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To generate insights into how production of new items and remanufacturing and disposal of returned
products can be effectively coordinated, we develop a model of a hybrid manufacturing–remanufacturing
system. Formulating the model as a Markov decision process, we investigate the structure of the optimal
policy that jointly controls production, remanufacturing, and disposal decisions. Considering the average
profit maximization criterion, we show that the joint optimal policy can be characterized by three mono-
tone switching curves. Moreover, we show that there exist serviceable (i.e., as-new) and remanufacturing
(i.e., returned) inventory thresholds beyond which production cannot be optimal but disposal is always
optimal. We also identify conditions under which idling and disposal actions are always optimal when
the system is empty. Using numerical comparisons between models with and without remanufacturing
and disposal options, we generate insights into the benefit of utilizing these options. To effectively coor-
dinate production, remanufacturing, and disposal activities, we propose a simple, implementable, and yet
effective heuristic policy. Our extensive numerical results suggest that the proposed heuristic can greatly
help firms to effectively coordinate their production, remanufacturing, and disposal activities and thereby
reduce their operational costs.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Over the past decade there has been quickly growing interest in
the recovery of used products in different industries. As seen, for
instance, in the case of van der Laan and Teunter (2006) in the
automotive industry, remanufacturing is not only an important
step toward sustainability and other environmental considerations,
but is also economically beneficial for firms. This economic benefit
is mainly due to two reasons: (1) remanufactured products can be
usually sold with the same warranty as new products and (2)
remanufacturing processes are usually cheaper than manufactur-
ing ones. For instance, Samsung Electronics (SEC) collects used
electronic products through 1560 branch retail stores and 24 local
distribution centers in Korea. In 2010, SEC reused 27,466, 13,054,
and 12,158 tons of parts and materials in production of refrigera-
tors, displays, and washing machines, respectively (Samsung Elec-
tronics, 2011). SEC is also operating STAR (Samsung Takeback and
Recycling Programme) to recycle copy or print cartridges in 21
countries and operating more than 2000 centers in 61 countries
to collect used mobile phones (Samsung Electronics, 2011).
The study of Tang and Teunter (2006) provides a good example
of a concrete application of the hybrid manufacturing–remanufac-
turing system. Their research was motivated by a company which
produces and remanufactures car parts. Both manufacturing and
remanufacturing operations are performed on the same production
line. Workers are faced to a large variety of products: diesel en-
gines, petrol engines, water pumps, cylinder heads, etc. For the
water pumps, the remanufactured products represented approxi-
mately 30% of annual sales. Another example on an application
of a hybrid system is found in Zhou, Tao, and Chao (2011) which
considered an energy company that provides service on meters
and transformers for private houses and commercial buildings.
The meters and transformers are owned by the energy company
and all failed meters/transformers are shipped to the warehouse/
distribution center, diagnosed in operational conditions, and
stored in inventory. Returned items with very bad conditions are
disposed. The company’s inventory control system manages the
replenishment of stock levels. However, the system did not take
the returned products into consideration, which account for over
a third of the company’s total business. The problem the company
faces was how to make remanufacturing decisions on the various
types of returns jointly with replenishment decisions, so as to min-
imize total cost.

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ejor.2013.05.052&domain=pdf
http://dx.doi.org/10.1016/j.ejor.2013.05.052
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This research is a step toward gaining fundamental insights into
how production of new products and remanufacturing and dis-
posal of returned items can effectively be coordinated. Such coor-
dination provides financial incentives for firms to move toward
sustainable operations. We consider a hybrid production system
with manufacturing and remanufacturing in continuous time
where a single type of product is stocked in order to meet demand
from customers who may also return products after usage. In our
model, demands arrive randomly and are possibly satisfied from
on-hand inventory of serviceable products (i.e., manufactured or
remanufactured finished goods that are ready for sale). We con-
sider the case where unmet demand is lost, which better repre-
sents the current competitive market in many industries in
which customers will switch to a competitor under a shortage.
Product returns also arrive randomly in our setting and each re-
turned item can be disposed of or accepted for recovery. Accepted
returned items are converted into serviceable products. Therefore,
in our model, serviceable inventory can be replenished through
either manufacturing new items or remanufacturing returned
products.

The primary goal of this paper is to (i) develop an appropriate
model to jointly optimize production, remanufacturing, and dis-
posal activities in hybrid manufacturing–remanufacturing sys-
tems, (ii) investigate the structure of the jointly optimal policy,
(iii) develop a simple heuristic to effectively coordinate disposal,
remanufacturing, and production activities, and (iv) generate in-
sights into the benefits of considering the remanufacturing and
disposal options. Our results provide insights into how firms can
increase sustainability and still increase their profit.

Compared to traditional production systems, a hybrid produc-
tion system with manufacturing and remanufacturing poses
important challenges with respect to inventory management.
In a hybrid system, product returns generate a new source of
material flow which indirectly affect the inventory level of ser-
viceable products. Thus, the two alternative sources for replen-
ishing the serviceable inventory (i.e., production and recovery)
should be coordinated and jointly controlled. Many studies have
discussed production planning and inventory control problems
with consideration of the product return process. Detailed liter-
ature reviews can be found in Fleischmann et al. (1997), Junior
and Filho (2012), Mahadevan, Pyke, and Fleischmann (2003).
To clarify our contributions to the literature, we classify the ref-
erences related to our study using the characteristics listed
below:

– Inventory review: periodic or continuous.
– Production and remanufacturing lead time: stochastic or

constant.
– Production capacity: limited or unlimited.
– Fixed costs for production and remanufacturing: included

or not included.
– Types of unit variable costs considered: holding serviceable

inventory, holding remanufacturable inventory, produc-
tion, remanufacturing, disposal.

– Stockout treatment: backorder or lost sales.
– Types of control considered: production, remanufacturing,

disposal.

With respect to this classification, our paper possesses continu-
ous inventory review, stochastic production and remanufacturing
lead times, limited production capacity, no fixed costs for produc-
tion and remanufacturing, all five above-mentioned types of unit
variable costs, lost sales, and control of production, remanufactur-
ing, and disposal processes. Table 1 summarizes the literature re-
view by comparing the related studies. Since we study the joint
control of production, remanufacturing, and disposal in this paper,
we will restrict the detailed review in the remainder of this section
to those papers, and point out our contributions.

Simpson (1978) studies a periodic review inventory system
where unmet demand is backlogged and neither fixed costs nor
lead times are considered for purchase and recovery processes.
By trading-off purchasing cost, recovery cost, and holding cost of
both inventories, the optimality of a three-parameter policy that
controls the purchase, recovery, and disposal decisions is shown.
Inderfurth (Inderfurth, 1997) studies the effect of both replenish-
ment and remanufacturing deterministic lead times on the optimal
inventory control policy. He shows that the policy identified in
Simpson (1978) is also optimal for identical deterministic lead
times. Kiesmüller and Scherer (2003) presented a method for the
exact computation of the parameters which determine the optimal
policy for the model of Simpson (1978) and Inderfurth (1997).
DeCroix (2006) extended Inderfurth (Inderfurth, 1997) by consid-
ering the multi-echelon system with remanufacturing and identi-
fying the structure of the optimal remanufacturing/ ordering/
disposal policy.

van der Laan and Salomon (1997) considered a (sm, Qm, sr, Sr, sd)
policy that can be described as follows: remanufacturing starts
whenever the inventory position (on-hand serviceable inventory
minus backorders plus outstanding (re)manufacturing orders) is
at or below sr and the remanufacturable inventory contains suffi-
cient products to raise the inventory position level to Sr, manufac-
turing starts with batch size Qm whenever the inventory position
drops to sm(<sr), and incoming returns are disposed of whenever
the remanufacturable inventory equals sd. They compared the per-
formance of this policy with a (sm, Qm, Qr, sd) policy under which
remanufacturing starts whenever the remanufacturable inventory
contains exactly Qr products, manufacturing starts with batch size
Qm whenever the inventory position reaches sm, and incoming re-
turns are disposed of if the inventory position is at or above sd.

Inderfurth and van der Laan (2001) considered a (sm, Qm, Qr, Sd)
policy where manufacturing of Qm products starts whenever the
serviceable inventory position (serviceable inventory plus out-
standing (re)manufacturing orders minus backorders) drops to
the level sm, remanufacturing starts whenever a batch of returned
products of size Qm is available, and incoming returns are disposed
of whenever the inventory position equals or exceeds Sd. They
showed that by using the remanufacturing leadtime as a decision
variable (i.e. by changing the definition of the inventory position),
the performance of (sm, Qm, Qr, Sd) policy can be improved consid-
erably. Wei, Li, and Cai (2009) provided a linear programming
model and analyzed the impact of the key parameters on the
solutions.

