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Hospital emergency departments (EDs) typically use triage systems that classify and prioritize patients almost
exclusively in terms of their need for timely care. Using a combination of analytic and simulation models, we

demonstrate that adding an up-front estimate of patient complexity to conventional urgency-based classification
can substantially improve both patient safety (by reducing the risk of adverse events) and operational efficiency
(by shortening the average length of stay). Moreover, we find that EDs with high resource (physician and/or
examination room) utilization, high heterogeneity in the treatment time between simple and complex patients, and
a relatively equal number of simple and complex patients benefit most from complexity-augmented triage. Finally,
we find that (1) although misclassification of a complex patient as simple is slightly more harmful than vice versa,
complexity-augmented triage is relatively robust to misclassification error rates as high as 25%; (2) streaming
patients based on complexity information and prioritizing them based on urgency is better than doing the reverse;
and (3) separating simple and complex patients via streaming facilitates the application of lean methods that can
further amplify the benefit of complexity-augmented triage.
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1. Introduction
Triage (a word derived from the French verb “trier,”
meaning “to sort”) refers to the process of sorting and
prioritizing patients for care. FitzGerald et al. (2010,
p. 80) noted that there are two main purposes for triage:
“[1] to ensure that the patient receives the level and
quality of care appropriate to clinical need (clinical
justice), and [2] that departmental resources are most
usefully applied (efficiency) to this end.” (See Moskop
and Ierson 2007 for further discussion of the underlying
principles and goals of triage.)

Most triage systems used around the world consider
only urgency and so only address the clinical justice
purpose of triage. For instance, the Australasian Triage
Scale (ATS), the Manchester Triage Scale (MTS), and
the Canadian Triage Acuity Scale (CTAS) differ in their
details, but all classify patients strictly in terms of
urgency. In the United States, many hospital emergency
departments (EDs) continue to use a traditional urgency-

based three-level triage scale, which categorizes patients
into emergent, urgent, and nonurgent classes. But a
growing majority of U.S. hospitals have adopted five-
level triage systems (see Fernandes et al. 2005), which
seek to address efficiency by incorporating an estimate
of resources (e.g., tests) required. In these systems (a
typical version of which is illustrated in Figure 1(a)),
urgent patients who cannot wait are classified as level 1
or 2, whereas nonurgent patients who can wait are
classified as level 3, 4, or 5. Level 4 and level 5 patients
are usually directed to a fast track (FT) area, whereas
level 1 patients are almost always moved immediately
to a resuscitation unit (RU). Level 2 and level 3 patients,
who represent the majority of patients at large academic
hospitals (about 80% at the University of Michigan
Health System ED (UMHSED)), are served in the main
area of the ED with priority given to level 2 patients.
Since five-level systems do not differentiate between
level 2 and level 3 patients in terms of complexity,
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Figure 1 (a) Typical Five-Level Triage System (see, e.g., Gilboy et al. 2005); (b) Proposed Complexity-Augmented Triage System
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Note. RU, resuscitation unit; FT, fast track; NS, nonurgent simple; NC, nonurgent complex; US, urgent simple; UC, urgent complex.

patients in the main ED (about 80% of patients) are still
sorted and prioritized purely on the basis of urgency.
Hence, although five-level triage systems represent an
improvement over traditional three-level triage scales,
they remain urgency-based systems for the majority of
patients.

In this paper, we propose an augmented triage
system, which we term complexity-augmented triage, that
can significantly improve performance of the main ED
with respect to both clinical justice and efficiency. This
poses two challenges: (a) deciding what information
to collect at triage, and (b) determining how to use
the information to improve performance. There are
two main choices for the latter: prioritization and
streaming. But they can be combined by using some
information to separate patients into streams and some
other information to prioritize them within the streams.
This poses an additional question: what information to
use to stream patients and what information to use to
prioritize them?

Prioritization and streaming are not new. All EDs
prioritize patients according to urgency. Many large
EDs stream low acuity patients into fast tracks. But
in recent years new types of streaming have received
attention from both practitioners and researchers (see
Ben-Tovim et al. 2008 and Saghafian et al. 2012). Partic-
ularly relevant to this paper is our previous work in
Saghafian et al. (2012), which showed that EDs can
improve performance by having triage nurses predict
the final disposition (admit or discharge) of patients
and using this information in a “virtual streaming”
patient flow design. That study showed that assigning

patients to separate admit and discharge streams can
reduce average time to first treatment for admit patients
and average length of stay for discharge patients. But
it also indicated that the performance of the streaming
policy improves as the difference between the aver-
age treatment times of admit and discharge patients
becomes larger. Since complexity is a better proxy for
treatment time than is disposition, this suggests that
classifying patients according to complexity may be
even more useful than classifying them according to
disposition.

Referring to procedures, investigations, or consulta-
tions as “interactions,” we propose the new complexity-
augmented triage process depicted in Figure 1(b).
Unlike a conventional five-level system that makes
no complexity distinction among the levels 2 and 3
patients that make up the majority of ED patients, our
proposed system systematically classifies them in terms
of complexity. The additional step required in triage
(i.e., predicting whether the patient will need two or
more interactions) can be performed in seconds, and
hence, does not add any significant amount of time to
triage. However, it is unclear how much this additional
information can improve the ED performance in terms
of risk of adverse events (clinical justice) and average
length of stay (efficiency), since it is subject to misclas-
sification errors. To clarify this and related issues, we
make use of a combination of analytic and simulation
models calibrated with hospital data to address the
following:

1. Prioritization: How should EDs use complexity-
augmented triage information to prioritize patients?
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2. Magnitude: How much benefit does complexity-
augmented triage (which adds complexity information
to conventional urgency evaluations) offer relative to
urgency-based triage?

3. Sensitivity: How sensitive are the benefits of
complexity-augmented triage to misclassification errors
and other characteristics that may vary across EDs?

4. (Patient Flow) Design: Is complexity information
more effective if used to prioritize patients or to sepa-
rate patients into streams?

The main contribution of this paper is to provide
insights of value to ED managers by addressing the
above questions. However, the above questions also
require addressing some technical challenges: (1) In the
ED, upfront triage misclassifications are inevitable. We
incorporate misclassifications through a linear trans-
formation of control indices so that they represent
“error-impacted” rates, which use only information
from historical data. This leads to a modified version of
the well-known c� rule for the case with customer mis-
classification (in which control indices are replaced with
their linearly transformed “error-impacted” counter-
parts). Furthermore, although these results are obtained
by modeling the occurrence of adverse events as Pois-
son processes, in Online Appendix C,1 we use sample
path arguments and appropriate notions of stochastic
ordering to demonstrate the robustness of the priority
rules under more general adverse event occurrence
processes. (2) To provide guidance for ED physicians
on how to prioritize patients within the examination
rooms (when they have a choice of what patient to see
next), we develop a Markov decision process (MDP)
model. A challenging feature of this model, which is
common in many other health delivery settings, is that
patients are sent for tests (e.g., MRI, CT scan, x-ray, etc.)
and are unavailable to the physician during testing.
In such a setting, the physician must consider both the
current and the future availability of the patients when
making decisions. This type of problem usually results
in complex state-dependent optimal control policies.
However, we show how a simple-to-implement rule
that relies only on historical data defines the optimal
policy for ED physicians. (3) Because of unbounded
transition rates, the continuous MDP model of patient
prioritization within examination rooms cannot use the
conventional method of uniformization of Lippman
(1975). We contribute by showing how one can use a
sequence of MDPs, each with bounded transition rates,
to derive an optimal policy for the original MDP.

The remainder of this paper is organized as follows.
Section 2 summarizes previous research relevant to
our research questions. Section 3 describes our perfor-
mance metrics and analytical modeling approach. For
modeling purposes, we divide the ED experience of the

1 The online appendices are available as supplemental material at
http://dx.doi.org/10.1287/msom.2014.0487.

patient into phase 1 (from arrival until assignment to
an examination room) and phase 2 (from assignment to
an examination room until discharge/admission to the
hospital). Section 4 addresses phase 2 by developing
and analyzing a Markov decision process model. The
result of the phase 2 model is then used in §5, which
focuses on phase 1 and develops analytical queueing
models to compare performance under urgency-based
and complexity-augmented triage. Section 6 uses a
realistic simulation model of the full ED calibrated with
hospital data to validate the insights obtained through
our analytical models and to refine our estimates of
the magnitude of performance improvement possible
with complexity-augmented triage. Section 7 concludes
the paper.

