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This paper is a complete survey of flowshop-scheduling problems and contribu-
tions from early works of Johnson of 1954 to recent approaches of metaheuristics
of 2004. It mainly considers a flowshop problem with a makespan criterion and it
surveys some exact methods (for small size problems), constructive heuristics and
developed improving metaheuristic and evolutionary approaches as well as some
well-known properties and rules for this problem. Each part has a brief literature
review of the contributions and a glimpse of that approach before discussing the
implementation for a flowshop problem. Moreover, in the first section, a complete
literature review of flowshop-related scheduling problems with different assump-
tions as well as contributions in solving these other aspects is considered.
This paper can be seen as a reference to past contributions (particularly in n/m/
p/cmax or equivalently F/prmu/cmax) for future research needs of improving and
developing better approaches to flowshop-related scheduling problems.
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1. Introduction

Because of many economic and industrial applications, the flowshop problem has
been concentrated on by many researchers with diverse classical assumptions and
different objective functions and by implementing various optimization techniques.
The regular flowshop problem consists of two main elements: (1) a group of
M machines and (2) a set of N jobs to be processed on this group of machine.
Each of the N jobs has the same ordering of machines for its process sequence.
Each job can be processed on one and only one machine at a time (which means
no job splitting), and each machine can process only one job at a time. Each job is
processed only once on each machine. Operations are not preemptable and set-up
times of operations are independent of the sequences and therefore can be included
in the processing time. The scheduling problem is to specify the order and timing of
the processing of the jobs on machines, with an objective or objectives respecting
above-mentioned assumptions. The flowshop problem with makespan criterion can
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be shown by n/m/F/cmax or equivalently F//cmax, where both show an (n-job m-
machine) flowshop problem with makespan criterion that can be defined as comple-
tion time at which all jobs complete processing or equivalently as maximum comple-
tion time of jobs. The former notation is suggested by Conway et al. (1967) and the
latter is according to notation introduced by Graham et al. (1979). For such a
problem, there are generally (n!)m different alternatives for sequencing jobs on
machines. However, most of research has focused on development of a permutation
flowshop schedule, which can be considered as a classical flowshop problem by
adding the assumption: the jobs must be processed in the same sequence by each
of the m machines. Consequently, the search space reduces to n! in permutation
flowshop problem. In the classical flowshop-sequencing problem, queues of jobs
are allowed at any of m machines in processing sequence. In other words, in the
classical flowshop, an infinite buffer is assumed and jobs may wait on or between the
machines (Allahverdi et al. 1999). There are variants of this problem wherein jobs are
not allowed to form queues. Zero-buffer and no-wait flowshop problems are some
examples. Having buffers of zero capacity, a job i just finishing on machine r cannot
advance to machine rþ 1 if this machine is still processing job i’s predecessor in
job sequence, rather job i must remain at machine r, thus temporarily denying
machine r job i’s successor in the job sequence until such time as job i can advance
to machine rþ 1.

Abadi and Sriskandarajah (1995) described the blocking flowshop problem as
follows. The flowshop has no intermediate buffer therefore a job cannot leave a
machine until the next machine downstream is free. If that is not the case, the job
(and the machine as well) is said to be blocked. Aldowaisan and Allahverdi (1998)
described the case in which once a job begins its processing on machine 1 of the
production line, that job must continue without delay to be processed on each of the
mmachines in line. Not only are there no integer stage buffers to hold delay jobs, but
also no job may wait on one machine until the subsequent machine in line is free to
begin processing on that job. Aldowaisan and Allahverdi (1998) refer to this as the
no-wait flowshop problem. More recently (2003), they proposed two heuristics based
on Simulated Annealing and Genetic Algorithm for the no-wait flowshop problem to
minimize makespan. However, the no-wait flowshop problem was discussed by
Piehler (1960), Reddi and Ramamoorthy (1972), Bonney and Gundry (1976),
King and Spachis (1980), Gangadharan and Rajendran (1993) and Rock (1984)
(while the former focused on heuristic methods and the latter dealt with the
NP-completeness for three machine no-wait flowshop) and also it was completely
described in the survey of Hall and Sriskandarajah (1996) but, some earlier research,
such as Stafford (1988), Stafford and Tseng (1990), and Wismer (1972), called this
the NIQ (no intermediate queues) flowshop problem. In this problem according to
Stafford and Tseng (2001), jobs are held before machine 1 and launched only when
they can be sequentially processed by all m machines without delays at any of the
machines. It is noteworthy that zero-buffer and no-wait flowshop problems are
equivalent for the two-machine problem when set-up times are included in proces-
sing times. For separable set-up times, however, there are two cases in the zero-buffer
problem. In the first case, the set-up of the next job on machine 1 is not allowed until
the current job releases machine 1. In the second case, the set-up for the next job on
machine 1 can start as soon as machine 1 completes its processing of the current job.
The first case seems to be more practical. Notice that the zero-buffer in the first
case is equivalent to the no-wait problem (Aldowaisan and Allahverdi 1988,
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Allahverdi et al. 1999). Hall and Sriskandarajah (1996) gave a survey of machine
scheduling problems with blocking and no-wait in processes. In addition, to a review
of the computational complexity of a wide variety of no-wait and blocking schedul-
ing problems, they described several well-documented applications of no-wait and
blocking scheduling models and illustrated some ways in which the increasing use of
some manufacturing methods gives rise to other applications. The no-wait flowshop
problems have also been concentrated in much research regarding different criteria
(e.g. Bertolissi 2000, Aldowaisan and Allahverdi 2004, passim).

Hybrid flowshop problems have attracted much research during the last few
years. Zhixing et al. (2002) describe the no-wait hybrid flowshop problem as follows.
Given a list of machine centres, each having a fixed number of parallel machines
(in such a way that at least one stage contains several machines), there are n jobs
{pi|� i� n} to be processed with the same fixed processing order on the machine
centres, and each process must be carried out on at most one machine in every
centre, without any interruption on or between machines during the process. Also
a detailed survey of the application and research on this problem is given by Hall and
Sriskandarajah (1996) and also new results in this field can be found in Kumar et al.
(2000), Sawik (2000), Abadi et al. (2000), Aldowaisan (2001) and Znixin et al. (2002)
and in the case study paper of Andres et al. (2004), who considered a three-stage
hybrid flowshop environment.

In more real-life flowshop environments, the case can be considered as a SDST
(sequence-dependent set-up times) flowshop problem. As mentioned above, in the
classical flowshop problem, a job’s set-up time is assumed to be independent of that
job’s position in the sequence, i.e. set-up times of operations are independent of
sequences and therefore they can be included in the processing time of jobs.
However, in many real-life flowshop problems such as the case in SMT (surface
mount technology) or as PCB (printed circuit board) manufacturing environments,
which is concentrated in many recently carried out research, the set-up times of jobs
are sequence-dependent and even the problem is considered in real-time mode.
Srikar and Ghosh (1986) reported an MILP model for this problem; Stafford and
Tseng (1990) also reported; and Rios-Mercado and Barod (1998) gave another arti-
cle in this field. Tseng and Stafford (2001) also proposed two other new MILP
models for the SDST flowshop and managed to solve instances of up to nine jobs
and nine machines in about 5min of CPU time on a Pentium III running at
800MHz. Stafford and Tseng (2002) also proposed two MILP models (referred to
as WST and SGST) for a family of four different m-machine, n-job flowshop sequen-
cing problems. Each of their models may be used to solve the regular, no intermedi-
ate queues (NIQ), sequence-dependent set-up times (SDST), and SDST/NIQ
flowshop problems. Moreover, Lee and Shaw (2000) worked on a PCB environment
with the set-up-dependent flowshop problem of sequencing a set of jobs that arrive in
different combinations over time and developed and compared heuristic and meta-
heuristic procedures regarding makespan for this problem. Ruiz et al. (2004) con-
sidered the flowshop-scheduling problem with sequence-dependent set-up times and
makespan criterion. They proposed two advanced genetic algorithms as well as
several adaptations of existing advanced metaheuristics that have shown superior
performance when applied to regular flowshops. Allahverdi et al. (1999) gave a
complete review of scheduling problems involving set-up considerations. The
review by Cheng et al. (2000) for flowshop-scheduling involving set-up times is
also very suitable for interested readers. Allahverdi et al. (1999) have divided the
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flowshop problems (involving set-up considerations) into four categories: sequence-
independent non-batch set-ups; sequence-dependent non-batch set-ups; sequence-
independent batch set-ups; and sequence-dependent batch set-ups. A batch set-up
problem occurs when part types are grouped into batches (or product families) and a
(major) set-up time is incurred when switching between part types belonging to
different batches, and, in some applications, a (minor) set-up is incurred for switch-
ing between part types within batches (i.e. from the same product families). In other
words, a major set-up time depends only on the batch being switched to, and the
minor set-up time depends only on the part type being switched to (Tang 1990,
Allahverdi et al. 1999). The major research in first category with makespan criterion
include: Yoshida and Hitomi (1979), who were among the first to investigate the
flowshop wherein set-up times were separated from processing times with their
extension of Johnson’s rule; Yoshida and Hitomi (1979), who extended Johnson’s
(1954) model to the case where set-up times are separable from processing times; Sule
(1982), Sule and Huang (1983), Khurana Bagga (1985) and Allahverdi (1995), who
extended Yoshida and Hitomi (1979); Proust et al. (1991), Park and Steudel (1991),
Gupta and Tunc (1994), Cao and Bedworth (1992) Allahverdi (1997), Rajendran and
Ziegler (1997) and Gupta et al. (1997) also addressed different assumptions for
sequence-independent non-batch set-ups to minimize makespan; and Lee and
Shaw (2000) worked on a PCB manufacturing environment to minimize this objec-
tive function. Moreover, when time lags are considered in addition to set-up times,
Khurana and Bagga (1984) provided an optimal solution for a two-machine flow-
shop to minimize makespan under two conditions: (1) the start and stop lags are
equal for each job, and (2) once the processing time of a job is greater (smaller) on
machine 1 than its processing time on machine 2, then the sum of processing and set-
up times of this job on machine 1 is also greater (smaller) than that of the job on
machine 2. Szwarc (1986) used the formula he developed in a previous paper (Szwarc
1983) to find an optimal solution for the same problem without the two conditions.
In addition, he provided an approximate solution for the multiple machine case.
Nabeshima and Maruyama (1984) also extended the two-machine problem of
Szwarc by also considering separate removal and transportation times. They addi-
tionally addressed the three-machine problem under certain conditions. Rajendran
and Ziegler (1997) investigated the problem of scheduling in a flowshop, where set-
up, processing and removal times are separable with the objective of minimizing
makespan. They developed heuristic algorithms by the introduction of simplifying
assumptions into the scheduling problem under study.