Our model contributes to this stream of research in several
ways. First, we generate insights into coordinating decisions of
when to produce a new product, when to remanufacture a re-
turned item, and when to dispose of a product return. In our frame-
work, manufacturing, remanufacturing, and disposal decisions are
dynamically controlled based on inventory levels of both service-
able (i.e., ‘‘as-new’’) and remanufacturable (i.e., returned and not
disposed of) items. Second, we characterize the jointly optimal
production, remanufacturing, and disposal policy in a continuous
review inventory control environment. Previous product recovery
studies with continuous inventory control have mainly tried to find
optimal parameters for given policies rather than characterizing
the structure of the optimal policy. This is partially due to the com-
plexity of the underlying control problem in such settings, espe-
cially when (1) production and recovery lead times are stochastic
and non-zero and (2) the unmet demand is lost (rather than back-
logged). Third, we show the effectiveness of two simple heuristic
control policies. Our proposed heuristics provide firms with a sim-
ple tool that effectively helps them to achieve higher profits while
encouraging the use of sustainable operations. Fourth, we provide



Table 1
Summary of literature survey.

Articles Inventory review Lead time Prod’n capacity Fixed cost Unit cost Stockout treatment Types of control

Stoch. Const.

Pi Ci P R P R U L P R Hs Hr P R D B L P R D

DeCroix (2006) + + + + + + + + + + + + +
Fleischmann and Kuik (2003) + + + + + +
Fleischmann et al. (2002) + + + + + + +
Heyman (1977) + + + + + + +
Inderfurth and van der Laan (2001) + + + + + + + + + + + + + + +
Inderfurth (1997) + + + + + + + + + + + + +
Kiesmüller and Scherer (2003) + + + + + + + + + + + + +
Mahadevan et al. (2003) + + + + + + + + +
Muckstadt and Isaac (1981) + + + + + + +
Simpson (1978) + + + + + + + + + +
Teunter and Vlachos (2002) + + + + + + + + + + + + + +
Teunter et al. (2004) + + + + + + + + + + +
Teunter et al. (2006) + + + + + + + +
van der Laan and Teunter (2006) + + + + + + + + + + +
van der Laan et al. (1996) + + + + + + + + + + + + +
van der Laan et al. (1996) + + + + + + + + +
van der Laan and Salomon (1997) + + + + + + + + + + + + + + +
van der Laan et al. (1999) + + + + + + + + + + + + +
van der Laan et al. (1999) + + + + + + + + + + + + +
Wei et al. (2009) + + + + + + + + + + + + +
Our model + + + + + + + + + + + + +

Pi = Periodic review; Ci = Continuous review; P = Production; R = Remanufacturing; L = Limited; U = Unlimited; D = Disposal; Hs = Holding serviceable inventory; Hr = Holding recoverable inventory; B = Backorder; L = Lost sales.
References are identified with first author and number.
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insights into the value of remanufacturing and disposal options.
We find that there is a synergy between these two options: the va-
lue of having both options together is higher than the sum of their
individual values. Our results also show that the disposal option is
on average more valuable than that of remanufacturing, which
sheds more light on the importance of acceptance/rejection deci-
sions regarding the returned products.

Although our research focus here is on production planning
and inventory control problems in a remanufacturing setting,
other research efforts have considered remanufacturing from a
more strategic perspective. The optimal acquisition price of used
products and the selling price of remanufactured products are
studied in Bakal and Akcali (2006), Guide, Teunter, and Van Was-
senhove (2003), Karakayali, Emir-Farinas, and Akcali (2007). Kaya
(2010) studies the joint decisions of the acquisition price with
the remanufacturing and manufacturing quantities, and Li, Li,
and Saghafian (2013) extend (Kaya, 2010) to the case where both
remanufacturing yield and used product acquisition are random.
Another important characteristic of products that are considered
for remanufacturing is a portfolio of new and remanufactured
products because the remanufactured product reduces the sales
of the new product when sold on the same market and the sales
of remanufactured products are constrained by the availability of
used products that are generated by past sales of new products
(Debo, Toktay, & Van Wassenhove, 2006). The issue of product
portfolios with new and remanufactured products is studied in
Debo, Toktay, and Van Wassenhove (2005), Debo et al. (2006),
Ferrer and Swaminathan (2006, 2010) and Ferguson and Toktay
(2006).

The remainder of the paper is organized as follows. In the
next section, we present our model. Analysis of the optimal pol-
icy is given in Section 3. In Section 4, we numerically implement
performance comparisons between models with and without
remanufacturing and disposal options. Section 5 presents our
proposed heuristic policies. Finally, we conclude in Section 6.
2. The model

Demands for a single product arrive according to a Poisson pro-
cess with rate k1. If demand is satisfied from on-hand inventory, a
revenue of R1 is generated. Hereafter, we refer to the on-hand
inventory as serviceable inventory representing the as-new fin-
ished goods that can satisfy the demand. We assume unmet de-
mand is lost. While some settings are best modeled with
backorders, lost sales may be more representative to model stock-
outs when the firm is in a competitive market and customers can
easily turn to a competitor during a stockout. As shown in Table 1,
the research dealing with inventory control for a hybrid production
system has the prevalent assumption that complete backlogging of
orders is allowed in case of stockouts, and the number of models
dealing with lost sales is limited. Since each lost demand implies
the loss of opportunity of generating a revenue of R1, there is an
implicit penalty for each lost sale and therefore, we do not need
to include an additional lost sales cost. However, the extension
with an additional lost sales cost is straightforward and our main
results will still hold.

The time required to produce an item (i.e., the production lead-
time) is exponentially distributed with mean l�1

1 . Returned prod-
ucts arrive according to a Poisson process with rate k2. A returned
item can be either disposed of or accepted for recovery. The time
required to perform the recovery process and transform the re-
turned item into a serviceable one is exponentially distributed
with mean l�1

2 . Similar to the production process, we assume
recovery is performed item by item (i.e., no batching). Hence, the
recovery process in our model can be viewed as an M/M/1 queue-
ing system with admission control. Assume manufacturing a new
item costs cM and disposing of a returned product incurs a cost
of, cD 2 (�1, 1), where cD < 0 implies a salvage value. Holding
costs are assessed at rate h1 and h2 for each unit in serviceable
and recoverable inventory, respectively. Whenever an item under-
goes the recovery process, a fixed cost of cr is incurred. Fig. 1 illus-
trates a schematic representation of the model under
consideration.

For tractability, we assume the demand and return processes
are independent; that is, product returns are an exogenous process.
It may be more natural to assume that there is correlation between
returns and past sales, since the actual return process may be a
function of many factors including the previous sales, the product’s
service life, incentives provided for returning products, and several
market factors causing customers to switch from using the product
in favor of a competing (e.g., newly introduced) product. The most
obvious type of correlation between returns and past sales is a po-
sitive one, where increased demand generates a greater number of
items in the field. When the life cycle is sufficiently long and a large
number of products are already in the market, then the correlation
between current demand and failed items returned to the manu-
facturer is typically not significant. Our model with an exogenous
process of product returns can also serve as an approximation of
scenarios with positive correlation as long as it is parameterized
to match the current operational environment. Furthermore, our
framework yields a simple and easily implementable control pol-
icy. Fleischmann (2000) (see pages 144–145) provided a detailed
justification of the assumption of the independence between re-
turns and past sales.

We further assume that the quality of a recovered item is the
same as the quality of a newly produced one. This setting is ob-
served in various industries. For example, in the case of the en-
ergy company in Zhou et al. (2011) described in the previous
section, customers are indifferent between a new product and
a remanufactured product. Another example can be seen in the
case of Caterpillar which builds all engines according to factory
specifications by trained personnel that follow the company’s
own strict remanufactured engine procedures. Production of
printer cartridges and single-use cameras are other practices in
which consumers do not distinguish between a new and a
remanufactured product.

The set of decision epochs in our model corresponds to a de-
mand arrival, a return arrival, a production (manufacturing) com-
pletion, or a recovery (remanufacturing) completion. At each
decision epoch, a control policy specifies whether or not to produce
an item and whether or not to remanufacturer a returned item
from the remanufacturing inventory. Furthermore, at epochs cor-
responding to a return arrival, a decision must be made regarding
whether to dispose of or accept the returned item. By modeling the
production and recovery activities as queueing processes, we mod-
el finite capacities, stochastic production and recovery lead times,
and we allow for a more realistic cost model compared to most
studies in the literature.

We seek to find a joint production, remanufacturing, and dis-
posal control policy that maximizes the long-run average profit.
The optimal control problem can be formulated as a discrete-time
Markov decision process problem by using uniformization (see
Lippman (1975)). This uniformized version has a transition rate
of c � k1 + k2 + l1 + l2 <1 applied to all states. The state of the sys-
tem is described by a vector x = (x1, x2), where x1 P 0 and x2 P 0
represent the serviceable and recoverable inventory levels, respec-
tively. We denote the state space by C.

