We let Π denote the set of all admissible policies and Xπ(t) � (Xπ
1 (t),Xπ

2 (t), . . . ,Xπ
n (t)) ∈ Zn+ represent the number

of customers in the system under policy π ∈ Π at time t. In Online Appendix B, Lemma 17 shows that idling the
server when at least one customer class queue is nonempty is always suboptimal; hence, we consider only
nonidling policies in our analysis. For a given policy π, the expected discounted true cost the system experiences is

Eπ

∫ ∞

t�0
e−αtĉXπ t( )Tdt|X(0)

[ ]
,

Figure 1. The Server Serves a Class a Customer with an Unknown Rate Belonging to Ambiguity Set }a

Bren and Saghafian: Multiclass Queueing Systems with Model Ambiguity
270 Informs Journal on Optimization, 2019, vol. 1, no. 4, pp. 267–287, © 2019 INFORMS



given the true transition parameters chosen by nature at time t � 0, where the notation “T” represents transpose
and Eπ is expectation with respect to the probability measure induced by π. However, because the controller does
not know the true transition matrix (as service rates are unknown), we are interested in the expected cost with
respect to the controller’s belief:

Jπ X(0),b(0)( ) � Eπ,b(0)
∫ ∞

t�0
e−αtĉXπ t( )Tdt|X 0( )

[ ]
, (1)

where Eπ,b(0) denotes expectation with respect to both the initial belief b(0) and π. We refer to Jπ(X(0),b(0)) as the
nonrobust cost under policy π because it assumes a perfectly assigned b(0) (which is inevitably hard to quantify for
any decisionmaker who is facedwithmodel ambiguity). The optimal nonrobust cost is then given by J X(0),b(0)( ) �
infπ∈Π Jπ X(0),b(0)( ). In what follows, we first use uniformization to work with the discrete-time model of the
nonrobust scenario, in which the initial belief is given.We then adopt percentile optimization to enable the decision
maker/controller to reduce reliance on b(0) and thereby make robust decisions.

3.1. A Discrete-Time Nonrobust Framework
The continuous-time Markov chain Xπ(t) : t ≥ 0{ } can be converted to a discrete-time equivalent using the well-
known uniformization technique (Lippman 1975). Following this method, we first select a uniformized expo-
nentially distributed randomvariable ξwith a rateψ>maxi∈1,j∈)i

μ̂i,j, which serves as our rate of observationsmade
as follows. If the server completes service to a customer of class iwithin a uniformized unit of time (i.e., at the end of
each period), an observation indicating the “successful” service to class i is recorded. Otherwise, if no service
completion is observedwithin this time, an observation is recorded indicating an “incomplete” service to class i. We
note that this uniformization rate ψ may be arbitrarily large so as to approximate continuous observations.

We let σ be the Bayesian learning operator such that σ b, a, θ( ) is an m-dimensional vector representing the
updated belief after taking action a and receiving observation θ when the prior belief is b. Because there are only
two outcomes for observations for any given action, we let “+” signify an observed service completion (“success”)
during the uniformized time period and “−” represent an incomplete service (“failure”) in that period. In this
setting, we use a discrete-time dynamic program with uniformized parameters μi,j � μ̂i,j/ψ. For notational con-
venience, we let E[μi|b] � ∑mi

j�1 μi,jbi,j be the expected service transition probability of class i ∈ 1 given belief b. In
this way, the Bayesian learning operator updates belief b with components bi,j to belief b̄ � σ b, a, θ( ) with
components b̄i,j � σ b, a, θ( )i,j, where a, i ∈ 1, j ∈ )i, and

σ b, a,+( )i,j �
μa,jba,j∑ma
k�1 μa,kba,k

� μa,jba,j
E[μa |b] : i � a

bi,j : i �� a

{
(2)

for a successful service observation and

σ b, a,−( )i,j �
1−μa,j( )ba,j∑ma

k�1 1−μa,k( )ba,k �
1−μa,j( )ba,j

(1−E[μa |b]) : i � a

bi,j : i �� a

{
(3)

for a failed service observation. Equations (2) and (3) are established because, under realized parameter μa,j, the
probability of successful service in a given period is μa,j and probability of incomplete service is (1 − μa,j). With this
and defining a discrete-time discounting factor β � ψ

ψ+α and instantaneous cost cXT � ĉXT

ψ+α where X is an
n-dimensional vector representing queue lengths, we can identify the nonrobust optimal policy and the associated
cost via the dynamic program

Vt+1 X,b( ) � cXT + β min
a∈!(X)

{
E[μa|b]Vt X − ea, σ b, a,+( )( )

[

+ (
1 − E[μa|b])Vt X, σ b, a,−( )( )

}]
, (4)

with the terminal condition V0 X,b( ) � cXT, where!(X) � {i ∈ 1
⋃{0}|Xi �� 0} is the set of admissible actions. In this

setting, taking the limit as t → ∞, we define V X,b( ) � limt→∞ Vt X,b( ) and note that V X,b( ) � infπ∈Π Jπ(X,b) (see
Lemma 11 inOnline Appendix B for a rigorous treatment), where Jπ(X,b) is defined in (1). To account for evaluating
nonoptimal policies, we let Vπ

t+1 X,b( ) be a value function similar to that of the dynamic program (4) with the min-
imization operator replaced by serving the class prescribed by policyπ. Likewise, we let Vπ X,b( ) � limt→∞ Vπ

t X,b( ) be
the infinite-horizon dynamic program value function under policy π.
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3.2. Gaining Robustness via Percentile Optimization
Because the controller is facing ambiguity with respect to the truemodel, the controller may distrust the initial prior
on the cloud of models, b(0). The specification of b(0) is subject to model sensitivities, especially in applications in
which there is little or highly variable data to perfectly quantify it. Often, the selection of a prior is a process that
requires sussing out probabilities and parameter values from experts in the field, which can be a highly subjective
and inaccurate task.5

In traditional robust optimization, one would choose a policy assuming that nature, being an antagonistic
character, picks the worst-case initial belief vector b(0) for a chosen policy. Hence, the traditional minimax robust
objective can be defined by first considering the worst-case cost under a policy π ∈ Π :

Rπ X( ) � max
b∈@

Vπ X,b( ).

The cost under the minimax robust objective is then R X( ) � infπ∈Π Rπ X( ). In this setting, the controller assumes that
nature will pick the transition parameters that result in the maximum cost for any given policy and chooses a policy
that minimizes the cost of this worst-case outcome.

In sharp contrast to this type of robustness, which typically yields overly pessimistic control policies, is the overly
optimistic minimin objective defined by

Nπ X( ) � min
b∈@

Vπ X,b( ),

and N X( ) � infπ∈Π Nπ X( ), under which the controller chooses a policy assuming nature picks the transition pa-
rameters resulting in the best-case cost for any given policy. In what follows, we first show that both minimax and
minimin optimal policies arewithin the well-known class of cμ policies. Thus, they (a) are fullymyopic and (b) have
very simple forms.

Proposition 1 (Minimax/Minimin cμ Optimal Policies). At any state (X,b), optimal policies to the minimax and minimin
objectives serve classes argmaxa∈!(X)(minj∈)a

caμa,j) and arg maxa∈!(X)(maxj∈)a
caμa,j), respectively.