2. Literature Review
The effect of assigning priorities in queueing systems
has been well studied in the operations research litera-
ture. Analyzing a two-priority single-channel system,
Cobham (1954, 1955) assumed perfect classification
and van der Zee and Theil (1961) solved the case of
imperfect classification. Under perfect classification, an
average holding cost objective, Poisson arrivals, and a
nonpreemptive nonidling single server model, Cox and
Smith (1961) showed that the c� rule is optimal among
priority rules. Kakalik and Little (1971) extended this
result to show that the c� rule remains optimal even
among the larger class of state-dependent policies with
or without the option of idling the server. The c� rule
has since been shown to be optimal in many other
queueing frameworks; see, e.g., Buyukkoc et al. (1985),
Van Mieghem (1995), Argon and Ziya (2009), Saghafian
et al. (2011), and references therein.

For related studies that analyze patient flow in EDs,
we refer to Siddharathan et al. (1996), Wang (2004),
Huang et al. (2012), and the references therein. Peck
and Kim (2010) developed a triage index system, the
park index, that accounts for both urgency and patient
flow, and described its use in assigning patients to a
fast track. Peck et al. (2012) studied possible ways to
use the information collected at triage to predict the
admission rate to the hospital and discussed how such
information can be used for improving bed manage-
ment, patient flow, and discharge processes. Argon
and Ziya (2009) used average waiting time as the per-
formance metric in a general service system with two
classes of customers, in which customer classification
is imperfect, and showed that prioritizing customers
according to the probability of being from the class
that should have a higher priority when classification
is perfect outperforms any finite-class priority policy.
Dobson et al. (2013) developed a heavy-traffic model
with an investigator and server interruptions to study
physician choice in prioritizing patients.
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In the medical literature, Gilboy et al. (2005),
FitzGerald et al. (2010), and Ierson and Moskop (2007)
provide excellent reviews of the history of the triage
process and its development over time. Although triage
has been based mainly on urgency, the idea of consider-
ing the complexity of patients goes back to World War I
mass-casualty triage recommendations: “A single case,
even if it urgently requires attention,—if this will absorb
a long time,—may have to wait, for in that same time
a dozen others, almost equally exigent, but requiring
less time, might be cared for. The greatest good of the
greatest number must be the rule.” (Keen 1917, p. 13).
Anticipating the potential of complexity-augmented
triage, Vance and Sprivulis (2005) empirically tested the
ability of nurses to estimate patient complexity at the
time of triage and found that they are able to do this
reliably. Vance and Sprivulis (2005) suggested that this
type of information could be used to improve patient
flow in EDs, although they did not specify how. Finally,
it is noteworthy that similar complexity information
is also used in mass-casualty triage settings (see, e.g.,
Jacobson et al. 2012 and the references therein).

3. Modeling the ED
To address the four questions (prioritization, magnitude,
sensitivity, and design) posed in §1, we make use of
a model of patient flow through the main ED (see
Figure 2). We focus our attention on the main ED, which
means we do not consider the minority of the patients
routed to the resuscitation unit or fast track. A patient’s
path through the main ED begins with arrival, which
occurs in a nonstationary stochastic manner. Upon
arrival, the patient goes to triage, where he or she is
classified according to a predefined process (based on
urgency and/or complexity), which inevitably involves
some misclassification errors. If an examination room
is not immediately available, the patient goes to the
waiting area until being called by the charge nurse and
brought to an examination room. There the patient
goes through a stochastic number of treatment stages
with a physician, which include diagnosis, consulta-
tion, and other interactions that are also stochastic in
duration. These treatment stages are punctuated by
test stages during which the patient is unavailable to
the physician, which involve testing (MRI, CT scan,

Figure 2 General Flow of Patients in the Main ED

Arrival Triage Treatment

Tests

DispositionWaiting

Phase 2Phase 1

Admission

Discharge

x-ray etc.), preparation/processing activities that do not
involve the physician, or waiting for test results. The
final processing stage after the last physician interaction
is disposition, in which the patient is either discharged to
go home or admitted to the hospital.

We refer to the time a patient spends after being
triaged and before being brought to an examination
room as “phase 1,” and label the remaining time
until disposition as “phase 2.” Because they are under
observation and care, patients have a lower risk of
adverse events during phase 2 than during phase 1.
Patients are taken from phase 1 to phase 2 by the charge
nurse based on a phase 1 sequencing rule that uses the
patient classification performed at triage. Similarly, in
phase 2, physicians use some kind of sequencing rule
to choose which patient to see next.

During the patient’s stay in the ED, the patient may
experience adverse events, which we define to be degra-
dations in health status that are associated with worse
outcomes (e.g., Brennan et al. 1991 and Diercks et al.
2007). There are various examples of such events includ-
ing rectal bleeding, chest compression, hypertension,
tachyarrhythmia, and bradyarrhythmia among others.
A patient may experience more than one adverse event
unless, of course, the event is death. But because death
is so rare relative to the rate of adverse events (e.g., Liu
et al. 2005 report that 28% of patients boarded in the
ED experienced some type of adverse event (including
errors), while Baker and Clancy (2006) reported an
ED death rate of 0.26%), we do not include it as a
terminating adverse event. Furthermore, because most
adverse events are not visible to providers at the time
they occur (e.g., Brennan et al. 1991), we do not allow
patient priorities to be reassigned as a result of them.

It is widely known that longer wait times are associ-
ated with higher risk of adverse events (e.g., Diercks
et al. 2007 report that patients with a longer ED time
are more likely to experience recurrent myocardial
infarction). We model this effect by representing the
occurrence of adverse events with type-dependent
Poisson processes. However, we relax the Poisson
assumption in Online Appendix C, and allow the
processes approximating the occurrence of adverse
events to be any general stationary point process.

In our framework, a patient’s rate of adverse events is
influenced by his or her true type ij ∈U×C, where i ∈U
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is the patient’s urgency level, j ∈C is the patient’s com-
plexity type, U= 8U (Urgent)1N (Nonurgent)9 and C=

8C(Complex)1S(Simple)9. Under urgency-based triage
an estimate is made of i, whereas under complexity-
augmented triage estimates are made of both i and j .

Since sequencing decisions in phase 1 may depend
on patients’ ED service times (the time they spend in
phase 2), they may be affected by phase 2 prioritization.
Thus, we start by analyzing phase 2 and then use our
phase 2 results to justify a model with which to derive
an optimal phase 1 sequencing rule. Finally, we test
the insights gained from our analytic models under
realistic conditions with a simulation model of the full
ED calibrated with a year of data from the UMHSED
and time study data from the literature.

4. Phase 2: Sequencing Patients
Within the ED

To model phase 2, we consider the multistage service
process illustrated in Figure 3. We start by considering
the system under the assumption of exogenous arrivals
to phase 2. This situation occurs in practice during
periods when the ED has sufficient bed and physician
capacity to allow patients to move directly into the
examination rooms without being held in the waiting
room. For tractability, we assume patients classified as
ij ∈U×C arrive according to a Poisson process with
rate �′

ij . Note that we use the superscript prime symbol
(“ ′ ”) throughout the paper to indicate error-impacted
rates. Such rates can be directly estimated from arrival
data after patients are classified, but we will also
provide in §§5.1 and 5.2 a way to calculate them using
the raw arrival rates. We assume patients of type ij
are subject to adverse events that occur according
to a Poisson process. We denote the error-impacted
intensity of adverse events in phase 2 by the vector
�̂

′

= 4�̂′
ij5ij∈U×C (which we expect to be less than that

in phase 1, denoted by �′, because of monitoring and
treatment patients receive in the examination rooms).
As they enter examination rooms, patients are assigned
to physicians who treat them, often with multiple
visits, until their discharge or admission to the hospital.
Since an individual physician may be assigned to
several patients, the physician often has a choice about
who to see next among his or her available patients.
To construct a simplified analytic model, we aggregate

Figure 3 Patient Flow After a Patient Is Moved to an Examination Room/Bed (Phase 2 Sequencing)

Physician interaction

Disposition

Waiting in a room

Treatment

Tests
�

1 – p�ij

p�ij

��ij
��

ij
∧

preparation time, test time, and waiting time for the
test results. Patients who have completed a test or tests
ordered by the physician, and have all of the associated
results ready, are termed “available” for a physician
visit, and patients being tested, prepared, or waiting
for results are labeled “unavailable.”