In second category, i.e. sequence-dependent non-batch set-ups, Corwin and
Esogbue (1974) addressed the two machine flowshop problem with a makespan
objective, where the set-up times are sequence-dependent on the first (second)
machine and sequence-independent on the second (first) machine. They showed
the optimality of permutation schedules for both cases and established a dynamic
programming formulation for each problem. Under the assumption that set-up
cost is directly proportional to set-up time, Uskup and Smith (1975) provided
a branch-and-bound solution for the two-machine flowshop problem with a total
set-up cost criterion such that the schedule meets all dead lines. Gupta and Darrow
(1985) generalized Corwin and Esogbue’s (1974) problem by considering sequence-
dependent set-up times on both machines for permutation schedules and established
two heuristics for the problem. Gupta and Darrow (1986) considered the
same problem and showed it to be strongly NP-hard even when set-up time is

2898 S. R. Hejazi and S. Saghafian



sequence-dependent on only one of the two machines. Other research in this category
with makespan criterion includes: Gupta (1986), Szwarc and Gupta (1987),
Rajagopalan and Karimi (1987), Gupta (1988), Simons (1992), Gupta et al. (1995)
and Rios-Mercado and Bard (1996, 1997). In third category, i.e. regarding sequence-
independent batch set-up problems with makespan criterion, research includes
Hitomi and Ham (1976), Hitomi et al. (1977), Ham et al. (1985), Baker (1990),
Vakharia and Chang (1990a, b), Logendran and Sriskandarajah (1993), Skiron-
Kapov and Vakharia (1993), Sridhar and Rajendran (1994), Zdrzalka (1994),
Stoskov (1996), Li (1997) and Danneberg et al. (1998). When regarding flowshop
problems with sequence-dependent batch set-up times and makespan criterion, some
known results are those of Vakharia et al. (1995) and Schaller et al. (1997) who
presented branch-and-bound approaches as well as several heuristics. Moreover,
note that in some cases, parallel set-ups may be possible. As Stafford and Tseng
(1990) described, if job i’s predecessor in the sequence has completed its processing
on machine r, then the operator of this machine should begin the set-up for job i in
anticipation that job i will be the next job to arrive for processing at that machine.
There is no reason to set machine r stand idle for a time and then do the job i set-up
after job i is free to be processed on machine r. Another important class of these
scheduling problems is constrained by the no-idle production environment, where
machines work continuously without any interruption from the start of the first job
processing to the last job completion. Such no-idle environment, regarding make-
span as the objective function, is particularly important when a very expensive
equipment is used or when its using cost depends on time consumption (Saadani
et al. 2004). There are not so many papers dealing with F/no� idle/Cmax (no-idle
flowshop problem with makespan criterion as notation introduced by Graham et al.
1979). The complexity of this problem has only been mentioned in Tanarv (1994).
Baptiste and Hguny (1997) have proved the NP-hardness of a three-machine no-idle
flowshop problem with makespan criterion. More recently, Saadani et al. (2004)
have investigated the F/no� idle/Cmax and modelled it as a travelling salesman
problem. They proposed an adaptation of the well-known nearest insertion rule to
solve the problem.

As mentioned above, the traditional serial flowshop captures the essence of
sequential processing. Lee et al. (1993) and Potts et al. (1995) introduced the concept
of concurrency in a flowshop environment by proposing a two-stage flowshop
with concurrent processing in the first stage. In that two-stage assembly flowshop,
a number of concurrent operations are performed in the first stage followed by
a single (assembly) operation in the second stage. The assembly operation, in accor-
dance with the flowshop principle of serial processing, can commence only after all
concurrent first-stage operations are completed (Koulamas and Kyparisis 2004).
In Koulamas and Kyparisis (2004) the concept of concurrency by introducing a
new shop (the concurrent flowshop where each job consists of several components,
each of which is processed on a dedicated flowshop) regarding makespan as the
objective function is extended. More than the concurrent flowshop environment,
in some research the reduction of jobshop to flowshop problems has been concen-
trated. Guinet (2000) studied the problem of scheduling N independent jobs in a
jobshop environment in which each job must be processed on at most M machines
according to individual routes, regarding the makespan as the criterion. He proposed
first to reduce the jobshop problem to a flowshop problem with job precedence
constraints. Then, an extension of Johnson’s rule (it will be discussed below) was
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defined to solve it. He showed the optimality of the extended Johnson’s rule for two
machine jobshop problems and in addition to the rule efficiency for some three and
four machine jobshop problems.

Researches in flowshop problem also can be assessed from the viewpoint of
different objective functions and various optimization techniques. Most research is
concentrated on makespan (or maximum flow time), which can be defined as the
completion time at which all jobs complete processing. More specifically it is well-
known in the literature that the cmax (�), i.e. the makespan of the processing order
given by � can be found by:

cmaxð�Þ ¼ max
1�t1�t2�����tm�1�n

Xt1
j¼1

p�ð jÞ1 þ
Xt2
j¼t1

p�ð jÞ2 þ � � � þ
Xn
j¼tm�1

p�ð jÞm

 !

where �( j) is the jth element of permutation �. In our survey, we mainly consider this
criterion. However, fewer papers deal with objectives involving the due dates of jobs.
Gelders and Sambandam (1978) suggested four heuristics with the objective of mini-
mizing the sum of tardiness and flow time. Ow (1985) developed a scheduling pro-
cedure to minimize the sum of waited tardiness for a special case in which the
processing times are proportionate. Grabowski et al. (1983), Sen et al. (1989) and
Townsend (1977) sought optimal solutions with branch-and-bound techniques, in
which Sen et al. considered minimizing the mean tardiness on two machine flow-
shops, while Grabowski used the maximum lateness among all jobs as the perfor-
mance criterion, and Townsend tried to minimize the maximum tardiness on
m-machine flowshops. Yeong-Dae Kim (1993) worked on heuristic for minimizing
mean tardiness for flowshop-scheduling in his article and Zhu and Meady (2000) by
trying to minimize the sum of earliness/tardiness in multi-machine scheduling with
MIP approach and Seo et al. (1999) by working on minimizing mean-squared devia-
tion of completion time with maximum tardiness constraint, include some other
objective function and criteria in generally scheduling, and flowshop problem as
well. Although there are many more contributions regarding different objective
functions (such as mean or total or sum of flow time) which can be reviewed through
their own surveys. Moreover, there are some papers wherein bicriteria and multi-
objective flowshop problems are concentrated. A survey of multicriteria scheduling
problems is provided by T’kindt and Billaut (2001). Multicriteria scheduling pro-
blems can be modelled in three different ways. First, when the criteria are equally
important, all the efficient solutions for the problem can be generated. Then by using
multi-attribute decision methods, tradeoffs can be made between these solutions.
Second, when the criteria are weighted differently, an objective function can be
defined as the sum of weighted functions and transform the problem into a single
criterion-scheduling problem. Finally, when there is a hierarchy of priority levels for
the criteria, the problem can first be solved for the first priority criterion, ignoring the
other criteria and then solved for the second priority criterion under the constraint
that the optimal solution of the first priority criterion does not change (Gupta et al.
2001). In many practical situations, scheduling problems generally involve multiple
objectives (Gupta and Dudek 1971, Panwalker et al. 1973, Gupta et al. 2001).
Because of such situations, multicriteria scheduling problems are receiving much
attention recently (Nagar et al. 1995, Gupta et al. 2001). Some research in the
field of multiple objectives scheduling include Daniels and Chambers (1990),
Rajendran (1992, 1994), Dileepan (1998), Fry et al. (1989), Hoogeveen (1992),
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Nagar et al. (1995, 1996), T’kindt et al. (2002, 2003) and Gupta et al. (1999–2002).
Nagar et al. (1995) proposed a branch-and-bound approach to solve the two-
machine flowshop problem with makespan and total flow time objectives.
Moreover, Nagar et al. (1996) proposed a combined branch-and-bound and genetic
algorithm based approach to solve the two machine flowshop problem with
objectives of makespan and mean flow time with respect to the linearly combined
objectives Neppalli et al. (1996) applied the genetic algorithm to solve the two
machine flowshop problem with objectives of makespan and total flow time. They
searched the effective solutions through partitioning the population into two sub-
populations according to the criteria, i.e. makespan and total flow time. Murata et al.
(1996) proposed the multi-objective genetic algorithm (MOGA) to search the Pareto
optimal solutions of bi-objective (makespan and total tardiness) and tri-objective
(makespan, total flow time, and total tardiness) scheduling problems. Ishibuchi and
Murata (1998) proposed a hybrid genetic algorithm by introducing local search into
the procedures of genetic algorithm. Sridhar and Rajendran (1996) applied genetic
algorithm to the flowshop and cellular manufacturing systems. They considered
makespan, total flow time, and machine idle time as the performance measures.
Rajendran (1992) considered the two-stage flowshop-scheduling problem with the
objective of minimizing total flow time subject to obtaining the optimal makespan.
He developed a branch-and-bound and two heuristic algorithms for the problem.
Many other algorithms are also developed and applied to the bi- and multi-objective
scheduling problem including makespan as one of objective functions. Ho and
Chang (1991) proposed a heuristic approach based on the CDS algorithm (CDS
algorithm will be described in this paper) to solve the n/m/F/Cmax, SF (n-job
m-machine flowshop problem with makespan and total flow time objectives).
Gangadharan and Rajendran (1994) applied the simulated annealing method to
solve n=m=F=Cmax,

