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Operations managers do not typically have full information about the demand distribution. Recognizing this, data-driven
approaches have been proposed in which the manager has no information beyond the evolving history of demand observations.
In practice, managers often have some partial information about the demand distribution in addition to demand observations.
We consider a repeated newsvendor setting, and propose a maximum-entropy based technique, termed Second Order Belief
Maximum Entropy (SOBME), which allows the manager to effectively combine demand observations with distributional
information in the form of bounds on the moments or tails. In the proposed approach, the decision maker forms a belief about
possible demand distributions, and dynamically updates it over time using the available data and the partial distributional
information. We derive a closed-form solution for the updating mechanism, and highlight that it generalizes the traditional
Bayesian mechanism with an exponential modifier that accommodates partial distributional information. We prove the
proposed approach is (weakly) consistent under some technical regularity conditions and we analytically characterize its rate
of convergence. We provide an analytical upper bound for the newsvendor’s cost of ambiguity, i.e., the extra per-period cost
incurred because of ambiguity, under SOBME, and show that it approaches zero quite quickly. Numerical experiments
demonstrate that SOBME performs very well. We find that it can be very beneficial to incorporate partial distributional
information when deciding stocking quantities, and that information in the form of tighter moment bounds is typically more
valuable than information in the form of tighter ambiguity sets. Moreover, unlike pure data-driven approaches, SOBME is
fairly robust to the newsvendor quantile. Our results also show that SOBME quickly detects and responds to hidden changes
in the unknown true distribution. We also extend our analysis to consider ambiguity aversion, and develop theoretical and
numerical results for the ambiguity-averse, repeated newsvendor setting.
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1. Introduction
Randomness in demand and/or supply is a major challenge
in sales and operations planning. A common paradigm in
the operations literature endows the decision maker with
full distributional information about the underlying random
variable(s). Full distributional information is, however, a
strong assumption and is not typically met in practice. An
alternative “pure data-driven” paradigm endows the decision
maker only with past observations/realizations of the random
variable (the “data”); see, e.g., Azoury (1985), Liyanage and
Shanthikumar (2005), Levi et al. (2007, 2015), Huh et al.
(2011). Reality often lies somewhere in between these two
paradigms: the decision maker typically has some partial
distributional information and some data.

In this paper, we propose and analyze a methodology for
decision making in settings in which the decision maker does
not know the true distribution but has access to some partial
distributional information and some limited data. This form
of ambiguity, a.k.a Knightian uncertainty, about the true
distribution arises in various settings in operations including

new product launches and new process introductions. In
such settings, firms devote significant efforts to characteriz-
ing demand or yield before the new product or process is
launched and then observe a growing time series of realiza-
tions, i.e., data, after launch. In new product introductions,
forecasting demand and choosing stocking quantities is a
common challenge across a wide array of industries (Kahn
2002, AMR 2008), especially “during the commercialization
stage (prelaunch preparation and launch) where new product
forecasts drive a variety of multifunctional decisions,” (Kahn
2002, p. 133). For example, consider the consumer-products
company Nabisco (now owned by Mondelez International):

Several statistical techniques are used to forecast sales 0 0 0 0
However, most of these techniques need a minimum of two
to three years of historical information to build a robust
model. This presents a big problem when developing fore-
casts for newly introduced product 0 0 0 0 At Nabisco, before
a new product is rolled out, [the] planning forecast devel-
oped by marketing research 0 0 0 is used for 0 0 0production
planning 0 0 0 and inventory deployment. However, when the
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product is rolled out, actual sales can be substantially less or
more than the planned numbers [leading to] lost sales [or]
excess inventory. (Amrute 1998, p. 7).