Letting Rì
� 4t5 represent the counting process that tal-

lies the total number of adverse events (for all patients)
until time t under patient classification (triage) policy ì
and sequencing rule �, we define Rì

� = limt→� Rì
� 4t5/t

(when the limit exists) as our metric and refer to it as
the rate of adverse events (ROAE). However, if �̂ij = 1
for all i ∈ U and j ∈ C, then it can be shown that
Rì

� /
∑

i∈U

∑

j∈C �̂ij�ij =Rì
� /
∑

i∈U

∑

j∈C �ij reduces to aver-
age length of stay (LOS). (Notice that the sample path
costs of LOS and that of adverse events under unit
risk intensities divided by the total arrival rate will be
different, but they are equal in expectation.) Hence, this
observation allows us to use our metric to characterize
performance with respect to both safety and efficiency.

For tractability, we assume each interaction with
patients classified as ij takes an exponentially dis-
tributed amount of time with rate �̂′

ij . We also assume
that the physician can preempt an interaction to see a
patient of a different class. When a physician returns to
a preempted interaction, we assume the physician must
repeat the process (e.g., review vital signs, lab results,
etc.), and so we assume a preempt-repeat protocol. In
practice, emergency physicians can, and sometimes
do, preempt patients to deal with emergencies. But
for fairness and efficiency reasons, they do this rarely.
Hence, we test our conclusions under the assumption
of nonpreemption in phase 2 in §6 using simulation.
After each completed interaction, a patient classified as
ij may be disposed (discharged home or admitted to
the hospital) with probability p′

ij > 0, or with probability
1 − p′

ij requires another round of test and treatment. We
note that in practice the probability of being disposed
may not be constant because it depends on various
factors (e.g., progression of pain, the number of past
interactions with the physician, revealed test results,
etc.). If data on such factors were collected, they could
be incorporated into the patient prioritization decision.
Since such data do not currently exist, we approximate
the number of interactions with the physician by fitting
a geometric distribution with constant probability of
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departure p′
ij for patients classified as ij ∈U×C, which

can easily be estimated using the average number of
physician-patient interactions for that class. Empirical
data from the literature (Graff et al. 1993) suggest that
this is a reasonable approximation of reality (see, e.g.,
Figure 5 in §6).

We model the aggregated test times (including any
preparation and waits for results) as i.i.d. exponential
random variables. The i.i.d. assumption is justifiable
because (a) most testing facilities are shared with units
outside the ED and so have workloads not visible to
ED personnel, and (b) even if test facility workloads
were known, ED personnel could not incorporate them
into patient sequencing decisions because they do
not know which tests, if any, will be required before
examining a patient and/or the patient’s prior test
results (which begins an interaction). So, for purposes
of patient sequencing at least, test time delays look
like i.i.d. random variables to the physician. Modeling
such delays as exponential is reasonable because (1) the
waiting time distribution in many queueing systems is
exponential or nearly so, and (2) at least in UMHSED,
physicians do not make use of the “age” information
that a delay distribution with nonconstant failure rate
would provide. (The assumptions above give us a
tractable ·/M/� approximation of test time delays
from the perspective of an ED physician. Although this
approximation is useful to gain insights into phase 2
prioritization, it does not facilitate examination of the
potential for coordinating ED decisions with the real-
time status of test facilities. Studies of test facilities upon
which a more detailed model with which to consider
this possibility could be constructed include Green et al.
2006a, Patrick et al. 2008, and Batt and Terwiesch 2012.)

To keep our analytical model tractable, the aggregate
test delay times are further assumed to be a generic “test”
with mean time �−1 that is the same across different
patient classes. However, we relax this assumption and
allow patient class specific test delays in our simulation
model of §6. Finally, we note that in most EDs physicians
do not update patients’ triage classes for various reasons
including those related to liability. Hence, consistent
with practice, we assume patient classifications are made
at triage and are not updated during the phase 2 service
process. We refer to the representation of phase 2 of the
ED service with above assumptions as the simplified
phase 2 model with dynamic arrivals.

Because each physician is dedicated to his or her
own slate of patients, we focus on a single physi-
cian’s decision of who to see next. To this end, we let
x = 4xij5ij∈U×C (respectively, y = 4yij5ij∈U×C) represent the
error-impacted number of patients of each class avail-
able (not available) for the physician visit. With these,
we can define the state of the system at any point in
time, t, by the vector 4x4t51 y4t55 ∈�4

+
×�4

+
, and model

the process 84x4t51 y4t552 t ≥ 09 as a continuous time
Markov chain (CTMC). Because here we are considering

an exogenous arrival process that represents underload
conditions (we will consider overload conditions later),
the physician’s capacity and the number of beds are
not binding, and hence we do not impose any explicit
bounds on 4x4t51 y4t55. As an underloaded system,
we may assume the parameters of the system are
such that the underlying CTMC is stablizable; that
is, there exists at least one policy under which the
risk of adverse events is finite. However, because of
the Poisson arrivals and the pure delay model for
test times, the transition rates are not bounded, and
hence we cannot use the uniformization method of
Lippman (1975) to formulate a discrete time equivalent
of the CTMC in which the times between consecutive
events are i.i.d. (for all states). So instead, we construct
a sequence of controlled CTMC’s (CCTMC’s) with
an increasing but bounded sequence of (maximum)
transition rates converging to the original CCTMC.
We do this by replacing the ·/M/� model of test pro-
cess with four parallel ·/M/k systems (one devoted
to each patient class), index the underlying CCTMC
with k, and let k→ �. The advantage of having four
parallel ·/M/k queues (instead of one ·/M/k) is that
the order of jobs in each queue does not need to be
captured in the system’s state. Another novel aspect
of our approach is that we truncate the transition
rates instead of truncating the state space, thereby
avoiding the artificial boundary effects that usually
distort the optimal policy. Since the transition rates
in the CTMC indexed by k (for all k) are bounded
by �k = maxij∈U×C �̂′

ij + 4k�+
∑

ij∈U×C �
′
ij <�, we can

use the standard uniformization technique to derive
the optimal policy for each CCTMC. We then use a
convergence argument (taking the limit as k → �) to
derive the optimal policy for the original problem.

For the system indexed by k, the optimal rate of
adverse events under a patient classification based on
both sets U and C, Rk∗ = inf�∈çRU∪C

� (where ç denotes
the set of all admissible Markovian policies), and the
optimal physician behavior can be derived from the
following average cost optimality equation:

J k4x1 y5+Rk∗

=
1
�k

[

�̂
′

4x+ y5T +
∑

ij∈U×C

6�′

ij J
k4x+eij1 y5

+4yij ∧k5�J k4x+eij1 y−eij57

+ min
a∈A4x5

{

∑

ij∈U×C

�8a=ij9�̂
′

ij

[

p′

ij J
k4x−eij1 y5

+41−p′

ij5J
k4x−eij1 y+eij5

]

+

(

�k−
∑

ij∈U×C

6�′

ij +4yij ∧k5�+�8a=ij9�̂
′

ij 7

)

J k4x1 y5

}]

1

(1)
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where J k4x1 y5 is a relative cost function (defined as the
difference between the total expected cost of starting
from state 4x1 y5 and that from an arbitrary state such
as 40105), a∧ b = min8a1 b9, eij is a vector with the same
size as x with a 1 in position ij and 0 elsewhere, a is
an action determining which patient class to serve, and
A4x5= 8ij ∈U×C2 xij > 09∪ 809 is the set of feasible
actions (class 0 represents the idling action) when the
error-impacted number of patients of each class in the
examination rooms is x.