Proposition 1 establishes that optimal policies under bothminimax andminimin objectives are myopic priority
disciplines (known as the cμ rule) with respect to the smallest and largest transition rates within the ambiguity set
for each class, respectively. However, it should be noted that such policies (a) ignore the potential for learning
from the system behavior and (b) only consider the potentially unrealistic extreme best- and worst-case scenarios
and can perform poorly in real-world applications. To address this deficit, we next investigate how the per-
centile optimization approach provides a balancing alternative between these two extreme strategies while
incorporating learning about the hidden probabilities associated with the true transition parameters (i.e., service
rates).

To this end, for a given ε ∈ 0, 1[ ], we define the percentile optimization program:

Yπ(X, ε) � inf
yε∈[Nπ X( ),Rπ X( )]

yε (5)

s.t. Pr Vπ X,B( ) ≤ yε
( ) ≥ 1 − ε, (6)

and let Y X, ε( ) � infπ∈Π Y
π X, ε( ) represent the optimal percentile objective. In (5), we impose that Nπ X( ) ≤ yε ≤

Rπ X( ) so that the value of the objective is within the most optimistic and pessimistic values attainable for any given
belief in accordance with the policy, hence enforcing “realizable” expected costs. The probability operator in (6) is
defined with respect to a specified probability density PB over the prior belief space,6 where B is a random variable
whose realization is b. The percentile optimization program (5) and (6) allows us to find a chance-constrained policy:
it emphasizes policy performance over a portion of the belief space. We, thus, term the policy that is the solution
under the optimal percentile objective as (1 − ε)% chance-constrained policy. Intuitively, the smaller the ε, the more
protection from poor parameter settings because the proportion of the belief space that performs worse than yε
becomes smaller.

It is important to note that the percentile objective acts as a bridge between nonrobust and robust objectives;
expressing a manager’s optimism level is a core ambition of this type of robustness. For instance, the chance-
constrained policy reduces to the minimax and minimin policies when ε is zero and one, respectively.

Proposition 2 (Percentile/Minimax/Minimin Relationship). The percentile objective, minimax, and minimin policies share the
following relation:
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i. If ε � 0 and PB b( )> 0 for all b ∈ @, then the optimal policy and cost under both minimax and percentile objectives are
the same.

ii. If ε � 1, then the optimal policy and cost under the minimin and percentile objectives are the same.

The additional condition PB b( )> 0 for all b ∈ @ in part (i) is necessary because PB with zeros may allow the
percentile objective to “ignore” certain portions of the belief space while still satisfying constraint (6). For example,
if PB yields a degenerate distribution with respect to a point b, Y X, 0( ) � V X,b( ).

4. Structure of Optimal Policies Under the Percentile Objective
Analyzing program (5) and (6) is inherently complex both analytically and computationally. However, we find that
the solution to this program is linked to solving the nonrobust problem. Hence, we first consider the solution of the
dynamic program (4), identify important characteristics of these solutions over the belief space, establish the link
between nonrobust and robust policies, and finally work to characterize optimal percentile policies. In Section 6, we
develop an easy-to-use heuristic based on these insights to facilitate tractable solutions.

As the observation rate increases, tending toward continuous observations, the nonrobust problem can be
transferred to amultiarmed bandit (MAB) problemby noting that, (a) under any action, only the belief about transition
parameters and number of customers in the served class (the “arms” of theMAB) change and (b) the “discounted cost”
can be reinterpreted as “discounted savings” of the MAB because of our clearing system environment (for further
discussion, see Lemma 3 inOnline Appendix B).MABproblems are typically solved by indexing policies related to the
expected savings in cost experienced through exclusively serving one class over time.

To take advantage of the aforementioned connection, we term the myopic policy that serves the class a ∈ !(X)
with largest value of caE[μa|b] the “Ecμ” policy. Thus, we denote πcμ that serves argmaxa∈! X(t)( ) caE[μa|b(t)] as the
Ecμ policy. This policy can be viewed as an extension of the traditional cμ policy (often seen in the literature
surrounding control of multiclass queueing systems) for queueing systems with ambiguous parameters. The
expectation operator in this policy dynamically combines all the possible cμ values for each class based on the belief
at time t. Because the nonrobust problem learns via belief state transitions in discrete increments based on the
observation rate, the myopic Ecμ policy is not optimal in general. However, as this rate increases, the belief state
transitions become smooth, leading to its asymptotic optimality as shown in the following theorem.

Theorem 1 (Ecμ Asymptotic Optimality). The Ecμ policy πcμ is asymptotically optimal for the nonrobust problem:
limψ→∞ Vπcμ

X,b( ) � limψ→∞ V X,b( ) for all X ∈ Zn+ andb ∈ @.

Theorem 1 is surprising in its simplicity because problems based on POMDP formulations typically do not yield
closed-form results. In contrast to the usual complexities, the asymptotic optimality of the Ecμ policy implies that
the only information necessary to make decisions is the expected transition rates among nonempty queues.
Therefore, transition rate variability only has an effect on parameter learning and not on the policy. Similarly, queue
lengths are essentially irrelevant to the decision maker. However, the Ecμ policy features a momentum property;
if the current action a prescribed by the policy yields enough successes so that caE[μa|b] does not fall below the
threshold defined by câE[μâ|b] of the next highest available class â, the Ecμ policy will continue to serve class a
regardless of the state of other classes. In turn, this means that the policy will not attempt to serve a class with
smaller câE[μâ|b] until other classes with larger values have experienced a sufficient number of service failures or
have cleared their queue. This property may run counterintuitive to the exploration-minded individual; even if a
class has the potential to be endowedwith a very large caμa,j value (under the realization of system parameters), this
potential is only rated on the basis of its contribution to the expected service rate.

Another important property of the Ecμ policy is that, under mild conditions, Vπcμ
X,b( ) is piecewise-linear over

the belief space (excluding beliefs near edges and faces of @).7

Proposition 3 (Piecewise-Linearity of the Approximate Nonrobust Value Function). Let @′ be any closed subset of @ such
that for any b ∈ @′, bi,j > 0 for all i ∈ 1, j ∈ )i. Ifminj∈)i

ciμi,j �� minj∈)k
ckμk,j for any distinct pair i, k ∈ 1, then Vπcμ

X,b( )
is piecewise-linear on @′.

This result is related to two facts: (i) for any given initial prior b ∈ @′ (and X ∈ Zn+), the Ecμ policy is unique unless
b lies on the break points of the piecewise-linear function Vπcμ

X,b( ) (see Lemmas 7 and 3 in Online Appendix B),
and (ii) policies can be evaluated as linear functions of the belief in any POMDP. Therefore, with respect to closed,
nonzero portions of the belief space, the value function Vπcμ

X,b( ) is differentiable (except at break points). As we
show in Theorem 2, the differentiability of the value function strongly enhances the relationship between optimal
policies of the nonrobust problem and those under the robust percentile optimization program (5) and (6). Thus,
identifying an asymptotically optimal policy that exhibits this property enables us to solve the robust percentile
optimization program in an efficient way. This is an important insight to our search for robust chance-constrained
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policies, especially because, as Zhang (2010) states, there are no known general conditions over which a POMDP
value function is differentiable on its entire belief space.