Let us consider the kind of demand-forecast informa-
tion that firms generate before and after a new product is
launched. According to surveys by Lynn et al. (1999) and
others, prelaunch forecasts are primarily generated through
marketing research and judgmental techniques, with the top
four approaches being customer/market research, followed
by jury of executive opinion, sales force composite, and
look-like analysis (Kahn 2002). Customer/market research
encompasses a variety of approaches, including surveys of
potential buyers. The jury of executive opinion approach
solicits and combines judgments from managers represent-
ing various functions, whereas the sales force composite
approach solicits and combines judgments from the sales
force (Aaker et al. 2010) who are typically better aware of
market conditions; see, e.g., Saghafian and Chao (2014), and
the references therein. In look-like analysis, the firm identifies
“a similar product, sold previously, and extrapolates from
that product’s prior sales” (Fisher and Raman 2010, p. 85).
These judgmental approaches, such as sales force composite,
can be used to estimate demand uncertainty by having the
salespeople “provide a sales estimate range in addition to the
single number representing the expected sales level [or] to
have them estimate the probability of each potential sale.”
(Aaker et al. 2010, p. 747). Because of the subjective nature
of theses estimation processes, different people will provide
different forecasts, i.e., different probability distributions. As
such, these prelaunch techniques enable the firm to generate
a set of possible demand distributions and a range for the
expected sales.

After a product has been launched, the firm can use actual
demand observations to update its beliefs about demand.
However, market research efforts do not end, at least in part
because “the rate of new product introduction is fast and
frequent, meaning data series are often short” (Lynn et al.
1999, p. 566). Ongoing market research generates forecast
information through test sales (Fisher and Raman 2010),
simulated test markets (Lynn et al. 1999), and surveys of cus-
tomer purchase intentions (Aaker et al. 2010). These ongoing
postlaunch market-research efforts provide valuable demand
information separate from the actual demand observations.

Therefore, in planning stocking quantities for a new or
recently released product, the operations function has two
separate and evolving sets of information about the unknown
demand distribution. One set is the pre and postlaunch market
research including the judgmental approaches discussed
above. The other set is the actual demand observations
over time. This information setting is not captured by
the traditional “full-information” paradigm in operations
management that endows the decision maker with complete
knowledge of the demand distribution. Neither it is captured
by the more recent “pure data-driven” approaches that were
specifically designed for settings in which the decision maker
has access to demand observations but no other information.

We develop an approach tailored to intermediate infor-
mation settings—such as new product and new process
introductions—in which a decision maker operates in an
environment of ambiguity characterized by two evolving
sources of information about a relevant random variable
(e.g., demand): “exogenous research” and observations (the
“data”). Based on the above discussion of pre and postlaunch
forecasts, we formulate the exogenous research information
as a set of possible demand distributions as well as potential
upper and/or lower bounds on the moments and/or tails
of the demand distribution. Our proposed approach is a
second-order, maximum-entropy based approach, which we
term Second Order Belief Maximum Entropy (SOBME).
It allows the decision maker to effectively combine the
above-mentioned sources of information dynamically over
time to update its beliefs about the possible distributions
governing the demand realizations. In our approach, the
decision maker updates its second-order beliefs, i.e., dis-
tribution over possible distributions, so as to minimize the
relative entropy to its prior belief subject to the most recently
observed demand and the current market research informa-
tion. In doing so, we follow the core concept of maximum
entropy, widely used in estimation and information theory, in
which (i) beliefs are updated so that the posterior coincides
with the prior as closely as possible, and (ii) only those
aspects of beliefs for which new evidence was gained are
updated (Jaynes 1957, 1981; Cover and Thomas 2006).

We embed our SOBME approach in a classical operations
setting—the repeated newsvendor—and analytically and
numerically examine its performance. We focus on a repeated
newsvendor setting because that is a common paradigm
in the operations literature for exploring approaches that
relax the assumption of full demand information. However,
SOBME is general and could be used in any setting in
which a decision maker does not know the distribution of an
underlying random variable but has access to data and to
some partial distributional information. Such settings will
become increasingly common in the era of big data analytics.
Our paper provides both theoretical and managerially relevant
results.