Although our model of phase 2 has a complex
multistage structure with feedback (i.e., random patient
returns after each visit), which generally makes the
optimal policy complex (see, e.g., Tcha and Pliska
1977), the optimal behavior of the physician can be
described by an appealingly simple operational rule.
(Proofs of this and all other results are given in Online
Appendix A.)

Theorem 1 (Phase 2 Prioritization). In the simpli-
fied phase 2 model with dynamic arrivals, regardless of the
number and class of available and unavailable patients, the
physician should prioritize available patients in decreasing
order of p′

ij �̂
′
ij �̂

′
ij . Furthermore, the physician should not

idle when there is a patient available in an exam room.

The prioritization index in Theorem 1 is computed as
the probability that the visit will be the final interaction
with the patient (p′

ij5 times the estimated risk of adverse
events 4�̂′

ij5 divided by the average duration of each
visit (1/�̂′

ij5. Such a policy is easy to implement, since (a)
the physician does not need to consider the number and
class of patients available in the examination rooms or
under tests, and (b) the physician (or decision support
system) can easily estimate the required quantities.
(For example, the authors have developed a smart
phone application that can be used by ED physicians
to facilitate collection of required data and computation
of patient priorities.) In most settings, �′

ij is larger when
i is U (urgent) than when i is N (nonurgent), and p′

ij

and �̂′
ij are larger when j is S (simple) than when j

is C (complex). Since the relative difference in �′
ij is

much larger than the relative difference in p′
ij and �̂′

ij , it
follows that US (urgent simple), UC (urgent complex),
NS (nonurgent simple), and NC (nonurgent complex)
defines the optimal phase 2 priority policy for most
hospitals.

As a further check on the robustness of this prioriti-
zation result, we consider an alternate model in which
arrivals to phase 2 are not dynamic. Specifically, we
assume that all patients for a given time interval (e.g.,
the afternoon rush period) arrive to the ED waiting
room at once and the objective is to clear them out
as quickly as possible to minimize LOS and ROAE.
We further assume that ED physicians can treat any
patient in the system (i.e., there are no constraints on

the number of beds or the number of patients per
physician). However, we note that because interactions
with patients are time consuming and because physi-
cians revisit patients already in phase 2, this model
will limit the rate of patient flow into phase 2 even
without these constraints. We label this the simplified
phase 2 model with static arrivals. In contrast with the
simplified phase 2 model with dynamic arrivals, which
is representative of the ED under light load conditions,
this model is representative of the ED under heavy load
conditions that create a backlog of patients. In Online
Appendix D, we show that the phase 2 sequencing
policy of Theorem 1 remains optimal under these very
different modeling conditions. The suggestion is that
the cost/time balance struck by the c�-type rule of
Theorem 1 is robustly effective in phase 2 for various
arrival processes, even ones that may be potentially
endogenous to the priority rule. Our simulation studies
also support this observation.

In practice, of course, the ED oscillates between
underload and overload conditions. Also, constraints
on the number of beds and the number of patients
per physician sometimes prevent idle physicians from
taking a new patient. Both of these realities make the
interface between phase 1 and phase 2 more complex
than in either of the simplified models considered here.
To find an effective way to manage this interface and
to see whether the phase 2 sequencing rule remains
effective in realistic settings, we proceed in two steps.
First, we examine a simplified model of phase 1 to gain
insights into optimal sequencing of patients into the ED.
Second, we use a realistic simulation of the combined
ED to determine whether the policies suggested by the
simplified models are effective in the actual system.

5. Phase 1: Sequencing
Patients Into the ED

To create a simplified model that captures the essen-
tial dynamics of sequencing patients into the ED, we
represent the dashed area in Figure 2 (i.e., phase 2)
as a single-stage aggregated service node with a sin-
gle “super server” that represents the aggregate ED
capacity. Because our phase 2 analysis indicated that
simple patients with a given urgency level should be
prioritized over complex ones within the ED and, by
definition, complex patients have on average more
interactions with physicians, it follows that simple
patients should have a higher aggregate/effective ser-
vice rate than complex ones. Specifically, we suppose
patients of type ij ∈ U×C have i.i.d. service times
(i.e., the total time spent in phase 2) that follow a gen-
eral distribution, Fij4s5 with first moment 1/�ij , where
�iC ≤ �iS for all i ∈ U, and a finite second moment.
(Note that that these service rates can be computed
using sojourn times from a simulation or Markov chain
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analysis under the optimal phase 2 service policy.) For
tractability, we model the arrival of patients of type
ij ∈U×C to the ED as a Poisson process with rate �ij .
As we did in our simplified phase 2 models, we assume
patients of type ij are subject to adverse events, which
occur according to a Poisson process with intensity �ij ,
where �Uj ≥ �Nj for all j ∈C. These assumptions lead
to a tractable model of phase 1; however, many of
them will be relaxed later (see, e.g., Online Appendix C
and §6).

5.1. Urgency-Based Triage
We first consider current practice in most EDs in which
patients in the main ED (levels 2 and 3) are classified
solely based on urgency, and use our simplified phase 1
model to examine decisions for sequencing patients into
the ED. We start with the case of perfect classification
and then consider the case of stochastic misclassifi-
cation. When patients can be perfectly classified as
either urgent (U) or nonurgent (N), the arrival rates
for Us and Ns are �U =

∑

j∈C �Uj and �N =
∑

j∈C �Nj ,
respectively. Similarly, the average service times for Us
and Ns are 1/�U =

∑

j∈C4�Uj/�U 541/�Uj5 and 1/�N =
∑

j∈C4�Nj/�N 541/�Nj5, respectively. Furthermore, from
known results for nonpreemptive priority queues (see,
e.g., Cobham 1954) the average waiting (queue) time
of the kth priority class is

Wk =
� Ɛ4s25

241 −
∑

l<k �l541 −
∑

l≤k �l5
1 (2)

where s represents the service time of a randomly
chosen patient, and �l = �l/�l for class l. Hence,
if Us are prioritized over Ns, then the average
waiting time is WU = �Ɛ4s25/241 − �U 5 for U ′s and
WN = �Ɛ4s25/241 − �U 541 − �5 for N ′s. Furthermore,
the average intensity of adverse events for U ′s is
�U = 4�US/�U 5�US + 4�UC/�U 5�UC and for N ′s is �N =

4�NS/�N 5�NS + 4�NC/�N 5�NC . With these, the ROAE
under an urgency-based triage policy (i.e., classification
with respect to set U) that gives priority to U ′s (denoted
by RU

U ) or Ns (denoted by RU
N ) follows:

RU
U = �U�U 4�Ɛ4s

25/241 −�U 55

+ �N�N 4�Ɛ4s
25/241 −�U 541 −�551 (3)

RU
N = �N�N 4�Ɛ4s

25/241 −�N 55

+ �U�U 4�Ɛ4s
25/241 −�N 541 −�550 (4)

Comparing these reveals that, without misclassification
errors, the best priority rule is to prioritize U ′s (N ′s) if,
and only if, �U�U ≥ 4≤5�N�N . Given the criteria used
to classify a patient as urgent, we expect �U and �N
be such that �U�U >�N�N , meaning that U ′s will be
given priority. However, this simple result may or may
not hold if one considers the effect of stochastic triage
misclassifications.