P
F . Rajendran (1995) proposed a heuristic method with respect

to the same problem by interchanging the potential jobs to improve the system
performance. Jin et al. (2001) investigated the problem of multi-objective evolution
strategies by adapting weighted aggregation. Gupta et al. (2001) considered the two-
machine flowshop-scheduling problem where it is desired to find a minimum total
flow time schedule subject to the condition that the makespan of the schedule is
minimum. Chang et al. (2002) proposed the gradual-priority weighting (GPW)
approach to search the Pareto optimal solutions for the multi-objective flowshop-
scheduling problem respecting makespan, total flow time, total tardiness, and
maximum tardiness. Their approach search feasible solution space from the first
objective at the beginning and towards the other objectives step by step. T’kindt
et al. (2003) developed mathematical programming formulations, a branch-
and-bound algorithm, and a heuristic algorithm for solving the two-machine flow-
shop-scheduling problem with the objective of minimizing total completion time,
subject to the constraint that the makespan is minimum. Allahverdi and
Aldowaisan (2004) recently addressed the m-machine no-wait flowshop-scheduling
problem with a weighted sum of makespan and maximum lateness criteria. They
proposed a hybrid simulated annealing and a hybrid genetic heuristics, which can be
used for the single criterion of makespan or maximum lateness, or the bicriteria
problem. Rajendran and Ziegler (2004) recently proposed two ant colony optimiza-
tion algorithms for the problem of scheduling in permutation flowshops with the
objective of minimizing the makespan, followed by the consideration of minimiza-
tion of total flow time of jobs. Chakravarthy and Rajendran (1999) developed a
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heuristic algorithm for a flowshop problem with bicriteria of makespan and
maximum tardiness problem. More recently, Allahverdi (2004) considered the
m-machine flowshop problem with the objective of minimizing a weighted sum of
makespan and maximum tardiness. Two types of the problem are addressed in this
research. The first type is to minimize the objective function subject to the constraint
that the maximum tardiness should be less than a given value. The second type is to
minimize the objective without the constraint. He developed a new heuristic that is
proposed and compared with two existing heuristics. There are also many other
papers in the field of multi-criteria and/or bi-criteria flowshop problems. However,
as mentioned above most research in flowshop-scheduling has concentrated on
makespan as their single performance criterion. Respecting this objective function,
various heuristic methods have been developed for a flowshop problem. Ashour
(1970), Barany (1981), Bonney and Gundry (1976), Campbell et al. (1970),
Dannenbring (1977), Gupta (1971, 1972), Ho and Chang (1991), Hundal and
Rajgopal (1988), King and Spachis (1980), Nawaz et al. (1983), Obgu and Smith
(1990), Osman and Potts (1989), Page (1961), Palmer (1965), Park et al. (1984),
Taillard (1990), priority rules in MacCarthy and Liu (1993), neighbourhood tabu
search in Widmer and Hertz (1989), and the use in scheduling Kanban-controlled
systems by Ramanan and Rajendran (2003) are just some examples of developers of
heuristics and metaheuristics for a flowshop problem with makespan as objective
function. There are also some exact methods to find the optimum solution include
dynamic programming (Held and Karp 1962), branch-and-bound (Ignall and
Schrage 1965, Lomnicki 1965, Lageweg et al. 1978, Daniels and Mazzola 1994),
elimination rules as in Baker (1975), row generation algorithms as in Frieze
and Yadegar (1989) and Dudek et al. (1992), integer programming and complete
enumeration as well. We will discuss some of these exact methods in section 2.

Because the n-job m-machine flowshop sequencing problems belong to the class
of NP-hard problems (Rinnooy Kan 1976, Lentra et al. 1977, Gonzalez and Sahni
1978), the computational requirements for obtaining an optimal solution increase
exponentially as problem size increase, i.e. in viewpoint of the combinatorial com-
plexity and time constraints, most of the large problems can be solved only by
heuristic methods. Consequently, some constructive heuristics were developed for
the problem. As these contributions have been clues for later developers, to give a
better view of scheduling techniques for flowshop problem with makespan criterion,
we will cover most of constructive heuristics (such as Palmer, Gupta, CDS and
NEH) as well as briefly remarking on many other constructive and improvement
heuristics in section 3 of this paper. Additionally, some modern heuristics or
so-called metaheuristics and some evolutionary algorithms have been implemented
to solve the flowshop problem in much research. These include SA (Simulated
Annealing) with different cooling and perturbation schedules, GA (Genetic
Algorithm) with diverse crossover and mutation operators, TS (Tabu Search)
methods with different approaches, ACS (Ant Colony System), ANN (Artificial
Neural Network) approaches with different designs and some hybrid algorithms
and a few of other neighbourhood search approaches. In section 4, we will focus
on such approaches by introducing and implementing SA, GA, TS and ACS. In these
approaches, we will consider the most recent research and developed techniques.
Moreover, while some scheduling techniques have been clues for later research, in
each section, unlike many other surveys, we will also deal with details of scheduling
techniques as well as noting the contributions in that field.
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2. Exact methods and small size problems

As mentioned above, flowshop problems belong to a class of NP-hard problems.
Therefore, exact methods are just suitable for some small size problems. Some
demonstrated properties can be used in these methods. The two most important
are: (1) with respect to any regular measure of performance, it is sufficient to consider
only schedules in which the same job sequence occurs on machines 1 and 2; and (2)
with respect to makespan as a measure of performance, it is sufficient to consider
only schedules in which same job sequence occurs on machines m� 1 and m. These
two properties lead to constitute a dominant set of (n!)m�1 schedules for any regular
objective function and of (n!)m�2,m� 3 for makespan problems.

Hereby, to become more familiar with early contributions, we describe dynamic
programming approach and also, the well-known algorithm in the literature, which
implements Johnson’s rule. Both can be used for m¼ 2 makespan problems or n/2/F/
cmax (n/m/F( p)/cmax or equivalently F/prmu/cmax shows n-job, m-machine flowshop
(permutation flowshop) problem with makespan criterion while the former is sug-
gested by Conway et al. (1967) and latter is according to notation introduced by
Graham et al. (1979) and leading same optimal solutions. Moreover, the latter has
been extended for m¼ 3 or n/3/F/cmax. In addition, readers can refer to branch-and-
bound approaches (Lageweg et al. 1978, Ignall and Schrage 1965, Lomnicki 1965,
1978, Daniels and Mazzola 1994), elimination rules (Baker (1975), row
generation algorithms (Frieze and Yadegar 1989, Dudek et al. 1992) and even
MILP models for SDST (sequence-dependent set-up times) and SSIST (separable,
sequence-independent set-up times) problems (Srikar and Ghosh 1985, and research
by Tseng and Staffored).

2.1 Dynamic programming

This approach concentrated in some papers for small size flowshop problems includ-
ing Held and Karp (1962). Here we describe this method for n/2/F/cmax. Let ai, be
representative for t1i (the processing time of job i on machine1) and bi for t2i.
Suppose �1, �2, . . . , �k is a permutation prefix defining a schedule for jobs
T1,T2, . . . ,Tk. For this schedule let f1 and f2 be the time at which the processing of
jobs T1,T2, . . . ,Tk is completed on processors (machines) 1 and 2, respectively. Let
t¼ f2� f1. The state of the processors (machines) following the sequence decisions is
completely characterized by t. Let g(s, t) be the length of an optimal schedule for the
subset of jobs s under the assumption that machine 2 is not available until time t. The
length of an optimal schedule for job set {1,2, . . . , n} is g({1,2, . . . , n},0). Since the
principle of optimality holds, we obtain:

gðf1, 2, . . . , ng, 0Þ ¼ min
1�i�n

fai þ gðf1, 2, . . . , ng � fig, biÞg

This equation can be simply generalized for arbitrary s and t as follows:

gðs, tÞ ¼ min
i2s

fai þ gðs� fig, bi þmaxft� ai, 0gÞg:

The term max{t�ai,0} comes into above equation as task t2i cannot start until
max{ai, t}. Hence, f2 � f1 ¼ bi þmaxfai, tg � ai ¼ bi þmaxft� ai, 0g.
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It is easy to show that above equation leads to the well-known Johnson’s rule
although that has another proof itself which is available in almost all sequencing
books (e.g. Baker 1974).