On the theoretical side, we derive a closed-form solution
for the SOBME belief-updating mechanism, and show that
it contains traditional Bayesian updating—both parametric
and nonparametric—as a special case. As we will show,
SOBME generalizes the Bayesian updating mechanism by
incorporating the partial distributional information through
an exponential modifier. We explore the asymptotic behavior
of SOBME and show that it is weakly consistent. That is,
under some technical conditions, the updated distribution
converges to the true unknown distribution almost surely in
the weak neighborhoods of it. We also analytically establish
a rate of convergence for SOBME. Furthermore, we provide
a performance guarantee for SOBME by developing an
upper bound on the newsvendor’s cost of ambiguity, i.e., the
increase in the expected per-period newsvendor’s cost as
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compared to the full distributional knowledge case. We show
that the cost of ambiguity approaches zero quite quickly
when SOBME is used. We also explore an ambiguity-averse
version of our repeated newsvendor problem, and develop
theoretical results that characterize the optimal newsvendor
quantity under ambiguity aversion. In doing so, we establish
a generalization of the traditional newsvendor quantile result.
We also analytically and numerically examine how SOBME
performs in this ambiguity-averse setting.

On the managerial side, we numerically establish that
SOBME performs well—as measured by the percentage
increase in cost as compared to full distributional knowledge—
even when the number of demand observations is limited.
This is of practical importance because, as noted above,
firms often do not have access to a long series of demand
observations when planning stocking quantities for recently
introduced products. Given the efforts devoted by companies
to generate exogenous research about the demand distribu-
tion, it is important to understand whether such research is
valuable, when it is valuable, and what type of research is
more valuable. We numerically explore the value of exoge-
nous research by comparing the performance of SOBME
with that of pure data-driven approaches, such as Sample
Average Approximation (SAA), which rely exclusively on
the demand realizations. We show that there is significant
value to exogenous research, especially when demand obser-
vations are limited or the newsvendor quantile (the desired
service level) is high. Unlike SAA, the SOBME approach
performs well even at high service levels. We find that
research resulting in tighter moment bounds is more valuable
than research resulting in a more compact set of possible
distributions. As discussed above, “like-products” are one
source of exogenous research. Based on a new-product
introduction case motivated by a real-world setting (Allon
and Van Mieghem 2011), we show how moment bounds
(for demand) can be developed from like-products, and
numerically show that there is significant benefit to moment
bound information even if the number of like-products is
quite small. We also numerically show that SOBME is
effective at detecting and quickly reacting to changes in the
underlying unknown distribution, an important and practical
benefit in dynamic environments. We prove that ambiguity
aversion leads to lower order quantities. This has important
implications for practice if individual managers vary in their
ambiguity aversion.

The rest of the paper is organized as follows. The lit-
erature is reviewed in §2. The model is presented in §3,
and the proposed SOBME approach is developed in §4.
A performance guarantee for the repeated newsvendor setting
is developed in §5. Numerical results are presented in §6.
Ambiguity aversion is considered in §7. Section 8 concludes
the paper.

2. Literature Review
Despite some early and notable exceptions, e.g., Scarf (1958,
1959), the operations literature has typically assumed that

the decision maker has full information about the distribution
of relevant random variables. A number of approaches have
been adopted to relax this strong assumption.

Some papers adopt a parametric approach, in which
the distribution comes from a parametric family but the
parameter value is unknown. Bayesian approaches have
been used in the context of demand uncertainty (Scarf
1959, Azoury 1985, Lariviere and Porteus 1999, Wang
and Mersereau 2013) and supply uncertainty (Tomlin 2009,
Chen et al. 2010). An “operational statistics” approach
for simultaneously estimating an unknown parameter and
optimizing an operational planning problem is introduced in
Liyanage and Shanthikumar (2005) and further explored in
Chu et al. (2008) and Ramamurthy et al. (2012).

The distribution of interest may not come from a para-
metric family or the decision maker may not know which
family it comes from. With this in mind, a number of
different nonparametric approaches have been proposed and
analyzed in various inventory planning contexts. Sample
Average Approximation (SAA) (see, e.g., Kleywegt et al.
2002; Shapiro 2003; Levi et al. 2007, 2015) is a data-driven
approach that solves a sample-based counterpart to the actual
problem. For the SAA approach, Levi et al. (2007 and 2015)
develop bounds on the number of samples required for
the expected cost to come arbitrarily close (with a high
confidence) to the expected cost if the true distribution
was known. Other data-driven, nonparametric approaches
include the bootstrap method (Bookbinder and Lordahl
1989), the concave adaptive value estimation (CAVE) algo-
rithm (Godfrey and Powell 2001), and adaptive inventory
methods mainly used for censored demand data (Huh and
Rusmevichientong 2009, Huh et al. 2011).