We define the value iteration operator T on any real-valued
function f (defined on C) as



Fig. 1. The hybrid manufacturing–remanufacturing system under consideration.
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Tf ðxÞ ¼ 1
c
�x1h1 � x2h2 þ k1fðR1 þ f ðx� e1ÞÞ1ðx1 > 0Þ½

þ ðxÞ1ðx1 ¼ 0Þg þ l1 maxf�cM þ f ðxþ e1Þ; f ðxÞg
þ k2 maxff ðxþ e2Þ; f ðxÞ � cDg þ l2½maxf�cr þ f ðxþ e1 � e2Þ;
� ðxÞg1ðx2 > 0Þ þ f ðxÞ1ðx2 ¼ 0Þ��; ð1Þ

where 1(a) = 1 if a is true, and 1(a) = 0 otherwise. In (1), �x1h1/c and
�x2h2/c are the average holding cost of keeping x1 units in service-
able inventory and x2 units in recoverable inventory, respectively,
until the next uniformized transition. The terms multiplied by k1

in the above represent sales revenue as well as the transition gen-
erated with a demand arrival. The terms multiplied by l1 corre-
spond to the cost and transitions associated with a production
completion, and the term multiplied by l2 is the cost and the tran-
sition associated with a recovery completion in addition to a self-
loop when x2 = 0. The terms multiplied by k2 represent the cost
and transitions associated with a return arrival.

Let h(x) be the relative value function of being in state x, and g
be the optimal average profit per unit of uniformized time. Then,
the average-profit optimality equation can be written as

g þ hðxÞ ¼ ThðxÞ: ð2Þ
3. Structure of the joint optimal production, remanufacturing,
and disposal policy

To characterize the structure of the optimal policy, we will fol-
low Porteus (1982). The key to this approach is to identify a set of
structured value function properties and to show that they are pre-
served under the value iteration operator. To this end, define the
operators Di on any real-valued function f (defined on C) as

Dif ðxÞ � f ðxþ eiÞ � f ðxÞ; i ¼ 1;2:

Quantities D1f(x) and D2f(x) denote the marginal values of having
one more unit in serviceable inventory and recoverable inventory,
respectively. Let F be the set of all real-valued functions defined
on state space C such that if f 2 F , then

Dif ðxÞP Dif ðxþ ejÞ; i – j; i ¼ 1;2; j ¼ 1;2; ð3Þ
Dif ðxþ ejÞP Dif ðxþ eiÞ; i – j; i ¼ 1;2; j ¼ 1;2; ð4Þ
Dif ðxÞP Dif ðxþ eiÞ; i ¼ 1;2; ð5Þ
D1f ðxÞ 6 R1: ð6Þ

We say f is submodular if it satisfies (3). Submodularity of f implies
that the marginal benefit of holding one more unit of one inventory
decreases as the other inventory increases. We say f is diagonal sub-
ordinate if it satisfies condition (4). Condition (4) implies that the
benefit of having one more unit of one inventory decreases faster
in that inventory than in the other inventory. We say f is concave
in its coordinates if it meets condition (5). If f is concave, the incre-
mental benefit with one more unit of one inventory is decreasing in
the level of that inventory. Note that if a function is both submod-
ular and diagonal subordinate then it is also concave. Condition (6)
states that the marginal profit of having one more unit of service-
able inventory is at most equal to the per unit revenue obtained
from satisfying demand.

The following lemma provides a key step in characterizing the
jointly optimal policy by stating that properties (3)–(6) are pre-
served under the functional operator T. The proof of this and all
subsequent results are included in Appendix A.

Lemma 1 (Preservation). If f 2 F , then Tf 2 F .

The following lemma shows that the optimal policy, regardless
of the size of recoverable inventory, does not prescribe to produce
an item when the size of serviceable inventory is beyond a thresh-
old level. Below this threshold, the unit sales revenue is greater
than the average cost of holding x1 units of serviceable inventory
during a uniformized period of length c�1.

Lemma 2 (Production Threshold). Let N1:¼ min{x1 P 1: x1h1/c > R1}.
If f 2 F satisfies

D1f ðxÞ < cM; x1 P N1 ð7Þ

and

D1f ðxÞ < R1 � x1h1=c; x1 < N1; ð8Þ

then so does Tf.
The following lemma confirms the intuitive notion that the

optimal policy will dispose of a returned item, regardless of the
size of serviceable inventory, whenever the size of recoverable
inventory reaches or exceeds a threshold. Below this threshold
the benefit expected from accepting a returned item is greater than
the recovery and the holding cost incurred.

Lemma 3 (Disposal Threshold). Let N2:¼ min{x2 P 1: x2h2/c > R1 -
� cr + cD}. If f 2 F satisfies

D2f ðxÞ < �cD; x2 P N2 ð9Þ

and

D2f ðxÞ < R1 � cr � x2h2=c; x2 < N2; ð10Þ

then so does Tf.
Using Lemmas 1–3, we can now characterize the jointly optimal

production, remanufacturing, and disposal policy as follows:
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Theorem 1 (Jointly Optimal Policy).

20

15
P : Produce a new item(NP, D, R)(P

, D
, R

)

(a) There exists an optimal average profit, g, and an optimal rela-
tive value function, h, satisfying (2) such that h 2 F .

(b) The jointly optimal policy can be characterized by three switch-
ing curves
NP : Do not produce a new item

D : Dispose of a product return

ND : Do not dispose of a product return
Pðx2Þ :¼maxfx1 : hðxÞ 6 hðxþ e1Þ � cMg; ð11Þ
Rðx2Þ :¼maxfx1 : hðxþ e2Þ 6 hðxþ e1Þ � crg; ð12Þ
Dðx1Þ :¼minfx2 : hðxþ e2Þ 6 hðxÞ � cDg ð13Þ
10
R : Remanufacture a returned item

NR : Do not remanufacture a returned item

(NP, D, NR)(N
P

, N
D

, R
)
such that in state x 2 C, it is optimal (i) to produce an item if x1 6 P(x2),

(ii) to remanufacture a returned item if x1 6 R(x2), and (iii) to dispose
of a returned item (when a return occurs) if x2 P D(x1).
5

0 5 10 2015

(NP, ND, NR)

(P, ND, NR)

(P, ND, R)

Fig. 2. Graphical representation of optimal switching curves P(x2), R(x2), and D(x1).
Proposition 1 (Monotonicity of the Optimal Policy). Optimal switch-
ing curves P(x2), R(x2), and D(x1) are decreasing in x2, increasing in x2,
and decreasing in x1, respectively.

Theorem 1 and Proposition 1 together state that the jointly
optimal policy can be defined by three monotone stitching curves:
P(x2), R(x2), and D(x1). In particular, Proposition 1 states that it is
optimal to produce less of serviceable (recoverable) inventory as
recoverable (serviceable) inventory increases. Since a returned
item can be converted into a serviceable product, the two types
of inventories serve as complements, and hence, if more units
are stored in one inventory, it is optimal to store less of the other.
R(x2) being increasing in x2 implies that it is more profitable to con-
vert returned items into serviceable ones as recoverable inventory
increases.

Fig. 2 illustrates the jointly optimal production, remanufactur-
ing, and disposal policy for a numerical example with R = 100,
h1 = 1, h2 = 0.7, cr = 5, cM = 10, cD = 5, k1 = 0.6, l1 = 0.5, k2 = 0.2, and
l2 = 1. In Fig. 2, three monotone switching curves P(x2), R(x2),
and D(x1) separate the state space into seven regions. As an exam-
ple, in state x = (1,5), it is optimal to produce an item and to
remanufacturer a returned item. Moreover, at this state, if a prod-
uct return occurs, it should be accepted for recovery.

In the following two theorems, we identify conditions under
which idling and disposal actions are always optimal when the sys-
tem is empty. The first condition results in the case where the mar-
ginal value of having a unit of serviceable inventory is less than the
unit manufacturing cost.

Theorem 2 (Empty System: Idling). If k1R1 < h1 + k1cM, it is always
optimal to not produce an item whenever both serviceable and
recoverable inventory levels are zero.

The second result gives a condition under which the marginal
benefit of having a unit of recoverable inventory becomes always
smaller than �cD when the system is empty. Hence, under this con-
dition, it becomes optimal to dispose of a returned item based on
the switching curve (13).

Theorem 3 (Empty System: Disposal). If R1 + cD � cr < h2/l2, it is
always optimal to dispose of a returned item (if occurs) whenever both
serviceable inventory and recoverable inventory levels are zero.

In Theorem 3, the condition R1 + cD � cr < h2/ l2 implies that the
costs incurred for the recovery activity is larger than the benefits
expected from recovery. To see this, suppose that a returned item
is accepted for recovery. Then, the unit disposal cost, cD, is saved
and the revenue R1 can be gained after the returned item is recov-
ered. However, because of the recovery lead-time, it costs h2/l2 + cr

to convert the returned item into a serviceable product.
4. Impact of the remanufacturing and disposal options

In this section, by comparing scenarios with and without the
remanufacturing and disposal options, we examine the benefit of
such options for firms under different operating conditions. Our
numerical examples and results are summarized in Tables 2 and
3. In Table 2, we examine the impact of the remanufacturing and
disposal options on the optimal average profit by varying the val-
ues of k1, l1, k2, and l2. In Table 3, we examine the impact of the
remanufacturing and disposal options on the optimal average prof-
it by varying the values of cost related parameters R1, h1, h2, cr, cM,
and cD. We denote by gR,D the optimal average profit of the model
with both remanufacturing and disposal options, gNR,D the optimal
average profit of the model without remanufacturing option but
with disposal option, gR,ND the optimal average profit of the model
with remanufacturing option but without disposal option, and
gNR,ND the optimal average profit of the model without remanufac-
turing and disposal options. In Tables 2 and 3, VR (%), VD (%), and
VRD (%) are obtained from (gR,ND � gNR,ND)/gNR,ND � 100, (gNR,D -
� gNR,ND)/gNR,ND � 100, (gR,D � gNR,ND)/gNR,ND � 100, respectively.
Therefore, they represent the percentage improvement in the aver-
age profit due to the remanufacturing option, disposal option, and
both remanufacturing and disposal options, respectively.