To the purpose of finding robust chance-constrained policies, we introduce the following set of policies. Fix the initial
X and let_b � π1

b, π
2
b, . . . , π

k
b

{ }
be any finite set of optimal policies to the nonrobust problemwhen the initial prior is b

and p � (p1, p2, . . . , pk) be an associated distribution such that
∑k

i�1 pi � 1. We define a policy πp
_b

to be a randomized
policy if, at time 0, an element of_b,πi

b, is chosenwith probability pi, whichwill dictate all current and future decisions.8

Interestingly, similar to other nonlearning robust problems (see, e.g., Bertsimas and Thiele 2006), we find that
there exists a randomized policy that forms an optimal solution to the robust percentile problem. Because all
policies are evaluated as linear functions over @, we find that the hyperplane that generates a lower bound to the
percentile objective is achievable via a convex combination of optimal nonrobust policies. This means that there
exists an optimal robust policy that randomizes between optimal nonrobust policies obtained for a single belief
point b ∈ @. Furthermore, we shed light on conditions (associated with the differentiability of V(X,b)with respect
to the belief space) such that a deterministic nonrobust policy is optimal even for the robust percentile problem.

Theorem 2 (Chance-Constrained Policy). For any given ε ≥ 0, there exists a b∗ ∈ @ and a distribution p∗ forming a

randomized policyπp∗
_b∗ that is optimal under the percentile optimization program (5) and (6):Yπp∗

_b∗ X, ε( ) � Y X, ε( ) � V X,b∗( ).
Furthermore, if Vπb(X,b) is differentiable at b∗, then _b∗ consists of a single policy, and hence, πp∗

_b∗ is deterministic.

This result significantly reduces the complexity of the search for optimal robust policies. Importantly, it implies
that we can combine policies associated with the function V X,b∗( ) to find chance-constrained policies. In this way,
we no longer need to look at the general space of policies but, rather, can focus on the class of nonrobust optimal
policies. Moreover, Proposition 3 shows that the differentiability condition of Theorem 2 can be met by a surface
that converges to the value function. If b∗ lies on a linear segment of the value function that is not a break point,_b∗

can be composed of a single policy yielding a deterministic chance-constrained policy. Hence, under this as-
sumption, one need not be concerned with finding p∗.

However, Theorem 2 leaves us with an important question: what belief, b∗, should be used to form the chance-
constrained policy πp∗

_b∗ for a given percentile problem? If such a b∗ is characterized, then the solution to the
percentile problem can easily be found by a randomization of nonrobust policies associated with b∗. The answer to
this question turns out to be closely related to the geometrical concept of the convex floating body first discussed by
Dupin (1822) and later used in robust literature to generate ambiguity sets that guarantee performance for policies
evaluated within these sets (see, e.g., Lagoa et al. 2005 and Bertsimas et al. 2018). However, we utilize the convex
floating body to characterize b∗, which generates a policy satisfying the chance-constrained objective.

Definition 1 (Convex Floating Body). Let 0ε � { w,w( ) ∈ Rm × R : Pr (BwT ≥ w) ≤ ε} be the set of all half spaces that
“cut off” ε or less volume of the belief space @ with respect to PB. An ε-based convex floating body on @ is
+ε � ⋂

w,w{ }∈0ε
{b ∈ @ : bwT ≤ w}. We let δ+ε be the boundary of +ε.9

Based on this definition, a convex floating body is the region left from hyperplanes cutting off a specified volume
(ε) from an object. For every b ∈ δ+ε, there exists a hyperplane that divides@ into two pieces: one that has volume
less than or equal to ε. Figure 2 illustrates the convex floating body of a sphere with uniform density, which is either
the empty set or another sphere. We study convex floating bodies with respect to density PB on the belief space of
our priors to characterize b∗ and thereby find optimal chance-constrained policies as discussed in Theorem 2.

For the purposes of characterizing b∗, it is important that +ε is nonempty. Fortunately, Fresen (2013) states that
when PB yields a log-concave probability distribution, +ε exists so long as ε ≤ e−1. Hence, for many robust ap-
plications that tend toward pessimism (where ε is small), under common distributions, the convex floating body is
guaranteed to exist.10 If +ε is nonempty, we find that b∗ (defined in Theorem 2) is found at the largest value of the
nonrobust problem on the boundary of the convex floating body.

Proposition 4 (Characterizing_b∗ ). If+ε is nonempty, thenb∗ � argmaxb∈δ+ε
V X,b( ), whereb∗ satisfiesY X, ε( ) � V X,b∗( ).

Interestingly, Proposition 4 relates percentile optimization to aminimax objective: one can search for aworst-case
belief within a specified set. Because V X,b( ) is concave in b (by the convexity results of Sondik 1971 and Smallwood
and Sondik 1973), if δ+ε is easily characterized, we can apply gradient-based optimization to solve the problem
rather than evaluating the entire surface, which is computationally intractable. Although Theorem 2 states that_b∗

is a singleton when the value function is differentiable at b∗, the differentiability is not always guaranteed. To this
end, in the proof of Proposition 4 (see Online Appendix B), we characterize p∗. We find that the distribution p∗ such
that the contour {b ∈ @|Vπp∗

_b∗ X,b( ) � V X,b∗( )} is a subgradient hyperplane to +ε.
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In general, because nonrobust policies are only partially characterized (they converge to Ecμ policies asymp-
totically), it is important to connect the Ecμ policies to the percentile optimization objective. The following corollary
is similar to Proposition 4 and shows that there exists a finite randomization of Ecμ policies that are asymptotically
optimal to the percentile objective as ψ → ∞.

Corollary 1 (Robust Ecμ Optimality). If +ε is nonempty, then there exists a policy π that is a finite randomization of Ecμ
policies such that Yπ(X, ε) − Y(X, ε) ≤ Vπcμ(X, b̂) − V(X,b∗), where b̂ � argmaxb∈δ+ε

Vπcμ(X,b) andb∗ is defined inTheorem 2.

This corollary holds despite the fact that Vπcμ(X,b) is not guaranteed to be concave in b. In fact, if it is concave in b,
the randomized policyπ can be directly built from nonrobust policies. However, if Vπcμ(X,b) is not concave in b, we
can still form the appropriate randomized policy satisfying Corollary 1 via a randomization of policies that sat-
isfy minimax solutions within the set of Ecμ policies on the boundary of the convex floating body, namely,
minb1∈@ maxb2∈δ+ε

Vπ
cμ

b1 (X,b2).
With respect to optimal solutions to the percentile objective, additional results can further confine _b∗ (of

Theorem 2) by noting that b∗ must lie near the extreme belief state with worst-case transition parameters. We
denote this worst-case belief state by b0 and note that it is composed of components

b0i,j � 1 : if μi,j � mink∈)i
μi,k,

0 : otherwise.

{
(7)

It can be shown (see the proof of Proposition 5) that, for any policy, b0 is the worst-case (most expensive) belief state
for the system. To further characterize b∗, we define the concept of visibility (adopted from geometry literature but
repurposed for our needs).

Definition 2 (Visibility). A belief point b ∈ +ε is said to be visible from a reference belief b1 ∈ @ if b2 ∈ @ :
{

b2 � ηb + (1 − η)b1, η ∈ [0, 1]}⋂+ε � b.