2.2 Johnson’s rule and extensions

In the area of flowshop problems, scheduling theory has been strongly influenced by
Johnson’s early works (1954). The pivotal influence of his works has had some
definite advantages, first by emphasizing the properties of permutation schedules;
he focused flowshop research on problems of manageable size. Second, the two-
machine analysis seemed to have captured the essence of larger problems. Thus,
where Johnson’s rule provided a basis for the development of a heuristic approach
to larger problems (as in Gupta and CDS procedures) it was remarkably successful.

The Johnson’s rule which is the most well known optimal rule applicable to a
large class of flowshop problems says that job i precedes job j in an optimal sequence
if: min{ti1,tj2}�min{ti2,tj1}. Implementing Johnson’s rule, the flowshop problem for
m¼ 2 and makespan as performance criterion or n/2/F/cmax can be optimally solved
by the following famous algorithm:

Step 1: Find minifti1, ti2g.
Step 2a: If the minimum processing time requires machine 1, place the associated

job in the first available position in sequence. Go to Step 3.
Step 2b: If the minimum processing time requires machine 2, place the associated

job in the last available position in sequence. Go to Step 3.
Step 3: Remove the assigned job from consideration and return to Step 1 until all

positions in sequence are filled. Another shape of this algorithm may be
described as follows:

Step 1: Let U¼ {j|tj1<tj2} and V¼ {j|tj1� tj2}.
Step 2: Arrange the members of set U in non-decreasing order of tj1 and members

of set V in non-increasing order of tj2.
Step 3: An optimal sequence is the ordered set U followed by the ordered set V.

Moreover, there are some extensions of Johnson’s rule, one is for m¼ 3 and make-
span criterion. He showed that a generalization is possible when the second machine
is dominated (i.e. when no bottleneck could possibly occur on the second machine).
This extension is described below:

1. If minkftk1g � maxkftk2g then job i precedes job j in an optimal schedule if:

minfti1 þ ti2, tj2 þ tj3g � minfti2 þ ti3, tj1 þ tj2g:

2. If minkftk3g � maxkftk2g then job i precedes job j in an optimal schedule if:

minfti1 þ ti2, tj2 þ tj3g � minfti2 þ ti3, tj1 þ tj2g:

To apply these results in an algorithm, it is possible to use the main algorithm
implementing Johnson’s rule, described previously, with first step of seeking a mini-
mum in the form of min{ti1þ ti2, ti2þ ti3} instead of seeking minimum processing
time. Additionally, if there is no dominance present, it is also known that if that
main algorithm implementing Johnson’s rule, yields the same optimal sequence for
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two-machine sub problems represented by the set {ti1,ti2}and {ti2,ti3}then that
sequence is optimal for the full three-machine problem.

There are other types of generalization for two-machine case, such as ana-
lyses of Mitten (1959) for a two-machine problem involving the addition of start-
and stop-lags. As Baker described of mitten works, in many practical situations,
it maybe possible to begin operation 2 before operation 1 is entirely complete.
This structure may appear where jobs consist of large lots that may be split into
sublots and where completed sublots may proceed to a subsequent operation
without waiting for the fall lot to be processed. This over structure, often
called lap phasing, may also arise where the flow of work is conveyor-driven.
With lap phasing there is a specific interval aj, called a start-lag, such that
operation j2 can be started as soon as aj time units after operation j1 begins.
In particular, the strict precedence requirement of the flowshop model requires
that aj¼ tj1 but lap phasing allows aj<tj1.

Analogously, Mitten allowed for an interval bj called a stop-lag such that opera-
tion j2 must not complete any earlier than bj time units often operation j1 completes.
Allowing for aj>0 and for all bj, Mitten extended Johnson’s rule as described in the
following algorithm:

Step 1: Let U ¼ f jjtj1 < tj2g and V ¼ f jjtj1 � tj2g.
Step 2: Define yj ¼ maxfaj � tj1, bj � tj2g. Arrange the members at set U in non-
decreasing order of tj1þ yi and members of set V in non-increasing order of tj2þ yj.
Step 3: An optimal sequence is the ordered set U followed by the ordered set V.

Moreover, Mitten’s result can be employed for larger flowshop problems in which
the first and last machines are the only bottleneck machines. Suppose all jobs
require the first operation to be performed on machine 1 and the third operation
on machine 3. If the intervening operation on each job can be performed indepen-
dently of all other jobs (as if, for example, n parallel machines were available for
this purpose), the intervening operation could be treated as part of a start-lag and
Mitten’s result employed obviously. This reasoning could be extended to larger flow
shops, as long as only machines 1 and m are bottleneck machines. However, it is
remarkable that Mitten’s result holds only for permutation schedules and may not
be an optimal schedule for such large flowshop problems.

Moreover, the two-machine flowshop problem has been considered in much
research with different objectives and assumptions. For instance, some recent exam-
ples and applications are as follows. Allahverdi et al. (2002) used a two-machine
flowshop problem with maximum lateness objective to model data objects for WWW
applications. He has also worked on some other applications of two-machine flow-
shop problems (Allahverdi et al. 2000, 2001) such as the relation of a three-tired
Internet database and this problem; Cheng and Liu (2003) and Wang and Chang
(2001) considered a two-machine no-wait flowshop with availability constraints;
Dileepan (2003) also focused on a two-machine no-wait flowshop; T’kindt et al.
(2003) worked on a two-machine with secondary criterion; Sung and Kim (2002)
considered a two-machine flowshop regarding makespan and with dynamic arrivals;
Lin (2001) worked on a two-machine flowshop with due date constraints; Gupta et al.
considered minimizing total flow time in a two-machine flowshop problem with
minimum makespan; Yong and Chern (2000) considered two-machine flowshop
group scheduling; Allahverdi (1995) concentrated on a two-machine flowshop pro-
blem with sequence-independent set-up times to minimize mean flow time; Blazewicz
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et al. (2001) developed heuristic algorithms for a two-machine flowshop problem
with limited machine availability; and Presman et al. (2001) considered a stochastic
two-machine flowshop with limited WIP for average cost optimal policy. Also batch
scheduling in the no-wait two-machine flowshop to minimize the makespan (Lin and
Cheng 2001) and scheduling in a two-machine flowshop with batch processing
machines for earliness/tardiness measure under a common due date (Sung and
Min 2001), are some other titles of recent research that all show the considerations
on a two-machine flowshop problem. However, although there is much research
on this type of flowshop problem, they do not demonstrate much real-world
applications of the two-machine flowshop problem. A lack of these real-world appli-
cations and case studies in this field still seems perceivable and future work should
focus more on industrial and other uses of this problem such as in the works of
Allahverdi et al.

3. Constructive heuristic algorithms

As discussed above, belonging to the NP-hard class (Rinnooy Kan 1976, Lentra et al.
1977, Gonzalez and Sahni 1978), computational requirements of exact methods such
as dynamic programming, branch-and-bound, elimination approaches, row genera-
tion algorithms and integer programming and complete enumeration, for flowshop
problem, are severe for large problems. Consequently, heuristic approaches have
been proposed in much research including Page (1961), Dudek and Teuton (1964),
Palmer (1965), Campbell et al. (1970), Gupta (1971), Gundry (1976), Dannenbring
(1977), King and Spachis (1980), Stinson and Smith (1982), Nawaz et al. (1983),
Rajgopal (1988), Koulamas (1998), Sarin and Lefoka (1993), Davoud Pour (2001)
and Framinan (2003). In addition, to such constructive heuristics, there are a few
improvement heuristics including: Dannenbring (1977), Ho and Chang (1991) and
Suliman (2000). Hereby, we describe some early constructive heuristic algorithms
that have been clues for researchers to develop many other well-known scheduling
techniques in the literature. Other above-mentioned procedures may be reviewed by
interested readers themselves. Moreover, in a recent review by Ruiz and Maroto
(2004), evaluations of such procedures in addition to some other metaheuristics also
can be found.

3.1 Palmer algorithm

Palmer (1965), suggested his algorithm using the concept of a ‘slope index’ for each
job that is a measure of whether a job proceeds from a shorter to a longer processing
time in the sequence. The sequence is then constructed with the descending slope
indices, with the idea that jobs that tend to proceed from shorter to longer processing
times in the sequence of operations are processed earlier. While there might be
several ways of implementing this precept, Palmer proposed a slope index for
job i, SIi, as:

SIi ¼ �
Xm
j¼1

½m� ð2j � 1Þ�tij=2
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where tij is the processing time for job i on machine j and m is the number of
machines. Then a permutation schedule is determined using the job ordering:

SI½1� � SI½2� � � � � � SI½n�

Obviously, for m¼ 2, this algorithm is slightly different from Johnson’s algorithm.
Moreover, a later developed heuristic showed that the Palmer heuristic is not that
effective.

3.2 Gupta algorithm

Gupta (1971) proposed that for m>2, the job index can be calculated as:

SIi ¼ ei= min
1�k�m�1

ftik þ tiðkþ1Þg

where

ei ¼
1 if ti1 < tim
�1 if ti1 � tim

�

Then the job ordering:

SI½1� � SI½2� � � � � � SI½n�

makes a good permutation schedule. He also noted that when Johnson’s rule is
optimal in the three-machine case, it is in the form of the above-mentioned calcula-
tions for m¼ 3. He then compared this heuristic with Palmer’s and found it gener-
ated better schedules than that in a substantial majority of cases. Additionally,
Gupta investigated a set of other heuristics that are also based on construction via
transitive rules.

