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Abstract. A main research goal in various studies is to use an observational data set and pro
vide a new set of counterfactual guidelines that can yield causal improvements. Dynamic 
Treatment Regimes (DTRs) are widely studied to formalize this process and enable researchers 
to find guidelines that are both personalized and dynamic. However, available methods in 
finding optimal DTRs often rely on assumptions that are violated in real-world applications 
(e.g., medical decision making or public policy), especially when (a) the existence of unob
served confounders cannot be ignored, and (b) the unobserved confounders are time varying 
(e.g., affected by previous actions). When such assumptions are violated, one often faces ambi
guity regarding the underlying causal model that is needed to be assumed to obtain an optimal 
DTR. This ambiguity is inevitable because the dynamics of unobserved confounders and their 
causal impact on the observed part of the data cannot be understood from the observed data. 
Motivated by a case study of finding superior treatment regimes for patients who underwent 
transplantation in our partner hospital (Mayo Clinic) and faced a medical condition known as 
new-onset diabetes after transplantation, we extend DTRs to a new class termed Ambiguous 
Dynamic Treatment Regimes (ADTRs), in which the causal impact of treatment regimes is eval
uated based on a “cloud” of potential causal models. We then connect ADTRs to Ambiguous 
Partially Observable Markov Decision Processes (APOMDPs) proposed by Saghafian (2018), 
and consider unobserved confounders as latent variables but with ambiguous dynamics and 
causal effects on observed variables. Using this connection, we develop two reinforcement learn
ing methods termed Direct Augmented V-Learning (DAV-Learning) and Safe Augmented V- 
Learning (SAV-Learning), which enable using the observed data to effectively learn an optimal 
treatment regime. We establish theoretical results for these learning methods, including (weak) 
consistency and asymptotic normality. We further evaluate the performance of these learning 
methods both in our case study (using clinical data) and in simulation experiments (using syn
thetic data). We find promising results for our proposed approaches, showing that they perform 
well even compared with an imaginary oracle who knows both the true causal model (of the 
data-generating process) and the optimal regime under that model. Finally, we highlight that 
our approach enables a two-way personalization; obtained treatment regimes can be personalized 
based on both patients’ characteristics and physicians’ preferences.
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1. Introduction
In a variety of applications in public policy, govern
ance, medicine, economics, education, energy, and 
e-commerce, a main goal is to make better decisions that 
are both personalized and dynamic. This requires learning 
from a data set which actions to choose and when to 
apply them given the dynamic conditions of each subject 
(e.g., an individual). One of the main factors that makes 
this learning process challenging is that one needs to esti
mate the impact of an alternative sequence of actions that 
could have been used in order to improve outcomes. This 
requires causal reasoning, as the estimand—the effect of an 

alternative sequence of actions—is a counterfactual quan
tity (see, e.g., Murphy et al. 2001, Murphy 2003, Nam
koong et al. 2020).

Dynamic Treatment Regimes (DTRs) have been widely 
studied for this goal, enabling the finding of effective 
alternative policies from observational data (Robins 1986, 
1997, 2004; Murphy et al. 2001; Murphy 2003; Zhao et al. 
2015; Wang et al. 2018; Zhang et al. 2018; Kosorok and 
Laber 2019; Tsiatis et al. 2019; Luckett et al. 2020; Leqi 
and Kennedy 2021; Nie et al. 2021). A DTR is, in essence, 
a set of rules that prescribe an individualized sequence 
of actions by mapping a subject’s history to a series of 
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recommended treatments (Murphy 2003, Chakraborty 
and Murphy 2014, Tsiatis et al. 2019, Luckett et al. 2020, 
Xu et al. 2020).

Using available results in finding effective DTRs, 
however, requires making strong assumptions that 
might not hold in real-world applications, especially 
when the data in hand are observational. Notably, one 
needs to assume sequential ignorability1 (Robins 1986, 
1997, 2004; Murphy et al. 2001; Murphy 2003), meaning 
that the data are rich enough, and hence, unobserved/ 
latent/unmeasured confounding variables either do not 
exist or their effects can be ignored. When using obser
vational data sets, this assumption is often violated in 
many real-world applications. Even in some secondary 
analyses of experimental data sets (e.g., those obtained 
under microrandomized trials in some mobile health 
studies where the goal is to study the effect of users fol
lowing a treatment regime and not just being assigned 
to it), various practical challenges (e.g., user habituation, 
user engagement, and/or user compliance) may lead to 
unobserved confounding (see, e.g., Saghafian and Mur
phy 2021 for some discussions on scientific challenges in 
mobile health applications). Furthermore, unobserved 
confounders are time-varying in most applications: they 
are themselves affected by the previous actions taken. 
Adjusting for them, thus, is a perplexing task, making 
standard approaches for adjustment of confounding 
erroneous (see, e.g., Robins et al. 2000).

Correctly adjusting for unobserved time-varying con
founding can be managed if one assumes a specific 
causal model for the data-generating process.2 Assum
ing such a model can allow for estimating a distribution 
for potential trajectories under any alternative decision- 
making policy (i.e., treatment regime), which is central 
to estimating its effect. However, because time-varying 
confounders are often unobserved, estimating and ass
uming any such model is subject to significant miss
pecifications (also known as model ambiguity). We 
address this challenge by extending the analyses of 
DTRs to a new class termed Ambiguous Dynamic Treat
ment Regimes (ADTRs), in which the impact of any 
sequence of actions is evaluated based on a “cloud” of 
potential data-generating models as opposed to a single 
one. Specifically, we allow for nonprobabilistic ambigu
ity (also known as Knightian uncertainty) about the true 
data-generating model, while (similar to the literature 
on DTRs) we assume that under any given potential 
model, there is a certain probabilistic understanding of 
how data are generated (see, e.g., Chapter 11 of Manski 
2007 and Saghafian 2018 for further discussions, Stoy 
2011 for an axiomatic treatment of statistical decision- 
making under these conditions, and Saghafian and 
Tomlin 2016 for an information entropy view of data- 
driven decision-making under ambiguity).3 This allows 
for (a) directly taking into account potential model mis
specifications when estimating causal impacts, and (b) 

distinguishing between ambiguity (lack of knowledge 
about the true model) and risk (probabilistic conse
quences of decisions under a known model).4

In extending DRTs to ADTRs, we are particularly 
motivated by our various collaborations with our part
ner hospital, the Mayo Clinic. In various studies (see, 
e.g., Boloori et al. 2015, 2020; Munshi et al. 2020a, b, 
2021), we have collected data sets from our partner hos
pital and have examined clinical decisions for patients 
who undergo a solid organ transplantation and develop 
what is known as New Onset Diabetes After Transplanta
tion (NODAT). In practice, physicians often use an 
intensive amount of an immunosuppressive drug (e.g., 
tacrolimus) to reduce the risk of organ rejection post- 
transplant (see, e.g., Boloori et al. 2015, 2020). Because of 
a well-established effect known as the diabetogenic 
effect, this can increase the risk of NODAT, which 
prompts physicians to use a glucose control drug (e.g., 
insulin). Learning better ways to prescribe these drugs 
(e.g., tacrolimus and insulin) in both a personalized and 
dynamic way to jointly control risks of NODAT and 
organ rejection is not an easy endeavor; the available 
data sets are only observational, the main health states 
are hidden (see, e.g., Boloori et al. 2020), and the exis
tence of unobserved confounders that are time varying 
disallows using existing methods.

Our approach in extending DTRs to ADTRs and ana
lyzing them involves the following three main steps. (1) 
We make use of a utility function that is appropriate 
under model ambiguity (instead of the expected value of 
outcomes widely used in the literature). (2) We general
ize traditional importance sampling methods to accom
modate model ambiguity. (3) We connect ADTRs to 
Ambiguous Partially Observable Markov Decision Processes 
(APOMDPs) proposed by Saghafian (2018) by showing 
that ADTRs can be studied via APOMDPs, which in turn, 
enables us to develop reinforcement learning (RL) algo
rithms capable of learning optimal treatment regimes 
from the observed data in effective ways.

The utility function we use is based on a generaliza
tion of the traditional Maximin Expected Utility (MEU) 
theory (also known as Wald’s or robust optimization cri
terion). The MEU theory assumes that outcomes should 
be obtained by maximizing utility with respect to the 
worst possible member of the ambiguity set (cloud of 
potential causal models in our setting). In most applica
tions, using the MEU approach yields overly conserva
tive decisions (for related discussions, see, e.g., Saghafian 
2018 and the references therein), and furthermore, it does 
not allow for representing meaningful human choices, 
such as those of ambiguity-seeking individuals estab
lished in some behavioral studies (see, e.g., Heath and 
Tversky 1991, Bhidé 2000, Ahn et al. 2014). This was also 
recognized in the seminal work of Savage (1951), who 
wrote that this criterion is “ultrapessimisitic” and “can 
lead to absurd conclusion[s].” The generalization we use 
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is known as α-Maximin Expected Utility (α-MEU), which 
allows for both optimistic and pessimistic views of the 
world (Hurwicz 1951a, b; Arrow and Hurwicz 1977; 
Ghiradato et al. 2004; Saghafian 2018). Unlike studies 
that use the MEU criterion, using the α-MEU criterion 
avoids overly conservative decisions by allowing for a 
controllable pessimism level (denoted by the parameter α) 
that can take values in [0, 1].

Within the utility theory literature, early studies (see, 
e.g., Hurwicz 1951a, b; Arrow and Hurwicz 1977) pro
vided four axioms that a choice operator must satisfy. 
These axioms allowed such studies to show that, under 
complete ignorance, one can focus merely on two 
extreme cases: the best-case and the worst-case. Later 
studies (see, e.g., Marinacci 2002, Ghiradato et al. 2004) 
further axiomatized preferences under the α-MEU crite
rion and also highlighted another importance of using 
the α-MEU criterion in decision making: it allows for 
differentiating between the inherent ambiguity (a prop
erty related to the true causal model) and ambiguity atti
tude (a property related to the decision maker). In our 
study, using the α-MEU criterion not only allows us to 
provide an alternative for the expectation operator— 
the conventional measure of performance used in the 
literature surrounding DTRs5—but also allows for find
ing treatment regimes that are tailored to the prefer
ences and attitudes of the decision-maker.

Importantly, this means that our work enables a 
two-way personalization; treatment regimes can be per
sonalized based on both the subject’s and the decision- 
maker’s characteristics. This is important in various 
domains, such as medicine, where not only the treat
ment plan needs to be customized for each patient but 
also, the physician in charge should be given the abil
ity to include his or her preferences in providing the 
best course of treatment. Incorporating a physician’s 
preferences is important for many reasons, including 
the fact that several behavioral challenges often make 
it difficult for the physician to follow treatment deci
sions that are personalized to the patient but not 
him or her (see, e.g., Frank and Zeckhauser 2007). When 
using our framework, the physician’s preferences in 
dealing with ambiguous outcomes can be incorporated 
in various ways. For example, questionnaires similar 
to those used in preference elicitation methods6 can be 
designed to first understand the preferences and atti
tudes of the physician toward ambiguous outcomes, 
thereby obtaining a small interval (if not a specific value) 
for α. Using these values of α, a small set of correspond
ing optimal treatment regimes can be presented to the 
physician for further consideration. Alternatively, when 
it is crucial for the physician to follow the treatment 
regime that provides the maximum robustness and/or 
efficacy, one can use our framework to find the best treat
ment regime across all values of α in [0, 1]. Finally, when 
other factors besides efficacy or robustness (e.g., cost, 

availability, or patient consent) need to be considered, 
one can simply present the set of all treatment regimes 
that are optimal as α ranges in [0, 1], allowing the pro
vider to inspect a broader set of treatment regimes.

We start our analyses by showing how a generaliza
tion of importance sampling methods (also known as 
inverse probability weighting) widely used in the litera
ture (see, e.g., Precup et al. 2000, Robins et al. 2000, Mur
phy 2005, Tsiatis et al. 2019) can be utilized to find optimal 
regimes for ADTRs without requiring the dynamics of 
observed or unobserved variables to be memoryless (i.e., 
satisfy the Markov property).7 Specifically, we start by 
generalizing importance sampling methods by allowing 
sampling across a cloud of potential data-generating mod
els (also known as ambiguity set). We show that under 
some conditions, the resulted method, which we term 
Generalized Sequential Importance Sampling (GSIS), provides 
a baseline for estimating the causal impact of any dynamic 
treatment regime, and hence, finding the optimal one.

When the dynamics of variables satisfy the Markov 
property, we connect ADTRs to APOMDPs recently 
introduced by Saghafian (2018). APOMDPs generalize 
traditional Partially Observable Mark Decision Processes 
(POMDPs) by allowing model ambiguity. APOMDPs, 
however, were proposed without any causal inference 
application in mind. In this paper, for the first time, we 
make use of them through a causal inference lens. Nota
bly, by connecting ADTRs to APOMDPs, we consider 
time-varying unobserved confounders as dynamic latent 
states, and form dynamic belief distributions over them, 
while allowing ambiguity regarding the true (data- 
generating) causal model.8 We then make use of known 
structural results for APODMPs (e.g., piecewise linearity 
and continuity of the value function) established in the lit
erature (Saghafian 2018) and develop two RL approaches 
that can provide effective treatment regimes. In develop
ing these RL approaches, as is common, we view the 
problem of finding an effective treatment regime as an 
off-policy RL problem. However, in contrast to main RL 
methods, such as Q-Learning (an approximate dynamic 
programming approach that uses regression to learn the 
“quality” function) and A-Learning (which tries to learn 
the “advantage” function), our approaches try to learn 
the value function directly. Thus, roughly speaking they 
are within the V-Learning methods (see, e.g., Luckett et al. 
2020, Xu et al. 2020). We term our proposed learning algo
rithms Direct Augmented V-Learning (DAV-Learning) 
and Safe Augmented V-Learning (SAV-Learning) as they 
augment the V-Learning methods by (a) making use of 
the structural properties of the value function, and (b) 
incorporating model ambiguity (in a direct and safe way, 
respectively).9

For our proposed learning approaches, we establish 
important theoretical results, including weak consis
tency and asymptotic normality of both the estimated 
optimal treatment regime and the associate overall gain. 

Saghafian: Ambiguous Dynamic Treatment Regimes: A Reinforcement Learning Approach 
Management Science, Articles in Advance, pp. 1–24, © 2023 INFORMS 3 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

10
3.

14
7.