An alternative nonparametric approach is a robust one
in which certain moments of the distribution are known,
and the decision maker maximizes (minimizes) the worst-
case expected profit (cost) over all distributions with the
known attribute; see, e.g., Scarf (1959), Gallego and Moon
(1993), Popescu (2007). Because such approaches can be
conservative, Perakis and Roels (2008) adopt a regret-based
approach in which the decision maker knows the mean.
Zhu et al. (2013) consider a newsvendor setting where the
demand distribution is only specified by its mean and either
its standard deviation or its support, and develop a method
that minimizes the ratio of the expected cost to that of
full information. Moments, however, might not be known
with certainty, and Delage and Ye (2010) develop a robust
approach in which the mean and covariance satisfy some
known bounds. Wang et al. (2015) devise a likelihood robust
optimization (LRO) approach, in which the set of possible
distributions are considered to be only those that make the
observed data achieve a certain level of likelihood. It is then
assumed that the decisions are made based on the worst-case
distribution within this set.

A long-established approach when selecting a probability
distribution subject to known moments is to choose the
distribution that has the maximum entropy (ME). Despite its
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widespread use in fields such as estimation theory, physics,
statistical mechanics, and information theory among others,
there are only a few papers in the operations literature
that have adopted maximum entropy based approaches.
Andersson et al. (2013) examine a nonrepeating newsvendor
model in which the decision maker only knows the mean
and variance of the demand distribution. They compare
an ME approach with robust approaches and find that
the ME approach performs better on average. Different
from Andersson et al. (2013), (i) we examine a repeated
newsvendor setting and so the decision maker has access to
past data to dynamically update his beliefs; and (ii) we allow
for (evolving) upper/lower bounds on moments and tails
instead of assuming a known mean and variance. Maglaras
and Eren (2015) apply the ME approach in a revenue
management context under a discrete demand assumption
and static linear equalities, and establish its asymptotical
behavior. Unlike their work, we (i) consider a newsvendor
setting, (ii) permit continuously distributed demand, (iii)
allow for dynamically changing inequalities (lower and upper
bounds on the moments and tails that may change over
time), and (iv) build distributions over possible distributions
as opposed to the random variable itself, i.e., a second-order
approach as opposed to a first-order one.

The concept of maximizing entropy when updating proba-
bility distributions in response to new information, under the
strong assumption that the first moment is exactly known,
has been shown to include Bayesian updating as a special
case; see Caticha and Giffin (2006) and Giffin and Caticha
(2007). We adopt and develop this approach by (i) creat-
ing a mechanism that builds a belief/distribution about the
possible distributions of the underlying random parameter
(as opposed to directly building a distribution about it); (ii)
allowing for partial distributional information in the form of
arbitrary upper and/lower bounds on the moments and tails,
which may evolve over time (as opposed to the very special
case where the first moment is perfectly known and this
information is static). Importantly, we also embed it in a
sequential decision-making setting (a repetitive newsvendor),
provide a performance guarantee for it, and analytically
establish its asymptotic behavior including its consistency
and rate of convergence. To the best of our knowledge, our
proposed method is among the very first in the operations
literature that is both data-driven and information-driven
and also fully dynamic. The approach provides a method to
effectively combine dynamically evolving partial information
on moments and tails with data and observations, presenting
a widely applicable tool (especially in the current trend of
business analytics) for decision making under distributional
ambiguity.