As demonstrated in Figure 3, a belief b in the convex floating body is visible from a reference belief b1 if, on the
line segment connecting these points, only b lies within the convex floating body. This implies that, if the reference
belief point b1 is distinct from b and b is visible from b1, then b must lie in the boundary (b ∈ δ+ε). However, not
every point on δ+ε is visible from a reference point b1. In the following proposition, we show that the belief b∗
(introduced in Theorem 2) must be visible from the worst-case belief state b0.

Proposition 5 (Visibility of b∗). If +ε is nonempty, then there exists a b∗ visible from the worst-case belief b0.

Proposition 5 significantly helps us find b∗ (of Theorem 2): we only need to search part of δ+ε, which is visible
from b0. Proposition 5 also can facilitate establishing effective heuristics that circumvent the calculation of the
nonrobust problem. For instance, Figure 4 demonstrates the implications of Proposition 5 for a uniform type PB: b∗
lies somewhere on the dashed line.

Figure 2. A Convex Floating Body +ε When PB Is Uniform Within the Circle and Is Zero Elsewhere

Notes. It is generated from the intersection of half spaces (w,w) ∈ 0ε, and the striped area must contain less than or equal to ε volume.
(n � 2,m1,m2 � 2).
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5. Asymptotically Tight Bounds
Although we have characterized the optimal policies of the nonrobust and percentile problems, evaluating
the nonrobust value function V X,b( ) is still a computationally complex problem (see, e.g., Littman et al. 1998,
Mundhenk et al. 2000, and Papadimitriou and Tsitsiklis 1987 for an in-depth discussion regarding the complexity of
POMDP programs). If the value function V X,b( ) and the convex floating body’s boundary δ+ε are known, the
solution to the percentile optimization is easily characterizable (Theorem 2 and Propositions 4 and 5). Therefore, we
provide computationally tractable bounds to the nonrobust problem that can be evaluated in closed form to
facilitate the computability of chance-constrained policies.

The bounds we form are based on the performance of (a) queues under no model ambiguity with fixed rate
parameters equal to E[μi|b] and (b) following a particular server allocation priority rule based on the ini-
tial parameter belief. These imply that our bounds rely only on the valuation of fixed priority-based policies

Figure 3. Belief Points b2 and b3 Are Not Visible from Reference Belief b1, Whereas b4 Is Visible from Reference Belief
b1 (n � 2,m1,m2 � 2)

Figure 4. On the Left, Convex Floating Bodies +ε for ε � 0.05, 0.15, 0.25 with n � 2,m1,m2 � 2 and Uniform PB

Notes. To be visible from b0, belief b∗ associatedwith Proposition 4must lie on the dashed lines assumingμ1,1 <μ1,2 and μ2,1 <μ2,2 (Proposition 5). On
the right, V((10, 10),b) is evaluated on these boundaries when μ1,1 � 0.1, μ1,2 � 0.2, μ2,1 � 0.05, μ2,2 � 0.25. Belief b∗ lies at the peak of these curves.
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that do not change with dynamic observations, significantly reducing the computational complexity of the
problem.

For a given belief b̂ ∈ @, consider a counterpart system identical to our original setting with the exception of the
ambiguity sets being }̂i � E[μi|b̂]

{ }
(analogous to the original ambiguity sets}i). That is, the counterpart queueing

system has fully known service rates that are calculated based on taking an expectation of service rates in }i over
belief b̂. Obviously, the optimal policy for this system is the traditional cμ rule because all of its parameters are
fully known. Let πb̂ denote this cμ rule and V̄πb̂(X, b̂) be the associated infinite-horizon cost of the counterpart
system under πb̂. It is important to emphasize that πb̂ exhaustively serves class argmaxa∈! X( ) caE[μa|b̂] until no
customer of that class remains in the system and acts only as a function of the queue state, not of belief, even when
πb̂ is implemented in the original system. When πb̂ is implemented in the original system, we denote the infinite-
horizon cost by Vπb̂(X, b̂). Using the counterpart system’s cost and its associated policy, we can bound the
nonrobust cost (which is needed to calculate the robust cost; see Theorem 2 and Proposition 4) using the following
proposition.

Proposition 6 (Asymptotically Tight Bounds). For any state (X, b̂), the nonrobust cost V(X, b̂) is bounded as V̄πb̂(X, b̂) ≤
V(X, b̂) ≤ Vπb̂(X, b̂). Furthermore,

i. The gap between the upper and lower bound costs decrease to zero as queue length Xi increases to infinity, where
i � argmaxa∈!(X) caE[μa|b̂].

ii. The gap between the upper and lower bound costs monotonically decrease to zero as Var[μi|b̂] decrease to zero (for all
i ∈ 1).

Both the upper and lower bounds of Proposition 6 are easily calculable (see Online Appendix B). Furthermore,
under these conditions, these bounds become arbitrarily close approximations, which adds computational trac-
tability to the problem as well as analytical insight to the relationship between our nonrobust and traditional cμ
policies. In particular, part (ii) of Proposition 6 supports the intuition that gathering more data on unknown service
parameters can provide more accurate bound information. Part (i) of Proposition 6 provides conditions under
which the myopic, nonlearning policy’s cost converges to that of the optimal policy.

Remark 1. Because the percentile objective relies on the computation of the nonrobust problem, the bound results can
be easily applied to the percentile formulation as well. For instance, one can refine the search for argmaxb∈δ+ε

V X,b( )
as in Proposition 4: if the upper bound for a b ∈ δ+ε is less than the lower bound for b′ ∈ δ+ε,bmust not be the belief
point b∗. Because most infinite-horizon POMDPs are calculated by finite-horizon approximations, a second ap-
plication of the bounds is to use them as the terminal cost used in the finite-horizon dynamic program. That is, when
evaluating the finite-horizon approximation, one can replace V0(X,b) by lower and upper bounds V̄πb̂(X, b̂) and
Vπb X,b( ), respectively. This can provide very tight bounds on the POMDP because after a certain number of
“learning periods,”where the POMDP is explicitly evaluated, the controllermight have collected enough information
to have enough confidence in the true transition parameters.

6. An Analytically Rooted Heuristic Policy
Chance-constrained policies are inherently difficult to calculate even given the analytical results established in the
previous section. To circumvent complexity arising from (a) the PSPACE-hard problem of evaluating a POMDP
over a belief space with high dimensionality and (b) finding the shape of the convex floating body, which requires
high-dimensional polytope approximations, we now introduce an effective heuristic policy. This heuristic policy
operates by simply choosing the Ecμ policy associated with the belief point on the convex floating body’s boundary
δ+ε that minimizes the distance from b0 (the worst-case parameter settings for each class characterized in (7)). This
is typically an easy-to-perform task, especially in the cases of uniform and spherical-type distributions on the belief
space, allowing for managers to benefit from our approachwithout requiring demanding computations. Moreover,
as we show in Section 7, this heuristic performs extremely well on both randomly generated and real-world data
that we have collected from a leading U.S. hospital.

We term the Ecμ policy with expectation taken based on belief point argminb∈δ+ε
b0 − b‖ ‖,where ·‖ ‖ is the l2 norm,

as the (1 − ε)Ecμ heuristic policy. This heuristic policy takes advantage of three main structural results of the chance-
constrained policy (that we established in the previous section) while providing a much simpler version of it:

1. It assumes that the true optimal policies of the nonrobust problem are Ecμ, a fact supported by Theorem 1,
which shows the asymptotic relationship of the optimal policies to Ecμ.