14
9]

 o
n 

04
 O

ct
ob

er
 2

02
3,

 a
t 0

5:
08

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



To establish these results, we require specific but relatively 
common “regularity” conditions, including conditions 
on (a) basic “complexity” properties of the class of 
allowable policies (measured by entropy-based ver
sions of the Donsker theorems with bracketing inte
grals) and (b) absolute regularity of the underlying 
empirical processes.

We also examine the performance of our proposed 
approaches by applying them to a clinical data set of 
over 63,000 observations made of patients who under
went kidney transplantation in our partner hospital 
and faced NODAT. We find promising results, indicat
ing that using DAV-Learning and SAV-Learning 
yields notable improvements over the treatment regime 
used in practice; depending on the decision maker’s 
pessimism level, these improvements are in the ranges 
(10%, 42%) and (10%, 32%) for DAV-Learning and 
SAV-Learning, respectively. Furthermore, we observe 
that the performance of the SAV-Learning regime is 
much more robust to the value of the pessimism level 
(parameter α) than that of DAV-Learning, and hence, 
a decision-maker who uses SAV-Learning does not 
need to be worried about the value of α he or she uses 
in obtaining an optimal treatment regime. We further 
investigate the performance of our proposed approaches 
using simulations experiments (synthetic data). Our re
sults show that DAV-Learning and SAV-Learning 
can improve the observed regime by an amount that 
ranges in (1%, 37%) and (1%, 8%), respectively. Further
more, we make use of our simulation experiments to 
quantify the robustness of our approaches to model 
ambiguity, and find that DAV-Learning and the SAV- 
Learning are able to strongly shield against model 
ambiguity; the gain loss under these approaches com
pared with an imaginary oracle who knows both the 
true data-generating model and the optimal treatment 
regime under that model is very low (below 0.6%), 
regardless of the value of α. Thus, a decision-maker who 
is facing model ambiguity can make use of our proposed 
approaches and obtain a treatment policy that has a sim
ilar performance to that of an imaginary decision-maker 
who knows both the true data-generating model and the 
optimal policy under that model. Finally, our results 
show that the gain loss compared with such an imagi
nary decision-maker has a U-shaped curve in the pessi
mism level, and hence, the minimum losses for both 
DAV-Learning and SAV-Learning are obtained at a 
midvalue of α. This implies that (a) using extreme cases 
of α� 0 (a maximax view) or α� 1 (a maximin view) is 
almost never robustness -maximizing, and (b) by viewing 
α as a tuning parameter (when needed) in our proposed 
approaches, one can obtain a treatment regime that per
forms best across all possible pessimism levels.

In closing this section, we note that our work in incor
porating model ambiguity a priori in the analyses not 
only provides robustness to potential misspecifications 

but more broadly, can bridge the gap between two phil
osophical views of decision-making using causal infer
ence: model based and model free. The former postulates 
that any sensible causal reasoning for decision-making 
needs to be based on a specific model and set of assump
tions in addition to data, whereas the latter advocates 
that it needs to rely only on data. We hope that our 
work in taking a middle ground and considering a 
cloud of models can serve as a step for future research in 
trying to further bridge the gap between the two. The 
importance of doing so has its roots in seminal work in 
statistical decision theory (see, e.g., Wald 1939, 1945, 
1950) but has also been highlighted in various more 
recent studies. For example, Manski (2021) emphasizes 
that “models can at most approximate actualities” and 
highlights that statistical inference for decision-making 
needs to be performed across all feasible models. Simi
larly, referring to the famous quote from Box (1979), 
Watson and Holmes (2016) state that “statisticians are 
taught from an early stage that essentially all models are 
wrong, but some are useful,” and stress that decision- 
making needs to rely on a set of models that are misspe
cified (hence, “wrong”) but useful in that they can be 
“helpful for aiding actions (taking decisions).”

2. The Framework
Throughout the paper, the notation “¢” is used to dif
ferentiate between definitions and equations. For a set 
T¢{1, 2, 3, : : : , T}, the notations (Xt)t∈T and T≤t are 
used to represent the vector (X1, X2, : : : , XT) and the 
set T \ {t+ 1, t+ 2, : : : , T}, respectively. All vectors are 
considered to be in the column format (e.g., (Xt)t∈T is 
|T | × 1). For any finite set Ξ ⊂ R, we let ∆Ξ denote the 
probability simplex induced by Ξ. The notations →

p 
and 

→
d denote convergence in probability and distribution, 

respectively. The set ( represents the interval [0, 1].
We let the observed data be a collection of n ∈ N i.i.d. 

realizations (called trajectories) of the vector of variables 
(Ot, At)t∈T. For a realized trajectory, (ot, at)t∈T, ot ∈ O is 
the observation made about a subject (e.g., a patient’s 
observed covariates or an observed health state serving 
as a summary of them) at time t ∈T, and At ∈A 

denotes the action/treatment assigned at time t ∈T, 
where T is the set of time periods (e.g., patients’ visits/ 
follow-ups).10 For example, in our study of NODAT 
patients, observations made about each patient (Ot) 
include various test results, demographic information, 
and other observed risk factors, such as diabetes history, 
body mass index, blood pressure, triglyceride, uric acid, 
and lipoprotein information (see Table 1). Actions taken 
(At) include low-dose (nonaggressive) or high-dose 
(aggressive) tacrolimus prescriptions as well as infor
mation on whether insulin has been used (see Table 3). 
Finally, T¢{1, 2, 3, : : : , 12} because patient follow-ups 
are monthly for a year after transplantation.
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Besides the observed data, there are often unobserved 
variables that might have affected what is observed in 
the data. Let St denote a summary of them at time t, and 
let S be the support of St. For example, in mHealth 
applications, St might include information relating to 
the patient’s habituation level (see, e.g., Saghafian and 
Murphy 2021) and/or patient true health state, both 
of which are often unobserved. In our case study of 
NODAT patients, St is a nine-level variable that sum
marizes the unobserved health state of the patient in 
terms of both transplantation and diabetes conditions 
(see Table 2). We denote the observable history up to 
each time t ∈T by Ho

t ¢(O1, A1, O2, A2, : : : , Ot) and let 
ho

t be the support of Ho
t . Similarly, we denote the (par

tially) unobservable history up to each time t ∈T by 
Hu

t ¢(S1, O1, A1, S2, O2, A2, : : : , St, Ot) and let hu
t be the 

support of Hu
t . It is important to note that, in general, 

both variables St and Ot depend on the previous treat
ments. However, for notational simplicity, we suppress 
the dependency of St and Ot on the vector (at)t∈T≤t�1

¢ 

(a1, a2, : : : , at�1).
We assume the latent state summaries (St)t∈T are 

such that the immediate gain in each decision epoch 
depends on the history only through them. This can 
always be achieved with appropriate definition of vari
ables (St)t∈T (see, e.g., Xu et al. 2020). For example, in 
our case study, the immediate gains are based on prede
fined quality of life (QoL) scores that depend only on 
patient summaries defined by St (see Table 4). Thus, we 
denote the immediate gain at time t through Gt¢ 

g(St, At) ∈ R, where g is a known function.11 The set of 
all possible immediate gains can be denoted by G¢ 

{ga ∈ R |S | : a ∈A}, where ga¢(g(s, a))s∈S.
A treatment regime (hereafter also “policy” for sim

plicity) l¢(λt)t∈T in this setting is a vector of time- 
dependent mappings from the available history at each 
time t to the probability simplex induced by actions, 
∆A. It defines the probability of assigning each action/ 
treatment at each decision epoch given the available his
tory up to that point. Policies are compared using the 
overall gain they generate. The overall gain of a policy l 
is defined by the discounted sum of immediate gains it 
generates, which we denote by

ΓT(l)¢
X

t∈T
βt�1Gl

t , (1) 

where β ∈ ( \ {1} is a discount factor. Similarly, the 
long-run impact of l can be analyzed using Γ∞(l)¢ 

limT→∞ΓT(l).12 Here, we shall note that Gl
t , and hence, 

ΓT(l) should be viewed with a potential outcomes lens 
(for more discussions, see, e.g., Robins 1986, 1997; Rubin 
1986; Angrist et al. 1996; Murphy et al. 2001); equiva
lently, in the language of do calculus, Gl

t and ΓT(l)
should be viewed as Gt |do(l) and ΓT |do(l), respectively 
(see, e.g., Pearl 2009). In addition to this, which is im
plicit in our notation, our notation also implicitly implies 

consistency,13 which is a standard assumption in the 
causal inference literature with time-varying variables 
(see, e.g., Robins 1997, Murphy et al. 2001) and holds in 
our motivating study of NODAT patients. In settings we 
consider, however, the distribution of ΓT(l) cannot be 
solely identified from the observed data alone. In fact, 
there are often a variety of plausible data-generating 
models all agreeing with the observed part of the data 
but with different implications about the distribution of 
ΓT(l). We let M denote the set of all such models (also 
known as an ambiguity set).14 In this view, each given 
model m ∈M can be viewed as a rule that, given l, 
imposes a specific probability distribution over the full 
history Hu

T. Thus, each given model m ∈M implies a 
distribution for ΓT(l), which we denote by fm ∈^, where 
^¢{fm : m ∈M }.

Finally, because the distribution of ΓT(l) varies across 
the models in M , we define a utility function that allows 
us to compare the performance of different policies. To 
this end, we make use of α-MEU, which is suitable for 
decision-making under ambiguity (see, e.g., Marinacci 
2002, Ghiradato et al. 2004, Saghafian 2018). Specifically, 
by considering Y(l)¢ΓT(l) or Y(l)¢Γ∞(l) as our 
main outcome variable of interest, we make use of

MEUα[Y(l)]¢α inf
f m∈^

Ef m
[Y(l)] + (1� α) sup

f m∈^

Ef m
[Y(l)]

α ∈ ( (2) 

as the utility of Y(l), where α represents the pessimism 
level and Ef m denotes the expectation operator with 
respect to the distribution fm. For example, at α�1 
(100% pessimism level), policies are compared with 
respect to their worst-case performance. At α�0 (0% 
pessimism level), on the other hand, policies are com
pared with respect to their best-case performance. Of 
note, when |M | � 1, MEUα[Y(l)] returns the expected 
value of Y(l), and hence, the utility function in (2) pro
vides a generalization for the traditional expectation 
operator that is widely used in the causal inference 
literature.

We say that the effect of treatment policy l is “α-MEU 
identifiable,” if |MEUα[Y(l)] | <∞ and MEUα[Y(l)]
can be identified given M . Because a main goal is to 
learn the optimal policy, we next define the following 
notion of optimality in ADTRs, which is a generalization 
of the traditional notion of optimality used in analyzing 
DTRs.

Definition 1 (Optimality). Let Λ be the set of all α-MEU 
identifiable policies. We say that a policy l∗ ∈Λ is 
optimal if with Y(l)¢ΓT(l), we have

MEUα[Y(l∗)] ≥MEUα[Y(l)] ∀l ∈Λ: (3) 

Remark 1 (Fairness). When performance is evaluated 
under the traditional expectation operator, it is known 
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that (under some assumptions) the optimal policy 
assigns treatment (when |A | �2) only to those subjects 
who benefit from it: optimizing mean treatment and 
conditional mean treatment are equivalent. However, 
when using some other measures such as median, this 
no longer holds; the treatment decision for a given 
group might depend on outcomes from a different 
group, creating a “across-group fairness” concern (see, 
e.g., Leqi and Kennedy 2021). This concern is relatively 
mitigated when using the notion of optimality defined 
above. This is clear when |M | � 1, because MEUα[Y(l)]
returns the expected value of Y(l). More broadly, it can 
be seen that, under some conditions, the optimal policy 
l∗ ∈Λ defined in Definition 1 also optimizes MEUα 
[Y(l)] after conditioning on subject-specific observed 
variables. For example, if we let m(l∗)¢inff m∈^Ef m

[Y 
(l∗)] and m(l∗)¢supf m∈^ E

f m
[Y(l∗)], assume that both 

of these models are in M , impose similar conditions to 
those needed when evaluating the mean treatment 
effect, and evaluate the conditional MEUα value after 
fixing these models (as the worse-case and best-case 
models, respectively), we can see that l∗ satisfies a ver
sion of “across-group fairness.” Specifically, l∗ treats 
only those subjects who benefit from it in terms of the 
conditional MEUα value, regardless of the outcomes 
of the other subjects. In addition, when needed, one 
can further restrict the set of allowable policies Λ to 
those that satisfy some desirable fairness attributes. 
However, studying fairness and what should be con
sidered as “fair” is outside the scope of this work, 
especially because measuring fairness under ambiguity 
is more complex than that under risk; see the discus
sion in Section 1 that highlights the difference between 
the two as well as more in-depth discussions in prior 
work (see, e.g., Saghafian and Tomlin 2016, Saghafian 
2018). In what follows, we simply focus on data- 
driven ways of finding a policy l∗ ∈Λ that is optimal 
based on Definition 1.

To perform our analyses, it is useful to differentiate 
between the policy under which the data have been 
generated (hereafter, the “behavior policy”) and the pol
icy that we would like to evaluate and recommend 
(hereafter, the “evaluation policy”). The behavior policy 
denoted by lb¢(λb

t )t∈T is a vector of time-dependent 
mappings λb

t : hu
t → ∆A, whereas the evaluation policy 

denoted by le¢(λe
t)t∈T is a vector of time-dependent 

mappings λe
t : ho

t → ∆A. An important difference bet
ween the evaluation and the behavior policies relates to 
a condition known as sequential ignitability15 (see, e.g., 
Robins 1986, 1997, 2004; Murphy et al. 2001; Murphy 
2003), which we define next.

Definition 2 (Sequential Ignorability). For any policy 
l¢ (λt)t∈T, let Ho, m

t (l)¢ (O
m, l
1 , Am, l

1 , Om, l
2 , Am, l

2 , : : : , 
Om, l

t ) denote the observable history up to time t ∈T, 

generated under l and model m ∈M . We say that l 
satisfies sequential ignorability under model m ∈M , 
if for all t ∈T, the action generated by λt is indepen
dent of the collection of potential outcomes (Gm, l′

t , 

Om, l′

t+1 , Gm, l′

t+1 , Om, l′

t+2 , : : : , Gm, l′

T )l′∈Λ conditional on Ho, m
t (l).