3. The Model
We consider a repeated newsvendor problem over periods t ∈

´ 2= 811 0 0 0 1 T 9, with T ¶�. Let h > 0 and p > 0 denote the
per-unit holding and shortage penalty costs, respectively. Let

L4x5= h6x7+ +p6−x7+, where 6x7+ 2= max8x109. Demand
realizations are generated as i.i.d. random variables from
a true distribution that is unknown to the decision maker
(DM). Unless otherwise stated (e.g., §6.3), we assume the
true distribution is stationary. The DM, “he,” as a convention
hereafter, has two types of evolving information about the
demand distribution.

• Data/Observations. At the end of period t = 11 0 0 0 1 T ,
the DM knows the realization of demand Di in each of the
periods i = 11 0 0 0 1 t. This information is denoted as Ft . We
define F0 = � to reflect the fact that there is no demand
realization prior to period 1.

• Exogenous Research. This information is contained in
two sets.

—Ambiguity Set. As noted in §1 for the example of
new product introductions, prelaunch marketing research
generates a set of possible demand distributions based
on the judgments of various relevant constituents, e.g.,
managers, sales people, prospective customers. Suppose
the sets of possible demand distributions and associated
densities (assuming they exist) are given by the ambiguity
sets D 2= 8F �

D 2 � ∈ì9 and D′ 2= 8f �
D 2 � ∈ì9, respectively,

where � is a scalar indicator associated with a distribution,
and ì is an arbitrary, typically uncountable, set. Without loss
of generality, we assume all the distributions in D have a
common support denoted by ¤, e.g., ¤= 601�5. We assume
that the ambiguity set D contains the true distribution F �∗

D ,
where �∗ ∈ì is simply an indicator for the true distribution.

The fact that the indicator � is a scalar is not a limitation.
We make no assumption about the shape of the distributions
contained in the ambiguity set. The set may contain any
distribution, and the distributions do not need to come from
the same family; see, for example, our numerical study
in §6. In addition, families with more than one parameter
are allowed. It is simply a matter of associating a scalar �
with an instance of the family.

—Moment and Tail Bounds. As noted in §1, pre and
postlaunch marketing research can also provide the DM with
additional demand information in the form of bounds on (i)
the expected value of demand, and (ii) tail probabilities. At
period t ∈´, we denote the lower and upper bounds on the
expected value of demand by Ɛt4D5 and Ɛ̄t4D5, respectively,
with 0 ¶ Ɛt4D5¶ Ɛ̄t4D5.1 We let the tail related information
at period t be of the form Pr4D ¾ u5¶ bt4u5, for some
nonincreasing function bt4u52 ¤→ 60117. We denote this
moment and tail information by the set F̂t , and note that
allowing it to change over time is a generalization of the static
case in which the moment bounds and the tail information
are fixed over the horizon. In this latter case, F̂t = F̂0 for
all t ∈´, where F̂0 is the initial information before the first
time period has occurred. We note that the moment and tail
information need to be consistent, i.e., should not contradict
each other. Otherwise, there may not be any distribution
in the ambiguity set that satisfies them, in which case the
problem we discuss below is infeasible. The consistency
between the data/observations and the moment/tail bounds
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can be monitored and statistically tested. Our approach
can allow the decision maker to also include endogenously
generated moment bounds based on the data/observations;
see §6.3.

Because the DM does not know the true demand distribu-
tion, his decision in each period will be based on his current
belief about the distribution. We will introduce and develop
our approach to belief representation and updating in the
next section. Before doing so, we specify the sequence of
events in each period t ∈´:

1. The DM determines an order quantity qt ¾ 0 (given
his current belief about the demand distribution), orders it,
and receives it.

2. Demand is realized, with the realized value denoted
by � ′

t , and the newsvendor cost L4qt − � ′
t5 is incurred.

3. New exogenous research, if any, arrives regarding
moment and tail bounds, and the information set F̂t is
specified. Note that F̂t = F̂t−1 if no new research arrives.

The DM updates his belief about the demand distribution
for period t + 1.