2. It locates belief argminb∈δ+ε
b0 − b‖ ‖ to be near b∗ (of Theorem 2) based on Proposition 4. The worst-case (most

expensive) belief state is b0, and through the proof of Proposition 5 (see Online Appendix B), the value function is
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nonincreasing in λ with respect to belief λb + (1 − λ)b0 for λ ∈ [0, 1]. Thus, argmaxb∈δ+ε
V X,b( ) is expected to be

near b0.11

3. It takes advantage of the fact that argminb∈δ+ε
b0 − b‖ ‖ satisfies Proposition 5 (because this belief is visible from b0).

7. Numerical Experiments
We now perform various numerical experiments to (a) identify the advantages of chance-constrained policies in a
variety of environments under model ambiguity, (b) demonstrate the sensitivities of the underlying queueing
models, (c) study the effectiveness of the proposed Ecμ heuristic in mimicking the optimal chance-constrained
policies, and (d) demonstrate the implications of our results in real-world applications. To pursue these goals, we
present our analyses in five parts: we (a) establish the sensitivities in initial prior selection; (b) investigate how our
policies perform over a large parameter suite but in a relatively small queueing system; (c) evaluate our proposed
heuristic alongside percentile, minimax, and minimin policies in a larger system; (d) demonstrate the gap between
the Ecμ and optimal (nonrobust) policies; and (e) apply the Ecμ heuristic to a hospital ED setting using real-world
data and discuss its significant implications on improving the current patient-flow policies.

To help establish the necessity of our robust percentile formulation, it is first important to establish the sen-
sitivities of the nonrobust value function under small perturbations in belief. To this end, we evaluate the expected
cost under a variety of parameter settings when n � 2,m1 � 2, and m2 � 2 with respect to a “central prior” b̄ �
0.5, 0.5, 0.5, 0.5( ),which assumes a uniform distribution on parameters, a slightly pessimistic b̄p � 0.6, 0.4, 0.6, 0.4( ),
and a slightly optimistic prior b̄o � 0.4, 0.6, 0.4, 0.6( ). Table 1 displays the results from comparing the percentage
difference between nonrobust value functions evaluated at these priors (for various parameter configurations) via
the expression

|V(X,b) − V(X, b̂)|
V(X,b) + V(X, b̂)
( )

/2
%

for two distinct priors b, b̂ ∈ @.
Even with relatively small perturbations to the selection of the prior, as can be seen from Table 1, differences in

value function are substantial. Thus, we make the following:

Observation 1 (Sensitivity to Prior Specification). The expected cost of the nonrobust problem is sensitive to the choice
of prior.

Can slight perturbations in the prior also cause significant differences in policies obtained from the nonrobust
framework? To answer this, we again turn to our n � 2,m1 � 2,m2 � 2 environment and investigate the differences
nonrobust policies Ecμ experience as their prior changes from b̄, b̄p, and b̄o. We run simulations in which the true
parameter settings are selected according to b̄. To identify differences between the policies at different initial priors, we
track the cumulative number of attempts to serve class 1 by time t under each policy and depict the results in Figure 5.

Figure 5 shows that policies experience an extended period of time in which they disagree on the class to serve.
This is especially evident when a large number of customers are in the system, indicating that policies only begin to
converge after having finished the service of the class. Furthermore, as discussed earlier, the Ecμ policy experiences

Table 1. Percentage Gaps for b̄ � 0.5, 0.5, 0.5, 0.5( ), b̄p � 0.6, 0.4, 0.6, 0.4( ), and b̄o � 0.4, 0.6, 0.4, 0.6( ), Where
n � 2,m1 � 2,m2 � 2

Percentage differences Percentage differences

X (μ1,1, μ1,2) (μ2,1, μ2,2) (c1, c2) b̄vs b̄p b̄vs b̄o b̄p vs b̄o X (μ1,1, μ1,2) (μ2,1, μ2,2) (c1, c2) b̄vs b̄p b̄vs b̄o b̄p vs b̄o

(5, 5) (0.1, 0.2) (0.15, 0.3) (0.1, 0.1) 5.24 5.52 10.76 (5, 5) (0.05, 0.15) (0.1, 0.2) (0.15, 0.2) 5.31 5.8 11.1
(10, 10) 4.25 4.98 9.22 (10, 10) 4.15 4.47 8.62
(15, 15) 3.62 4.29 7.9 (15, 15) 3.39 3.37 6.75
(5, 5) (0.05, 0.15) (0.1, 0.2) (0.1, 0.1) 5.21 6.1 11.3 (5, 5) (0.1, 0.2) (0.15, 0.3) (0.2, 0.15) 5.33 5.8 11.12
(10, 10) 4.11 4.63 8.74 (10, 10) 4.7 4.77 9.46
(15, 15) 3.19 3.7 6.89 (15, 15) 4.02 3.89 7.91
(5, 5) (0.05, 0.1) (0.06, 0.08) (0.1, 0.1) 3.03 3.23 6.26 (5, 5) (0.05, 0.15) (0.1, 0.2) (0.2, 0.15) 6.32 6.0 12.32
(10, 10) 2.24 2.23 4.47 (10, 10) 4.75 4.6 9.35
(15, 15) 1.58 1.63 3.21 (15, 15) 3.64 3.81 7.45
(5, 5) (0.1, 0.2) (0.1, 0.2) (0.15, 0.3) 5.46 5.27 10.72 (5, 5) (0.05, 0.1) (0.06, 0.08) (0.2, 0.15) 3.44 3.95 7.39
(10, 10) 4.39 4.89 9.27 (10, 10) 2.66 2.63 5.3
(15, 15) 3.97 4.05 8.02 (15, 15) 2.04 1.96 4.0
Average

percentage
3.72 3.93 7.64
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momentum toward serving a customer after a successful service. Therefore, as can be seen from Figure 5, two
policies with slightly different starting beliefs (i.e., initial priors) may experience very different action profiles.

Thus, not only does the value function experience sensitivity among different selections of the prior, but these
differences also correspond to policy changes. Thus, we make the following:

Observation 2 (Sensitivity in Policy). The policies generated from the nonrobust problem are sensitive to the choice
of prior.

Figure 5. Comparison of Two Nonrobust Policies Under Slight Perturbations of the Initial Prior b̄
(μ1,1 � 0.1, μ1,2 � 0.15, μ2,1 � 0.12, μ2,2 � 0.13)

Figure 6. Comparison of the Average KL Divergence Between Two Policies’ Beliefs When the True Prior Is b̄
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If the duration of time in which the optimal policy experiences learning is relatively small, the choice of the initial
prior becomes inconsequential because the difference between initial priors will be quickly “washed out” by the
incoming data. To test whether the differences between initial priors are long-lasting, in Figure 6 we compare the
KL divergence12 between two beliefs after each observation under their associated policies.

From Figure 6, it is evident that the beliefs converge to one another given that there are enough customers to
serve. In general, the learning is faster for smaller queue states until all of the customers have been served because
the policies are, in effect, closer to one another. However, even in the smaller queue settings, the learning rate is not
fast enough to disregard the choice of the initial prior. Thus, we make the following:

Observation 3 (Slow Convergence in Belief). The differences between the beliefs about the correct model with
differing initial priors are long-lasting.