In essence, this definition requires, for each time t ∈
T and given Ho, m

t (l), the action generated by λt to 
be independent of (Gm

t , Om
t+1, Gm

t+1, Om
t+2, : : : , Gm

T ) values 
that can be obtained when following any feasible 
sequence of actions (at)t∈T. Both by this definition and 
naturally, any evaluation policy le¢(λe

t)t∈T (where 
λe

t : ho
t → ∆A) satisfies sequential ignorability under 

any model m ∈M , because it is only a function of the 
observed history and possible exogenous randomness 
(it maps ho

t to ∆A by definition). In contrast, a behav
ior policy lb¢(λb

t )t∈T (where λb
t : hu→ ∆A) may or 

may not satisfy this condition, because it might de
pend on unobservable confounders (variables in (St)t∈T 

that affect both the gain and the actions selected by 
lb). In fully randomized experiments (e.g., microrando
mized trials), the behavior policy may satisfy sequential 
ignorability. However, when the data are observational, 
it is often impossible to test whether the behavior policy 
satisfies this assumption, and in addition, it is highly 
likely that this assumption does not hold. Finally, we 
note that although the behavior policy is often known in 
randomized experiments, it might need to be estimated 
when using observational data (unless specific known 
treatment protocols or standards are fully followed).

2.1. Analyzing ADTRs via GSIS
We now show that, under some conditions, an optimal 
policy for an ADRT can be found using a generalized ver
sion of sequential importance sampling, which we term 
Generalized Sequential Importance Sampling (GSIS). 
Although allowing for ambiguity (not risk, which is the 
focus of the existing literature), GSIS assigns weights 
under each model and sequentially adjusts the trajectory 
probabilities that occur under a given evaluation policy 
compared with those observed in the data set. Of note, 
we use GSIS in this section to study ADTRs that do not 
satisfy any Markovian (also known as memoryless) prop
erty regarding the dynamics of the underlying variables. 
In the next section, we show how the analyses of ADTRs 
can be simplified when such dynamics satisfy a Markov
ian structure. Notably, the results presented in this sec
tion provide a building block for the algorithms and the 
theoretical findings established in the next sections.

To present GSIS, we first suppress the dependencies 
to the underlying model by assuming the model is fixed. 
Consider an evaluation policy le, and let Ho

t (l
e) be the 

history that will be observed under le up to time t. Also, 
denote by λe

t(At |Ho
t (l

e)) the probability that action At is 
chosen under le when the observed history is Ho

t (l
e). 

Furthermore, although the behavior policy is not known 
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(e.g., because of its potential dependency on unobserved 
variables), we can observe the marginalized probabilities 
of action selection under the behavior policy, which we 
denote by λb

t (At |Ho
t (l

b)). These allow us to define impor
tance sampling weights

wt(l
e)¢
λe

t(At |Ho
t (l

e))

λb
t (At |Ho

t (l
b))

∀t ∈T: (4) 

Proposition 1 establishes that, under some conditions, the 
optimal policy for an ADTR governed by a set of models 
M can be found via GSIS. Specifically, an MEUα-unbiased 
estimator of ΓT(l

e) is obtained in Proposition 1, where the 
notion of MEUα-unbiased estimation is defined next.

Definition 3 (MEUα Unbiasedness). An estimator Ŷ of 
an outcome variable of interest Y is said to be MEUα unbi
ased if, and only if, MEUα[Ŷ] �MEUα[Y] for any α ∈ (.

To establish an MEUα-unbiased estimator of ΓT(l
e), 

we also need to make sure that the evaluation and the 
behavior policies sufficiently overlap. Specifically, we 
need to ensure that these policies overlap almost 
surely (defined next).

Definition 4 (Almost Sure Overlap). We say that the 
evaluation and the behavior policy almost surely over
lap, if λb

t (at |Ho
t (l

b)) > 0 whenever λe
t(at |Ho

t (l
e)) > 0 a.s. 

over Ho
t (l

b) and Ho
t (l

e) for all t ∈T and at ∈A.
Intuitively, the evaluation and the behavior policy 

need to overlap to ensure that trajectories obtained under 
the behavior policy are to some extent informative about 
the trajectories under the evaluation policy. When the 
evaluation and the behavior policy almost surely over
lap, the importance sampling weights defined in (4) are 
well defined for all t ∈T (except perhaps on histories 
that might happen with probability 0).

Proposition 1 (GSIS). Suppose that the evaluation and 
behavior policies (a) satisfy sequential ignorability under all 
models m ∈M , and (b) almost surely overlap. Then, for 
any α ∈ (, we have

MEUα[ΓT(l
e)] �MEUα ΓT(l

b)
Y

t∈T
wt(l

e)

" #

, (5) 

and hence, Γ̂T(l
e)¢ΓT(l

b)
Q

t∈Twt(l
e) is an MEUα-unbiased 

estimator of ΓT(l
e).

The proof of Proposition 1 is developed by under
standing how the impact of an evaluation policy can be 
first analyzed for any given (a) sequence of actions, and 
(b) model m ∈M under which the data might be gener
ated (see Lemma EC.1 in Online Appendix A).

Of note, Proposition 1 also provides a partial way of 
characterizing the optimal evaluation policy because it 
provides a way of estimating MEUα[ΓT(l

e)] under any 
given evaluation policy. That is, using this proposition 
and optimizing MEUα[ΓT(l

e)] over a given set of poli
cies (which for use in practice, might be restricted to 

those satisfying desirable attributes, such as fairness or 
interpretability) can shed light on the optimal evalua
tion policy. However, Proposition 1 provides only a par
tial way of characterizing the optimal evaluation policy 
because analyzing ADTRs often requires considering a 
behavior policy that might not satisfy sequential ignor
ability (at least under some models in M ). Therefore, 
we next study scenarios in which the behavioral policy 
does not fully satisfy sequential ignorability but satisfies 
it to some extent. This entails limiting the impact of un
observed confounders (which make the probability of 
observing certain trajectories in the observed data biased 
compared with what would have happen if we could 
observe unobservables) on the behavior policy under 
each model. In limiting the impact of unobserved con
founders on the behavior policy, we are mainly moti
vated by extending the analyses of confounding in causal 
inference (see, e.g., Rosenbaum 2002) from a traditional 
setting in which |T | � 1, the treatment variable is binary 
|A | � 2, and there is no model ambiguity, to ADTRs in 
which these restrictions are all relaxed. Two notable chal
lenges in doing so are (1) because future actions depend 
on the history, a confounding decision/treatment in any 
period can make future decisions confounding as well, 
and (2) because the trajectory probabilities depend on the 
underlying model, the impact of unobserved confound
ing depends on the underlying model. We next introduce 
the notion of bounded unobservable confoundedness, which 
we define using the likelihood ratios of treatment pro
pensities (functions ℓ(·) in the following definition). This, 
in turn, allows us to provide a version of GSIS under 
bounded unobservable confoundedness (Proposition 2).

Definition 5 (Bounded Unobservable Confounding). We 
say that the behavioral policy satisfies bounded unob
served confounding (BUC) under a model m ∈M if 
there exist constants ηm

t ∈ [1,∞) such that

(ηm
t )
�1
≤
ℓ(at, a′t, Ho, m

t , Sm
t � s)

ℓ(at, a′t, Ho, m
t , Sm

t � s′)
≤ ηm

t (6) 

a.s. over observable history Ho, m
t , for all t ∈T, at, a′t ∈A, 

s, s′ ∈S(T), where Sm
t ¢(Sm

t )t∈T≤t 
and

ℓ(at, a′t, Ho, m
t , Sm

t � s)¢λ
b
t (at |Ho, m

t , Sm
t � s)

λb
t (a′t |H

o, m
t , Sm

t � s)
:

The definition bounds the impact of the vector of 
the unobservable confounder variables, Sm

t , in each 
period. In Lemma EC.2 (Online Appendix B), we 
show that this definition results in

(ηm
t )
�1
≤
λb

t (at |Hu, m
t )

λb
t (at |Ho, m

t )
≤ ηm

t a:s: (7) 

over Ho, m
t and Hu, m

t � (Ho, m
t , Sm

t ) for all t ∈T and a ∈A. 
Thus, benefiting from the observed history (as opposed 
to the unobserved one) and making use of marginalized 
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propensities λb
t (at |Ho, m

t ) as an estimate of the true 
treatment propensities λb

t (at |Hu, m
t )will not be unbound

edly misleading. The results provided in the following 
proposition are analogous to design sensitivity analyses 
(see, e.g., Rosenbaum 2010) in static (i.e., T�1) settings, 
where the idea is to examine how much propensity odds 
need to vary so that the gained causal understanding 
becomes invalid (see also Kallus and Zhou 2020, 2021). 
This proposition can also be viewed as a generalization 
of some of the available bounds in the literature of DRTs 
(see, e.g., lemma 2 of Namkoong et al. 2020), mainly 
because such bounds can be obtained from our results 
under the special case of |M | � 1. Furthermore, we note 
that although these bounds can be conservative (hence, 
not useful) for the purpose of estimating the mean per
formance, they are relatively suitable for estimating the 
MEUα value of it (see part (ii) of Proposition 2 as well as 
the learning approaches discussed in Section 6).

Proposition 2 (GSIS Under Bounded Unobservable 
Confounding). Suppose the behavior policy satisfies BUC 
under all models m ∈M . If the evaluation policy satisfies 
sequential ignorability under all models m ∈M and it over
laps with the behavior policy almost surely, then 

i. Under each model m ∈M , we have

Em ΓT(l
b)
Y

t∈T
wm

t (l
e)

" #

≤ Em[ΓT(l
e)]

≤ Em ΓT(l
b)
Y

t∈T
wm

t (l
e)

" #

, 

where
wm

t (l
e)¢wt(l

e) ((ηm
t )
�1

1{ΓT(l
b)>0} + η

m
t 1{ΓT(l

b)<0})

and

wm
t (l

e)¢wt(l
e) ((ηm

t )
�1

1{ΓT(l
b)<0} + η

m
t 1{ΓT(l

b)>0}):

ii. For any α ∈ (, there exists α̃ ∈ ( such that MEUα[ΓT 

(le)] � f (α̃), where f (α̃)¢α̃MEUα[ΓT(l
b)
Q

t∈Twm
t (l

e)]

+ (1� α̃)MEUα[ΓT(l
b)
Q

t∈Twm
t (l

e)]:

Similar to Proposition 1, part (ii) of Proposition 2 pro
vides a way of finding the optimal evaluation policy 
because it characterizes the causal impact of any such 
policy. Whereas Proposition 1 requires the behavior 
policy to satisfy sequential ignorability—an unrealistic 
assumption in most applications—Proposition 2 only 
requires the unobserved variables to have a bounded 
impact. Importantly, however, Proposition 1 directly 
provides an α-MEU unbiased estimator, but Proposi
tion 2 does so subject to a tuning parameter α̃. Specifi
cally, in part (ii) of Proposition 2, the function f can be 
computed using only observed data. This, in turn, 
resolves the issue that the outcome of interest under the 
evaluation policy as well as the time-varying confoun
ders needed to estimate it are unobservable. However, 

to use Proposition 2, part (ii), one needs to tune the 
parameter α̃. Because f is a decreasing function and 
α̃ ∈ (, tuning α̃ can be done in an structured way. For 
example, in practice, one is often interested in evaluating 
policies that are known to be better than the behavior 
policy. Thus, we have f (α̃) ≥MEUα[ΓT(l

b)], implying 
that one can start tuning α̃ using the threshold value α̃∗
¢min{f (�1)(MEUα[ΓT(l

b)]), 1} and only consider values 
of α̃ that are in [0, α̃∗]. More importantly, it should be 
noted that the parameters (ηm

t )t∈T, m∈M are design sensi
tivity parameters. Specifically, for any ɛ > 0, they can be 
chosen so that f (0)� f (α̃∗) < ɛ. Because f (0)� f (α̃∗) ≥ 0, 
this allows one to use any α̃ in [0, α̃∗] and obtain an approx
imate unbiased MEUα estimator for ΓT(l

e)with a guaran
teed approximation error of ɛ. Although this provides an 
approximation method, two limitations are noteworthy; 
(1) obtaining an exact value for α̃ (and hence, an exact 
unbiased MEUα estimator for ΓT(l

e)) can be challeng
ing, and (2) the bounds in part (i) of Proposition 2 can 
be conservative, because in general they may diverge 
exponentially in T. Nonetheless, as described, one can 
obtain an ɛ-approximate unbiased MEUα estimator for 
ΓT(l

e).
Finally, we note that one can extend Propositions 1

and 2 to provide doubly robust estimators16 to account 
for the fact that, under each given model m ∈M , the var
iance of an importance sampling estimator can be high. 
Such an extension is, however, not that useful in our 
work because we are (a) directly allowing for a cloud of 
models, and (b) using MEUα of the outcome variable as 
opposed to its expected value (the criterion used in the 
studies related to doubly robust estimation). Instead, we 
next develop two RL methods based on our results and 
establish that they have suitable asymptotic behavior, 
including consistency and asymptotic normality. We 
also test their performance directly using both a clinical 
data set and simulation experiments, and we find that 
our proposed learning methods provide strong robust
ness to model ambiguity (see, e.g., Section 7.3).

3. Analyzing ADTRs via APOMDPs
In this section, we show that a tractable way of analyz
ing ADTRs is via APOMDPs. Specifically, analyzing 
ADTRs via APOMDPs enables (a) considering unob
served variables as latent time-varying states while 
allowing for model ambiguity, and (b) developing effec
tive RL methods.17

An APOMDP (Saghafian 2018) can be represented via 
the directed acyclic graph (DAG) depicted in Figure 1. 
The ambiguous mechanisms in this figure represent 
causal relationships that cannot be quantified from the 
data alone. The main assumption needed to represent an 
ADTR via an APOMDP is that the dynamics of the vari
ables is Markovian. In various applications, it is often 
possible to transform data so that this assumption holds 
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(see, e.g., Xu et al. 2020). Specifically, although the 
observed history Ho

t grows over time, we can assume 
that there are summary functions νt : ho

t → ∆S such 
that pt¢νt(ho

t ) (a belief distribution over the latent 
states) is a sufficient statistic.18

Using the belief distribution pt, we can work with 
transformed policies; we can consider me¢(µe

t(pt))t∈T 

and mb¢(µb
t (pt))t∈T as the evaluation and behavior pol

icies, respectively, where µe
t ,µb

t : ∆S→ ∆A. We denote 
the probability that an action at is applied at time t 
(when the belief distribution is pt) under these trans
formed evaluation and behavior policies by µe

t(at |pt)

and µb
t (at |pt), respectively. In what follows, we first 

define the class of APOMDPs and then develop two RL 
algorithms that enable finding the optimal policy by 
effectively learning the causal impact of any given eval
uation policy.