When determining his order quantity at the beginning of
period t (step 1), the DM solves2

min
qt¾0

ƐD�Ft−11 F̂t−1
6L4qt −D571 (1)

where ƐD �Ft−11 F̂t−1
denotes that the expectation is taken

with respect to the DM’s current belief about the demand
distribution, and that this current belief (however it was
formed) can only avail of the information available at that
point in time, i.e., the prior demand realizations Ft−1 and
the most recent moment and tail information set F̂t−1. We
refer to the above optimization problem as the DM’s problem
and to its adopted policy as the DM’s policy. The values
of demand, however, are drawn from a hidden underlying
distribution. Therefore, the DM’s policy is associated with
a true cost that depends on the true hidden underlying
distribution. This true cost represents the ultimate measure
of the policy’s performance.

4. A Belief Updating Approach That
Combines Data and Moment/Tail
Bounds

In this section, we first sketch the outline of our approach
to representing and updating beliefs, and contrast it with
other existing approaches (§4.1). Next, in §4.2, we formally
develop the approach and present the key belief-updating
result. Finally, in §4.3, we analytically examine the asymp-
totic behavior of the approach by investigating its consistency
and convergence rate.

4.1. Outline of the Approach

We adopt a distribution-over-distributions approach. At the
beginning of period t, the DM’s belief about the demand
distribution is represented by a distribution over the set of

possible demand distributions contained in the ambiguity set.
In essence, the DM assigns a probability that any particular
distribution in the ambiguity set is the true distribution. At
the end of period t, having observed the value of period-t
demand, the DM updates his belief about the probability
of each distribution in the ambiguity set; that is, a new
distribution (over the distributions in the ambiguity set) is
formed. The DM adopts the maximum entropy principle
when creating this new distribution: beliefs are updated so
that (i) the posterior coincides with the prior as closely as
possible, and (ii) only those aspects of beliefs for which
new evidence was gained are updated. Furthermore, the
updating is done in a manner that ensures conformance
to the current moment and tail bound information. These
notions are mathematically formalized in §4.2.

We call this a Second Order Belief Maximum Entropy
(SOBME) approach because the DM’s beliefs are represented
as a distribution over possible demand distributions rather
than being codified directly as a demand distribution (a first-
order approach). We note that if the DM is ambiguity neutral,
i.e., the DM’s period-t objective function is given by (1),
then there exists a single first-order demand distribution
that would yield an equivalent period-t objective value
to that given by a distribution-over-distributions approach.
However, there is a question as to how such a first-order
demand distribution would be developed. SOBME provides
a useful and practically relevant method to dynamically
characterize the first-order distribution as a weighted average
of the distributions in the ambiguity set. From a practical
perspective, our SOBME approach aligns directly with
new-product forecasting judgmental methods (see §1) in
which different people estimate the probability of each sales
level. Such methods yield a set of distributions, one from
each person. SOBME provides a method to dynamically
update the probability associated with each distribution and,
as we will see in subsequent sections, it performs very
well. Furthermore, as we will see in §7, a distribution-over-
distributions approach is necessary if the DM is ambiguity
averse/loving, and SOBME provides a good approach for
such settings.

Before we formalize the SOBME approach, we contrast it
conceptually with pure data-driven approaches and robust
optimization approaches. In pure data-driven approaches,
SAA for example, the DM constructs (in each time period)
a new demand distribution based exclusively on the history
of demand observations. SOBME differs from SAA along
two important dimensions: (i) it enables the DM to avail of
moment and tail bound information in addition to the demand
observations, and (ii) the DM’s beliefs are represented
as a distribution over distributions rather than as a single
distribution. SOBME is also very different from robust
optimization approaches in which decisions are made only
with respect to the worst-case distribution in the ambiguity
set. In SOBME, the DM assigns weights to all members of
the ambiguity set. This helps avoid the tendency of robust
optimization methods to make overly conservative decisions.
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Moreover, our approach updates these weights based on new
realizations and evolving moment and tail information.

4.2. Formal Development of the
SOBME Approach

At the beginning of period t ∈´, the DM’s belief about the
demand distribution is represented as a density function ft4�5
over the set of possible demand distributions contained in
the ambiguity set D 2= 8F �

D 2 � ∈ì9.3 At the end of period t,
having observed the period-t demand and knowing the most
recent moment and tail information, the DM updates his
belief from ft4�5 to ft+14�5. In what follows, we formally
develop the approach for updating ft4�5 to ft+14�5.