To better understand the relative performance of our robust percentile policies, we start by considering a large
parameter suite including more than 1, 000 parameter settings in an n � 2,m1 � 2, and m2 � 2 setting with four
different PB at their 95% chance-constrained policy. We name these PB densities f1, f2, f3, and f4, respectively: f1, f2,
and f3 are truncated multivariate normal with means µ1 � 0.5, 0.5( ), µ2 � 0.4, 0.4( ), µ3 � 0.6, 0.6( ) and covariance
matrices Σ1 � (

1.5 0.0
0.0 1.5

)
, Σ2 � (

0.5 0.0
0.0 0.5

)
, and Σ3 � (

0.5 0.0
0.0 0.5

)
, respectively. Finally, f4 is uniform.

We include two nonlearning robust policies (minimin and minimax) as benchmarks for the performance of our
robust percentile policies and compare the policies by evaluating their total cost when each model (i.e., param-
eter configuration) is equally likely. That is, we assume that the true (but unknown) prior of our system is
b̄ � (0.5, 0.5, 0.5, 0.5), andwe evaluate the total cost under 95% chance-constrained, minimax, andminimin policies.
Furthermore, we assume c1 � c2. In every problem instance, we assume μ2,1 <μ1,1 and μ1,2 <μ2,2 so that the policy is
not uniform throughout the belief space, which provides incentive for gaining additional knowledge. Further detail
on this parameter suite is presented in Online Appendix A.1.

We next compare our proposed policies with other nonlearning robust policies (minimax andminimin). In Table 2,
we present the results of this comparison expressed by the average (among all models) optimality gap percentage
under various policies. The optimality gap percentage for policy π at b is defined as

Vπ(X,b) − V(X,b)
V(X,b) %.

From Table 2, we observe that, on average, our proposed chance-constrained policies perform much better
than the other nonlearning policies. Because there is equal chance of every parameter configuration, non-
learning policies serve the wrong class for a realized set of parameters 50% of the time, which results in poor
performance.

Comparing the chance-constrained policies under f1, f2, f3, and f4 in Table 2 reveals yet another interesting insight:
they exhibit similar performance. The reason behind this is threefold: (a) as a property of Proposition 5, because we
used 95% chance-constrained policies, each b∗ tends to be near b0; (b) even though the distributions f1, f2, f3, and f4
are different (e.g., they have differing covariance structures and are centered at different beliefs), their convex
floating bodies are quite similar; and (c) the chance-constrained policies we propose exhibit learning. Hence, we can
make the following:

Table 2. Performance of Various Robust Policies over the Test Suite (n � 2,m1 � 2,m2 � 2)

Optimality gap (%)

X Minimax Minimin
95% chance
constrained f1

95% chance
constrained f2

95% chance
constrained f3

95% chance
constrained f4

(2, 2) 3.17 15.51 1.84 2.07 2.2 1.97
(2, 5) 2.52 13.58 0.85 0.81 0.86 0.86
(2, 10) 1.35 8.21 0.52 0.51 0.54 0.49
(5, 2) 4.48 8.73 2.65 2.74 2.33 2.21
(5, 5) 5.01 10.3 0.85 0.81 0.75 0.79
(5, 10) 3.37 7.56 0.61 0.58 0.48 0.57
(10, 2) 4.14 4.05 1.76 1.93 1.32 1.35
(10, 5) 5.49 5.79 0.53 0.51 0.54 0.55
(10, 10) 4.34 5.15 0.33 0.33 0.35 0.35
Average 3.76 8.76 1.10 1.14 1.04 1.02
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Observation 4 (Sensitivity). The performance of chance-constrained policies is not sensitive to the choice of PB.

In Section 6, we introduced the Ecμ heuristic as an easy-to-implement policy that mimics the performance of
robust, optimal, chance-constrained policies. To demonstrate the validity of the first assumption underlying this
heuristic—that the optimal policies of the nonrobust problem are Ecμ—in Figure 7, we depict the percent optimality
gap of the Ecμ heuristic policy by comparing its cost to that of the optimal nonrobust policies in a situation in which
ψ is small. Because we know that Ecμ becomes optimal as ψ becomes large (Theorem 1), this poses a worst-case
scenario for the performance of the Ecμ policies. From Figure 7, we can make the following:

Observation 5 (Near Optimality of Ecμ). Evenwhen ψ is small, the Ecμ performance is close to the nonrobust optimal
policy, especially when the system is highly congested.

Observation 5 confirms that the myopic Ecμ policy provides us with a good approximation of the optimal
POMDP value function (as we would expect given its asymptotic relationship to the chance-constrained policy; see
Theorem 1). However, using such a rule to find the explicit surface of the POMDP value function is computationally
challenging even though the Ecμ policy is simple. This is because policy evaluation (even when a policy is known)
in POMDPs is PSPACE-complete (see, e.g., Mundhenk et al. 2000). Hence, the ideal task of searching for the max of
the convex floating body as in Proposition 4, evenwith the help of Proposition 5, is highly difficult even inmoderate
problem instances in which n> 3 and m> 6. Furthermore, oftentimes the shape of +ε is difficult to determine
explicitly as is the case even in the simple uniform distributions in more than two dimensions, which further
complicates our search. Hence, for implementation in real applications, we turn to our robust heuristic policy.

To gain deeper insights into the performance of our heuristic, we simulate systems with m1 � m2 � m3 � 3 with
uniform PB in the largest inscribed sphere of the belief space. To also evaluate the robustness of our proposed
heuristic vis-à-vis the optimal percentile policy as well as minimin and minimax policies, we use conditional value
at risk, CVar(q), which is the average cost within the most costly q% of our simulated runs. Therefore, if 6 �
s1, . . . , sr{ } is the set of the costs from a simulation of r runs ordered from most costly to least costly, then

CVar q
( ) � ∑�(1−q)(r−1)+1


i�1 si
�(1 − q)(r − 1) + 1
 .

This statistic may roughly be seen as a function that increases in pessimism because we use fewer low-cost data
points in the expectation as q increases.13

Using a 95% chance-constrained policy, the Ecμ heuristic, minimin, and minimax policies, Figure 8 illustrates
performance over 20, 000 simulation runs.14 The leftmost subfigures display the raw CVar values. However, we
direct our attention to the rightmost figures, which display the percentage gap (of CVars) between the four selected
polices and “best” policy at a given q. From Figure 8, we observe the following:

Observation 6 (Heuristic Performance). The Ecμ heuristic performs nearly identically to the chance-constrained
policy with a diminishing difference as the system becomes more congested.

We note that percentile optimization is not concerned about the worst-case scenarios and, rather, optimizes
based on a proportion of the belief space. Hence, being a statistic concerned with the tail performance of the
distribution of costs, CVar (as comparedwith the expected cost) provides us with a more accurate representation of
the value of robustness that percentile optimization offers. Furthermore, Figure 8 demonstrates that the proposed

Figure 7. (Color online) The Optimality Gap (%) of Ecμ Policy When Evaluated on the Central Prior b̄
(μ1,1 � 0.6, μ1,2 � 0.7, μ2,1 � 0.5, μ2,2 � 0.8)
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heuristic captures the essence of the chance-constrained policy in that it lies near the optimal policy, mirroring
its performance in each simulated run. Overall, our goal to provide an alternative to the overconservatism and
overoptimism of the minimax and minimin policies seems to be met by our percentile optimization technique,
which is consistent with established robust optimization literature (see, e.g., Bertsimas and Sim 2004). Moreover,
although our policies are generated from a fixed pessimism level (i.e., 95% chance-constrained), they perform well
throughout the spectrum of optimism/pessimism in the CVar statistic.