As defined in Saghafian (2018), a time-homogenous 
APOMDP is an extension of the classical POMDPs and 
can be defined by the tuple (α, β, S, O, A, G, P, Q). The 
notation used in the first part of this tuple is as introduced 
earlier. In addition, P and Q are the sets of possible transi
tion probability matrices with respect to (latent) states 
and observations, respectively (Saghafian 2018). These 
sets define the ambiguous causal mechanisms depicted 
in Figure 1.

To simplify the analyses, we can index members of the 
set P × Q using M so that each m ∈M represents a speci
fic (unambiguous) POMDP model. In particular, associ
ated with each m ∈M is a set of the form Pm ×Qm, with 
Pm ∈P and Qm ∈ Q denoting the set of state and observa
tion transition probabilities under model m, respectively 
(Saghafian 2018). In this setting, (a) Pm¢{Pa

m : a ∈A}, 
where for each a ∈A, Pa

m¢[pa
ij(m)]i, j∈S is an |S | × |S |

matrix with pa
ij(m)¢Pr{j | i, a, m} denoting the probability 

that the (latent) state moves to j from i under action a and 
model m, and (b) Qm¢{Qa

m : a ∈A}, where for each a ∈
A, Qa

m¢[qa
jo(m)]j∈S, o∈O is an |S | × |O | matrix with qa

jo 
(m)¢Pr{o | j, a, m} denoting the probability of observing o 

under action a and model m when the (latent) state is j 
(Saghafian 2018).

If M was a singleton with its only member being m, 
the optimal gain and policy for any t ∈T and p ∈ ∆S 

could be obtained by a traditional POMDP Bellman 
equation (along with the terminal condition Vm

0 (p)¢0):

Vm
t (p) �max

a∈A

�

p′ga + β
X

o∈O
Pr{o |p, a, m}

Vm
t�1(T(p, a, o, m))

�

, (8) 

where Vm
t (p) denotes the value function under model m 

when the belief distribution is p and there are t periods 
to go, “′” represents the transpose operator, Pr{o |p, a, 
m} �

P
i
P

jπipa
ij(m)qa

jo(m), and the belief updating opera
tor T : ∆S ×A × O ×M → ∆S is defined by the Bayes’ 
rule (in the matrix form):

T(p, a, o, m) �

�
p′Pa

mQa
m(o)

�′

Pr{o |p, a, m} , (9) 

with Qa
m(o)¢diag(qa

1o(m), qa
2o(m), : : : , qa

no(m)) denoting 
the diagonal matrix made of the oth column of Qa

m 
(Saghafian 2018).

Unlike POMDPs, in APOMDPs M is not a singleton. 
However, it is shown in Saghafian (2018) that the 
APOMDP value function, a model independent func
tion that we denote by Vt(p), can still be obtained using 
dynamic programming. Furthermore, the underlying 
Bellman operator in the APOMDP is a contraction map
ping with modulus β on a complete metric space (under 
some mild conditions), which in turn, allows for ana
lyzing the APOMDP value function in infinite-horizon 
settings as the limit of its finite-horizon version. More 
importantly, Saghafian (2018) establishes some struc
tural properties for the value function of the APOMDP 
(e.g, piecewise linearity and continuity in p). In the 
next section, we make use of these structural properties 
to develop effective RL approaches (termed augmented 

Figure 1. DAG Representation of APOMDPs 

Notes. Circles indicate observable variables. Rectangles indicate unobservable variables. Solid arrows indicate unambiguous causal mechanisms. 
Dashed arrows indicate ambiguous causal mechanisms. Note that using pt¢νt(ho

t )—a belief distribution over the latent states—allows for work
ing with an equivalent DAG representation where pt becomes the observed state at time t.

Saghafian: Ambiguous Dynamic Treatment Regimes: A Reinforcement Learning Approach 
Management Science, Articles in Advance, pp. 1–24, © 2023 INFORMS 9 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

10
3.

14
7.

14
9]

 o
n 

04
 O

ct
ob

er
 2

02
3,

 a
t 0

5:
08

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



V-Learning). We start our analyses by first developing 
suitable algorithms for learning the value function in 
POMDPs (i.e., when |M | � 1), and then, we show how 
they can be extended to learn the APOMDP value 
function.

4. Augmented V-Learning for POMDPs 
and APOMDPs

4.1. Augmented V-Learning for POMDPs
To develop our results, we require that the behavior pol
icy, mb, satisfies positivity defined here.

Definition 6 (Positivity). We say that a policy m¢(µt)t∈T 

satisfies positivity if there exists a constant c0 > 0 such 
that µt(at |pt) ≥ co for all t ∈T, pt ∈ ∆S, and at ∈A.

Positivity implies that all actions have a positive 
chance of being selected (appear in the observed data) 
regardless of the belief. The behavior policy, mb, auto
matically satisfies positivity when the data are collected 
based on a randomized trial. When using observational 
data, this assumption is sensible because inference in
volving treatment patterns (using action at when the 
belief is pt) that cannot occur in the observational study 
requires further knowledge and assumptions (Murphy 
et al. 2001). If the behavior satisfies positivity, we can 
establish the following result (see also Lemma 4.1 of 
Murphy et al. 2001 and Lemma 2.1 of Luckett et al. 
2020 for related results in settings with fully observable 
states).

Proposition 3 (Weight-Adjusted Bellman Equation). 
Suppose |M | � 1, and denote the only member of M by m. 
If mb satisfies positivity and sequential ignorability, then 
for any policy me, the finite-horizon value function satisfies 
the weight-adjusted Bellman equation

Vm, me

T�t+1(pt) �

Em µe
t(At |P

m
t )

µb
t (At |P

m
t )

Gt + βVm, me

T�t (T(P
m
t , At, Ot, m))

h i�
�
�Pm

t � pt

� �

(10) 

for all t ∈T and pt ∈ ∆S, where pt is considered as a realiza
tion (of a model dependent random variable denoted by Pm

t ) 
and Vm, me

0 (p)¢0. Therefore, for any function φ defined on 
∆S and for all t ∈T , we have

Em

"
µe

t(At |P
m
t )

µb
t (At |P

m
t )

h
Gt + βVm, me

T�t (T(P
m
t , At, Ot, m))

�Vm, me

T�t+1(P
m
t )
i
φ(Pm

t )

#

� 0: (11) 

The importance of Proposition 3 (which is built on 
the importance sampling results of the previous sec
tion) is that it allows us to empirically estimate the 
value function under any evaluation policy and hence, 

learn the optimal policy. Specifically, using the data, we 
can make use of the sample-average version of (11):

EP
"
X

t∈T

"
µe

t(At |P
m
t )

µb
t (At |P

m
t )

h
Gt + βVm, me

T�t (T(P
m
t , At, Ot, m))

� Vm, me

T�t+1(P
m
t )
i
φ(Pm

t )

##

� 0, (12) 

where EP denotes average with respect to the empirical 
probability measure.19 It is important to note that al
though we are using sample average in (12), the result 
still depends on the assumed m because although the 
sequence {(At, Ot)}t∈T is observable to us, to form the 
sequence {Pm

t }t∈T, we need to have an assumed model. 
That is, because of the existence of unobserved vari
ables, the empirical measure alone is insufficient for our 
goal.

Remark 2 (Weight Adjustment Under BUC). The 
weight-adjusted results (10)–(12) are obtained assum
ing that mb satisfies sequential ignorability. It should be 
noted that this assumption is milder than assuming 
that the original behavior policy satisfies sequential 
ignorability. This is especially the case because mb¢(µb

t 
(pt))t∈T is a transformed policy that takes advantage of 
the availability of information about the unobserved 
variables summarized in (pt)t∈T. In particular, because 
in APOMDPs (Saghafian 2018), we have access to 
(pm

t )t∈T under each model m ∈M , we might be able to 
make use of it to ensure that mb satisfies sequential 
ignorability. For example, in many medical decision- 
making applications, including the case study with our 
partner hospital discussed in Section 7.1, the immedi
ate gain depends on hidden states (confounders) only 
through (pm

t )t∈T. This occurs, for example, when the 
gain in each period t is simply (pm

t )
′ ga

t , where ga
t¢ 

(g(st, at))st∈S
; that is, when the gain in each period t is 

considered to be the average value of ga
t considering 

the belief distribution pm
t .20 (See Boloori et al. 2020 for 

more discussions about the immediate gain values in 
our medical decision-making application, and see Xu 
et al. 2020 for a similar assumption made in analyzing 
latent-state models.) However, mb might not satisfy 
sequential ignorability in some other applications; see, 
for example, Saghafian and Murphy (2021) for related 
challenges in mHealth applications. Thus, in Section 6, 
we provide an extension of Proposition 3 by making 
use of the BUC results presented in Proposition 2. 
However, in what follows, we first focus on under
standing and analyzing the cases where mb satisfies 
sequential ignorability, as it provides a foundation for 
the extensions discussed in Section 6.

Remark 3 (Effective Approximation). In using the results 
of Proposition 3, we only require an approximate solution 
to (12). Thus, how the solution to (12) is obtained is not 
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that restrictive. Indeed, there are many ways to obtain 
an approximate solution to (12). In what follows, how
ever, we provide an effective way of estimating the 
optimal policy and optimal value function using (12). 
We do so by taking advantage of important structural 
properties of the optimal value function of POMDPs 
and APOMDPs. Specifically, the optimal value func
tion of POMDPs is known to be piecewise linear and 
convex in p under some mild conditions (Smallwood 
and Sondik 1973). Saghafian (2018) shows that, in gen
eral, the convexity does not hold in APOMDPs, and 
some additional conditions are needed (see Proposition 
2 of Saghafian 2018). To be consistent, for both POMDP 
and APOMDP settings, we only assume piecewise linear
ity and continuity, but we do not impose any assumption 
on convexity. This, in turn, helps us in another way; 
although piecewise linear and continuous functions can 
be effectively learned from data, learning a function that 
is both piecewise linear and convex (i.e., is point-wise 
maximum of a set of linear functions) is much harder 
(see, e.g., Magnani and Boyd 2009 and the references 
therein).

Let v denote the set of real-valued piecewise linear 
and continuous bounded functions defined on ∆S, 
and assume Vm, me

t ∈ v. To learn Vm, me

t ∈ v using (12), 
we consider the parametric version of the value func
tion: Vm, me

t (p; ct)¢(b(p))
′ct, where b(p)¢(b1(p), 

b2(p), : : : , bdt(p))
′ is a predefined basis function that 

allows us to ensure that the learned function is in v, 
and ct ∈Ct ⊆ Rdt is the parameter.21 This also enables 
us to set φ(p)¢b(p) in (12), because b(p) can be 
thought of as the gradient of Vm, me

t (p; ct) with respect 
to its parameter, which only depends on p (and not 
the parameter) and is almost everywhere defined.

Furthermore, because ct can be high dimensional in 
some applications (especially when t is large), we esti
mate it using a regularized approach as follows (to 
avoid overfitting). Starting with Vm

0 (p) � 0 and moving 
backward iteratively, having an estimation of T� t peri
ods to go value function in hand (V̂m, me

T�t ), we define

φm, me
(ct)¢EP

"
µe

t(At |P
m
t )

µb
t (At |P

m
t )

h
Gt + β V̂m, me

T�t

(T(Pm
t , At, Ot, m))�Vm, me

T�t+1(P
m
t ; ct)]b(Pm

t )
i
: (13) 

We then obtain the estimate

ĉme

t � arg min
ct∈Ct

{(φm, me
(ct))

′
Ωφm, me

(ct) + θtP(ct)},

(14) 

where Ω is an arbitrary positive definite matrix, P(·) is a 
penalty function, and θt is a tuning parameter.22 Conse
quently, we plug in ĉme

t in Vm, me

T�t+1(pt; ct), and thereby, 

we obtain an estimate for the value function Vm, me

T�t+1(pt)

and move to the next period (backward). This proce
dure, under a given model m ∈M , yields an estimator 
for the gain under me. That is, Γ̂m

T (m
e)¢

R
V̂m, me

T (p)dF(p)
can be used as an estimator for Γm

T (m
e) �

R
Vm, me

T (p)
dF(p), where dF(p) is a given distribution on (starting) 
belief values. Because we have an estimator for the gain 
under any policy me, we can obtain m̂e∗¢arg maxme∈Υ 

Γ̂m
T (m

e) as an estimate for the optimal policy under 
model m, where Υ is a given set of policies.23 Finally, an 
estimate of the gain under the optimal policy is Γ̂m

T (m̂
e∗).

In an infinite-horizon setting, the procedure described 
above simplifies. This is because in homogenous 
POMDPs (and APOMDPs), the value function with t 
periods to go converges to a stationary value function 
as t→∞ (see, e.g., proposition 1 of Saghafian 2018). 
Therefore, in (12), we can replace both Vm, me

T�t (·) and 
Vm, me

T�t+1(·) with the same function. This removes the 
need for recursive calculations and allows us to follow 
a “one-shot” method. We discuss this further in the 
next sections and also study the asymptotic behavior of 
our proposed approach.

4.2. Augmented V-Learning for APOMDPs
Motivated by the results in the previous section, we now 
extend our approach to APOMDPs, where the condition 
|M | � 1 does not hold. We propose two approaches 
termed Direct Augmented V-Learning (DAV-Learning) 
and Safe Augmented V-Learning (SAV-Learning). As 
we will see, in DAV-Learning, we directly extend the 
approach presented in the previous section for POMDPs 
by first obtaining a value function separately for each 
POMDP model in M . These values are then combined at 
the end of the horizon to provide an estimate of the value 
function for the APOMDP. In SAV-Learning, however, 
we make use of a safe estimation approach up front that 
takes into account ambiguity and removes the need to 
obtain a value function separately for each POMDP 
model in M .