Tables 2 and 3 provide several insights into the value of reman-
ufacturing and disposal options. From both tables it can be ob-
served that the average of VR (%) is smaller than the average of
VD (%), that is, the remanufacturing option is on average less valu-
able than the disposal option. In addition, percentage improvement
in the average profit due to the remanufacturing option when the
disposal option is given (gR,D/gNR,D) is smaller on average than that
due to the disposal option when the remanufacturing option is gi-
ven (gR,D/gR,ND). These observations suggest that it can be more
valuable to control the inventory of returned items through the
disposal option than the remanufacturing option.

From Table 2, we also observe that the disposal option is more
valuable for cases with a relatively lower demand rate, higher pro-
duction rate, higher return rate, and lower remanufacturing rate.
When k1 is low or l1 is high, it is likely that the optimal policy will
recover less returned items to avoid a large serviceable inventory.
Hence, more product returns will be disposed of, which makes the



Table 2
Impact of remanufacturing and disposal options on the optimal average profit as a function of demand and capacity parameters.

No. R1 h1 h2 cr cM cD k1 l1 k2 l2 gNR,ND gR,ND VR (%) gNR,D VD (%) gR,D VRD (%)

1 50 2 1 6 10 3 0.25 0.5 0.2 0.9 0.78 3.02 287.2 5.89 655.1 5.98 666.7
2 0.30 5.68 6.61 16.4 7.37 29.8 7.63 34.3
3 0.35 8.12 8.78 8.1 9.06 11.6 9.26 14.0
4 0.40 10.19 10.61 4.1 10.59 3.9 10.79 5.9
5 0.45 11.84 12.18 2.9 12.03 1.6 12.26 3.5

6 50 2 1 6 10 3 0.4 0.5 0.2 0.9 10.19 10.61 4.1 10.59 3.9 10.79 5.9
7 0.6 10.38 10.81 4.1 10.85 4.5 11.02 6.2
8 0.7 10.52 10.95 4.1 11.04 4.9 11.20 6.5
9 0.8 10.62 11.06 4.1 11.19 5.4 11.35 6.9

10 0.9 10.70 11.15 4.2 11.30 5.6 11.46 7.1

11 50 2 1 6 10 3 0.4 0.5 0.1 0.9 10.22 10.40 1.8 10.24 0.2 10.40 1.8
12 0.15 10.34 10.59 2.4 10.44 1.0 10.64 2.9
13 0.2 10.19 10.61 4.1 10.59 3.9 10.79 5.9
14 0.25 9.50 10.24 7.8 10.67 12.3 10.87 14.4
15 0.3 7.70 9.03 17.3 10.71 39.1 10.90 41.6

16 50 2 1 6 10 3 0.4 0.5 0.2 0.7 9.70 10.42 7.4 10.20 5.2 10.63 9.6
17 0.8 9.98 10.52 5.4 10.41 4.3 10.72 7.4
18 0.9 10.19 10.61 4.1 10.59 3.9 10.79 5.9
19 1 10.35 10.67 3.1 10.73 3.7 10.85 4.8
20 1.1 10.48 10.73 2.4 10.84 3.4 10.91 4.1

21 50 2 1 3 10 6 0.25 0.5 0.2 0.9 1.44 3.62 151.4 6.05 320.1 6.25 334.0
22 0.30 6.35 7.21 13.5 7.71 21.4 7.90 24.4
23 0.35 8.79 9.38 6.7 9.43 7.3 9.67 10.0
24 0.40 10.85 11.21 3.3 11.1 2.3 11.29 4.1
25 0.45 12.51 12.78 2.2 12.6 0.7 12.81 2.4

Average (%) 22.9 46.2 49.2

Table 3
Impact of remanufacturing and disposal options on the optimal average profit as a function of cost parameters.

No. R1 h1 h2 cr cM cD k1 l1 k2 l2 gNR,ND gR,ND VR (%) gNR,D VD (%) gR,D VRD (%)

26 100 2 1.5 4 10 2 0.4 0.4 0.25 0.8 27.46 27.9 1.6 28.38 3.4 28.62 4.2
27 125 36.76 37.19 1.2 37.66 2.4 37.91 3.1
28 150 46.09 46.59 1.1 47.08 2.1 47.33 2.7
29 175 55.66 56.15 0.9 56.52 1.5 56.82 2.1
30 200 65.23 65.72 0.8 66.03 1.2 66.34 1.7

31 100 3 1.5 4 10 2 0.4 0.4 0.25 0.8 24.46 25.48 4.2 26.09 6.7 26.48 8.3
32 3.5 23.17 24.49 5.7 24.96 7.7 25.53 10.2
33 4 21.89 23.58 7.7 24.10 10.1 24.67 12.7
34 4.5 20.61 22.74 10.3 23.30 13.1 23.96 16.3
35 5 19.34 21.92 13.3 22.50 16.3 23.26 20.3

36 100 2 0.5 4 10 2 0.4 0.4 0.25 0.8 27.92 29.53 5.8 28.72 2.9 29.72 6.4
37 0.7 27.83 29.05 4.4 28.65 2.9 29.39 5.6
38 0.9 27.74 28.71 3.5 28.58 3.0 29.1 4.9
39 1.1 27.64 28.4 2.7 28.51 3.1 28.9 4.6
40 1.3 27.55 28.13 2.1 28.44 3.2 28.74 4.3

41 100 2 1.5 6 10 2 0.4 0.4 0.25 0.8 26.84 27.4 2.1 27.90 3.9 28.19 5.0
42 7 26.53 27.15 2.3 27.67 4.3 27.99 5.5
43 8 26.21 26.9 2.6 27.46 4.8 27.81 6.1
44 9 25.90 26.65 2.9 27.28 5.3 27.64 6.7
45 10 25.59 26.4 3.2 27.11 5.9 27.48 7.4

46 100 2 1.5 4 4 2 0.4 0.4 0.25 0.8 28.19 28.63 1.6 29.54 4.8 29.7 5.4
47 7 27.83 28.27 1.6 28.9 3.8 29.09 4.5
48 10 27.46 27.9 1.6 28.38 3.4 28.62 4.2
49 13 27.1 27.54 1.6 27.92 3.0 28.17 3.9
50 16 26.74 27.18 1.6 27.48 2.8 27.73 3.7

51 100 2 1.5 4 10 3 0.4 0.4 0.25 0.8 27.46 27.9 1.6 28.34 3.2 28.59 4.1
52 4 27.46 27.9 1.6 28.31 3.1 28.56 4.0
53 5 27.46 27.9 1.6 28.27 2.9 28.52 3.9
54 6 27.46 27.9 1.6 28.24 2.8 28.49 3.8
55 7 27.46 27.9 1.6 28.21 2.7 28.45 3.6

Average (%) 3.1 4.6 6.0
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role of disposal option significant. When l2 is low or k2 is high, the
system can face a situation in which an excessively large remanu-
facturable inventory is accumulated. Therefore, for these cases,
maintaining the appropriate level of remanufacturable inventory
via a disposal option is important. Table 2 also shows that the
remanufacturing option is more valuable for cases with the same
conditions as those of the disposal option except for the production
rate. Interestingly, the value of remanufacturing option is to some
extent sensitive to changes in the production rate. However, com-
paring the results of Examples 1–5 and 21–25, the pattern of per-
centage improvement in the average profit due to the disposal and
remanufacturing options seems to be robust to changes in cr and
cD.

Moreover, fixing such rates, Table 3 shows the effect of cost
parameters on the value of disposal and remanufacturing options.
From this table we observe that both remanufacturing and disposal
options have a greater percentage improvement in the average
profit for cases with a lower revenue, higher holding cost of ser-
viceable inventory, or higher remanufacturing cost. When R1 is
small, h1 is large, or cr is large, a smaller fraction of the demands
can be fulfilled through remanufacturing. Therefore, more product
returns should be disposed of, which makes the role of remanufac-
turing and disposal options significant. We observe that the
remanufacturing option is more valuable with a lower holding cost
of remanufacturable inventory while the disposal option is more
valuable with a higher one. When h2 is large, it is expected that
the optimal policy is willing to decrease the remanufacturable
inventory (thus, restricting the role of remanufacturing option)
and dispose of more product returns (thus, enhancing the role of
disposal option). Table 3 also shows that the disposal option is
more valuable for cases with lower manufacturing and disposal
costs. When cM is small, product recovery will become less valu-
able, which makes it more significant to control the product return
Table 4
Comparison of the optimal and heuristic policies.