Therefore, we now formally incorporate stochas-
tic misclassification errors into our model. Let �U

and �N denote the misclassification probabilities for
urgent and nonurgent patients, respectively. The arrival
rates for patients classified (correctly or erroneously)
as U and N are �′

U = �U 41 − �U 5 + �N�N and �′
N =

�N 41 −�N 5+�U�U , respectively. Similarly, the mean
service times for patients classified as U and N
are 1/�′

U = 6�U 41 −�U 541/�u5+�N�N 41/�N 57/�
′
U and

1/�′
N = 6�N 41 −�N 541/�N 5+�U�U 41/�U 57/�

′
N , respec-

tively. Finally, the intensity of adverse events for
patients classified as U and N are �′

U = 6�U 41−�U 5 �U +

�N �N �N 7/�
′
U and �′

N = 6�N 41 −�N 5 �N +�U�U �U 7/�
′
N ,

respectively.
Using (3) with these new error-impacted rates shows

that when priority is given to U s, the ROAE under
imperfect classification is

RU′

U = �′

U�
′

U 4�Ɛ4s
25/241 −�′

U 55

+ �′

N�
′

N 4�Ɛ4s
25/241 −�′

U 541 −�551 (5)

where �′
U = �′

U/�
′
U . Similarly, using (4) shows that

when priority is given to N s,

RU′

N = �′

N�
′

N 4�Ɛ4s
25/241 −�′

N 55

+ �′

U�
′

U 4�Ɛ4s
25/241 −�′

N 541 −�551 (6)

where �′
N = �′

N/�
′
N . We summarize the implications

of these results in the following proposition. Note
that part (i) of this proposition coincides with the
“expected c�” and highest signal first (HSF) policy
discussed in Argon and Ziya (2009). However, because
of differences between our setting and theirs (most
importantly, Argon and Ziya (2009) assume a continu-
ous signal from customers that indicates the probability
of misclassification, whereas our approach uses average
misclassification error rates that can be estimated from
data), we provide an independent proof based on the
above results.

Proposition 1 (Phase 1 Prioritization—Urgency-
Based Triage). In the simplified phase 1 model with
imperfect urgency-based classification, (i) The best (static)
priority rule is to prioritize U patients if �′

U �′
U ≥ �′

N�
′
N ;

otherwise, prioritize N patients. (ii) The best (static) priority
rule is the same as that for the case without misclassification
error if �N + �U ≤ 1; otherwise, the best priority ordering is
reversed.

Part (i) of Proposition 1 shows how triage misclassi-
fication errors can be incorporated into the optimal
priority rule. Part (ii) of Proposition 1 shows that if
the misclassification rate is high enough, the optimal
priority rule prioritizes N patients. However, empirical
studies have observed misclassification levels �N and
�U to be in the range 9%–15% depending on the level
of triage nurse experience (Hay et al. 2001). Thus, if,
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Figure 4 Class Dependent Arrival Rates to the ED for an Average Day (Obtained from a Year of Data in UMHSED)
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as we expect, prioritizing urgent patients is optimal
when there is no misclassification error, prioritizing
them remains optimal even under practical levels of
misclassification errors. This confirms that prioritizing
level 2 patients over level 3 patients, as is typically
done in the main ED, is reasonable. However, we note
that there is wide variance of complexity among level 2
and level 3 patients (see, e.g., Vance and Sprivulis 2005
and Figure 4). Simply prioritizing level 2 patients over
level 3 patients may be significantly suboptimal relative
to a policy that considers complexity. We investigate
this issue in the next section.

5.2. Complexity-Augmented Triage
We now consider the complexity-augmented triage
policy shown in Figure 1(b), and compare its perfor-
mance to that of conventional urgency-based triage. By
doing this we address the prioritization, magnitude,
and sensitivity questions posed in the introduction.

To evaluate the performance of complexity-
augmented triage when classification is imperfect, we
again let �U and �N denote the misclassification error
rates with respect to set U. Similarly, we let �C and �S

denote the misclassification error rates with respect
to set C, �C denote the probability that a C patient
is classified as an S, and �S denote the probability
that an S patient is classified as a C. We assume the
misclassification probabilities with respect to U and C
are independent because (a) the data show that the
assessments themselves are uncorrelated, indicating
that urgency and complexity are medically separable
questions (e.g., Figure 4 indicates that an urgent patient
is almost equal likely to be simple or complex (and
vice versa)), and (b) multiple nurses perform triage,
thereby limiting the extent of any systematic biases in
misclassifications.

As noted earlier, misclassification error rates in terms
of urgency have been observed to be in the range of
9%–15% (Hay et al. 2001). Vance and Sprivulis (2005)
tested the ability of triage nurses to evaluate patient
complexity and observed a misclassification rate of
17% (see also Kronick and Desmond 2009 for related

empirical work in UMHSED regarding the ability of
triage nurses to classify patients).

Similar to what we did in §5.1, we need to cal-
culate the error impacted rates �′

ij , �
′
ij , and �′

ij . Let
�= 4�US1�UC1�NS1�NC5 and �′ = 4�′

US1�
′
UC1�

′
NS1�

′
NC5.

Then �′ can be obtained through a linear transformation
of �; �′T =A�T , where A is a (known) misclassification
error matrix, and is defined as

A =









41 −�U 541 −�S5 41 −�U 5�C

41 −�U 5�S 41 −�U 541 −�C5
�U 41 −�S5 �U�C

�U�S �U 41 −�C5

�N 41 −�S5 �N�C

�N�S �N 41 −�C5
41 −�N 541 −�S5 41 −�N 5�C

41 −�N 5�S 41 −�N 541 −�C5









0 (7)

Similarly, if �′ and �′ denote the vector of error-
impacted adverse event and service rates, we have �′T =

4A4�×�5T 5/�′ and 41/�′5T = 4A4�/�5T 5/�′, where 1 =

411111115 and operators “×” and “/” are component-
wise multiplication and division, respectively. With
these, the waiting times for each customer class under
an imperfect U ∪C classification can be computed
using (2) with rates replaced with their transformed
error impacted counterparts. This model permits us to
show the following.

Proposition 2 (Phase 1 Prioritization—Com-
plexity-Augmented Triage). In the simplified phase 1
model with imperfect urgency and complexity classifications:
(i) The best priority rule is to prioritize patients in decreasing
order of �′

ij �
′
ij values. (ii) RU′∪C′

∗
≤RU′

∗
. That is, even with

misclassification errors, implementing the best priority rule
for complexity-augmented triage is always (weakly) better
than the optimal priority rule for urgency-based triage.
(iii) The rule of part (i) is optimal even among the larger
class of all nonanticipative (state or history dependent, idling
or nonidling, etc.) policies.

Proposition 2(i) addresses the prioritization ques-
tion by suggesting a simple priority rule analogous to
the well-known “c�” rule to incorporate complexity
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information into phase 1 sequencing. However, the
indices used are linearly transformed to incorporate
misclassifications. Thus, this result can be viewed as an
extension of the c� rule under imperfect information.
Furthermore, Proposition 2(i) shows precisely when the
optimal priority rule will be different from the optimal
rule without misclassification. For instance, if misclassifi-
cation rates are high enough, it can be better to prioritize
nonurgent patients over urgent ones. However, at the
error levels observed in the previously cited studies, the
implication of Proposition 2(i) is to prioritize patients in
the order: US, UC, NS, NC, which coincides with the
priority rule we found to be optimal in phase 2. Propo-
sition 2(ii) begins to address the magnitude question
raised in the introduction by suggesting that complexity-
augmented triage outperforms urgency-based triage,
provided that the optimal priority rule is implemented.
Although this result may seem intuitive because of
the additional information collected at triage, we note
that the additional information is subject to errors, so
this conclusion is not obvious. Nevertheless, Proposi-
tion 2(ii) shows that, implemented correctly, imperfect
complexity-augmented information always improves
the ED performance regardless of the misclassification
levels. Moreover, it should be noted that information
collection involves only simple estimations of whether
two or more interactions are needed with a physician,
which adds minimal time to the triage process. Whereas
priority rules are greedy and usually suboptimal, Propo-
sition 2(iii) confirms that they are optimal in this setting.
The surprise is that it is never optimal to idle in anticipa-
tion of a high priority patient when only low priority
patients are available, even though the model disallows
preemption. Similar results for the c� rule but without
misclassifications are presented in Kakalik and Little
(1971). Finally, part (iii) of Proposition 2 states that a
dynamic (i.e., state-dependent) priority policy cannot
beat the greedy and simple state-independent policy
presented in part (i).