4.2.1. DAV-Learning. Recall that for each evaluation 
policy me and each given m ∈M , we can use the 
approach proposed for POMDPs in Section 4.1 to obtain 
an estimate for the value function Vm, me

T (·), which we 
denote by V̂m, me

T (·). Thus, we can first obtain an estimate 
for the APOMDP value function:

V̂ me

T (p) �MEUα[V̂
m, me

T (p)]¢α inf
m∈M

V̂m, me

T (p)

+ (1� α) sup
m∈M

V̂m, me

T (p): (15) 

Next, to estimate the optimal policy, we note that for 
any policy me, the estimator of the gain is Γ̂T(me) �
R

V̂me

T (p)dF(p), where dF(p) is a given distribution on 
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(starting) belief values. This means that we can obtain 
an estimate of the optimal policy as m̂e∗¢arg maxme∈Υ 

Γ̂T(m
e). Finally, the estimated optimal gain is Γ̂T(m̂

e∗).
This DAV-Learning approach for APOMDPs in the 

infinite-horizon case is presented in Algorithm 1. In pre
senting this algorithm, as is often the case, we assume 
that the data only include a finite number of periods for 
each subject, but the goal is to estimate the long-run per
formance of policies (see, e.g., Luckett et al. 2020, Xu et al. 
2020). We also use subscript n to highlight the depen
dency of our estimators to the number of trajectories in 
the data set, which in turn allows us to investigate the 
behavior of our proposed learning algorithm as n→∞
(see Section 5). Our estimation equations for the infinite- 
horizon gain are

φm, me

n (c)¢EP
"
X

t∈T

"
µe(At |P

m
t )

µb(At |P
m
t )

h
Gt + βVm, me

∞

(T(Pm
t , At, Ot, m))�Vm, me

∞ (Pm
t )
i
b(Pm

t )

##

(16) 

and

ĉm, me

n � arg min
c∈C

{(φm, me

n (c))′Ωφm, me

n (c) +θnP(c)},

(17) 

where C ⊆ Rd. Similar to before, we make use of the 
piecewise linearity and continuity of the value function 
(i.e., the fact that Vm, me

∞ ∈ v) for all m ∈M . This allows us 
to use a predefined basis function to ensure that the 
learned function remains in v when we use the paramet
ric form Vm, me

∞ (p, c)¢(b(p))′c.
Using (17), we then set V̂m, me

∞ (p)¢Vm, me

∞ (p; ĉm, me

n ). In 
addition, denoting the infinite-horizon gain under any 
policy me and m ∈M by Γm

∞(m
e)¢

R
Vm, me

∞ (p)dF(p), we 
consider Γ̂m

∞(m
e)¢

R
V̂m, me

∞
(p)dF(p) as an estimator for 

Γm
∞(m

e). With estimated values under each model m in 
hand, we next define the estimated overall gain (a model 
independent value) as Γ̂∞(me)¢αinfm∈M Γ̂

m
∞(m

e) + (1 �α)
supm∈M Γ̂

m
∞(m

e), which provides an estimation for the 
overall gain Γ∞(me)¢αinfm∈M Γ

m
∞(m

e) + (1� α)supm∈M 

Γm
∞(m

e).
Finally, the estimated optimal policy and its infinite- 

horizon value for the APOMDP are obtained as 
m̂e∗¢arg maxme∈ΥΓ̂∞(m

e) and Γ̂∞(m̂e∗) �maxme∈ΥΓ̂∞(m
e), 

respectively, where the latter provides an estimate for 
Γ∞(me∗)¢maxme∈ΥΓ∞(me∗). Similarly, under each model 
m, we denote the estimated optimal policy and its 
infinite-horizon value as m̂e∗, m¢arg maxme∈ΥΓ̂

m
∞(m

e) and 
Γ̂m
∞(m̂

e∗, m) �maxme∈ΥΓ̂
m
∞(m

e), respectively, where the latter 
provides an estimate for Γm

∞(m
e∗, m)¢maxme∈Υ Γ

m
∞(m

e∗, m).

Algorithm 1 (DAV-Learning) 
1 for each observed trajectory and model m ∈M do
2 Initialize pm

0 using a random draw from F(p);
3 set t� 1;
4 while t+ 1 ∈T do
5 pm

t+1← T(pm
t , at, ot, m);

6 for any given me ∈ Υ and m ∈M do
7 φm, me

n (c) ← EP
P

t∈T
µe(At |P

m
t )

µb(At |P
m
t )

Gt + βVm, me

∞

�hh

(T(Pm
t , At, Ot, m))�Vm, me

∞ (Pm
t )]b(P

m
t )
�i

;

8 ĉm, me

n ← arg min c ∈C{(φm, me

n (c))′Ωφm, me

n (c)+
θnP(c)};

9 V̂m, me

∞ (p) ← (b(p))′ ĉm, me

n ;
10 Γ̂m

∞(m
e) ←

R
V̂m, me

∞
(p)dF(p);

11 for any given me ∈ Υ do
12 Γ̂∞(me) ← αinfm∈M Γ̂

m
∞(m

e) + (1�α)supm∈M Γ̂
m
∞
(me);

13 m̂e∗ ← arg maxme∈ΥΓ̂∞(m
e);

14 Γ̂∞(m̂e∗) ←maxme∈ΥΓ̂∞(me).

4.2.2. SAV-Learning. The DAV-Learning algorithm 
presented in the previous section is a direct extension of 
the approach proposed for POMDPs (Section 4.1), in 
which “the curse of ambiguity” (Saghafian 2018) is over
come at the end. In contrast, in SAV-Learning, this 
curse is overcome up front via a “safe method” for esti
mating the underlying parameter ct and hence, the 
value function. To develop the SAV-Learning algo
rithm, similar to before, we first denote the APOMDP 
value function with t periods to go under policy me (a 
model independent function) with Vme

t , assume that 
Vme

t ∈ v, and parameterize it via Vme

t (p; ct)¢(b(p))
′ct. 

We then estimate its parameter as

ĉme

t ¢MEUα[ĉm, me

t ]¢α ĉ
m
t , me + (1� α) ĉm , me

t , (18) 

where α ∈ ( can be viewed as a tuning parameter, 
m¢arg infm∈M ‖ĉ

m, me

t ‖, m¢arg supm∈M ‖ĉ
m, me

t ‖,24 and

ĉm, me

t � arg min
ct∈Ct

{(φm, me
(ct))

′
Ωφm, me

(ct) +θtP(ct)},

(19) 
where φm, me

(ct) is defined in (13). Consequently, we 
plug ĉme

t obtained in (18) in Vme

T�t+1(pt; ct), which yields 
an estimate for the APOMDP value function Vme

T�t+1(pt), 
and we move to the next period (backward) as before. 
This yields an estimated value function V̂me

T (p). Denot
ing the gain under any policy me by ΓT(me)¢

R
Vme

T (p)
dF(p), we use Γ̂T(me)¢

R
V̂me

T (p)dF(p) as an estimator 
for ΓT(me).

Finally, optimization over me ∈ Υ will provide the 
estimated optimal policy of the APOMDP under the 
SAV-Learning approach: m̂e∗¢arg maxme∈ΥΓ̂T(me) �

arg maxme∈Υ

R
V̂me

T (p)dF(p). The estimated optimal gain 
under this approach is Γ̂T(m̂

e∗) �maxme∈Υ

R
V̂me

T (p)dF(p), 
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which provides an estimate for ΓT(m
e∗)¢ maxme∈Υ

R
Vme

T 
(p)dF(p). Similar to before, this procedure can also be 
used for the infinite-horizon case by noting that because 
both VT�t(·) and VT�t+1(·) become V∞(·), the calculations 
simplifies. The SAV-Learning approach for infinite- 
horizon case is presented in Algorithm 2. Besides their 
benefit in analyzing the long-run impact of different 
treatment regimes, both Algorithms 1 and 2 can also be 
used as approximations for learning policies that work 
well over a finite but long horizon.

Algorithm 2 (SAV-Learning) 
1 for each observed trajectory and model m ∈M do
2 Initialize pm

0 using a random draw from F(p);
3 set t� 1;
4 while t+ 1 ∈T do
5 pm

t+1← T(pm
t , at, ot, m);

6 for any given me ∈ Υ and m ∈M do
7 φm, me

n (c) ← EP
P

t∈T
µe(At |P

m
t )

µb(At |P
m
t )

Gt + βVm, me

∞

�hh

(T(Pm
t , At, Ot, m))�Vm, me

∞ (Pm
t )] b(Pm

t )
�i

;
8 ĉm, me

n ← arg minc∈C{(φ
m, me

n (c))′Ωφm, me

n (c)

+ θnP(c)};
9 for any given me ∈ Υ do

10 m← arg infm∈M ‖ĉ
m, me

n ‖;
11 m← arg supm∈M ‖ĉ

m, me

n ‖;
12 ĉme

n ← α ĉ
m
n , me + (1� α) ĉm , me

n ;
13 V̂me

∞ (p) ← (b(p))
′ ĉme

n ;
14 Γ̂∞(m

e) ←
R

V̂me

∞
(p)dF(p);

15 m̂e∗ ← arg maxme∈ΥΓ̂∞(m
e);

16 Γ̂∞(m̂e∗) ←maxme∈ΥΓ̂∞(me).

5. Performance Analyses: 
Theoretical Results

We now establish some theoretical results for the perfor
mance of our proposed approaches. Specifically, we 
demonstrate the asymptotic properties of the estimators 
under our main proposed algorithm, DAV-Learning 
(Algorithm 1). With some minor modifications, one can 
then also establish similar results for the estimators 
under the second proposed approach, SAV-Learning 
(Algorithm 2).25

The main results of this section are as follows. Under 
some conditions discussed, we first establish weak con
sistency and asymptotic normality of the estimators 
under any policy me ∈ Υ (Theorem 1). We then move to 
the estimators related to the optimal policy and establish 
weak consistency and asymptotic normality of both the 
estimated optimal policy and its estimated value (Theo
rem 2). To establish our results, we make use of argu
ments in empirical processes (specifically for the stationary 
process as opposed to i.i.d. ones) (see, e.g., Dedecker and 

Louhichi 2002, Kosorok 2008) and think of each realiza
tion of the underlying stochastic process as a function in 
ℓ∞(Υ) (i.e., the set of real-valued bounded functions 
indexed by me ∈ Υ).

We assume that Ω in (17) is an arbitrary positive- 
definite matrix, P(·) is the squared norm penalty func
tion, and θn is a tuning parameter satisfying θn �

op(n�1=2). We also assume that Em[‖b(Pt)‖
2
] and Em[G2

t ]

are both finite for all m ∈M and t ∈T. Some other tech
nical conditions are needed, mainly because of two 
broad sets of challenges in our setting that make estab
lishing asymptotic results more involved; (1) the under
lying process is not i.i.d over time, and (2) there is model 
ambiguity ( |M | ≠ 1). Specifically, we need the follow
ing “regularity” conditions on the parameter space, tra
jectories space, policy space, and model space.

Condition 1. For every me ∈ Υ and m ∈M , there exists a 
unique solution to φm, me

(c) � 0 denoted by cm, me

�
∈C ⊆

Rd, where supme∈Υ‖c
m, me

�
‖ <∞, cm, me

� 
is an interior point 

of C and C is compact subset of Rd.

Condition 2. There exists a 2 < ρ <∞ such that for all 
m ∈M , 

a. the class of policies (Υ) is either finite or its bracketing 
integral satisfies J[](∞,Υ, Lρ(Pm)) <∞, where Pm is the mar
ginal stationary distribution of the sequence {(Pm

t , At)}t≥1;26

b. the sequence {(Pm
t , At)}t≥1 is an absolutely regular sta

tionary process with its β-mixing coefficients ζm(t) satisfying 
P∞

t�1 k2=(ρ�2)ζm(t) <∞.27

Condition 3. There exists a constant c1 > 0 such that for all 
m ∈M , t ∈T, me ∈ Υ, and c ∈ Rd,

c′Em

"
µe(At |P

m
t )

µb(At |P
m
t )

b(Pm
t ) (b(P

m
t )

� βb(T(Pm
t , At, Ot, m)))′

#

c ≥ c1‖c‖2: (20) 

Condition 4. me∗ is a unique and well-septated maximizer 
of Γ∞(me), and me∗ is in the interior Υ.

Condition 5. For every me ∈ Υ, | infm∈M Γ
m
∞(m

e) | <∞, 
|supm∈M Γ

m
∞(m

e) | <∞, and M contains both arg infm∈M 

Γm
∞(m

e) and arg supm∈M Γ
m
∞(m

e):

Assumptions related to these conditions are relatively 
common in the Z-estimation and M-estimation theories 
(see, e.g., Kosorok 2008). Some of these conditions are 
also assumed to hold in the Generalized Method of Moments 
(GMM) (for asymptotic properties of GMM, see, e.g., 
Hansen 1982). These conditions hold both in our case 
study of NODAT patients (Section 7.1) and in our simula
tion experiments (Section 7.2). Condition 1 is a regularity 
condition on the parameter space and ensures that the 
solutions obtained by solving φm, me

(c) � 0 are “well- 
behaved.” Condition 2(a) is a regularity condition on the 
policy space and requires that the set of policies under 
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consideration satisfies a minimum level of “complexity” 
(measured by an appropriate entropy-based metric). This 
condition clearly allows working with any finite set of 
policies but also holds for many infinite sets of policies 
(see, e.g., the parametric class of policies in Luckett et al. 
2020). Condition 2(b) is a regulatory condition on the 
space of trajectories and allows for viewing their forma
tion as a suitable stationary process. The β-mixing coeffi
cients ζm(t) quantify dependency of the observed values 
in the process t steps removed and are zero when there is 
no such dependency. Condition 3 ensures that the matrix 
Cm(me) defined in Theorem 1 is positive definite, and 
hence, invertible. One can empirically check whether 
Condition 3 holds by creating certain matrixes using data 
and testing whether they are positive definite. Condition 
4 is needed to establish that the sequence of estimated 
optimal policies converges to the true optimal policy, 
which is a stronger result than just the gain of these poli
cies converging to each other. Condition 5 is a regularity 
condition on the space of models, M , which holds in 
most real-world applications because any set of models 
can be represented/ approximated with a finite set (with 
any required level of accuracy).

We first establish the asymptotic behavior of our esti
mators under any given policy me ∈ Υ by only requiring 
Conditions 1–3. The proof is based on some additional 
results provided in Online Appendix B (see Lemmas 
EC.3 and EC.4), which establish Donsker properties and 
asymptotic normality in ℓ∞(Υ) for the underlying abso
lutely regular stationary process in our setting.