No. R1 h1 h2 cr cM cD k1 l1 k2 l2

1 120 1 0.5 2 20 3 0.2 0.5 0.2 1
2 0.3
3 0.4
4 0.5

5 80 3 1.5 5 10 5 0.2 0.8 0.2 1
6 0.3
7 0.4
8 0.5

9 100 1 0.75 5 20 1 0.2 0.5 0.2 1
10 0.3
11 0.4
12 0.5

13 120 3 1 2 10 7 0.2 0.5 0.2 0.3
14 0.3
15 0.4
16 0.5

17 80 1 0.2 2 10 1 0.2 0.5 0.2 0.3
18 0.3
19 0.4
20 0.5

21 100 3 1.5 5 20 5 0.2 0.8 0.2 0.3
22 0.3
23 0.4
24 0.5

Average of Opt Gap (%)
flow using a disposal option. When cD is small, there is a risk that
less remanufacturable inventory can be piled up because disposing
of product returns is cheap. Therefore, holding the appropriate le-
vel of remanufacturable inventory through a more conservative
remanufacturing policy becomes important. Another interesting
observation from our results is that the value of remanufacturing
option is insensitive to changes in cM and cD.

5. Heuristic policies

Since the optimal policy described in Section 3 is rather com-
plex to implement in practice, we develop two types of simpler
and more implementable heuristics. We then perform a computa-
tional experiment to compare the performance of the proposed
heuristics with the optimal policy via a set of test examples.

The first heuristic uses two linear switching curves for jointly
determining the production and disposal decisions. Under this
heuristic, remanufacturing is pushed as long as items are available
in the recoverable inventory. In this context, we term the first heu-
ristic a PUSH control strategy. This heuristic can be described as
follows using two integer parameters IP and ID:

� A new item is produced if x1 + x2 6 IP.
� Whenever x2 P 1, the remanufacturing process is activated.
� An incoming product return is disposed of if x1 + x2 P ID.

Appropriate values of two integer parameters IP and ID are
found using a two-dimensional search.

The second heuristic uses one threshold and two linear switch-
ing curves for jointly determining the production, remanufactur-
ing, and disposal decisions, which is motivated by the results of
Theorem 1. Since remanufacturing of a returned item is postponed
until it is needed, the second heuristic is termed a PULL control
gOpt First heuristic (Push) Second heuristic (Pull)

gH IP ID % gH IP IR ID %

19.33 19.07 2 4 1.35 19.28 1 2 5 0.26
29.32 28.95 3 6 1.26 29.28 2 2 8 0.14
38.62 38.29 4 9 0.85 38.51 3 3 12 0.28
47.5 47.00 6 13 1.05 47.4 5 3 12 0.21

8.52 8.48 1 2 0.47 8.48 0 1 2 0.47
14.42 14.12 2 3 2.08 14.38 1 1 3 0.28
20.53 20.38 2 3 0.73 20.43 1 1 3 0.49
26.21 25.92 3 4 1.11 26.11 2 2 5 0.38

14.91 14.84 2 4 0.47 14.9 1 2 4 0.07
22.67 22.57 3 6 0.44 22.65 2 2 6 0.09
30.04 29.94 4 8 0.33 30.02 3 3 9 0.07
36.94 36.85 5 11 0.24 36.91 4 3 11 0.08

14.82 14.13 2 2 4.66 14.37 1 2 2 3.04
24.24 23.05 3 3 4.91 23.41 2 4 3 3.42
33.23 31.82 4 4 4.24 32.31 3 4 4 2.77
41.84 40.31 5 5 3.66 40.97 4 3 5 2.08

11.96 11.12 3 3 7.02 11.66 2 2 4 2.51
18.46 17.32 4 4 6.18 17.96 3 3 5 2.71
24.7 23.43 5 5 5.14 24.08 4 4 6 2.51
30.65 29.29 6 6 4.44 29.96 5 4 6 2.25

10.68 9.40 1 0 11.99 9.97 1 2 3 6.65
17.51 16.21 2 1 7.42 16.94 1 2 3 3.26
24.47 22.39 3 2 8.50 23.52 2 3 4 3.88
31.14 29.08 3 2 6.62 30.08 2 3 4 3.40

3.55 1.72
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Fig. 3. Structural comparison of the optimal and the PULL heuristic policy.
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strategy. This policy can be described using three integer parame-
ters IP, IR, and ID:

� A new item is produced if x1 + x2 6 IP.
� When x2 P 1, the remanufacturing process is activated if x1 6 IR.
� An incoming product return is disposed of if x1 + x2 P ID.

Appropriate values of three integer parameters IP, IR, and ID are
found using a three-dimensional search. Since Lemmas 2 and 3
establish the upper bounds on x1 and x2, N1 and N2, respectively,
it is guaranteed that the search will be terminated within a finite
number of steps.

Table 4 compares the performance of the optimal and the
two heuristic policies for 24 numerical examples. In this table,
gOpt is the average profit under the optimal policy and gH is
the average profit under the heuristic policies. Test results in Ta-
ble 4 show that these simple heuristics perform very well. The
average optimality gap for the first and second heuristic 3.55%
and 1.72%, respectively. As is expected, the second heuristic out-
performs the first one, as it provides a better approximation for
the optimal remanufacturing threshold. However, it should be
noted that although the second heuristic has econimical advan-
tages over the first heuristic, implementing the second heuristic
is harder, as it requires optimizing an additional parameter, IR.
Furthermore, in practice, the first heuristic may be preferable,
since serviceable inventory and remanufacturable inventory can
be controlled independently. From Table 4, we find that the opti-
mality gap of the second heuristic is almost negligible when
l2 = 1 and k2 = 0.2 but it is relatively large when l2 = 0.3 and
k2 = 0.2. In fact, our extensive tests reveal that the proposed heu-
ristic performs relatively better when k2/l2 is small. Table 4 also
shows that IP, IR, and ID are all weakly increasing in k1.

Fig. 3 illustrates the structural difference and similarity of the
optimal policy and the second heuristic policy using Example 2 of
Table 4. As shown in Fig. 3, remanufacturing control thresholds in
the optimal and the second heuristic policies are exactly the
same when x2 6 14. The difference is only when x2 > 14. In this
case, the optimal policy remanufactures a returned item as long
as x1 6 3 while the heuristic policy remanufactures a returned
item only when x1 6 2. Fig. 3 also shows that disposal controls
of the optimal and heuristic policies are the same when x1 6 2
and they differ by one, that is, D(x1) = ID + 1, when x1 > 2. In addi-
tion, we observe from the figure that production controls in the
optimal and the second heuristic policies are the same when
x1 P 2. The difference is when x1 6 1. When x1 = 1, the optimal
policy produces a new item if x2 6 2 while the heuristic policy
produces a new item if x2 6 1. When x1 = 0, the optimal policy
produces a new item regardless of x2 while the heuristic policy
produces a new item only if x2 6 2. These structural similarities
of production, remanufacturing, and disposal controls between
the optimal and heuristic policies explains why our heuristic
works very well for this example, and the test suite suggests that
our heuristic in general provides a very good approximation of
the optimal policy.
6. Conclusions

We generated insights into the coordination of production,
remanufacturing, and disposal decisions for a product recovery
system where serviceable inventory can be replenished through
either product recovery and remanufacturing or new manufactur-
ing. We showed that, under an optimal policy, production, reman-
ufacturing, and disposal decisions are jointly controlled according
to three monotone switching curves. We identified the conditions
which guarantee that idling and disposal actions are always opti-
mal when the system is empty. We also showed that there exists
a serviceable inventory limit above which production cannot be
optimal and a recoverable inventory limit above which disposal
is always optimal.

To examine the impact of remanufacturing and disposal op-
tions on the performance of the system, we implemented perfor-
mance comparison between models with and without these
options. We found that the the value of having these options to-
gether is higher than the sum of their individual values which
declares a synergy between remanufacturing and disposing of
returned items. Our results also show that the value of the dis-
posal option is higher than that of remanufacturing on average.
This highlights the importance of allowing for disposing of re-
turned items in manufacturing–remanufacturing systems. We
also generated several insights into the operational conditions
under which the disposal and the remanufacturing options are
more valuable.

Since the structure of the optimal policy is rather complex, we
developed two simple threshold heuristics to effectively coordi-
nate disposal, remanufacturing, and production activities. In one
of the proposed heuristics, the production and disposal decisions
are based on both serviceable and recoverable inventories accord-
ing to threshold rules that depend on the sum of serviceable and
remanufacturable inventories, and the remanufacturing decision
is only based on serviceable inventory. Extensive numerical tests
showed that this proposed heuristic is particularly very effective.
On average, this proposed heuristic shows a 1.72% optimality gap
and provides an effective tool to jointly make production, remanu-
facturing, and disposal decisions.