3.3 CDS algorithm

Campbell et al. (1970) proposed an algorithm for makespan problems, which is
called the CDS algorithm. Using two main principles, this procedure makes good
solutions: (1) it uses Johnson’s rule in a heuristic way and (2) it generally creates
several schedules, the best one of which should be chosen.

The CDS algorithm creates m� 1 artificial two-machine problems and then
solves them by implementing Johnson’s two-machine algorithm. Then, the best
m� 1 obtained solution becomes the best solution for the main m-machine
makespan problem. Generally, processing times for the artificial two-machine
subproblems for ith job on jth machine at stage k should be calculated as:

t0i1 ¼
Xk
j¼1

tij and t0i2 ¼
Xm

j¼m�kþ1

tij

Campbell et al. then tested their algorithm and compared the results with Palmer’s
heuristic. They found that the CDS algorithm was generally more effective for both
small and large problems. In addition, computing times were of the same magnitude
for n� 20.
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3.4 NEH algorithm

Nawaz et al. (1983), proposed their so-called new heuristic based on the assumption
that a job with more total processing time on all machine should be given higher
priority than jobs with less total processing time on all machines. Therefore, they
proposed initially to arrange jobs in descending order of total processing time
(which is simply calculated by

Pm
j¼1 tij for job ith). Then, NEH heuristic uses the

idea of partial sequencing based on this mentioned order. A sequence is constructed
by introducing one job at a time from that unscheduled order into the partial
sequence. If there were k jobs in the previous partial sequence, at each job intro-
duction the best partial sequence among kþ 1 possible partial sequences is chosen.
That is, the new job can be placed in one of the kþ 1 possible places in the partial
sequence and after choosing the best place of this job, regarding the obtained
makespan, in the partial sequence, this partial sequence is fixed for the remaining
procedure, which is introduction of a new job. As for the Nawaz et al. proposal,
this introduction is based on the descending order of total processing times on all
machines. By n(n� 1)/2� 1 total enumeration, the heuristic sequence and conse-
quently the heuristic solution for makespan problem can be obtained. Moreover,
computational studies such as Nawaz et al. (1983) and Turner and Booth (1987)
showed that the NEH heuristic performs best among several well-known construc-
tive heuristics, which is discussed here. However, the procedure of Koulamas (1998)
(not assuming permutation hypothesis), Sarin and Lefoka (1993) and Pour (2001)
are claimed to be superior to NEH.

4. Metaheuristic and evolutionary approaches

Previous sections discussed some famous constructive heuristics. Hereby, we focus
on some implemented modern heuristics, which are improvement algorithms, for
flowshop problem. The aim of using such algorithms is usually to guide the search
to overcome local optimality and improve initial feasible solutions. There are many
of these algorithms that has been implemented in flowshop-scheduling problems
including: Simulated Annealing (SA), Genetic Algorithms (GA), Tabu Search (TS)
methods, Greedy approaches, Variable-Depth search approach, Pilot methods, Hill
climbing procedures, and Ant Colony Optimization (ACO)-based methods.
Additionally, hybrid algorithms, combining some of these algorithms, have been
developed in much research. The following sections will concentrate on some
strong and basic metaheuristic approaches, and in addition, the following will be
discussed: metaheuristics. The use of ANNs by Lee and Shaw (2000) for real-time
sequencing and by El-Bouri et al. (2000) for the implementation of an ANN
approach to sequencing jobs on a single machine can be referred to by interested
readers. This review will consider recent research and the developments of these
approaches for flowshop permutation problem regarding makespan as performance
criterion.

4.1 Simulated annealing approach

Kirkpatrick et al. (1983) introduced Simulated Annealing (SA) and Creny (1985)
considered the analogy between the annealing process of solids and the process of
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solving combinatorial optimization problems. However, it was originally developed
as a simulation model for a physical annealing process of condensed matter
(Metropolis et al. 1953). Laarhoven and Aarts (1987) gave a comprehensive dis-
cussion of the theory and review of various applications. In addition, they showed
that the simulated annealing process converges to the set of global optimal solu-
tions under certain conditions. Koulamas et al. (1994) also applied SA to a large
number of optimization problems in a variety of application areas.

More research has been done on the application of SA to sequencing problems
including Osman and Potts (1989), Matsuo et al. (1989), Obgu and Smith (1990),
Ishibuchi et al. (1995), Zegordi et al. (1995), Liu (1997, 1999), Wodecki and
Bozejko (2001) and Wang and Zheng (2003). The main procedure of SA can be
described as follows. It starts from an initial solution to the problem and then
generates a new trial solution from the neighbourhood at the current solution.
If the new solution is better than the current solution, it is accepted and used as
the new current solution. Otherwise, it may be accepted or rejected depending on
an acceptance probability, which is determined by the difference between objective
function of the two solutions and by a control parameter called temperature,
following the convention in thermodynamics. This process then continues from
the new current solution. Initially, the temperature is set at high level, as in anneal-
ing, so that almost all moves will be accepted. It is then decreased slowly during the
procedure until almost no move will be accepted. In other words, SA procedure can
be generally described as follows:

1. Initialization: parameters of annealing schedule.
2. Select an iteration mechanism: a simple prescription to generate a transition

from current state to another state by a small perturbation.
3. Evaluate the new state, compute �E¼ (value of current state � value of new

state).
4. If the new state is better, make it current state, otherwise probabilistically

accept or reject it (with a determined probability function usually called
acceptance probability function).

5. Based on stopping rules, either stop or continue iterations at Step 2.

For implementing an SA in particular applications, such as for flowshop
problem, ways of generating neighbourhood solutions, often called a perturbation
scheme, and the so-called cooling schedule, which is a temperature decreasing
scheme, as well as a trade-off between solution quality and computation time, are
very important to be customized. Moreover, latter consists of determining following
parameters:

. Initial value of the temperature.

. Function to determine how the temperature is to be changed (decreased).

. Condition of the Metropolis equilibrium under each temperature, i.e. the
number of iterations to be performed at each temperature.

. Stopping criterion to terminate the algorithm, i.e. the final value of the
temperature parameter.

For a flowshop problem, different perturbation schemes have been considered.
Sridhar and Rajendran (1993) made use of three perturbation schemes (adjacent
interchange, insertion scheme and random interchange scheme). Osman and
Potts (1989) adopted interchange neighbourhood and shift neighbourhood.
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Ogbu and Smith (1990) chose insertion and the pairwise exchange as the pertur-
bation scheme. Liu (1999) worked on neighbourhood size and its effect on
the simulated annealing for a flowshop problem. He used a variable size neigh-
bourhood for his proposed SA algorithm and designed that to vary as a function
of number of trials so far: size¼ 1þ (n/2�1)(1�t/T)0.4, where t is the number
of trials so far and T is the total number of trials for the whole process.
The neighbourhood size for an exchange method can be characterized by
the distance between the position of the two jobs being exchanged in the
sequence. While starting from any of these two jobs, it is possible to count to
left or right. The distance between the two jobs in the sequence can be considered
by the smaller number. Pengtian et al. (1999) used six perturbation schemes
as follows:

. Interchanging two adjacent jobs.

. Interchanging two jobs.

. Moving a single job.

. Moving a subsequent of jobs.

. Reversing a subsequent of jobs.

. Reversing and/or moving a subsequence of jobs.

Choosing appropriate cooling scheme or annealing schedule is also related to trade-
off between solution quality and computation time. As mentioned above, it consists
of determining four items. Usually cooling occurs by a reducing factor such as �
and a recursive function such as �n¼ ��n�1, where n is the stage in which cooling
schedule is placed. Acceptance probability is usually determined by the function
exp(��/k�n), where � is the difference between a new solution, S0, and a previous
solution S, i.e. regarding makespan as objective criterion �¼ cmax(s)�cmax(s0).
Additionally, it is known that if cij denotes the completion time of ith job in the
sequence on machine 1, 2, . . . , j, for different m-machine n-job flowshop problems
with different interstage storage policies, cmax is cnm, where cij can be defined as
follows:

. For unlimited intermediate storage (UIS): cij ¼ max½cði�1Þj, ciðj�1Þ� þ tij .

. For finite intermediate storage (FIS): cij ¼ max½cði�1Þj, ciðj�1Þ, cði�zj�1Þðjþ1Þ�

tij� þ tij.
. For no intermediate storage (NIS): cij ¼ max½cði�1Þj , ciðj�1Þ, cði�1Þðjþ1Þ� tij � þ tij.

Therefore, we can simply achieve � for different makespan flowshop problems.
Moreover, k in the function exp(��/k�n) is a Boltzman constant, which at the
beginning of SA can be estimated by k ¼ ½cmaxðsÞ � cmaxðs0Þ�= ln p0=�0, where p0 is
the initial value of the acceptance probability.

However, Matsuo et al. (1989) and Ogbu and Smith (1990) showed that a SA
approach with an acceptance probability function which is independent of the
change in the objective function value, �, provided as good quality solutions as
the conventional (Metropolis) scheme. So the acceptance probability function, for
�>0, i.e. accepting worse solution, can also be given by some functions such as
AP(k)¼ p0(rf )

k�1, where k is the stage, p0 is the initial value of the acceptance
probability at stage k¼ 1 and rf<1 is the reducing factor.