Theorem 1 (Asymptotic Behavior: Fixed Policy and Its 
Value). Suppose Conditions 1–3 hold and the behavior pol
icy satisfies positivity. Then, under DAV-Learning (Algo
rithm 1), for any me ∈ Υ and m ∈M , we have 

i. ĉm, me

n →
p

cm, me

�
.

ii. 
ffiffiffi
n
√
[ĉm, me

n �cm, me

�
]→

d
G(m) in ℓ∞(Υ), where G(m) is 

a zero-mean and tight Gaussian process indexed by m ∈ Υ 
with the covariance function given by

E[G(m)G(m̃)] � (Cm(me))�1 C̃m
(me, m̃e) ((Cm(me))�1

)
′

∀m, m̃ ∈ Υ, (21) 

where

Cm(me)¢Em

"
µe(At |P

m
t )

µb(At |P
m
t )

b(Pm
t ) (b(P

m
t )

� βb(T(Pm
t , At, Ot, m)))′

#

, (22) 

C̃m
(me, m̃e)¢Em

"
µe(At |P

m
t )µ̃

e(At |P
m
t )

µb(At |P
m
t )µ

b(At |P
m
t )

u(Pm
t , cme

�
)

u(Pm
t , cm̃e

�
)b(Pm

t ) (b(P
m
t ))
′

#

, (23) 

and

u(Pm
t , cme

�
)¢Gt + [βb(T(Pm

t , At, Ot, m))�b(Pm
t )]c

me

�
:

(24) 

iii. Γ̂m
∞(m

e)→
p
Γm
∞(m

e).
iv. Γ̂∞(me)→

p
Γ∞(me) assuming Condition 5 holds.

We next establish the asymptotic properties of the 
optimal policy and the gain under it. The proof of the 
following theorem is based on an additional result pro
vided in Online Appendix B (see Lemma EC.5), which 
in turn, relies on results from the M-estimation theory.

Theorem 2 (Asymptotic Behavior: Optimal Policy and 
Its Value). Suppose Conditions 1–5 hold and the behavior 
policy satisfies positivity. Then, considering a metric space 
(Υ, dΥ), under DAV-Learning (Algorithm 1) we have 

i. dΥ(m̂e∗, m, me∗, m)→
p

0 for all m ∈M .
ii. dΥ(m̂e∗, me∗)→

p
0.

iii. Γ̂m
∞(m̂

e∗, m)→
p
Γm
∞(m

e∗, m).
iv. Γ̂∞(m̂e∗)→

p
Γ∞(me∗).

6. Extension: Learning Under BUC
As discussed in Remark 2, in various applications, one 
might be able to ensure that mb satisfies sequential 
ignorability because it takes advantage of the availabil
ity of information about the unobserved variables (con
founders) summarized in (pt)t∈T. The DAV-Learning 
and SAV-Learning approaches introduced earlier are 
based on the results of Proposition 3, which assumes 
that mb satisfies sequential ignorability. In this section, 
we show how such results can be extended to cases 
where mb does not satisfy sequential ignorability, but 
satisfies the BUC conditions introduced earlier (see, 
e.g., Definition 5). This, in turn, allows us to extend 
DAV-Learning and SAV-Learning and introduce 
their BUC counterparts, which we term DAV-Learn
ing-BUC and SAV-Learning-BUC, respectively.

Similar to (7), which is based on Lemma EC.2 (Online 
Appendix B), assume for each model m ∈M that there 
exist constants ηm

t ∈ [1,∞) such that

(ηm
t )
�1
≤
µb

t (at |P
m
t , Sm

t )

µb
t (at |P

m
t )
≤ ηm

t a:s: (25) 

over Pm
t and Sm

t for all t ∈T and a ∈A. If ηm
t � 1, µb

t 
satisfies sequential ignorability. Furthermore, with ηm

t � 1, 
(25) implies that benefiting from Pm

t under each model m 
and making use of marginalized treatment propensities 
µb

t (at |P
m
t ) are enough for the goal of estimating the true 

treatment propensities µb
t (at |P

m
t , Sm

t ). More broadly, how
ever, (25) ensures that this estimation exercise is not 
unboundedly misleading. Of note, because µb

t (at |P
m
t ) �

Em
Sm

t
[µb

t (at |P
m
t , Sm

t )], one can also view (25) as bounded 
variations from the average (under each model).
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Assuming that (25) holds, we next extend Proposition 3
by relaxing the assumption that mb satisfies sequential 
ignorability. To this end, we introduce the following 
weight modifiers:

κm
t ¢ (ηm

t )
�1

1
{Vmb

T (p)≥0}
+ ηm

t 1
{Vmb

T (p)<0}

� �

(26) 

and

κm
t ¢ (ηm

t )
�1

1
{Vmb

T (p)<0}
+ ηm

t 1
{Vmb

T (p)≥0}

� �

, (27) 

and we make use of the BUC results presented in Propo
sition 2.28

Proposition 4 (Weight-Adjusted Bellman Equation 
Under BUC). Suppose mb satisfies both the BUC condition 
(25) and positivity. For any policy me, define the upper 
bound and lower bound value functions via the modified 
weight-adjusted Bellman equations:

Vm, me

T�t+1(pt)¢Em
�

κm
t
µe

t(At |P
m
t )

µb
t (At |P

m
t )

h
Gt + βVm, me

T�t

(T(Pm
t , At, Ot, m))

i�
�
�Pm

t � pt

�

(28) 

and

V m, me

T�t+1(pt)¢Em
�

κm
t
µe

t(At |P
m
t )

µb
t (At |P

m
t )

h
Gt + βVm, me

T�t

(T(Pm
t , At, Ot, m))

i
Pm

t � pt

�

,
�
�
�
�

(29) 

along with Vm, me

0 (p)¢0 and Vm, me

0 (p)¢0. Then: 
i. For any function φ defined on ∆S and for all t ∈T and 

m ∈M , we have

Em
�

κm
t
µe

t(At |P
m
t )

µb
t (At |P

m
t )

h
Gt + βVm, me

T�t (T(P
m
t , At, Ot, m))

�Vm, me

T�t+1(P
m
t )
i
φ(Pm

t )

�

� 0 (30) 

and

Em
�

κm
t
µe

t(At |P
m
t )

µb
t (At |P

m
t )

h
Gt + βVm, me

T�t (T(P
m
t , At, Ot, m))

�Vm, me

T�t+1(P
m
t )
i
φ(Pm

t )

�

� 0: (31) 

ii. For all m ∈M and p ∈ ∆S, we have Vm, me

T (p) ≤
Vm, me

T (p) ≤ Vm, me

T (p):
iii. For any α ∈ (, there exists α̃ ∈ ( such that Vme

T (p)

¢MEUα[Vm, me

T (p)] � f (α̃, p), where f (α̃, p)¢α̃MEUα 
[Vm, me

T (p)] + (1� α̃)MEUα[V
m, me

T (p)]: Hence, ΓT (me) �
R

f (α̃, p)dF(p), where ΓT(me)¢
R

Vme

T (p)dF(p):

When the behavior policy mb satisfies sequential 
ignorability, we have κm

t � κ
m
t � 1, and hence, the results 

boil down to those in Proposition 3. Proposition 4, how
ever, generalizes Proposition 3 by highlighting the role 
of weight modifiers κm

t and κm
t in analyzing scenarios in 

which mb violates sequential ignorability but satisfies it 
to some extent. In particular, after incorporating these 
modifiers, one can make use of the same procedures as 
in the previous section using Proposition 4. That is, the 
sample-average version of (30) and (31) together with 
regularized learning can be used to learn the upper 
bound and lower bound value functions in a parametric 
way, respectively. Once these functions are learned, part 
(ii) of Proposition 4 guarantees that they can be used to 
bound the actual value function under each model. 
More specifically, part (iii) of Proposition 4 states that 
f (α̃, p) and 

R
f (α̃, p)dF(p) can be used to estimate the 

APOMDP value function and the overall performance, 
respectively. It should be noted that (1) the function f (·, ·)
is calculable using only the observed part of the data. 
This resolves the issue that the outcome of interest under 
the evaluation policy as well as the time-varying con
founders needed to estimate it are unobservable. (2) A 
similar procedure to that discussed after Proposition 2
can be used to tune parameter α̃. Specifically, as dis
cussed there, noting that the parameters (ηm

t )t∈T, m∈M 

can be viewed as design sensitivity parameters, one can 
choose them and approximate α̃ so as to obtain an 
approximate unbiased MEUα estimator for ΓT(m

e) with 
any desired approximation error ɛ > 0.

Finally, the results allow us to extend DAV-Learn
ing and SAV-Learning and to introduce their BUC 
counterparts. These extensions, which we term DAV- 
Learning-BUC and SAV-Learning-BUC, are pre
sented in Algorithms 3 and 4, respectively, in Online 
Appendix C. The main difference between these exten
sions and their original version is that they benefit from 
weight modifiers (26) and (27) to first obtain estimators 
for the upper bound and lower bound value functions 
(as opposed to the main value function itself).

7. Performance Analyses: 
Numerical Results

To gain further insights into the performance of our pur
posed algorithms, we now perform two sets of numeri
cal experiments. The first is a case study of a medical 
decision-making problem faced by physicians at our 
partner hospital and involves using a clinical data set of 
patients with a kidney transplant operation. In the sec
ond set, we make use of synthetic data, in which we sim
ulate patient trajectories under different models while 
controlling the true data-generating model.

7.1. Case Study: NODAT
In this section, we apply our proposed algorithms on a 
clinical data set that contains over 63,000 data points 
pertaining to 407 patients who had a kidney transplant 
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operation during a seven-year period at our partner 
hospital. Details about the data set can be found in the 
author’s previous publications (Boloori et al. 2015, 2020; 
Munshi et al. 2020a, 2021).

Patients who undergo transplantation often face a 
significant risk of organ rejection. To mitigate this risk, 
physicians typically use an intensive amount of an 
immunosuppressive drug (e.g., tacrolimus). Immuno
suppressive drugs, however, have a well-established 
effect known as the diabetogenic effect, and thus, they 
can elevate the risk of New Onset Diabetes After Trans
plantation (NODAT). NODAT refers to incidence of dia
betes in a patient with no history of diabetes prior to 
transplantation (see, e.g., Chakkera et al. 2009; Boloori 
et al. 2015, 2020; and the references therein). To control 
the risk of NODAT, physicians have to decide whether 
to put the patient on insulin.29

Table 1 describes the observed patient covariates 
(observations) and their levels. As the table shows, 
some of these observations are time-varying. Further
more, most of them are dichotomized to high- versus 
low-level values. However, the medical tests used to 
measure the blood glucose (Fasting Plasma Glucose (FPG) 
and Hemoglobin A1c (HbA1c)) and the lowest concentra
tion of tacrolimus in the patient’s body—a quantity 
known as trough level or C0—have three levels. These 
levels are defined based on both the medical literature 
and the practice at our partner hospital. Tables 2 and 3
show the patients’ latent states and physicians’ actions/ 
prescriptions during each visit post-transplant, respec
tively. Latent states described in Table 2 are summary 
variables that represent the main condition of the pa
tient in terms of decision-making related to the use of an 
immunosuppressive drug (e.g., tacrolimus) and insulin 

therapy (i.e., the actions in Table 3). These patient sum
mary variables are, however, hidden to physicians be
cause physicians can only rely on medical tests, which 
have a wide range of false-positive and false-negative 
errors. In particular, blood glucose levels are measured 
by two medical tests, FPG and HbA1c, which are subject 
to false-positive and false-negative errors. Similarly, the 
concentration of immunosuppressive drugs is mea
sured through tests such as Abbott Architect and Mag
netic Immunoassay, which are error prone.

7.1.1. Data Preprocessing Steps. Our data set includes 
information related to patients’ follow-up visits during 
months 1, 4, and 12 post-transplantation. However, for 
the goals of this study, we make use of the same data 
preprocessing steps as those in Boloori et al. (2020). In 
particular, we use imputation to replace missing values 
(see also Munshi et al. 2021) and also make use of cubic 
spline interpolation to create a test bed with clinical his
tory of patients for months 1–12 after transplant. That is, 
for the purpose of this study, we consider monthly visits 
that occur for a year post-transplant. Thus, we let T¢12 
and T¢{1, 2, : : : , 12}. The imputed data include the 13 
variables listed in Table 1 for each of the 407 patients and 
every month during a year of follow-up post-transplant 
(a total of 13 × 407 × 12 � 63, 492 data points).

7.1.2. Behavior Policy. We estimate the behavior policy 
based on the actions we observe in our data. These actions 
are mainly based on the clinical protocols followed at our 
partner hospital. A detailed summary of the main immu
nosuppression protocol can be found in Munshi et al. 
(2021), which includes induction therapy with either rabbit 
antithymocyte, immunoglobulin, or basiliximab as well as 

Table 1. Observed Covariates (Observations)

Variate no. Risk factor (abbreviation) Unit Low level Midlevel High level Time varying

1 Glucose testa (FPG, HbA1c) mg/dL, % Healthy Prediabetic Diabetic Yes
2 Trough-level testb (C0) mg/dL [4, 8) [8, 10) [10, 14] Yes
3 Age Years <50 — ≥50 No
4 Gender — Female — Male No
5 Race — White — Non-White No
6 Diabetes history (Diab Hist) — No — Yes No
7 Body mass index (BMI) kg/m2 <30 (nonobese) — ≥30 (obese) Yes
8 Blood pressure (BP) — Normalc — Hypertension Yes
9 Total cholesterol (Chol) mg/dL <200 — ≥200 Yes
10 High-density lipoportein (HDL) mg/dL ≥40 — <40 Yes
11 Low-density lipoportein (LDL) mg/dL <130 — ≥130 Yes
12 Triglyceride (TG) mg/dL <150 — ≥150 Yes
13 Uric acid (UA) mg/dL <7.3 — ≥7.3 Yes

Notes. All variables with three levels are coded as 1, 2, 3 (low, mid, high, respectively). All variables with two levels are coded as 1, 2 (low, high, 
respectively).

aA patient with FPG ≥ 126 (100 ≤ FPG < 126) mg/dL or HbA1c ≥ 6.5% (5.7 ≤ HbA1c < 6.5%) is labeled as diabetic (prediabetic), and a patient 
with FPG < 100 mg/dL or HbA1c < 5.7% is labeled as healthy (see, e.g., ADA 2012).

bC0 ∈ [4, 8), [8, 10), [10, 14]mg/dL is labeled as “low,” “medium,” and “high,” respectively (see, e.g., Boloori et al. 2020).
cNormal blood pressure is defined as systolic (diastolic) blood pressure less than 120 (80) mmHg (see, e.g., Whelton et al. 2017).
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a tapering course of glucocorticoids. However, here our 
focus is on the use of tacrulimus, and we observe that 
patients are often put on high-dose (i.e., aggressive) tacroli
mus during the first months post-transplant, and in later 
months, depending on the observations made about the 
patients, they might be transferred to a low (i.e., nonag
gressive) dose. This is consistent with the fact that patients 
in most medical practices are consistently kept on high 
levels of tacrolimus in the early stages post-transplant (see, 
e.g., Ghisdal et al. 2012, Boloori et al. 2020). Furthermore, 
with respect to the use of insulin, patients are primarily 
put on insulin when their HbA1c and FPG tests indicate 
that they are not diabetic free (see definitions of predia
betic and diabetic in Table 1). Using the observed actions 
in our data set as well as the estimated belief vectors 
{pm

t }t∈T for each patient (for further details, see Section 
7.1.4), we next estimate µb(At |P

m
t ) by training a multiclass 

multiple logistic regression classifier. This classifier is 
endowed with an ℓ2-norm penalty, which is tuned to 
ensure that each action is selected with an estimated prob
ability of 0.05 or higher across all observations (see, e.g., 
Murphy et al. 2016).