We can also address the sensitivity question by using
our model to determine the environmental factors that
favor complexity-augmented triage, as summarized in
the following proposition:

Proposition 3 (Attractiveness of Complexity-
Augmented Triage). Under the simplified phase 1 model,
the benefit of complexity-augmented triage compared to
urgency-based triage (under their respected optimal pri-
ority policies), RU′

∗
− RU′∪C′

∗
, is (i) nondecreasing in �;

(ii) nondecreasing in 1/�C − 1/�S ; (iii) maximized at
�= 1/2, when �US = 41 −�5�U , �UC = ��U , �NC = ��N ,
and �NS = 41 −�5�N ; and (iv) nonincreasing in �S and �C .

This implies that complexity-augmented triage is
most beneficial in EDs with (i) high utilization, (ii) high
heterogeneity in the average service time of simple and
complex patients, (iii) equal fractions of simple and

complex patients, or (iv) low complexity classification
error rates.

5.3. Patient Flow Design Using Complexity and
Urgency Information

In this section, we address the “design” question from
the introduction by examining whether complexity
information obtained at triage is more useful for sepa-
rating patients into streams or for prioritizing them
within streams. Additional insights will be provided
in §6.4, where we use hospital data to compare the
performance of different ED patient flow designs.

We consider two patient flow designs. In complexity
streaming, S and C patients are sent to separate streams
in which they are prioritized based on their urgency
level (U before N). In urgency streaming, U and N
patients are sent to separate streams, within which
S patients are prioritized over C patients (consistent
with the optimal priority rule established in Proposi-
tion 2(i)). To make a fair comparison of these designs,
we first remove the effect of unbalanced utilizations
and assume that the ED can assign appropriate capacity
(physicians, staff, beds, etc.) to streams so that their
utilization becomes equal. We further assume that
two conditions hold: (1) the (error impacted) effective
mean service rates in each stream are equal, and (2)
the variance of service times in each stream are equal.
Since ROAE is a function of arrival rate, service rate
(and hence utilization), as well as the second moment
of service time (see Equation (5)), these assumptions
provide a fair basis for comparing different streaming
designs, which we term as perfectly balanced streaming
designs, because they eliminate obvious differences in
utilization-induced congestion that can be removed
by appropriate capacity allocation between streams.
However, in Online Appendix B, we compare the
performance of partially balanced streaming designs
by relaxing these conditions, and we observe that
our conclusions are robust. Finally, in §6.4, we use
hospital data and simulation to further examine the
performance of complexity-based streaming.

Proposition 4 (Patient Flow Design). In perfectly
balanced streaming systems, with each stream using its
optimal policy suggested by Proposition 2(i), using com-
plexity information for streaming patients and urgency
information for prioritizing them (complexity streaming)
is better than using urgency information for streaming
and complexity information for prioritizing them (urgency
streaming). Furthermore, the performance advantage of com-
plexity streaming (weakly) increases as total ED utilization
increases.

The intuition behind the above result is that matching
capacity to workload in the different streams dimin-
ishes the effect of different service times among simple
and complex patients. Hence, the difference in the
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intensity of adverse events between urgent and nonur-
gent patients becomes the dominant factor in selecting
the best streaming design. Because complexity stream-
ing prioritizes patients in both streams according to
urgency, it is more effective than urgency streaming.
Although we have derived this insight using a single
server model, we note that the single server assumption
is not essential to the comparison. First, it can be easily
seen from the well-known Sakasegawa equation (see,
e.g., Hopp and Spearman 2008, pp. 290–291) that with
the same utilization, the queueing time of a G/G/k
queueing system and that of an “equivalent” G/G/1
become equal as the system’s utilization approaches 1.
Since utilization in the ED is typically high, we expect
the single server assumption to provide a good approx-
imation. Second, our numerical comparisons show
that even with utilization as low as 60%, the conclu-
sion that complexity-based streaming is superior to
urgency-based streaming is not altered by the number
of servers. Finally, in §6.4, we use hospital data and
a simulation model with multiple physicians, beds,
etc. to further confirm the superiority of complexity
streaming.

6. Simulation Analysis of
Complexity-Augmented Triage

In this section, we test the conjectures suggested by
our analytic models and get a better sense of the
magnitude of the impact of complexity-augmented
triage by means of a detailed ED simulation model.
This simulation incorporates many features common to
most EDs, including dynamic nonstationary arrivals,
multistage service, multiple physicians and exam rooms,
inaccuracy in triage classifications (both in terms of
urgency and complexity), and limits on the number
of patients physicians handle simultaneously. We use
a year of hospital data from the UMHSED plus time
study data from the literature to construct a base case
that is representative of EDs in research hospitals.
We first describe the main features of our simulation
framework, and then describe the test cases and our
conclusions from them.

Patient Classes. At the time of triage, patients are clas-
sified according to both urgency (urgent or nonurgent)
and complexity (simple or complex). For modeling
purposes, we omit the resuscitation unit (RU) and fast
track (FT) classifications, shown in Figure 1(b), since
these patients are typically tracked separately from
the main ED. We define S (simple) patients as those
who only require one interaction and C (complex)
patients as those requiring two or more interactions.
Note that we do not count the short physician visits at
or after the disposition state as an interaction for the
purpose of S/C classification. Focusing on the main
area of the ED, with triage level 1, level 4, and level 5
patients omitted, we can equate U (N) patients with

level 2 (level 3) patients. Both urgency and complexity
classifications at the point of triage are subject to errors
with different error rates, so we assume the true type
of a patient is not known until the final disposition
decision is made. Consistent with the empirical findings
of Hay et al. (2001), Vance and Sprivulis (2005), and
Kronick and Desmond (2009), we assume urgency and
complexity classifications are subject to 10% and 17%
error rates, respectively. We also assume urgency-based
and complexity-based misclassification rates are inde-
pendent and symmetric (i.e., triage nurses are equally
likely to classify U4C5 patients as N4S5 as they are to
classify N4S5 patients as U4C5, respectively), but we
consider asymmetric errors in our sensitivity analysis.

Arrival Process. Class-based patient arrivals are mod-
eled using nonstationary Poisson processes that approx-
imate our data. The nonstationary arrival rates for
different classes are depicted in Figure 4. These arrival
rates were obtained from a year of UMHSED data
taken at two-hour intervals. However, since UMHSED
patients are not currently triaged based on complex-
ity, we assume that 49% of patients are complex as
observed empirically by Vance and Sprivulis (2005).
The resulting pattern is similar to those reported in
other studies (e.g., Green et al. 2006b). A “thinning”
mechanism (see Lewis and Shedler 1979) is used to
simulate the nonstationary Poisson process arrivals for
each class of patients. From our data and Figure 4, we
also observe that complexity and urgency classifications
are almost independent (e.g., a complex patient is
equally likely to be urgent or nonurgent).

Service Process. The ED service process has multiple
stages as depicted in Figure 3. Each patient experiences
one or more patient-physician interactions followed
by test/preparation/wait activities during which the
physician cannot have a direct interaction with the
patient (all such stages are labeled as “test” in Figure 3).
We also consider the initial and final preparations by
a nurse. The initial preparation happens when the
patient is moved to an exam room for the first time
(before the first interaction with the physician) and the
final preparation happens after the final interaction
with the physician and before the patient is discharged
home or admitted to the hospital. The duration of
each physician interaction is random and is modeled
with an exponential distribution with a parameter
that depends on the class of the patient as well as the
number of previous interactions. Our data suggest
that the first and last interactions are typically longer
than the intermediate interactions, so we model them
as such in the simulation. While S patients have one
interaction, for C patients we simulate the distribution
of the number of physician interactions using the
data shown in Figure 5, which are derived from a
detailed time study (see Table 3 of Graff et al. 1993)
with normalization to represent our NC and UC patient
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Figure 5 Probability Mass Function of the Number of Class-Based Interactions for Complex Patients
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classes. The simulated service process is considered
to be noncollaborative (since an ED physician rarely
transfers his or her patients to another physician) and
also nonpreemptive.