The properties and insights provided in this paper can be very
useful for understanding and addressing more realistic settings
with arbitrary probability distributions (i.e., other than exponen-
tial), since it is not typically tractable to establish the structure of
the optimal policy when processes follow arbitrary distributions.
Another direction for future research is to consider situations
where the product return intensity can be controlled by the com-
pensation given to the customer to induce the return of a used
product. Such future research can further advance the practice
and provide more incentives for firms to incorporate sustainability
in their operations.
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Appendix A

Denote by p(�)(=0,1) the optimal production control in state (�)
where p(�) = 1 and p(�) = 0 represent Produce and Do not produce ac-
tions, respectively. Denote by d(�)(=0,1) the optimal disposal con-
trol in state (�) where d(�) = 1 and d(�) = 0 represent Dispose of, and
Do not dispose of actions, respectively. Denote by r(�)(=0,1) the opti-
mal remanufacturing control in state (�) where r(�) = 1 and r(�) = 0
represent Remanufacture, and Do not remanufacture actions, respec-
tively. We present the following properties of p(�), d(�), and r(�):

pðxÞ P pðxþe1ÞðP1Þ; pðxþe1Þ 6 pðxþe2ÞðP2Þ; pðxÞ P pðxþe2ÞðP3Þ;
dðxÞ 6 dðxþe1ÞðD1Þ; dðxþe1Þ 6 dðxþe2ÞðD2Þ; dðxÞ 6 dðxþe2ÞðD3Þ;
rðxÞ P rðxþe1ÞðR1Þ; rðxþe1Þ 6 rðxþe2ÞðR2Þ; rðxÞ 6 rðxþe2ÞðR3Þ:

Properties P1 and D3 follows from concavity of f, properties P3 and
D1 from submodularity of f, and properties of P2 and D2 from diag-
onal subordinance of f. Properties R1–R3 follow from diagonal sub-
ordinance of f.

Define T1f(x) = (R1 + f(x � e1))1(x1 > 0) + f(x)1(x1 = 0), T2f(x) =
max{f(x + e1) � cM,f(x)}, T3f(x) = max{f(x + e2), f(x) � cD}, and T4-

f(x) = max{ � cr + f(x + e1 � e2), f(x)} 1(x2 > 0) + f(x)1(x2 = 0). Then,
Tf ðxÞ ¼ 1

c ½�x1h1 � x2h2 þ k1T1f ðxÞ þ l1T2f ðxÞ þ k2T3f ðxÞ þ l2T4f ðxÞ�.

Proof of Lemma 1

(i) Since D1Tf(x) � D1Tf(x + e2) = D2Tf(x) � D2Tf(x + e1), we show
that D1Tf(x) � D1Tf(x + e2) P 0. Let Dk = D1Tkf(x) � D1Tkf(x
+ e2).

1. If x1 > 0, D1 P 0 by (3) since f 2 F. If x1 = 0, D1 = 0.
2. By P1–P3, ðpðxþe1Þ; pðxÞ; pðxþe1þe2Þ; pðxþe2ÞÞ are as follows: For

(0,0,0,0) and (1,1,1,1), D2 P 0 by (3). For (0,1,0,1),
(1,1,0,1), and (0,1,0,0), D2 P f(x + e1) � (f(x + e1) � cM)
� (f(x + e1 + e2) � (f(x + e1 + e2) � cM)) = 0.

3. By D1–D3, ðdðxþe1Þ; dðxÞ; dðxþe1þe2Þ; dðxþe2ÞÞ are as follows: For
(0,0,0,0) and (1,1,1,1), D4 P 0 by (3). For (0,0,1,1),
(1,0,1,1), and (0,0,1,0), D3 P f(x + e1 + e2) � f(x + e2) -
3 P f(x + e1 + e2) � f(x + e2) � [(f(x + e1 + e2) � cD) -
e2) � f(x + e2) � [(f(x + e1 + e2) � cD) � (f(x + e2) � cD)] = 0.

4. By R1–R3, ðrðxþe1Þ; rðxÞ; rðxþe1þe2Þ; rðxþe2ÞÞ are as follows: For
(0,0,0,0) and (0,0,0,1), D4 P D1f(x) � D1f(x + e2) P 0 by
(3). For (1,1,1,1) and (0,1,1,1), D4 P D1f(x + e1 � e2) � D1-
4 P D1f(x + e1 � e2) � D1f(x + e1) P 0 by (3). For (0,1,0,1),
D4 = f(x + e1) � f(x + e1 � e2) � (fx + e1 + e2) � f(x + e1) = D2-

1 + e2) � f(x + e1) = D2f(x + e1 � e2) � D2f(x + e1) P 0 by (5).
For (0,0,1,1), D4 = D1f(x) � D1f(x + e1) P 0 by (5).
Therefore, D1Tf(x) � D1Tf(x + e2) = 1/c[k1D

1 + l1D
2 + k2D

3 +
l2D

4] P 0.
(ii) Suppose that i = 1 and j = 2. Let Dk = D1Tkf(x + e2) �

D1Tkf(x + e1).
1. If x1 > 0, D1 P 0 by (4). If x1 = 0, D1 = R � D1f(x) P 0 by (6).
2. By P1–P3, ðpðxþe1þe2Þ; pðxþe2Þ; pðxþ2e1Þ; pðxþe1ÞÞ are as follows: For

(0,0,0,0) and (1,1,1,1), D2 P 0 by (4). For (0,1,0,1),
(1,1,0,1), and (0,1,0,0), D2 P f(x + e1 + e2) � (f(x + e1 + e2)
� cM) � (f(x + 2e1) � (f(x + 2e1) � cM)) = 0.

3. By D1–D3, ðdðxþe1þe2Þ; dðxþe2Þ; dðxþ2e1Þ; dðxþe1ÞÞ are as follows: For
(0,0,0,0) and (1,1,1,1), D3 P 0 by (4). For (1,0,1,0), D3 =
� cD + f(x + e1 + e2) � f(x + 2e2) � (�cD + f(x + 2e1) � f(x + e1
+ e2)) P f(x + e2) � f(x + e1) � (f(x + 2e2) � f(x + e1 + e2)) (by
(4)) P 0 by (4). (1,1,1,0) and (1,0,0,0) can be shown using
the results of (1,1,1,1) and (0,0,0,0), respectively.

4. By R1–R3, ðdðxþe1þe2Þ; dðxþe2Þ; dðxþ2e1Þ; dðxþe1ÞÞ are as follows: For
(0,0,0,0), D4 = D1f(x + e2) � D1f(x + e1) P 0 by (4). For (1,1,
1,1), D4 = D1f(x + e1) � D1f(x + 2e1 � e2) P 0 by (4). For
(1,1,0,0), D4 = D1f(x + e1) � D1f(x + e1) = 0. For (0,1,0,0) and
(1,1,0,1), D4 P D1f(x + e1) � D1f(x + e1) = 0.

Now suppose that i = 2 and j = 1. Let Dk = D2Tkf(x + e1) �
D2Tkf(x + e2).

1. If x1 > 0, D1 P 0 by (4). If x1 = 0, D1 = D2f(x) � D2f(x + e2) P 0
by (5).

2. By P1–P3, ðpðxþe1þe2Þ; pðxþe1Þ; pðxþ2e2Þ; pðxþe2ÞÞ are as follows: For
(0,0,0,0) and (1,1,1,1), D2 P 0 by (4). For (0,0,1,1), D2 = D2

f(x + e1) � D2f(x + e1 + e2) P 0 (by (5)). For (0,1,0,1), D2 -
2 = f(x + e1 + e2) � (f(x + 2e1) � cM) � [f(x + 2e2) � (f(x + e1 + -
e2) � cM)] P f(x + e1) � f(x + 2e1) � (f(x + e2)) � f(x + e1 + e2)
(by (4)) P0 by (4). (0,1,1,1) and (0,0,0,1) can be shown
using the result of (1,1,1,1) and (0,0,0,0), respectively.

3. By D1–D3, ðdðxþe1þe2Þ; dðxþe1Þ; dðxþ2e2Þ; dðxþe2ÞÞ are as follows: For
(0,0,0,0) and (1,1,1,1), D3 P 0 by (4). For (1,0,1,0),
(1,0,1,1), and (0,0,1,0), D3 P f(x + e1 + e2) � cD � f(x + e1 +
e2) � [f(x + 2e2) � cD � f(x + 2e2)] = 0.

4. By R1–R3, ðrðxþe1þe2Þ; rðxþe1Þ; rðxþ2e2Þ; rðxþe2ÞÞ are as follows: For
(0,0,0,0) and (1,1,1,1), D4 P 0 by (4). For (0,0,1,1), D4 = D2-

f(x + e1) � D2f(x + e1) = 0. For (0,1,0,0) and (1,1,0,1), D4 -
4 P D2f(x + e1) � D2f(x + e1) = 0.
Therefore, Dif(x + ej) � Dif(x + ei) = 1/c[k1D

1 + l1D
2 + k2D

3 +
l2D

4] P 0.
(iii) DiTf(x) P DiTf(x + ej) (by (3)) P DiTf(x + ei) by (4).
(iv) 1. D1T1f(x) = R11{x1 = 0} + D1f(x � e1)1{x1 > 0} 6 R1 by (6).