7.1.3. Immediate Gain Variable. To calculate the imme
diate gains, we use a similar approach to our previous 
work (see, e.g., Boloori et al. 2020). In particular, we 
make use of QoL scores, which take values in [0, 1]. This 
allows us to differentiate between the quality of life 
of being in a diabetic, prediabetic, or healthy state and 
also having different concentrations of the immunosup
pressive drug in the body, which are, in turn, associated 
with differing risks of organ rejection. Table 4 shows the 
yearly-based QoL scores associated with each state,30

which are divided by 12 to represent the fact that 
patients’ visits are monthly.31

7.1.4. Other Details. The belief state space in our set
ting, ∆S, is an 8-simplex because there are nine latent 
states (Table 2). The vector of basis functions b(p)maps 
this 8-simplex to R13, which allows us to include enough 
cut points (while making sure that the value function is 
piecewise linear and continuous). Thus, both the belief 
space and the parameter space in our setting are contin
uous and relatively high dimensional. To perform our 
analyses, we use a discount factor of β � 0:95. We also 
tune a penalty parameter θt � θ. To create the set of 
models M , we make use of the algorithm in Table 3 of 
our earlier work (Boloori et al. 2020). Specifically, first 
the Baum–Welch algorithm is used to obtain point esti
mations for state transition and observation probability 
matrices. Next, an entropy ball is constructed (using 
the Kullback–Leibler divergence criterion) around these 
point estimate matrices. For tractability, we set |M | � 4 
in this case study. However, our framework is general 
and can be used for any number of estimated models. In 
Section 7.2, for example, we change our assumption on 
the number of models and consider |M | � 10 different 
models. Our framework is also not restricted to any spe
cific way of estimating the underlying models. For 
example, in Section 7.2, we make use of a different way 
of constructing the set M .32 Finally, we consider the dis
tribution F(p) to be uniform. That is, we use a uniform 
prior belief at time 0 and implement the Bayesian belief 
updating operator (see Equation 9) to create a sequence 
of belief vectors {pm

t }t ∈T for each patient under each 
model m ∈M (see, e.g., steps 1–5 in Algorithms 1 and 2
and in steps 1–5 Algorithms 3 and 4 in Online Appen
dix C).

7.1.5. Results. The performances of the three treatment 
regimes (DAV-Learning, SAV-Learning, and observed) 
are compared in Table 5. Average and standard deviations 
in these tables are calculated using Monte Carlo replica
tions.33 We focus on the performance of DAV-Learning 

Table 2. Latent Health States

State Transplant condition (tacrolimus C0) Diabetes condition

1 Low Diabetes (type II)
2 Medium
3 High
4 Low Prediabetes
5 Medium
6 High
7 Low Healthy
8 Medium
9 High

Table 3. Actions

Action Prescription (tacrolimus dose) Prescription (insulin use)

1 Low (nonaggressive) No
2 High (aggressive)
3 Low (nonaggressive) Yes
4 High (aggressive)

Table 4. Immediate Gain Values

State

Transplant 
condition 

(tacrolimus C0)
Diabetes 
condition

Immediate 
gain valuea

1 Low Diabetes (type II) 0:68=12
2 Medium 0:72=12
3 High 0:76=12
4 Low Prediabetes 0:82=12
5 Medium 0:87=12
6 High 0:89=12
7 Low Healthy 0:90=12
8 Medium 0:92=12
9 High 0:95=12

aImmediate gains are average values approximated based on QoL 
scores reported in other studies and include combined disutility of (a) 
being in a diabetic state and (b) having high risk of organ rejection. 
Yearly-based values are divided by 12 to represent monthly measures.
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and SAV-Learning as opposed to their BUC extensions 
(DAV-Learning-BUC, SAV-Learning-BUC) because as 
discussed in Remark 2, the results of Proposition 3 hold in 
this application. In the next section, we run experiments 
using DAV-Learning and SAV-Learning as well as 
DAV-Learning-BUC and SAV-Learning-BUC.

As can be seen from the results in Table 5, DAV- 
Learning outperforms SAV-Learning in terms of the 
mean performance for most values of the pessimism 
level, α. As both Table 5 and Figure 2 show, however, 
both DAV-Learning and SAV-Learning approaches 
significantly outperform the observed regime. In partic
ular, as Figure 2 shows, the improvements over the 
observed regime when using DAV-Learning and SAV- 
Learning are in the ranges (10%, 42%) and (10%, 32%), 
respectively, depending the value of α. Of note, these 
ranges also imply that the mean performance of the 
SAV-Learning regime is much more robust to the 
value of α than that of DAV-Learning. This is because 
of the fact that SAV-Learning uses a “safe estimation” 
of the underlying parameter of the value function (see, 
e.g., step 12 of Algorithm 2). This allows SAV-Learning 
to guard against ambiguity up front (i.e., in parameter 
estimation) in contrast to DAV-Learning, which com
bines policy values at the end. Thus, a decisions maker 

who uses SAV-Learning does not need to be that 
concerned about the value of α he or she uses (or try to 
tune it).

Finally, as can be seen from both Table 5 and Figure 2, 
the performance of DAV-Learning and SAV-Learn
ing regimes degrades as the pessimism level α increases. 
This is fully expected because as we move from a maxi
max view to a maximin one, DAV-Learning and SAV- 
Learning tend to put more weight on the worst-case 
scenario, and hence, perform more conservatively. More 
conservativeness, however, does not necessarily mean 
more robustness to model ambiguity. We further investi
gate this issue in Section 7.3, and we generate important 
insights into the values of α that can provide the highest 
level of robustness to model ambiguity.

7.2. Synthetic Data Analyses
We now use similar assumptions to those described in 
the case study, but instead of using actual patient tracer
ies, we simulate random patient trajectories for 100 
patients with 10 follow-up periods and use ( |M | � 10) 
different models. These yield randomly generated belief 
data of the form (pm

t )t∈T under each m ∈M . We keep 
the other assumptions (e.g., the action space, the num
ber of hidden states, the parameter space, basis func
tions, etc.) the same as those in the previous section.

We assume patient trajectories are such that for each 
m ∈M , the belief vector (pm

t )t∈T is generated via a 
Dirichlet distribution with the vector of parameters 
(pm

i )i∈{1, 2: : : , 9}. All of these models are misspecified, and 
hence, for each model, we randomly draw each pm

i from 
a Uniform(0, 1) distribution. We assume the true model 
is such that all pi-values are equal to 0.5. Furthermore, 
we specify the behavior policy as follows. For actions 
a � 1, 2, 3, we set µb(A � a |P � p) � exp(p′ ϱa)

1+
P3

a�1
exp(p′ ϱa)

, and for 

action a�4, we set µb(A � a |P � p) � 1
1+
P3

a�1
exp(p′ ϱa)

, where 

ϱ1, ϱ2, and ϱ3 are nine-dimensional predefined vectors. 
To perform our analyses, we choose each ϱa (a�1, 2, 3) 
as a vector with all elements equal to 0.1, except the ath 
element, which is set to �1.

Table 6 and Figure EC.1 (Online Appendix D) present 
our results using the DAV-Learning and SAV-Learn
ing approaches under the same immediate gain values 

Table 5. Estimated Total Discounted Gain Under Observed and Proposed Regimes (Case 
Study with β � 0:95)

Pessimism level (α) Observed regimea DAV-Learninga SAV-Learninga

0.00 1.472 (1.455, 1.489) 2.085 (2.061, 2.108) 1.949 (1.770, 2.128)
0.25 1.468 (1.456, 1.480) 1.939 (1.920, 1.958) 1.888 (1.566, 2.210)
0.50 1.464 (1.457, 1.471) 1.794 (1.779, 1.808) 1.786 (1.534, 2.039)
0.75 1.460 (1.458, 1.462) 1.648 (1.638, 1.658) 1.682 (1.658, 1.706)
1.00 1.455 (1.452, 1.458) 1.609 (1.560, 1.657) 1.606 (1.585, 1.627)

Note. For all values, only the first three decimal places are shown.
aValues in parentheses represent 95% confidence intervals. Values in bold represent the best performance.

Figure 2. Percentage Improvement over the Observed 
Regime (Case Study with β � 0:95) 

Note. Gray areas represent error bands, with the curve at the center 
of each error band representing the mean value.
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as those in the case study (see Table 4). Similar results for 
the BUC versions of these approaches, DAV-Learning- 
BUC and SAV-Learning-BUC, are presented in Table 7
and Figure EC.2 (Online Appendix D). Similar to the 
case study, we observe from these results that all of our 
proposed algorithms outperform the observed regime. 
Furthermore, the percentage improvement of DAV- 
Learning and SAV-Learning over the observed 
regime ranges in (1%, 37%) and (1%, 8%), respectively, 
depending on the value of α. These improvement ranges 
for DAV-Learning-BUC and SAV-Learning-BUC are 
(0:7%, 4:9%) and (0:07%, 7:9%), respectively. In addi
tion, similar to our observation in the case study, DAV- 
Learning outperforms SAV-Learning for most vales 
of α (Figure EC.1 in Online Appendix D), and a similar 
result can be seen for the BUC regimes (Figure EC.2 in 
Online Appendix D). Furthermore, similar to the case 
study, the performance of SAV-Learning is much more 
robust to the value of α compared with DAV-Learning, 
but in the BUC regimes, DAV-Learning-BUC shows rel
atively more robustness than SAV-Learning-BUC. In 
the next section, we further investigate the robustness of 
our proposed approaches to model ambiguity, and gen
erate insights into the best value of α that a decision- 
maker can use to achieve the highest level of robustness.

7.3. Robustness to Model Ambiguity
We now compare our proposed approaches in terms 
of their percentage gain loss (also known as regret). That 
is, we first consider an oracle who knows both the true 

data-generating model and the optimal policy under 
it, and then, we compare the performance of a decision- 
maker who is blind to the true data-generating model (is 
facing model ambiguity) but uses either DAV-Learning 
or SAV-Learning (or the BUC versions of DAV-Learn
ing or SAV-Learning). How much robustness to model 
ambiguity using these proposed approaches provide? 
What is the maximum gain loss of these approaches? For 
what value of α is the gain loss minimized? Importantly, 
in order to minimize the gain loss, should the decision 
maker use an extreme value of α (e.g., α � 0, 1) or a midle
vel value (e.g., α � 0:5)? Additionally, does the answer 
depend on which learning approach is used?

To answer these questions, we make use of a similar 
setup to the one discussed in Section 7.2. The results 
are shown in Figure EC.3 (Online Appendix D), which 
depicts the percentage gain loss of DAV-Learning and 
SAV-Learning compared with the imaginary oracle. 
Similar results for the BUC version of these approaches 
(DAV-Learning-BUC or SAV-Learning-BUC) are pro
vided in in Figure EC.4 (Online Appendix D). From these 
figures, we make three main observations. (1) Gain loss 
has a U-shaped curve as α varies. Importantly, the mini
mum loss for all four approaches (DAV-Learning, 
SAV-Learning, DAV-Learning, SAV-Learning) is 
obtained at a midvalue of α (approximately α � 0:25), 
which implies that using extreme cases of α � 0:0 
(a maximax view) or α � 1:0 (a maximin view) does 
not provide the highest level of robustness to model 
ambiguity. That is, neither the maximax view nor the 

Table 6. Estimated Total Discounted Gain Under Observed and Proposed Regimes (Synthetic 
Data Analyses with β � 0:95)

Pessimism level (α) Observed regimea DAV-Learninga SAV-Learninga

0.00 1.441 (1.440, 1.442) 1.973 (1.969, 1.977) 1.442 (1.441, 1.442)
0.25 1.415 (1.415, 1.416) 1.815 (1.811, 1.818) 1.434 (1.433, 1.434)
0.50 1.389 (1.389, 1.390) 1.656 (1.654, 1.659) 1.428 (1.428, 1.429)
0.75 1.364 (1.364, 1.364) 1.498 (1.496, 1.499) 1.434 (1.434, 1.434)
1.00 1.338 (1.338, 1.339) 1.348 (1.348, 1.348) 1.444 (1.444, 1.444)

Note. For all values, only the first three decimal places are shown.
aValues in parentheses represent 95% confidence intervals. Values in bold represent the best performance.