Additionally, to compare different SA procedures, there are some proposed
performance measures. For instance, one is optimality of the final solution:
ðcmaxðTÞ � c�maxÞ=c

�
max, where T is the total number of trials and cmax(T) is the
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makespan in the final solution. Another performance measure can be proposed for
the effectiveness of the whole process such as:

Z T

0

ðcmaxðtÞ � c�maxÞ=ðcmaxð0Þ � c�maxÞ½ �dt

where cmax(t) is the makespan of the best solution found by t trials. The effectiveness
given above is the area under the curve of optimality against number of trials
between 0 and T trials.

The SA approach and its implementation for a flowshop problem were discussed
in this section. Figure 1 shows the SA procedure for makespan flowshop problem
with the parameters and details described.

4.2 Genetic algorithm approach

Genetic Algorithms (GAs) were described by Holland (1975) as being based on the
model of biological evolution process. He had a double aim: to improve the under-
standing of natural adaptation process, and to design artificial systems with proper-
ties similar to natural systems (Goldberg 1988). Goldberg described GA as a search
algorithm for optimization; and Davis (1991) also applied GAs. During the last
decade GAs have been widely applied to many optimization fields such as combi-
natorial optimization problems (for instance in TSP and sequencing and scheduling
problems: Jog et al. 1989, Starkweather et al. 1991, Ulder et al. 1991, Cleveland and

Figure 1. The framework of described SA.
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Smith 1989, Bagchi et al. 1991, Gabbert et al. 1991, Nakano and Yamada 1991, Fox
and McMahon 1991, Syswerda and Palmucci 1991, Ishibuchi 1994, etc.).

Implementation of GAs for a flowshop-scheduling problem is seen in many
papers (e.g. Syswerda 1991, Reeves 1995, Chen et al. 1995, Murata et al. 1996,
Reeves and Yamada 1998, Ponnambalam et al. 2001, Wang and Zheng 2003,
Ruiz et al. 2003). The major one was proposed by Reeves, who compared the
performance of SA and GA for flowshop test problems ranging from 20 jobs and
five machines to 500 jobs and 20 machines. The main conclusion was that SA out
performed GA in most tests where the numbers of jobs was 50 and fewer; on the
other hand, GA provided mostly superior solution to those obtained by SA for large
problems. Murata et al. (1996) showed similar findings and also compared various
crossover and mutation operators and showed that the two-point crossover and shift
mutation operators are effective for a flowshop problem. They also considered two
hybrid variants of the GA, namely genetic local search and genetic simulated anneal-
ing algorithms, and showed high performance for the hybrid models. Bagchi (1999)
listed several earliest versions at the GA and reported improvement in performance.
Lee and Shaw (2000) used GA with edge recombination crossover operator (as seen
in Whitley et al. 1989, Lee et al. 1997) and obtained good quality solutions by GA.
They also used a hybrid neural network and GA algorithm and showed a good
performance.

The GA approach for solving flowshop problem, usually uses integer representa-
tion (sometimes referred to as a path representation), in which chromosomes are
vectors of job indices, which represent sequences of jobs. This means that if a job is
in position i of chromosome then it is in the ith position of that sequence.

The search space is comprised of all current chromosomes in a population with a
fixed number of chromosomes such as N. N is referred to as the population size. The
initial population can consist of N randomly generated sequences or can be obtained
by previously described constructive heuristics. The fitness function of a chromo-
some reflects the efficacy of the makespan that corresponds to the sequence of jobs it
represents (for makespan problems). Simply, a fitness value assigned to a string
(chromosome) i can be proportional to fi ¼ ri=

P
j rj, where ri is the reciprocal of

the makespan of chromosome i in the population. By randomly selecting chromo-
somes of current population (usually two parents) with a probability proportional
to their fitness value and then mating them, an offspring that inherits genetic traits
from parents can be constructed. The population size is maintained constant by
the removal of one chromosome every time a new offspring is introduced to the
population. This removed chromosome can be selected randomly or based on its
fitness value. This simulates a real scenario where chromosomes representing solu-
tions with good makespan have a higher probability of remaining in the population
and of being selected for further mating. Mating is done by crossover and mutation
operators to form the next generation. The main purpose of crossover is to exchange
information between randomly selected parent chromosomes with the aim of
producing better offspring and intending to search for better genes. Two selected
parents for mating are copied as they are with probability 1� pc and with probability
pc, called crossover probability, a random point (or points) is selected and sections
from different parents are joined to create a new chromosome. The difficulty
in applying crossover operators to chromosomes that are non-binary, as in the
integer representation of flowshop problem, is that recombination usually results
in an infeasible string in which jobs appear twice or not at all in the offspring.
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For example, in a standard GA a single-point crossover (called 1X operator)
between two parents is carried out by choosing a number k at random between 1
and l� 1, where l is the length of the strings (chromosomes). Two new strings are
created by swapping all characters from position kþ 1 to l. This crossover operator
obviously can result in such infeasible strings.

However, many crossover operators and modifications are suggested and demon-
strated to be appropriate for a flowshop problem in much research, including two-
point crossover (2X), linear order crossover (LOX), partially mapped crossover
(PMX), cycle crossover (CX), C1 operator, NABEL operator, edge recombination
crossover operator, a few multi-parent crossover (MPX) and longest common sub-
sequence crossover (LCSX). Hereby we briefly describe some of these crossover
operators:

. 2X. In case of a two-point crossover, a parent chromosome is cut at two

random points. The jobs on the extreme ends of the two cuts are inherited by
the child, and in the exact locations and order in which they appear in the
chromosome. The central section in the child is then filled with outstanding
jobs, and in the order of their appearance in the other parent.

. LOX. First, two cutting sites of the parents, e.g. (2 6 4 7 3 5 8 9 1) and (4 5 2 1

8 7 6 9 3), are chosen randomly, e.g. 2 and 5. Second, the symbols that appear
in the cross-section of the first parent (the area situated between the two
cutting sites) are removed from the second parent leaving some ‘holes’, i.e.
(H 5| 2 18| H 6 9 H) and (H 6| 4 7 3 |5 H 9 H). Then the holes are slid from
the extremities towards the centre until they reach the crossover section,
i.e. (5 2| H H H| 1 8 6 9) and (6 4| HH H|7 3 5 9). Finally, the cross-section
is substituted with that of the corresponding parent to obtain the children,
i.e. (5 2| 47 3| 1 8 6 9) and (6 4| 2 1 8| 7 3 5 9). It was considered that LOX
could preserve as much as possible of the relative positions between the genes
and the absolute positions relative to the extremities of the chromosome.

. PMX. The PMX operator may be the most popular crossover operator for

operating the permutation. It chooses first two crossover points and
exchanges the subsection of the parents between the two points, and then
it fills the chromosomes by partial mapping. Considering the above two
parents, if the two crossover points are 3 and 7, then the children will be
(2 3 4| 1 8 7 6| 9 5) and (4 1 2| 7 3 5 8| 9 6). It has been demonstrated that
PMX satisfies the fundamental properties enunciated by Holland, namely
that it behaves in such a way that the best schemata reproduce themselves
better than the others.

. C1 Operator. It chooses first one crossover point randomly and then takes

the subsection of the first parent before the crossover point, and then fills up
the chromosome by taking in order, each ‘legitimate’ element from the
second parent. Considering the above two parents, if the crossover point
is 3, then the children will be (2 6 4| 5 1 8 7 9 3) and (4 5 2| 6 7 3 8 9 1).
The rationale for this crossover operator is that it preserves the absolute
positions taken from the first parent and the relative positions from the
second parent, so it was expected that this would provide enough scope for
modification of the chromosome without excessively disrupting it.

. NABEL operator. It is created by the non-Abel group theory. If the parents

are a (1) and b (1), then the children are c (1)¼ a (b (1) and d (1))¼ b (a (1)),
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i¼ 1, 2, . . . , n. Considering these two parents, the children will be (7 3 6 2 9 8
5 1 4) and (5 7 1 6 2 8 9 3 4). This operator is very easy to implement.

. Edge recombination crossover operator. It constructs an offspring by exclu-
sively using edges present in the parent strings, thus inheriting as much
information as possible from the parent structures. To store all the connec-
tions from two parents, an edge map is created. For example, for the two
parent strings given below the following edge map has been created.

Parent 1: 1 2 3 4 5 6 7 8 9 10
Parent 2: 9 4 10 6 5 2 8 1 3 7

Edge map:

Job type 1 2 3 4 5 6 7 8 9 10

Parent 1 1 2 3 4 5 6 7 8 9
Parent 2 8 5 1 9 6 10 3 2 4

In the above edge map, the blank cell indicates that it has been left without any
continuing edges. To use the edge map, we always choose the job type that has the
fewest edges since it has the higher probability of being isolated. Suppose the child
string is initialized with one of two final job types of parent strings. In our example,
both job types 10 and 7 have two edges. Therefore, we make a random choice.
Suppose that seven have been chosen randomly. Then, job type 7 is removed from
the edge map. Next, candidate job types are 6 and 3, both of which have the same
number of edges. Suppose that six is chosen randomly. Both candidate job types 5
and 10 have two unused edges. Then, suppose that 10 is chosen randomly. Next,
candidate job type 9 is chosen because it has fewer numbers of edges. Job type 8 is
chosen next since it is the only candidate. Continue this process until we get a
complete sequence. The resulting sequence is composed of edges entirely from the
two parent strings.