Physician-Patient Assignments and Priorities. Patients
are brought back from the waiting area to exam rooms
whenever a room becomes available according to a
phase 1 sequencing rule. When a physician becomes
available, and has fewer than his or her maximum
number of patients (seven is typical), the physician
chooses the next patient from those available based
on a phase 2 sequencing rule, which can make use of
information generated at triage. We assume that when
urgency-based triage is used, U patients get priority
over N patients in both phases 1 and 2. If complexity-
augmented triage is used, patients are prioritized
in both phases according to the priority ordering
US, UC, NS, NC (ranked from high to low priority),
which we found to be optimal in the simplified ED
models discussed previously. When a patient is brought
back to an examination room, we assume that the
patient is assigned to the physician with the lowest
number of patients. If all physicians are handling
their limit of seven patients, the patient must wait.
Phase 1 and phase 2 priority decisions can only be
made based on the estimated class of the patient, which
is subject to misclassification error, but adverse events
are determined by the true class of the patient.

ED Resources. We consider 22 beds and four physi-
cians in our base case scenario, which are representative
of a medium sized ED. But we perform sensitivity
analysis to examine the effect of number of both beds
and physicians on the benefit of complexity-augmented
triage. We also consider cases with nonstationary
staffing in order to examine the effect of better match-
ing staffing to the demand profile. We consider test
facilities (ancillary services) as exogenous resources
(i.e., test times are independent of the volume of ED
patients) because these facilities typically handle many
other patients besides those from the ED. Hence, tests
and waiting for their reports result in various exoge-
nous “delays,” which were approximated with class
dependent exponential random variables and were

estimated to have mean “delay” times roughly 2.5
times longer for complex patients than for simple
patients based on UMHSED data.

Adverse Events. Adverse events are simulated using
point processes with stationary rates that depend on
patient class and phase of service. Specifically, in our
base case we use class and phase dependent Poisson
processes and assume that (i) U patients have a higher
intensity of adverse events than N patients, and (ii) the
intensity of adverse events decreases by 60% when
patients move from the waiting room (phase 1) to an
examination room (phase 2). (The 60% number is a
physician estimate based on the impact of more careful
monitoring and care within the ED; however, we give
sensitivity analysis in Online Appendix E that shows
the main conclusions are robust to this estimate.) As in
our previous models, we do not consider fatal events
that would terminate the adverse events counting
process, since the impact of these rare events on our
objective function is extremely small.

Runs. The simulation was written in C++ and made
use of a cyclo-stationary model (see, e.g., Gardner et al.
2006 for a complete review of cyclo-stationarity) with a
period of a week. Each data point was obtained for
5,000 replications of one week, where each replication
was preceded by a warm-up period of one week. This
was observed to be sufficient because correlations in
the ED flow are very small for spans of two or more
days because of the fact that EDs generally clear out
overnight. The number of replications (5,000) was
chosen to achieve reliable confidence intervals that are
tight enough to be omitted from our data presentations.

6.1. Performance of Complexity-Augmented Triage
We start by comparing complexity-based triage to
urgency-based triage in our base case model, under the
assumption that both types of triage make use of their
respective priority rules for sequencing patients in both
phase 1 and phase 2. This leads to the following:

Observation 1. In the base case, implementing
complexity-augmented triage rather than urgency-
based triage improves ROAE and LOS by 904%
(0.16 events/hour) and 706% (36 minutes/patient),
respectively.
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To consider the case where phase 2 sequencing
cannot follow the optimal rule because of a lack of
data, patient discomfort, or other factors, we also
compare complexity-augmented triage with urgency-
based triage when phase 2 sequencing in both systems
uses a service-in-random-order (SIRO) rule. This leads
to improvements of 7.9% and 7.0% in ROAE and LOS,
respectively. Hence, it appears that the benefits of
complexity-augmented triage are quite robust to the
policy used in phase 2. At least in our base case, it is the
refined sequencing in phase 1 that drives the majority
of the improvement. Furthermore, this conclusion is
not significantly affected by many assumptions in the
base case. For instance, in Online Appendix E, we give
sensitivity analyses on the 60% drop in phase 2 intensity
of adverse events and show that this conclusion is
robust. We have also observed similar results regarding
the 2.5 ratio of test times of complex patients to simple
patients.

The smaller effect of phase 2 sequencing compared to
that of phase 1 prioritization is mainly due to the fact
that, under the conditions of our base case, physicians
in phase 2 often do not have many available patients
from which to choose. This is because (a) patients are
unavailable for considerable amounts of time while
being tested and waiting for test results, and (b) each
physician handles only a limited number of patients
simultaneously (with an upper bound of seven). How-
ever, in EDs with shorter test times (e.g., more test
facilities dedicated to the ED, or more responsive central
test facilities), larger case loads (patients per physician),
and enough examination rooms/beds to accommodate
patients, there will be more choices among in-process
patients, and hence more improvement from an effec-
tive phase 2 sequencing policy. To test this, we consider
an ED with test rates 70% faster than the base case
values, 40 beds, three physicians, and a maximum
number of 10 patients per physician. Under these
conditions, if phase 2 sequencing is done according
to SIRO for both the urgency-based and complexity-
augmented triage systems, then complexity-augmented
triage achieves improvements of 8.6% and 6.2% in

Figure 6 The Effect of Resources (Beds and Physicians) on the Benefit of Complexity-Augmented Triage over the Current Practice of Urgency-Based Triage
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ROAE and LOS, respectively, relative to urgency-based
triage. In contrast, if the urgency-based triage system
prioritizes patients in phase 2 by urgency (U > N )
and the complexity-augmented triage system priori-
tizes patients in phase 2 by complexity and urgency
(US >UC >NS >NC), then complexity-augmented
triage achieves improvements of 13.1% and 9.10% in
ROAE and LOS, respectively, relative to urgency-based
triage. This leads us to the following:

Observation 2. In EDs where physicians have more
choice about what patient to see next, using complexity
information to prioritize patients in phase 2 becomes
more valuable.

6.2. The Effect of ED Resource Levels
Proposition 3 predicts that increased utilization of
resources (i.e., either physicians or examination rooms)
should favor complexity-augmented triage. Figure 6
illustrates the percentage improvement in terms of
ROAE and LOS from using complexity-augmented
triage over urgency-based triage for varying numbers
of examination rooms and physicians. From this figure
we observe the following:

Observation 3. The benefit of complexity-aug-
mented triage is greater in EDs with higher bed and/or
physician utilization.

As we observed in the introduction, most EDs are
overcrowded, so high utilization is commonplace.
Hence, results from our analytic and simulation mod-
els suggest that complexity-augmented triage is most
effective precisely in EDs most in need of improvement.

Nonstationary Staffing. Because EDs typically adjust
staffing to follow workload, at least to some extent,
we now consider two cases of nonstationary staffing:
(i) reducing the staffing level during off-peak hours,
and (ii) reducing the staffing level during off-peak
hours while increasing staffing during peak hours
(redistributing the current workforce). To examine these
cases, we consider two alternate scenarios that modify
our base case assumption of four physicians at all times:
(i) four physicians during peak demand times (12-hour
shifts) and three physicians otherwise, and (ii) six
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physicians during peak times (12-hour shifts) and two
otherwise, so there is no net change in labor hours.
Under scenario (i), the complexity-augmented triage
achieves 1105% and 1100% improvements in ROAE and
LOS, respectively, compared to urgency-based triage.
Under scenario (ii), these numbers are 8.8% and 6.9%.
Hence, the improvements relative to the 9.4% and 7.4%
improvements of the base case shown in Figure 6(b)
are larger under scenario (i) but not under scenario (ii).
The reason is that scenario (i) increases utilization
during off peak hours, which we have already shown
enhances the benefits of complexity-augmented triage.
But scenario 2 increases utilization during peak hours
while decreasing it during off peak hours. Since overall
performance is dominated by the peak hours, during
which most congestion occurs, this results in a net
decrease in the benefits of complexity-augmented triage.
Nevertheless, since it is not economical to entirely
eliminate high utilization periods in the ED, the benefits
of complexity-augmented triage will be reduced but
not eliminated with staffing that better matches the
demand profile.