Table 7. Estimated Total Discounted Gain Under Observed and Proposed BUC Regimes (Synthetic 
Data Analyses with β � 0:95)

Pessimism level (α) Observed regimea DAV-Learning-BUCa,b SAV-Learning-BUCa,b

0.00 1.441 (1.440, 1.442) 1.511 (1.506, 1.517) 1.448 (1.442, 1.447)
0.25 1.415 (1.415, 1.416) 1.468 (1.464, 1.472) 1.429 (1.428, 1.429)
0.50 1.389 (1.389, 1.390) 1.425 (1.422, 1.428) 1.419 (1.418, 1.420)
0.75 1.364 (1.364, 1.364) 1.382 (1.380, 1.384) 1.418 (1.416, 1.420)
1.00 1.338 (1.338, 1.339) 1.344 (1.344, 1.345) 1.444 (1.441, 1.447)

Note. For all values, only the first three decimal places are shown.
aValues in parentheses represent 95% confidence intervals. Values in bold represent the best performance.
bThe algorithm is run by assuming ηm

t � 1:02 for all t ∈T and m ∈M . Results are based on ɛ-approximations for a 
small ɛ (see the discussion in Section 6).
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maximin view is robustness maximizing. (2) The gain 
loss under SAV-Learning (SAV-Learning-BUC) is 
more robust to the changes in the value of α compared 
with DAV-Learning (DAV-Learning-BUC). (3) All 
four proposed approaches are able to strongly shield 
against model ambiguity, regardless of the value of α 
used. Specifically, the gain loss under these approaches 
(compared with the imaginary oracle) is very low 
(below 0.6%). This implies that a decision-maker who 
is facing model ambiguity can use these approaches 
and obtain policies that have similar performance to 
the very best policy that could be used if the true data 
generating was known (i.e., if there was no ambiguity 
regarding the underlying causal model).34

Remark 4 (Dimensionality and Computations). The pro
posed algorithms DAV-Learning and SAV-Learning 
as well as their BUC extensions, DAV-Learning-BUC 
and SAV-Learning-BUC, do not require their main 
parameter spaces to have low dimensionality. That is, 
they can safely be used in high dimensions, especially 
because they make use of regularization to avoid over
fitting in high-dimensional settings. In particular, both 
our theoretical and numerical performance results (Sec
tions 5 and 7) indicate that these algorithms have suit
able convergence results and are relatively tractable 
for use in real-world applications. For example, al
though the results in Section 5 indicate that only some 
typical “regularity” conditions are needed to ensure 
that they have suitable asymptotic convergence behav
ior, numerical experiments in Section 7 suggest that 
they are indeed tractable in real-world applications. 
However, it should be noted that our numerical experi
ments are motivated by a specific medical decision- 
making application, in which the belief state space, ∆S, 
is an 8-simplex (because there are nine latent states), 
the vector of basis functions b(p) maps this 8-simplex 
to R13, and the main parameter needed to estimate the 
value function has a reasonable dimensionality (belongs 
to R13). Furthermore, the set of models and the policies 
needed in this application are not extremely large. If 
in an application, the cardinality of these underlying 
spaces is significantly higher than those in our experi
ments, the proposed algorithms may lose computa
tional tractability. In such scenarios, further care (e.g., 
discretization, approximation, etc.) is needed to speed 
up these algorithms. Finally, it should be noted that the 
proposed algorithms are suitable for scenarios in which 
the observed history provides at least some information 
about latent confounders. In APOMDPs, some models 
might be naturally more informative than others; see 
Definition 2 and Lemma 2 of Saghafian (2018) for the 
notion of model informativeness in APOMDPs, which 
is based on the Blackwell– Sherman–Stein sufficiency 
theorem. However, if none of the models are informa
tive, then the Bayesian operator that is used in these 

algorithms might fail to update the belief distributions 
under all models, and hence, the value function cannot 
be learned from data for different values of p. Intui
tively, if the observed data do not provide any infor
mation about the dynamic latent confounders, then 
one should not hope for using observed variables to 
effectively adjust for the effect of dynamic unobserved 
confounders.

8. Conclusion
We propose a mathematical framework as well as learn
ing algorithms for finding an effective dynamic treat
ment regime under model ambiguity. Incorporating 
model ambiguity a priori in the analyses not only pro
vides robustness to inevitable misspecifications (e.g., 
caused by hidden confounders with unknown dynam
ics and/or impact on the observed variables) but more 
broadly can bridge the gap between two philosophical 
views of causal inference: model based and model free.

Our work also tries to close the gap between RL tech
niques and dynamic causal inference methods. Specifi
cally, as is common, we view the problem of finding an 
effective treatment regime as an “off-policy” RL prob
lem. However, unlike the existing work, we allow the 
learning to occur across a “cloud” of potential data- 
generating models. This is specifically useful when data 
are observational, the behavior policy is unknown, and 
the existence of time-varying unmeasured confounders 
(which are themselves affected by previous actions) 
makes the task of learning the causal impact of an evalu
ation policy challenging.

Unlike the available RL techniques or the methods 
related to causal inference in dynamic settings, our 
work also allows for a two-way personalization; the 
obtained treatment policies are not only personalized 
based on the subject’s variables (e.g., a patient’s covari
ates) but also based on the ambiguity attitude and pre
ferences of the decision-maker (e.g., the physician). 
Given the importance of this two-way personalization 
in a variety of applications (e.g., medical decision mak
ing or public policy), we hope that future research can 
develop further data-driven methods to learn policies 
that are personalized in both ways.

We also hope that the future research can test and 
implement our proposed learning algorithms in a vari
ety of other applications. In this study, we investigate 
the performance of these learning algorithms in three 
ways. First, we analytically establish their asymptotic 
behavior, including (weak) consistency and asymptotic 
normality. Second, we examine them in a case study 
using clinical data related to NODAT patients. Third, 
we make use of simulation experiments (synthetic data), 
in which we control the true data-generating model and 
compare the performance of our proposed methods 
with that of an imaginary oracle who knows both the 
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true data-generating model and the optimal policy under 
that model. All these investigations reveal promising 
results. However, further research is needed to more 
broadly investigate the performance of our proposed 
methods in other applications and domains. With the 
increasing availability of sensor-based devices that are 
connected via the Internet of Things and benefit from 
data fusion (see, e.g., Saghafian et al. 2022), future re
search can also investigate augmenting our approaches 
to work with data obtained from multiple connected 
streams. Finally, future research can examine the inter
pretability of the policies that are obtained via DAV- 
Learning, SAV-Learning, DAV-Learning-BUC, and 
SAV-Learning-BUC, and it can propose adjustments 
(if needed) to ensure that they can be effectively used in 
practice.
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Endnotes
1 This assumption has also appeared in the literature under other 
names, such as “sequential randomization” (Tsiatis et al. 2019) and 
“sequential backdoor criterion” (Pearl and Robins 1995).
2 For example, this can be done under an assumed model for the 
dynamics of unobserved confounders (e.g., how they are affected 
by actions taken) and their relationship to observed values (e.g., 
how unobserved time-varying confounders affect the actions under 
which data are generated).
3 This view of data-driven decision-maker under ambiguity has 
also been shown to be useful in various applications, including in 
designing and optimizing queueing systems under model ambigu
ity (Bren and Saghafian 2019) and medical decision-maker (Boloori 
et al. 2020).
4 This view is also aligned with that of Arrow (1951), who stated: 
“There are two types of uncertainty: one as to the hypothesis, which is 
expressed by saying that the hypothesis is known to belong to a certain 
class or model, and one as to the future events or observations given 
the hypothesis, which is expressed by a probability distribution.”
5 For studies in this literature that consider other measure instead of 
the expected value of outcomes, we refer to Linn et al. (2017) and 
Wang et al. (2018) (quantile performance) as well as Leqi and Ken
nedy (2021) (median performance). These studies, however, do not 
consider model ambiguity, existence of unobserved confounders, or 
other challenges we aim to address. Although by using the α-MEU 
criterion, we primarily generalize the expected value of outcomes, it 
should be noted that our results can also be used to study generali
zations of other measures, such as the quantile or median measures.
6 Several studies consider finding treatment regimes that allow 
shared decision-making between physicians and patients when 
there are multiple risky (probabilistic)—as opposed to ambiguous 
(nonprobabilistic)—outcomes. Some available methods include set- 
valued treatment regimes (Laber et al. 2014, Lizotte and Laber 2016), 
inverse-preference elicitation (Lizotte et al. 2012), constrained estimation 
(Linn et al. 2015), and use of item response theory (Butler et al. 2018).
7 See also Zhang and Bareinboim (2019) for more discussions related 
to fining the optimal treatment regime under model ambiguity with
out a Markovian structure.

8 Because APOMDPs generalize POMDPs, our results can also be 
viewed as generalizations of those in the literature that use a 
POMDP setting to perform off-policy evaluation (see, e.g., Thomas 
and Brunskill 2016, Tennenholtz et al. 2020, Xu et al. 2020, Bennett 
and Kallus 2021, Hu and Wager 2021, and the references therein).
9 The fact that the structural properties of the value function in 
APOMDPs are known (see Saghafian 2018) is a main reason we make 
use of V-Learning as opposed to other RL methods (e.g., Q-Learning 
or A-Learning). Furthermore, as we will see, a data transformation 
approach allows for using a weight-adjusted version of the Bellman 
equation, thereby directly estimating the value function from observed 
data.
10 We do not assume that time points are evenly distributed or 
homogenous across patient trajectories. Importantly, in some appli
cations, the treatment times are random. For simplicity, we assume 
that treatment times are fixed. However, extending our results to 
scenarios with random treatment times is relatively straightforward.
11 It should be noted that St, in general, depends on the history up 
to time t. Thus, Gt¢g(St, At) also depends on the history. However, 
this dependence is only through St, which as noted earlier, can 
always be achieved with appropriate definition of summary vari
ables (St)t∈T (see, e.g., Xu et al. 2020).
12 Although we focus on discounted sum of immediate gains, we 
note that many of our results readily extend to the average overall 
gains Γ(l)¢ 1

T
P

t∈TGl
t and in particular, to its long-run counterpart 

lim infT→∞Γ(l). This is because under some mild conditions, limT→∞

Γ(l) � limT→∞limβ→1
ΓT(l)
1�β .

13 This assumption links the counterfactual data with the factual one 
(Robins 1997) and can be violated if treatment of a subject impacts 
another subject’s variables (e.g., vaccinating a group of individuals 
may decrease exposure of others to a disease).
14 We defer discussions on how the space of models can be con
structed to the numerical experiments section (see, e.g., the discus
sion in Section 7.1.4). As described there, there are various ways of 
constructing the set M , and our analysis does not rely on any speci
fic method or assumption in this regard.
15 See also the sequential backdoor criterion (Pearl and Robins 1995).
16 For related studies on doubly robust estimators, we refer to Jiang 
and Li (2016), Thomas and Brunskill (2016), Kallus and Uehara (2020), 
Athey and Wager (2021), Bang and Robins (2021), and the references 
therein.
17 For other approaches in modeling confounders as hidden states, 
see, for example, Xu et al. (2020), Bennett et al. (2021), and the refer
ences therein.
18 For typical POMDPs and APOMDPs, it is known that the belief dis
tribution over latent states can serve as a sufficient statistics (see, e.g., 
Saghafian 2018, Saghafian and Rasouli 2019, Boloori et al. 2020, and 
the references therein). In Remark 2 and Section 6, we further discuss 
handling cases where this might not hold. We also refer interested 
readers to assumption 1 in Tennenholtz et al. (2020), which establishes 
the existence of a sufficient statistic as one sufficient condition for unbi
asedness of importance sampling in POMDPs, but highlight that our 
focus is on APOMDPs as opposed to POMDPs.
19 For a random variable X with n observed values denoted by 
x1, x2, : : : , xn, EP[X]¢n�1Pn

i�1 xi. Similarly, for a function f, EP[f (X)]
¢n�1Pn

i�1 f (xi).
20 This is the case in how the value function in traditional POMDPs 
is often constructed; see, for example, Equation (8).
21 Allowing the dimensionality of the parameter space, dt, to depend 
on t can enable us to increase flexibility as t grows (e.g., by introduc
ing more knots). The special case where dt does not depend on t is 
still useful in some settings, including those where the goal is to 
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learn the long-run impact of a policy (see, e.g., Algorithms 1 and 2 in 
Section 4.2).
22 In our case study, simulations experiments, and theoretical 
results, we make use of the squared Euclidean norm as the penalty 
function, and hence, assume P(ct) � c′tct.
23 We use the “max” operator instead of “sup” because in most 
real-world applications, Υ is first identified by a set of domain 
experts and is such that maximum is obtained. We later make this 
assumption more implicit (see, e.g., Condition 4 in Section 5). Fur
thermore, in various practical applications, Υ is often restricted to 
the set of policies that satisfy specific attributes, such as fairness or 
interpretability.
24 We assume M is such that infm∈M ‖c

m, me

t ‖ and supm∈M ‖c
m, me

t ‖ are 
both finite and that m and m are both in M .
25 For general results related to the asymptotic properties of V-Learning 
algorithms when all variables are observable and there is no model 
ambiguity, we refer interested readers to Luckett et al. (2020).
26 For the definition of the bracketing integral, J[](∞,Υ, Lρ(Pm)), see, 
for example, Kosorok (2008).
27 For the definition of an absolutely regular stationary process and 
its β-mixing coefficients, see, for example, Dedecker and Louhichi 
(2002), Kosorok (2008), and the references therein.
28 These weight modifiers may depend on p in general (based on (26) 
and (27)). Such dependency is suppressed here for the ease of notation.
29 Of note, similar to this study, Boloori et al. (2020) also address 
simultaneous management of immunosuppressive drugs and insulin 
for NODAT patients. However, the study of Boloori et al. (2020) is not 
concerned with the main aspects of this work. Namely, it does not 
deal with (a) causal inference or (b) reinforcement learning. The main 
ideas we use in this work are also not used in Boloori et al. (2020). For 
example, we make use of importance sampling ideas along with weight- 
adjusted versions of the Bellman equation, but in Boloori et al. (2020), 
the approach is vastly different: an APOMDP model is directly fitted 
to the data, and the optimal policy of this APOMDP is established 
using its Bellman equation (without weight adjustment) based on the 
theoretical results known for APOMDPs (Saghafian 2018). We believe 
that the approach used both in Boloori et al. (2020) and in this study 
are novel. However, they are not directly comparable in a ceteris pari
bus manner because of the mentioned differences.
30 In addition to immediate gains, our framework allows for includ
ing lump-sum gains (i.e., gains at the end of the horizon to reflect 
the quality of life associated with the remaining years). For the pur
poses of this study, however, we simply set V0(p)¢0.
31 Given pm

t in each period t under each model m, the obtained 
immediate gain in each period t under each model m is considered 
to be the weighted average of immediate gain values shown in 
Table 4, where weights are given by pm

t (see also Remark 2).
32 It should be also noted that any continuous set of models can be 
approximated via finite sets with any required precision. That is, 
even if M is not finite, one can always consider a finite set M as a 
close approximation to the continuous one.
33 The number of these replications is chosen so that the confidence 
intervals are tight enough while maintaining reasonable computa
tional times.
34 These findings hold in the context of our numerical experiments. 
However, we avoid making general conclusions because doing so 
will require a more extensive set of experiments. Our results, how
ever, provide a proof of concept that can be further explored by 
future research.
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