Even in cases in which the chance-constrained policy is inferior to other policies with regard to the CVar statistic
(e.g., the fourth row of Figure 8 with X � 10, 10, 10( ), where the minimin policy is seen to perform best with regard
to CVar(0)), we can see that fixed priority policies (e.g., those obtained under the minimin objective) miss out on the
advantages of robustness that the chance-constrained policy offers throughout the optimism spectrum. Fur-
thermore, percentile optimization is flexible: by modifying ε, we can change our policy’s focus to be more or less

Figure 8. Comparison of Policies with Respect to CVar (20, 000 Simulated Runs and a Uniform PB on the Largest Inscribed
Sphere of the Belief Space)
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optimistic to the point of becoming aminimax andminimin policy itself (Proposition 2). A similar advantage is also gained
in the APOMDP framework of Saghafian (2018), where α-maximin expected utility (α-MEU) preferences are used.

7.1. Real-World Application: ED Patient Prioritization
Inmost hospital EDs in theUnited States, patients upon arrival are sorted bymeans of an urgency-based triage system
into one of (typically) five classes known as emergency severity index (ESI) levels. These ESI levels classify patients in
descending order of urgency so that a patient of ESI 1, being in dire condition, is immediately treated, whereas
patients of levels 4 and 5 are sent to a “fast-track” area to be treated. Therefore, the classes served by the main section
of the ED (the majority of arrivals) are those with ESI levels 2 and 3 (see, e.g., Saghafian et al. 2012, 2014, and the
references therein). We denote ESI 2 and 3 patients by “urgent” and “nonurgent” patients, respectively.

As patients wait to receive treatment, their condition may worsen over time and lead to adverse medical events.
Sprivulis et al. (2006) and Plunkett et al. (2011) show that higher patient mortality is associated with longer waiting
times prior to seeing a physician. Other research (e.g., an extremely large study on data of nearly 14million patients
by Guttmann et al. 2011) indicate that the risk of adverse events (ROAE) for patients increases with higher waiting
times leading to higher mortality and hospital admission rates. Therefore, with the objective of increasing patient
safety, we consider the goal of minimizing average ROAE for ED patients and investigate optimal prioritization
policies. To do so, we assume adverse events occur based on a Poisson process with a higher rate for urgent patients
and note that ROAEs in this setting play the role of holding cost parameters in our multiclass queueing model
introduced earlier. The same approach is used in Saghafian et al. (2014), in which the benefits of further stratifying
these levels in terms of a patient’s complexity is discussed. Simple patients are those who experience only a single
interaction with the physician and, thus, are more quickly treated by the ED than complex patients, whose
treatment necessitates several interactions with the physician interspersed with various tests (CT scans, MRI, etc.).

Figure 9 (left) illustrates a schematic flow of patients as a multiclass queueing system. To analyze the multiclass
queueing system of Figure 9 (right) in a traditional way, one needs to obtain point estimates of various parameters
(e.g., service/treatment rates for each class), a task that is subject to inevitable errors.15 Furthermore, triaged
urgency and complexity levels are subject tomisclassifications, which further confuse the true parameter settings of
the system. Althoughmisclassifications can be included in the analysis when all of the parameters of the system are
known, the misclassification probabilities themselves are also hard to quantify. These create parameter ambiguity,
and one needs to use robust analyses to hedge against them. However, current ED patient prioritization policies are
based on analyses that ignore such ambiguities.

To demonstrate the benefits of our percentile optimization approach, we now focus on two questions: How should
EDs prioritize their patients given that they are faced with parameter ambiguity? Howmuch benefit can they get by
taking ambiguities into consideration? To answer these questions, we first model the ED from a broad perspective
with nonstationary Poisson process arrivals and known service rates for all four classes: urgent simple (US), urgent
complex (UC), nonurgent simple (NS), and nonurgent complex (NC) patients. In this way, we model the ED as a
single “superserver” (i.e., with a pooled capacity that we estimate from our data set so as to match the input–output
process of the ED as a whole). This allows us to gain insights into the questions we raised by noting that the ED
queueing model of Figure 9 (right) is essentially a special case of our general model depicted in Figure 1 with n � 4.

Patient arrivals in an ED fluctuate throughout a given day, so we model these arrivals with a nonstationary
Poisson process with hourly rates shown in Figure 16 in Online Appendix A, which depicts the actual time-
dependent arrival rates to the ED based on our data set. Furthermore, because patient length of stay (LOS) in our
data has a lognormal distribution, we fit lognormal service distributions to match the LOS of patients for each class
of patients. Next, we design our cloud of models by perturbing the fitted rate parameters such that, for each class i
with fitted rate μ̂i,3, we incorporate four additional possible rate parameters so μ̂i,1 < μ̂i,2 < μ̂i,3 < μ̂i,4 < μ̂i,5. Because

Figure 9. Patient Flow in Hospital Emergency Departments (Left: the Overall Flow; Right: the Multiclass Flow)
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patients become fairly stable upon seeing a physician, we focus on adverse events in the waiting area of EDs and
assume ROAE drops to zero once the treatment stage begins. Our model is nonpreemptive, which is a reflection of
physicians’ behavior in EDs: upon initiating treatment to a patient, they rarely pause treatment to serve a different
patient. Because there is a possibility that the ROAE for simple patients differs from that of complex patients, we
also consider a variety of such “cost” structures in our study.

Although this model allows for dynamic arrivals (unlike ourmodel introduced in Section 3), we can still incorporate
chance-constrained policies through the use of our heuristic and compare its performance to the complexity-based
prioritization policy that serves classes US, UC, NS, and NC in descending priority (demonstrated to be optimal for
EDs in Saghafian et al. 2014 when ambiguity is ignored), minimax, and minimin policies. To do so, we simply modify
the Bayesian belief to also incorporate arrival data. We simulate these policies and track the nondiscounted ROAE by
assuming that PB is uniform. The result of 20,000 simulated days expressed in terms of the CVar statistic is reported in
Figure 10 (see Online Appendix A.7 for four additional ROAE settings and in-depth discussions).

A widely discussed topic in the literature surrounding EDs is the overcrowding issue (see e.g., Derlet and
Richards 2000, Derlet et al. 2001, and Trzeciak and Rivers 2003) that stems from high arrival rates and limited
resources (such as capacity, physicians, equipment, etc.). Overcrowding in EDs results in high ROAE that en-
dangers patients. The third row of Figure 10 demonstrates how policies perform in overcrowded EDs by con-
sidering an ambiguity set with smaller service rates (in comparison with the other ambiguity sets). We note that
percentile optimization, in comparison with other policies, is especially suited for studying patient prioritization in
overcrowded EDs. This is because, under heavy congestion, chance-constrained policies learn faster because more
classes are available to serve at any given time. Furthermore, as we show in Corollary 4 in Online Appendix B, the
Ecμ policy becomes asymptotically optimal when arrivals occur during intense bursts followed by lull periods.
Because hospital EDs typically experience long periods of heavy traffic in the afternoon followed by little traffic
after midnight (see the actual arrival pattern depicted in Figure 16 in Online Appendix A), this further establishes
our approach in hospital ED applications. Using these results, we can make the following:

Observation 7 (High Traffic). Our percentile optimization approach performs well for prioritizing patients in EDs,
especially in highly congested ones (e.g., those in busy research hospitals).