Consider cases in ðpðxþe1Þ; pðxÞÞ. pðxÞ P pðxþe1Þ by P1. For (1,1),
D1T2f(x) = D1f(x + e1) and, for (0,0) and (0,1), D1T2f(x) 6 D1

f(x) 6 R1. Hence, D1T2f(x) 6 R1. Consider cases in ðdðxþe1Þ;

dðxÞÞ. dðxÞ 6 dðxþe1Þ by D1. For (0,0), D1 T3f(x) = D1f(x + e2), for
(1,1) and (1,0), D1T3f(x) 6 D1 f(x). Hence, D1T3f(x) 6 R1. Con-
sider cases in ðrðxþe1Þ; rðxÞÞ. rðxÞ P rðxþe1Þ by R1. For (1,1), D1T4

f(x) = D1f(x + e1 � e2). For (0,0) and (0,1), D1 T4f(x) 6 D1f(x).
Hence, D1T4f(x) 6 R1. Therefore, D1Tf(x) = 1/c[�h1 + k1D1T1

f(x) + l1D1 T2f(x) + k2D1T3f(x) + l2D1T4f(x)] 6 R1.
Proof of Lemma 2. We show that (7) and (8) are preserved under
T. Let Dk = D1Tkf(x).

(i)
1. If x1 > N1, D1 = D1f(x1 � 1, x2) < cM by (7). If x1 = N1, D1 = D1-

f(N1 � 1, x2) < R1 � (N1 � 1)h1/c by (8).
2. p(x) = 0 by (7) and thus pðxþe1Þ ¼ 0 by (5). Hence, D2 = D1-

f(x) < cM by (7).
3. Consider cases in ðdðxþe1Þ; dðxÞÞ. Case (0,1) is excluded by D1.

For (0,0) and (1,0), D3
6 D1f(x). For (1,1), D3 = D1f(x + e2).

Hence D3 < cM by (7).
4. Consider cases in ðrðxþe1Þ; rðxÞÞ. Case (1,0) is excluded by R2.

For (0,0) and (0,1), D4
6 D1f(x). For (1,1), D4 = D1f(x + e1 -

� e2) 6 D1f(x) (by (4)). Hence, D4 < cM by (7).
Let D = D1Tf(x). When x1 = N1, D < 1/c[�h1 + k1(R1 � (N1

� 1)h1/c) + (l1 + l2 + k2)cM] = 1 /c[�h1 + k1/ch1 + k1(R1 � N1

h1/c) + (l1 + l2 + k2)cM] < 1/c(l1 + l2 + k2)cM (by k1/c < 1,
R1 < N1h1/c) < cM. When x1 > N1, D = 1/c[�h1 + ccM] < cM.

(ii)
1. When x2 > 0, D1 = D1f(x1 � 1, x2) < R1 � (x1 � 1)h1/c by (8).

Otherwise, D1 = R1.
2. Consider cases in ðpðxþe1Þ; pðxÞÞ. (1,0) is excluded by P3. For

(1,1), D2 = D1f(x + e1) 6 D1f(x) (by (5)). For (0,0) and (0,1),
D2
6 D1f(x). Hence D2 < R1 � x1h1/c by (8).



E. Kim et al. / European Journal of Operational Research 231 (2013) 337–348 347
3. Consider cases in ðdðxþe1Þ; dðxÞÞ. (0,1) is excluded by D1. For
(1,1) and (1,0), D3

6 D1f(x). For (0,0), D3 = D1f(x + e2). Hence,
D3 < R1 � x1h1/c by (8).

4. Consider cases in ðrðxþe1Þ; rðxÞÞ. Case (1,0) is excluded by R2.
For (0,0) and (0,1), D4

6 D1f(x). For (1,1), D4 = D1f(x + e1

� e2) 6 D1f(x) (by (4)). Hence, D4 < R1 � x1h1/c by (8).
D :¼ D1Tf(x): When x1 > 0;D < 1=c½�h1 þ k1ðR1 � ðx1 � 1Þh1

=cÞ þ ðl1 þ l2 þ k2ÞðR1 � x1h1=cÞ� ¼ 1=c½�h1 þ k1h1=c þcðR1

�x1h1=cÞ� < R1 � x1h1=c. When x1 = 0, D < 1/c[�h1 + k1R1 +
(l1 + l2 + k2)R1] < R1.

Proof of Lemma 3. We show that (9) and (10) are preserved under

T. Let Dk = D2Tkf(x).

(i)
1. Since demand does not affect the size of x2, D1 < �cD by (9).
2. Consider cases in ðpðxþe2Þ; pðxÞÞ. (1,0) is excluded by P1. For

(1,1), D2 = D2f(x + e1). For (0,0) and (0,1), D2
6 D2f(x). Hence,

D2 < �cD by (9).
3. d(x) = 1 by (9) and thus dðxþe2Þ ¼ 1 by (5). Hence, D3 = D2-

f(x) < �cD by (9).
4. Consider cases in ðrðxþe2Þ; rðxÞÞ. Case (1,0) is excluded by R2.

For (0,0), D4 < �cD by (9). For (1,1) and (1,0), D4 < �cD by
(9) when x2 > N2, and D4 < R1 � cr � (N2 � 1)h2/c by (10)
when x2 = N2.
Let D = D2Tf(x). When x2 = N2, D < 1/c[�h2 + (k1 + l1 + k2)
(�cD) + l2(R1 � cr � (N2 � 1)h2/c)] = 1/c[�h2 + l2/ch2 + (k1 -
k1 + l1 + k2)(�cD) + l2(R1 � cr � N2h2/c)] < 1/c[�h2 + l2/ch2 +
c(�cD)] (using definition of N2) <�cD. When x2 > N2, D < 1/
c[�h2 + c(�cD)] <�cD.

(ii)
1. Since demand does not affect the size of x2, D1 < R1 � cr � x2-

h2/c by (10).
2. Consider cases in ðpðxþe2Þ; pðxÞÞ. (1,0) is excluded by P1. For

(1,1), D2 = D2f(x + e1). For (0,0) and (0,1), D2
6 D2f(x). D2

< R1 � cr � x2h2/c by (10).
3. Consider cases in ðdðxþe2Þ; dðxÞÞ. (0,1) is excluded by D3. For

(1,1) and (1,0), D4
6 D2f(x). For (0,0), D3 = D2f(x + e2) 6 D2

f(x) by (5). Hence, D3 < R1 � cr � x2h2/c by (10).
4. Consider cases in ðrðxþe2Þ; rðxÞÞ. Case (0,1) is excluded by R2.

For (0,0), D4 < R1 � cr � x2h2/c by (10). For (1,1) and (1,0),
D4 < R1 � cr � (x2 � 1)h2 /c by (10).
Let D = D2Tf(x). When x2 > 0, D < 1/c[�h2 + (k1 + l1 + k2)(R1

� cr � x2h2 /c) + l2(R1 � cr � (x2 � 1)h2/c)] = 1/c[�h2 + l2/c
h2 + c(R1 � cr � x2h2/c)] < R1 � cr � x2h2/c. When x2 = 0,
D < 1/c[�h2 + c(R1 � cr)] < R1 � cr.
Proof of Theorem 1

(i) From Lemmas 2 and 3the original problem with infinite
state space can be converted into one with finite state space.
Since the model has a finite action space and is unichain and
aperiodic, the result follows from Theorem 8.4.5 of Puter-
man (2005).

(ii) The first part for optimal production control is due to P1,
the second par for optimal remanufacturing control is due
to R1, and the third part for optimal disposal control is
due to D3.

Proof of Proposition 1. Decreasing of P(x2) in x2 is due to P3,

increasing of R(x2) in x2 is due to R3, and decreasing of D(x1) in x1 is
due to D1.
Proof of Theorem 2. It is sufficient to show that if k1R < h1 + k1cM,

D1f ðxÞ < cM; x1 ¼ x2 ¼ 0 ð14Þ

is preserved under operator T.

1. D1T1f(x) = R1 + f(x) � f(x) = R1.
2. By (14), p(x) = 0. Hence, pðxþe1Þ ¼ 0 by P1 and D1T2f(x) = D1

f(x) < cM by (14).
3. Consider cases in ðdðxþe1Þ; dðxÞÞ. For (1,1) and (1,0), D1T3f(x) 6 D1

f(x) < cM by (14). For (0,0), D1T3f(x) = D1f(x + e2) 6 D1f(x) < cM by
(14). Case (0,1) is excluded by P1.

4. Since x2 = 0, rðxþe1Þ ¼ rðxÞ ¼ 0 and thus D1 T4f(x) = D1f(x) < cM.
Hence, D1Tf(x) < 1/c[�h1 + k1R1 + (l1 + k2 + l2) cM] = 1/c[�h1 +
k1R1 + (c � k1)cM] < cM (by assumption).
Proof of Theorem 3. It is sufficient to show that if R1 + cD � cr < h2/
l2,

D2f ðxÞ < �cD; x1 ¼ x2 ¼ 0 ð15Þ

is preserved under operator T.