Child 1: 1 3 4 5 2 8 9 10 6 7

. MPX. It is used to increase the expected convergence and power of the
recombination operator, a three-parent crossover can be performed. The
way in which to do this is similar to that of the two-parent crossover;
however, up to three different elements may be inserted at each stage
instead of two. There would now be eight cases instead of four and
the complexity and size of the algorithm would be substantially increased.
To reduce the complexity and code required for a three-parent crossover,
a more simplified approach was proposed. The three-parent crossover was
split into two ‘two-parent’ crossovers. First, parents 1 and 2 were crossed,
and then the result was crossed with parent 3 to obtain an offspring.
Another approach could be to cross parent 1 with parent 2, and parent 1
and parent 3 separately, and then to cross the results of the first two
crossings. Given that a three-parent crossover can be defined, and which
incorporates two ‘two-parent’ crossovers, a MPX can also be classified
in a similar way, by performing, say, P,1 two-parent crossovers, where
P is the total number of population members. The algorithm for an MPX
is shown in figure 2. The main idea or emphasis behind the MPX is that
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all population member information is used and exploited so that
if any improvement is made, it is propagated throughout the whole
population.

. LCSX. Iyer and Saxena (2002) proposed this operator to preserve that
part of the genetic code of the parent chromosome which is responsible
for their relatively high fitness and at the same time provide freedom to
search a greater part of the domain for good strings. They suggested that
the important information in chromosome is the relative position of jobs
and used an operator. That preserver is only the longest common sub-
sequence (LCS) in the parents. The crossover operator first considers the
LCS as they are in the parents (which can be found using dynamic
programming in polynomial time). Then elements not belonging to LCS
are swapped in the following way. The first element of the parent 2 which
is not present in the longest common subsequence is copied at the first
available place in the child 1 and the element available at that position in
the parent 1 is copied at the first available position in child 2. This
procedure is continued to get the two children.

In addition, to crossover, mutation operators are implemented in GA
approaches. Mutation is a way of enlarging the search space. It acts to prevent
the selection and crossover from focusing on a narrow area of the search space
or from the GA getting stuck in a local optimum. For each child obtained from
crossover, the mutation operator is applied independently with a small probabil-
ity, called mutation probability. A number of classical re-ordering operators exist
and have been successfully implemented in other solution techniques such as SA
and TS, as we discussed some of them in SA section. They also can and have
already been used as mutation operators in GA approaches. Some of the most
famous of them are as follows (we reviewed a more complete list of them in the
SA section):

. Exchange/swap: two distinct elements are randomly selected and exchanged.

. Reversion: reverse a chosen subsequence at the sequence.

. Transport: choose a subsequence and insert it somewhere else in the
sequence.

. Insert: choose an element and then insert somewhere else after removing that.

Figure 2. MPX algorithm.
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The genetic approach and its implementation for a flowshop problem were discussed
in this section. Moreover, figure 3 shows the GA algorithm in a general manner,
which can be used with described details.

4.3 Tabu search approach

The tabu search procedure were proposed and discussed by Glover (1986, 1989),
Hansen (1986), Glover et al. (1993) and Glover and Laguna (1997). This metaheur-
istic approach, which has been applied to solve different combinatorial optimization
problems, starts with an initial solution and then applies a move mechanism to
search the neighbourhood of the current solution to choose the most appropriate
one. A neighbour (a corresponding move of current solution) is admissible if it is not
tabu or if an aspiration criterion (such as allowing all moves that lead to a neighbour
with better objective function than encountered so far) is fulfilled. To use the infor-
mation about search history, selected moves are stored in a data structure called tabu
list. This list contains l elements at a time and once a move is entered the oldest one is
deleted, i.e. the selected move is put in the tabu list and remains there for the next
l iterations. This parameter, l, is called tabu list size. To determine this parameter,
there are currently almost three alternatives: to determine and set constant
value, choose randomly from a given range and dynamically changing through
certain adjustments. Despite the simplicity of TS, it is still an art defining neighbour-
hood, searching among neighbours, setting tabu list size etc. Construction of such
components influences the algorithm performance, speed of convergence, running
time, etc.

Several TS-based approaches have been proposed by different researchers for a
flowshop problem, including Taillard (1990), Reeves (1993), Mocellin (1995),

Figure 3. General GA procedure.
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Nowicki and Smutnicki (1996), Ben-Daya and Al-Fawzan (1998), Moccellin and dos
Santos (2000), and the famous SPIRIT algorithm proposed by Widmer and Hertz
(1989). Nowicki and Smutnicki (1996) used block properties to explore different
sequences that ensure that a considerable number of moves cannot be effective
and therefore should be ignored. Ben-Daya and Al-Fawzan (1998) implemented a
tabu search algorithm with some extra features such as intensification and diversi-
fication schemes that provide better moves in the tabu search process. The algorithm
proposed provides similar results as the TS of Taillard (1990) and slightly better
results than the SA of Ogbu and Smith (1990). Moccellin and dos Santos (2000)
presented a hybrid tabu search-simulated annealing heuristic that is compared with
simple tabu search and simple simulated annealing implementations from the same
authors, showing advantages for the hybrid approach.

Implementing block properties, Solimanpur et al. (2003) proposed a neuro-tabu
search, and Grabowski and Wodecki (2004) a fast tabu search approach, both for
permutation flowshop problem with makespan criterion. Here, we briefly overview
some definitions and properties.

As given before, it is well known in the literature that cmax(�), i.e. the makespan
of the processing order given by �, can be found by:

cmaxð�Þ ¼ max
1�t1�t2�����tm�1�n

Xt1
j¼1

p�ðjÞ1 þ
Xt2
j¼t1

p�ðjÞ2 þ � � � þ
Xn
j¼tm�1

p�ðjÞm

 !

where �( j) is the jth element of permutation �. In other words, a makespan asso-
ciated with � can be considered as the longest (critical) path from node (1, 1) to node
(m, n) in a grid graph such as given in figure 4. Each path in this graph is composed
of horizontal and vertical sub-paths. Each horizontal sub-path is called a block. In
other words, if we consider path u¼ (u1,u2, . . . , um�1) such that:

cmaxð�Þ ¼ cð�, uÞ ¼
Xu1
j¼1

p�ðjÞ1 þ
Xu2
j¼u1

p�ðjÞ2 þ � � � þ
Xn

j¼um�1

p�ðjÞm

then

Bk ¼ �ðuk�1Þ,�ðuk�1 þ 1Þ, . . . ,�ðukÞð Þ

Figure 4. Grid graph of a flowshop scheduling problem with six machines and nine jobs.
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which is a critical path respect to � a sequence of jobs is called kth block in �, which
is dependent on � but for simplicity, it is represented as Bk.

As discussed above, here again we can consider many types of reordering opera-
tors such as exchanging two adjacent or none adjacent jobs or removing a job from
its place in sequence and insert that in another position. Taillard (1990) experimen-
tally and Grabowski (1997, 1982) using some theorems suggested that the latter,
move v¼ (x, y), which is removing job placed at position x and inserting that to
position y, is more efficient and effective than others. Moreover, as the total number
of moves to be evaluated in each iteration is (N�1)2 (and high for large problems), to
reduce the number of moves some reduction policies based on block properties and
observations can be used. For example, an elementary property and corollary
(Grabowski 1979, 1982) roughly speaking, shows that moving jobs in blocks, with
the discussed move operators cannot make a better makespan. Consequently,
they are not interesting moves and the number of moves can be reduced. Also,
experimental findings of Nowicki and Smutnicki (1996) showed that few insertions
in the adjacent blocks can be more promising than other positions, which can be
implemented for further reduction of moves such as what Solimanpur et al. (2003)
has used in their neuro-tabu search heuristic for a flowshop problem. Additionally,
for instance, Grabowski and Wodecki (2003), to reduce further computational
requirements, proposed to use lower bounds on the makespan instead of computing
the makespan, for selecting the best solution to construct a very fast tabu search
algorithm for a flowshop problem with makespan criterion.

This section discussed tabu search approaches for a flowshop problem and briefly
described some reduction properties. Moreover, figure 5 shows a very generic tabu
search heuristic for a given starting solution S and a tabu criterion that is represented
by the object tabu memory.

4.4 Ant colony approach

The ant colony system (ACS) first proposed by Dorigo and Gambardella (1977) is
one of the most recent and hopeful metaheuristics for combinatorial optimization
problems. Ant colony optimization (ACO) simulates the collective foraging habits of
ants, venturing out for food and bringing it back to the nest. Real ants are capable of
finding the shortest path from a food source to their nest without using visual cues as

Figure 5. Generic Tabu Search(TS) heuristic.
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they have poor vision. They communicate information concerning food sources via
an aromatic essence. This chemical substance deposited by ants as they travel is
called a pheromone. A greater amount of pheromone on the path gives an ant a
stronger stimulation and thus a higher probability to follow it. They essentially move
randomly, but when they encounter a pheromone trail, they decide (which is depen-
dent on the amount of pheromone on the potential path) whether or not to follow it,
and if they do so, they deposit their own pheromone on the trail, which reinforces the
path. Since ants passing through a food source by a shorter path will come back to
the nest sooner than ants via longer paths, the shorter path will have a higher traffic
density and therefore will make the quantity of pheromone laid down on the shorter
path grow faster. Moreover, with time, the pheromone evaporates and as the ants
taking the shorter path will return to nest first with food, the shorter path has the
most pheromone. Consequently, the shorter path becomes a more attractive alter-
native for other ants. However, there is always a probability that an ant will not
follow a well-marked pheromone trail. This probability (although perhaps small)
allows for exploration of other trails.