Bed-Block Phenomenon. We can use the results of
Figure 6 to predict the effect of the ED bed-block phe-
nomenon, in which ED patients admitted to the hospital
cannot be transferred to their inpatient unit because
of unavailability of beds. By tying up beds in the
ED to board admitted patients, bed-block reduces the
effective number of ED beds, and hence, increases their
utilization. Therefore, from Figure 6 and Observation 3,
we can expect complexity-augmented triage to yield
greater benefits in EDs with higher bed-block/boarding
times. For more detailed discussion of the effect of
ED bed-block on patient flow design, we refer inter-
ested readers to Saghafian et al. (2012) and the related
references therein.

6.3. The Effect of Misclassification
Misclassification errors are inevitable in any triage
system. Figure 7(a) shows the improvement in ROAE

Figure 7 The Effect of Complexity Misclassification Error Rates on the Benefit of a Complexity-Augmented Triage (Compared to an Urgency-Based
Only Triage)
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and LOS achieved by complexity-augmented triage
relative to urgency-based triage for variations of the
base case, in which complexity misclassification error
rates range from 5% to 25%. Figure 7(a) assumes these
errors to be symmetric; that is, the chance of classifying
an S patient as C is equal to the chance of classifying a
C patient as S. Figure 7(b) considers asymmetric error
rates while keeping the average misclassification rate
constant and equal to the base-case value of 17%. From
these figures, we observe the following:

Observation 4. The benefit of complexity-
augmented triage is relatively robust to complexity
misclassification errors. However, complex-to-simple
misclassifications are slightly more harmful than
simple-to-complex misclassifications.

The intuition behind the second part of this observa-
tion is that a complex-to-simple misclassification error
moves a complex patient up in the queue, potentially
delaying many other patients. In contrast, a simple-to-
complex misclassification error moves a single simple
patient back in the queue, delaying only that patient.
So, it is slightly better to err on the side of classifying
ambiguous patients as complex rather than simple.

6.4. Complexity Streaming Patient Flow Design
Finally, we return to the question of whether patient
complexity information is most valuable in prioritiz-
ing or streaming patients. To do this, we examine
a complexity streaming design in which patients are
divided into two streams: one for patients triaged as
simple (S) and one for those triaged as complex (C).
The resources (beds and physicians) are labeled with
S and C, indicating their main purpose. However, to
overcome the “anti-pooling” disadvantage of streaming,
we allow physicians or beds allocated to one stream to
be used by the other stream in certain circumstances.
When a C physician is available but there is no complex
patient available, the physician can be assigned to an S
patient who is waiting, and vice-versa. Also, an arrival
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Figure 8 Performance of Different Patient Flow Designs Compared to the Current Practice (Urgency Prioritization)
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of type S may enter a C bed if no other C patients are
waiting, and vice-versa. This type of flexible allocation
mechanism is referred to as “virtual streaming” in
Saghafian et al. (2012), which demonstrates it to be
important in disposition-based streaming protocols.
Finally, we assume that patients in both streams and in
both phases 1 and 2 are prioritized according to their
urgency level.

Separating simple and complex patients makes it eas-
ier to implement lean process improvement techniques
to improve and standardize service, particularly on the
simple side for which the repetitive treatment processes
can be organized in a clear flow-shop manner (see
also Clark and Huckman 2012 and KC and Terwiesch
2011 for related discussions on performance benefits of
focused operations). Without separating simple patients
from complex ones, lean process improvements are
much more difficult to implement because many tasks
will not be amenable to standardized procedures.

We first exclude the effect of lean improvements and
compare the performance of complexity streaming, in
which complexity information is used for streaming
and urgency information is used for prioritizing, with
urgency streaming, where urgency information is used
for streaming and complexity information is used for
prioritizing. We perform this comparison after opti-
mizing the assignment of resources (physicians and
beds) to each stream for each patient flow design. We
observe that, even without lean improvements, using
the complexity information for streaming and urgency
information for prioritizing is better than using the
urgency information for streaming and complexity
information for prioritizing. This confirms our ear-
lier result of §5.3 in a more realistic setting. We also
compare, in Figure 8, the performance of complex-
ity streaming, with and without lean improvements,
against that of urgency prioritization (i.e., current practice
in which patients in the main ED are not streamed
but are prioritized based on urgency) and complexity-
augmented prioritization (i.e., a design in which patients
are not streamed but are prioritized in phase 1 and
phase 2 according to the optimal priority rule using
complexity-augmented triage information). The system
with lean improvements assumes that these increase

the service rate for interactions with simple patients by
10%, but that no change occurs for complex patients.
Based on results in other industries, this is a conserva-
tive estimate of the impact of a lean transformation.
Figure 8 compares performance in terms of LOS (results
for the ROAE criterion are similar). These comparisons
lead to the following observations:

Observation 5. It is better to use complexity infor-
mation for streaming and urgency information for pri-
oritizing than using urgency information for streaming
and complexity information for prioritizing (5.7% and
4.8% improvements in ROAE and LOS, respectively).

Observation 6. Without lean improvements, com-
plexity streaming is better than the current practice
(urgency prioritization), but worse than complexity-
augmented prioritization. With lean improvements
(made only to the simple stream), complexity streaming
can achieve a substantial advantage over complexity-
augmented prioritization.

7. Conclusion
In this paper, we propose a new triage system for
ED practice in which patients are classified on the
basis of complexity, as well as urgency. Our results
suggest that, compared to current urgency-based triage
systems, complexity-augmented triage can significantly
improve ED performance in terms of both patient safety
(ROAE) and operational efficiency (LOS), even if patient
classification is subject to error. We find that a simple
and fast classification scheme, which defines patients
to be simple if they require only a single interaction
(and complex otherwise) works very well as the basis
for complexity-augmented triage because it results in
(1) a nearly even split between simple and complex
patients and (2) a substantial difference between average
treatment time of complex and simple patients.

Our analyses indicate that complexity-augmented
triage can yield substantial safety and efficiency
improvements even if complexity information is only
used to prioritize patients up to entry into the exami-
nation rooms (phase 1). Furthermore, in EDs where
physicians have a significant amount of choice about
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what patient to see next within examination rooms
(phase 2), we find that complexity information gathered
at triage can yield additional benefits by facilitating
internal sequencing decisions. For both phase 1 and
phase 2, the benefit of complexity-augmented triage is
greatest in EDs with high physician and/or examination
room utilization. Since EDs are widely overcrowded,
our results suggest that complexity-augmented triage
is an effective way for EDs to improve safety and
reduce congestion without adding expensive human or
physical capacity.

We also investigate a new patient flow design, in
which complexity-augmented triage information is
used to separate simple and complex patients into two
streams. Our results suggest that it is more effective to
stream patients based on their complexity and then
prioritize them within each based on their urgency
than it is to stream them according to urgency and
prioritize them according to complexity. Streaming
based on complexity also facilitates implementation of
lean methods in the “simple” patient stream, which
can take advantage of complexity-augmented triage
information to achieve even greater gains. If these gains
are substantial enough, such complexity streaming can
yield significant additional benefits.

Three future streams of research that could build on
our insights to achieve even better performance are
(1) finding data driven rules, which correlate patient
characteristics, symptoms and evaluations to treatment
time and resource requirements, and can serve as the
basis of even more effective prioritization and stream-
ing policies than those suggested here; (2) developing
statistical tools for tracking patient class dependent
delays in test facilities and analytic models for incorpo-
rating these into phase 1 and phase 2 sequencing rules;
and (3) constructing dynamic patient prioritization
systems that make use of real-time information on
patient and resource status to sequence patients into
and through the ED. All of these enhancements could
be used in the context of a single ED or within streams
set up to facilitate standardization efficiencies. Whether
and how the performance improvements from these
systems can justify their implementational complexity
relative to the simple system we have proposed here is
an open research question.
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