1. D2T1f(x) = D2f(x) < �cD.
2. Consider cases in ðpðxþe1Þ; pðxÞÞ. Case (1,0) is excluded by P1. For

(0,0) and (0,1), D2T2f(x) 6 D2f(x). For (1,1), D2T2f(x) = D2

f(x + e1) 6 D2f(x) by (3). Hence, D2T2f(x) < �cD by (15).
3. Since D2f(x) < �cD, f(x + 2e2) < f(x + e1) � cD by D3, D2T3f(x) =

D2f(x) < �cD.
4. Since x2 = 0, r(x) = 0. When r(x + e2) = 1, D2 T4f(x) = f(x + e1) � cr

� f(x) 6 R1 � cr by (6). When r(x + e2) = 0, D2T4f(x) = D2f(x) < �cD

(by (15)) < R1.
Hence, D2Tf(x) 6 1/c[�h2 + (k1 + l1 + k2)(�cD) + l2(R1 � cr)] < 1/
c[�h2 + (c � l2)(�cD) + l2(�cD + h2/l2)] (by assumption) = � cD.
References

Bakal, I., & Akcali, E. (2006). Effects of random yield in reverse supply chains with
price-sensitive supply and demand. Production and Operations Management,
15(3), 407–420.

Debo, L. G., Toktay, L. B., & Van Wassenhove, L. N. (2005). Market segmentation and
production technology selection for remanufacturable products. Management
Science, 51(8), 1193–1205.

Debo, L. G., Toktay, L. B., & Van Wassenhove, L. N. (2006). Joint life-cycle dynamics of
new and remanufactured products. Production and Operations Management,
15(4), 498–513.

DeCroix, G. A. (2006). Optimal policy for a multiechelon inventory system with
remanufacturing. Operations Research, 54, 532–543.

Ferrer, G., & Swaminathan, J. M. (2006). Managing new and remanufactured
products. Management Science, 52(1), 15–26.

Ferrer, G., & Swaminathan, J. M. (2010). Managing new and differentiated
remanufactured products. European Journal of Operational Research, 203,
370–379.

Ferguson, M. E., & Toktay, L. (2006). The effect of external competition on recovery
strategies. Production and Operations Management, 15(3), 351–368.

Fleischmann, M., Bloemhof-Ruwaard, J. M., Dekker, R., van der Laan, E. A., van
Nunen, Jo A. E. E., & Van Wassenhove, L. N. (1997). Quantitative models for
reverse logistics: A review. European Journal of Operational Research, 103, 1–17.

Fleischmann, M. (2000). Quantitative models for reverse logistics. Ph.D. Thesis,
Erasmus University, Rotterdam, Netherlands.

Fleischmann, M., Kuik, R., & Dekker, R. (2002). Controlling inventories with
stochastic item returns: A basic model. European Journal of Operational
Research, 138, 63–75.

Fleischmann, M., & Kuik, R. (2003). On optimal inventory control with independent
stochastic item returns. European Journal of Operational Research, 151, 25–37.

Heyman, D. P. (1977). Optimal disposal policies for a single item inventory system
with returns. Naval Research Logistics, 24, 385–405.

Guide, V. D., Teunter, R. H., & Van Wassenhove, L. N. (2003). Matching supply and
demand to maximize profits from remanufacturing. Manufacturing and Service
Management, 5(4), 303–316.

Inderfurth, K. (1997). Simple optimal replenishment and disposal policies for a
product recovery system with lead times. OR Spektrum, 19, 111–122.

http://refhub.elsevier.com/S0377-2217(13)00471-2/h0005
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0005
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0005
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0010
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0010
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0010
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0015
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0015
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0015
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0020
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0020
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0025
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0025
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0030
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0030
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0030
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0035
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0035
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0040
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0040
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0040
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0045
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0045
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0045
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0050
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0050
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0055
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0055
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0060
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0060
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0060
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0065
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0065


348 E. Kim et al. / European Journal of Operational Research 231 (2013) 337–348
Inderfurth, K., & van der Laan, E. A. (2001). Leadtime effects and policy
improvement for stochastic inventory control with remanufacturing.
International Journal of Production Economics, 71, 381–390.

Junior, M., & Filho, M. (2012). Production planning and control for
remanufacturing: Literature review and analysis. Production Planning and
Control, 23(6), 419–435.

Karakayali, I., Emir-Farinas, H., & Akcali, E. (2007). An analysis of decentralized
collection and processing of end-of-life products. Journal of Operations
Management, 25(6), 1161–1183.

Kaya, O. (2010). Incentive and production decisions for remanufacturing operations.
European Journal of Operational Research, 201(2), 442–453.

Kiesmüller, G. P., & Scherer, C. W. (2003). Computational issues in a stochastic finite
horizon one product recovery inventory model. European Journal of Operational
Research, 146, 553–579.

Li, X., Li, Y., & Saghafian, S. (2013). A hybrid manufacturing/remanufacturing system
with random remanufacturing yield and market-driven product acquisition.
IEEE Transactions on Engineering Management, 60(2), 424–437.

Lippman, S. (1975). Applying a new device in the optimization of exponential
queueing systems. Operations Research, 23, 687–710.

Mahadevan, B., Pyke, D. F., & Fleischmann, M. (2003). Periodic review, push
inventory policies for remanufacturing. European Journal of Operational
Research, 151, 536–551.

Muckstadt, J. A., & Isaac, M. H. (1981). An analysis of single item inventory systems
with returns. Naval Research Logistics, 28(2), 237–254.

Porteus, E. (1982). Conditions for characterizing the structure of optimal strategies
in infinite-horizon dynamic programs. Journal of Optimization Theory and
Applications, 36, 419–432.

Puterman, M. (2005). Markov decision processes. John Wiley and Sons.
Samsung Electronics (2011). Sustainable management report. Samsung Electronics.
Simpson, V. (1978). Optimal solution structure for a repairable inventory problem.

Operations Research, 26(2), 270–281.
Tang, O., & Teunter, R. H. (2006). Economic lot scheduling problem with returns.

Production and Operations Management, 15, 488–497.
Teunter, R. H., & Vlachos, D. (2002). On the necessity of a disposal option for
returned items that can be remanufactured. International Journal of Production
Economics, 75, 257–266.

Teunter, R. H., van der Laan, E. A., & Vlachos, D. (2004). Inventory strategies for
systems with fast remanufacturing. The Journal of Operational Research Society,
55, 475–484.

Teunter, R. H., Bayindir, Z. P., & van den Heuvel, W. (2006). Dynamic lot sizing with
product returns and remanufacturing. International Journal of Production
Research, 44, 4377–4400.

van der Laan, E. A., Dekker, R., & Salomon, M. (1996). Product remanufacturing and
disposal: A numerical comparison of alternative control strategies. International
Journal of Production Economics, 45, 489–498.

van der Laan, E. A., Dekker, R., Salomon, M., & Ridder, A. (1996). An (s, Q) inventory
model with remanufacturing and disposal. International Journal of Production
Economics, 46, 339–350.

van der Laan, E. A., & Salomon, M. (1997). Production planning and inventory
control with remanufacturing and disposal. European Journal of Operational
Research, 102, 264–278.

van der Laan, E. A., Salomon, M., & Dekker, R. (1999). An investigation of lead-time
effects in manufacturing/remanufacturing systems under simple PUSH and
PULL control strategies. European Journal of Operational Research, 115, 195–214.

van der Laan, E. A., Salomon, M., Dekker, R., & Van Wassenhove, L. (1999). Inventory
control in hybrid systems with remanufacturing. Management Science, 45(5),
733–747.

van der Laan, E. A., & Teunter, R. H. (2006). Simple heuristics for push and pull
remanufacturing policies. European Journal of Operational Research, 175(2),
1084–1102.

Wei, C., Li, Y., & Cai, X. (2009). Robust optimal policies of production and inventory
with uncertain returns and demand. International Journal of Production
Economics, 134, 357–367.

Zhou, S., Tao, Z., & Chao, X. (2011). Optimal control of inventory systems with
multiple types of rernanufacturable products. Manufacturing and Service
Operations Management, 13, 20–34.

http://refhub.elsevier.com/S0377-2217(13)00471-2/h0070
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0070
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0070
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0075
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0075
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0075
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0080
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0080
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0080
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0085
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0085
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0095
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0095
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0095
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0100
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0100
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0100
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0105
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0105
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0110
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0110
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0110
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0115
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0115
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0120
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0120
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0120
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0125
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0130
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0130
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0135
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0135
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0140
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0140
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0140
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0145
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0145
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0145
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0150
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0150
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0150
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0155
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0155
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0155
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0160
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0160
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0160
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0165
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0165
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0165
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0170
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0170
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0170
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0175
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0175
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0175
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0180
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0180
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0180
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0185
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0185
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0185
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0190
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0190
http://refhub.elsevier.com/S0377-2217(13)00471-2/h0190

	Joint control of production, remanufacturing, and disposal activities in a hybrid manufacturing–remanufacturing system
	1 Introduction
	2 The model
	3 Structure of the joint optimal production, remanufacturing, and disposal policy
	4 Impact of the remanufacturing and disposal options
	5 Heuristic policies
	6 Conclusions
	Acknowledgments
	
	References