Also, Figure 10 shows that, once again, the chance-constrained policies nearly dominate the entire spectrum of
the CVar statistic because they explicitly incorporate both learning and robustness. Hence, even though our
stylized environment is less detailed than those ED flow models in studies such as Huang et al. (2015) and
Saghafian et al. (2012, 2014, 2015) and the references therein (which feature patient feedback), these experiments
indicate a performance advantage over complexity-based prioritization, which suggests implementation regardless
of optimism/pessimism levels. Hence, to establish the potential benefits percentile optimization can offer to EDs
over the current status quo, we make the following:

Observation 8 (Improved System Performance). Percentile optimization can improve the performance of EDs
regardless of a manager’s disposition.

In systems with high traffic, learning may occur at an advanced rate because it has available customers from each
class a majority of the time the system is online. Hence, although static priority policies continue to serve the
“wrong” classes (because of the underlying parameter ambiguity), the chance-constrained policy quickly identifies
the optimal cμ priority using the observed values. This enhances the quality the robustness percentile optimization
offers, especially because one is typically more concerned with overcrowded/busy systems (EDs with low traffic
have short patient LOS naturally and are not in significant need of optimization).

Furthermore, our clearing system is a model often used to study queues undergoing overcrowded situations.
Therefore, a more congested ED is a better fit to our original model, and in considering dynamic arrivals, we can
reconfirm all the previous insights generated in the clearing environment. This further confirms the results of
Section A.4, in which we show that most of the main insights gained from the clearing system holds for systems
with dynamic arrivals.

Finally, we note that, in communities with unstable patient population characteristics, in which ED service rates
or misclassification probabilities are more ambiguous, ED managers can incorporate percentile optimization to
effectively hedge against such ambiguities. Moreover, percentile optimization is well suited to high levels of
ambiguity. In our simulations, this is captured through modifying our cloud of models to incorporate larger
differences in the fitted parameters (see the first row of Figure 10 and compare it with the second row). Hence, when
patient population characteristics are unstable, percentile optimization stands out as a method that protects from
negative consequences of focusing only on extreme outcomes while simultaneously learning from incoming data.
This results in the following:
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Figure 10. 20, 000 Simulated Days in the ED for the Complexity-Based Prioritization, 95% Ecμ Heuristic, Minimin, and
Minimax Policies, When PB Is Uniform, and the Cloud of Models Perturbs the Fitted Service Rate μ̂i,3 in Terms of Two-Hour
Time Increments with c � (3.5, 4.0, 1.75, 2.0)

Note. Triage levels US, UC, NS, and NC are denoted 1, 2, 3, and 4, respectively.
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Observation 9 (Uncertain Population Characteristics). Percentile optimization can significantly help EDs that are placed
in geographical areas with unstable or unknown patient population characteristics to better prioritize their patients.

8. Conclusion
Multiclass queues are versatile structures widely used in operations management that see a large variety of
applications in both service and manufacturing sectors. In such environments, often exact parameter specification
is rife with estimation errors that (if ignored) can cause systemmanagers to implement wrong policies. We identify
and implement a novel data-driven percentile optimization framework for use in POMDPs. Our method layers
chance-constrained optimization on a nonrobust learning model, effectively enabling learning of the true system
state parameters and allowing the manager to set an optimism level indicating the extent of protection against poor
parameter scenarios the manager desires. We characterize the optimal policies to both the nonrobust and percentile
problems and find that chance-constrained policies can be established via the nonrobust problem.

Because percentile optimization problems are typically computationally difficult, we introduce an analytically
rooted heuristic that can be used to effectively incorporate robustness in managing large and complex service or
manufacturing systems. To further improve computational tractability, we find asymptotically tight bounds to the
nonrobust problem, which can be used to efficiently solve the percentile optimization problem.

Finally, we demonstrate the efficacy of our methods numerically in both stylized and realistic environments.
Using real-world data collected from a leading hospital, we observe that our approach provides promising results
in improving current patient flow policies, especially for overcrowded EDs or those facing unknown patient
population characteristics. Because ED managers typically do not fully know the service rate parameters, tra-
ditional patient-flow policies based on queueing models that assume full service rate knowledge subject patients to
higher risk than chance-constrained policies. Our work is the first to take into account the inevitable ambiguities in
ED operations and sheds light on the dire consequences of ignoring such ambiguities.

Endnotes
1 See, for example, Saghafian et al. (2015) for a recent review of various models used to optimize patient flow and improve ED operations.
2Althoughwemainly focus on a queueingmodel, our approach can be used for the general class of Bayesian decision-making problems inwhich
the decisionmaker faces ambiguity with respect to parameters that shape the decisionmaker’s prior (see Corollaries 2 and 3 in Online Appendix B).
3Clearing systems are typically used tomodel busy periods by focusing on the customers/jobs already in the system. The goal is then to clear the
system with the minimum cost.
4 In Section 7, we relax the exponential distribution assumption. For instance, our data shows that service times in EDs are close to lognormal. As
we show, our main insights and heuristic control procedures remain effective even when the service times are not exponential.
5This is indeed a general criticism to Bayesianism and goes well beyond the queueing setting of this paper.
6One may criticize the use of the percentile objective because of the potential ambiguity of PB; however, it should be noted that this is a second-
order distribution, and perturbations in PB result in very similar convex floating bodies, which is the geometric structure investigated in Section 4
that generates our optimal robust policies.
7Although all nonrobust policies for a finite-horizon POMDP are guaranteed to evaluate as linear functions over@, an infinite-horizon POMDP
value function is not always guaranteed to be piecewise-linear (see, e.g., White and Harrington 1980).
8 For these randomized policies, we disallow policies that are not picked at time zero for the purpose of targeting specific contours of the value
function.
9We note that, if +ε is nonempty, δ+ε always exists because closed, convex, and compact sets are equal to the convex hull of their boundary.
10 For additional discussion and examples of convex floating bodies, see Online Appendix A.6.
11This does not imply that argmaxb∈δ+ε

V X,b( ) � argminb∈δ+ε
b0 − b‖ ‖; V X,b( ) is only assured to be nonincreasing on line segments connected to b0.

12 For two belief points, b, b̂ ∈ @ with all positive components in the setting in which n � 2,m1 � 2, and m2 � 2, the KL divergence is
DKL(b||b̂) � ∑2

i�1
∑2

j�1 b1,ib2,j log
b1,ib2,j
b̂1,i b̂2,j

.
13 For instance, one would expect the minimax policy to perform well in comparison with other policies at CVar(1).
14The associated confidence intervals are tight, so we only show the averages.
15Even after using a large data set that we have collected from a leading U.S. hospital, one which includes data about more than 18,000 patient
visits, we see that our point estimates are not reliable for various reasons, including the large variation among patient characteristics aswell as the
need to estimate parameters for each patient class separately.
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