The described foraging behaviour of real ant colonies can be used to solve
combinatorial optimization problems by simulation: The objective value corre-
sponding to the quality of the food source, artificial ants searching the solution
space simulating real ants searching their environment, and an adaptive memory
corresponding to the pheromone trail. In addition, artificial ants are equipped with a
local heuristic function to guide their search through the set of feasible solutions.

ACO has been applied to solve different types of combinatorial optimization
problems including the TSP (Dorigo and Gambardella 1997), QAP (Quadratic
Assignment Problem) (Gambardella et al. 1999, Solimanpur et al. 2003), the
Scheduling Problem (Colorni et al. 1994), VRP (Vehicle Routing Problem)
(Bullnheimer and Hartt 1999), the graph colouring problem (Costa and Hertz
1997), the Partitioning Problem (Kuntz et al. 1994, 1997) and the telecommunica-
tions net works problem (Schoorderwoerd et al. 1997).

There are a few research of implementing ACO for flowshop problem. T’kindt
et al. (2003) proposed an ACO algorithm to solve a two-machine bicriteria flowshop
problem. They proposed their algorithm to minimize total completion time.
Rajendran and Ziegler (2004) considered the problem of scheduling in permutation
flowshops with the objective of minimizing the makespan, followed by the consid-
eration of minimization of total flow time of jobs. They proposed two ant colony
optimization algorithms. The first algorithm extends the ideas of the ant colony
algorithm by Stützle’s so-called max–min ant system (MMAS), by incorporating
the summation rule suggested by Merkle and Middendorf (2000) and a newly pro-
posed local search technique. The first papers of applying ACS for the n/m/p/cmax or
equivalently F/prmu/cmax (the problem by which we also discussed other approaches)
was done by Stützle (1998) and Ying and Liao (2003). The latter’s computational
experiments, which are conducted on the well-known benchmark problem set of
Taillard (1993), showed that the ACS approach is an effective metaheuristic for
this problem. Hereby, we briefly discuss the ACS approach for n/m/p/cmax problem
based on this paper.

First, we describe the representation of permutation flowshop problem with
makespan criterion in ACS. This problem can be represented in ACS by a disjunctive
graph such as G¼ (O,C,D), where O is a set of nodes, C is a set of conjunctive
directed (solid) arcs and D is a set of disjunctive undirected (broken) arcs.
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The set O stands for all of the processing operations Oij acted upon the n jobs, C

corresponds to the precedence relationships between the processing operations of a

single job and D is the machine constraint of operations belonging to different jobs.

In addition, there are a nest N and a food source F, which are dummy nodes. Node

N has conjunctive directed arcs emanating to the first operations of the n jobs, and F

has conjunctive directed arcs coming from all the final operations. We have therefore

(nmþ 2) nodes, where all the nodes of the same machine are pairwise connected in

both directions.

Figure 6 shows an instance of 3/4/p/cmax (Ying and Liao 2003). The disjunctive

undirected arcs D from m cliques, one for each machine, can determine the proces-

sing order of operation on the machine; and while in permutation problems all jobs

have the same ordering sequence on each machine and it is enough to find the first

clique’s sequence.

In an ACS approach, first a set of artificial ants is initially positioned on starting

nodes according to some initialization rule (e.g. randomly). Each ant constructs a

tour that is a feasible solution to the problem (n/m/p/cmax). This is done by repeat-

edly applying a stochastic greedy rule, which is called the state transition rule.

According to what Dorigo and Gambadella (1997) proposed and Ying and Liao

(2003) used, we describe this rule. When building a tour in ACS, an ant k at the

current position of node i chooses the next node j to move to by applying the state

transition rule given by the following equation:

j ¼
argmaxf½�ði

u2SkðiÞ

, uÞ�½�ði, uÞ��g if q � q0

J otherwise

(
: ð1Þ

where �(i, u) is the pheromone trail of edge (i, u), the heuristic desirability �(i, u)¼ 1/

�(i, u) is the inverse of the length from node i to node u(�(i, u)), Sk(i) is the set of nodes

that remain to be visited by ant k positioned on node i (to make the solution

feasible). In addition, � is a parameter that determines the relative importance of

pheromone versus distance (�>0) and is a random number uniformly distributed in

(0, 1), and q0 is a parameter (0� q0� 1) which determines the relative importance of

exploitation versus exploration. In addition, J is a random variable that gives the

probability with which ant k in node i chooses to move to node j that is selected

Figure 6. An instance of 3/4/P/cmax. Legend: (� � �) arcs for machine 1, (- - -) arcs for machine
2, (- � -) arcs for machine 3, and (- � � -) arcs for machine 4.
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according to the probability distribution, called a random-proportional rule, given in
the following equation:

pkði, jÞ ¼
½�ði, jÞ�½�ði, jÞ��P

u2SkðiÞ
½�ði, uÞ�½�ði, uÞ��

if j 2 SkðiÞ

0 otherwise

(
ð2Þ

When building their tours, the chosen edges are guided by both heuristic information
and pheromone information. The state transition rule resulting from equations (1)
and (2) favour the choice of nodes connected by shorter edges with a greater amount
of pheromone. Every time an ant in node i has to choose a node j to move to, it
samples a random number q. If q� q0, then the best edge (according to equation (1))
is chosen (exploitation), otherwise an edge is chosen according to equation (2)
(biased exploration).

With revising the slope index of Palmer’s idea (described in section 3.1), Ying
and Liao (2003) define the length between node i and node u of the first clique by:

�ði, uÞ ¼ 1=�ði, uÞ

where

�ði, uÞ ¼ ðm� 1Þpu,m þ ðm� 3Þpu,m�1 þ � � � � ðm� 3Þpu, 2 � ðm� 1Þpu, 1

�min
u
f�ði, uÞg þ 1 ði 6¼ uÞ:

While constructing its tour, an ant also updates the amount of pheromone on visited
edge by applying the local updating rule as follows:

�ði, jÞ :¼ ð1� �Þ�ði, jÞ þ ��0

where �0 is the initial pheromone level and 0<�<1 is the pheromone evaporating
parameter. The effect of local updating rule is to make the desirability of edges
change dynamically to shuffle the tour. If ants explore different paths, then there
is a higher probability that one of them will find an improving solution than they all
search in a narrow neighbourhood of the previous best tour. Every time an ant
constructs a path, the local updating rule will make its visit edges’ pheromone
diminish and become less attractive. Hence, the nodes in one ant’s tour will be
chosen with a lower probability in building other ants’ tours. Consequently, ants
will favour the exploration of edges not yet visited and prevent converging to a
common path.

Finally, once all ants have terminated their tours, pheromone trails on the edges
are modified again by applying the global updating rule. To make the search move
directed, this rule is intended to provide a greater amount of pheromone to shorter
tours and reinforce them. Therefore, only the globally best ant that found the best
solution (i.e. the shortest best) up to current iterations of the algorithm is permitted
to deposit pheromone. The pheromone level can be modified by:

�ði, jÞ :¼ ð1� �Þ�ði, jÞ þ ���ði, jÞ, ð3Þ

where

��ði, jÞ ¼
ðLgbÞ

�1 if ði, jÞ 2 global best tour
0 otherwise

�
ð4Þ

In the equation (3), �(0<�<1) is the pheromone evaporating parameter. Moreover,
in equation (4), Lgb is the length of the globally best tour found up to the current
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iteration. Thus, equation (3) modifies the pheromone level to make search move
directed by reinforcing shorter tours.

This section considered the most recent metaheuristic method, the ACS
approach, for solving the flowshop permutation problem with makespan criterion.
Figure 7 shows the generic ACS algorithm, which can be applied with described
details.

5. Conclusions and future research

In this paper, we reviewed contributions in solving flowshop problem. We mainly
considered flowshop problem with makespan criterion and surveyed some exact
methods, constructive heuristics and developed improving metaheuristic and evolu-
tionary approaches as well as some well-known prosperities and rules for this
problem. In our survey, we considered much research from the early paper of
Johnson (1954) to recent contributions of 2003 in ACS, TS, GA, etc. approaches.

In each part (especially in section 4), we tried to give a brief literature review by
noting contributions and gave a glimpse of that approach before discussing the
implementation for a flowshop problem. While some scheduling techniques have
given clues for later research, in sections 2–4, unlike many other surveys, we also
covered details of scheduling techniques as well as noting the contributions in that
field. Moreover, section 1 gave a complete literature review of flowshop-related
scheduling problems (with different assumptions) and contributions in solving
such other aspects as well.

This paper can be used as a reference of past contributions (particularly in n/m/p/
cmax or equivalently F/prmu/cmax), for future research needs of improving and devel-
oping better approaches (such as improving operators and developing stronger prop-
erties and faster algorithms) to flowshop-related scheduling problems. Future
research may also focus on creating and developing new ideas of implementing
the discussed approaches for a flowshop problem as applied to the recent needs of
real-world applications—such as web servers and e-commerce needs, IT-based
requirement, Virtual Factories (VF) needs, Lot sizing and inventory control,
Supply Chain Management (SCM), Assembly Line Balancing (ALB), Robotic
Flowshop Scheduling (RFS) and other related emerging trends—in industries or

Figure 7. The ACS algorithm.
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even social needs (such as traffic applications) rather than theoretical aspects of
flowshop-related scheduling problems. These new implementations may occur by
recognizing similar characteristics of above-mentioned situations and flowshop-
related scheduling problems.
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