The updating mechanism (at the end of period t) is
based on the following three inputs. One input is the joint
density (from the beginning of period t) over the demand
and the demand distribution indicator; this is given by
ft4�1�5= ft4�5f

�
D 4�5, where f �

D 4�5 is the demand density
associated with the indicator �. The second input is the
observed value of the demand in period t, denoted by � ′

t .
The third input is the most recent moment and tail bound
information, i.e., F̂t .

Let f o
t+14�1�5 denote some joint density (at the end of

period t) over the demand observation that was realized
in period t and the demand distribution indicator random
variable. The output of our updating mechanism, defined
through the optimization program described below, will
be a specific joint density denoted by f ∗o

t+14�1�5. This will
determine the DM’s updated belief ft+14�5 using ft+14�5=
∫

¤ f ∗o
t+14�1�5d�, i.e., the DM’s updated belief ft+14�5 is

given by the marginal density of f ∗o
t+14�1�5.

The updating mechanism chooses a joint density f o
t+14�1�5

[the “posterior”] to minimize the Kullback-Leibler (KL)
divergence (a.k.a. relative entropy) between f o

t+14�1�5 and
ft4�1�5 [the “prior”] while recognizing that the demand
observation in period t took on some specific value, � ′

t , and
that the joint density f o

t+14�1�5 must imply a demand density
that conforms to the most recent moment and tail bound
information, i.e., F̂t . The Kullback-Leibler (KL) divergence
is formally defined as:

Definition 1 (Kullback-Leibler Divergence). The
Kullback-Leibler (KL) divergence or the relative entropy
between two joint densities f o

t+1 and ft defined on ¤×ì is:

dKL4f
o
t+1�ft5=

∫

¤

∫

ì
f o
t+14�1�5 log

f o
t+14�1�5

ft4�1�5
d�d�

= Ɛf o
t+1

[

log
f o
t+14�1�5

ft4�1�5

]

0

This is a general definition for any two densities, but
described in terms of our specific notation.4 Observe
that dKL4f

o
t+1�ft5¾ 0, and dKL4f

o
t+1�ft5 is convex in pair

4f o
t+11 ft5; see, for example, p. 32 of Cover and Thomas

(2006).

The updating mechanism is given by the following func-
tional optimization program, in which the decision variable is
the function f o

t+12 ¤×ì→�+, and is chosen to minimize
the relative entropy (or equivalently maximize the negative
relative entropy).

min
f o
t+12¤×ì→�+

dKL4f
o
t+1�ft5 (2)

s.t.

Ɛt4D5¶
∫

¤

∫

ì
f o
t+14�1�5�14�5d�d� ¶ Ɛ̄t4D5 (3)

∫

¤

∫

ì
f o
t+14�1�5�24�1u5d�d� ¶ bt4u5 ∀u ∈¤ (4)

∫

ì
f o
t+14�1�5d�= �4� − � ′

t5 ∀� ∈¤ (5)

∫

¤

∫

ì
f o
t+14�1�5d�d� = 11 (6)

where �14�5 2= Ɛ4D ��5=
∫

¤ �dF �
D 4�5, �24�1u5 2= 1 −

F �
D 4u5, and �4 · 5 is the Dirac delta function.5 It should be

noted that constraints (4) and (5) are not single constraints:
they each represent an infinite number of constraints.

We first discuss the role of constraints (3) and (4). Note that
∫

¤ f o
t+14�1�5d� gives the marginal density of the demand

distribution indicator �. Therefore, constraint (3) reflects
the fact that the DM’s updated belief must result in a mean
demand that conforms to the most recent upper and lower
moment bounds, Ɛ̄t4D5 and Ɛt4D5, respectively. Similarly,
constraint (4) reflects the fact the DM’s updated belief must
result in a demand distribution whose tail probability (at any
given u) is bounded above by the most recent tail bound bt4u5.

Next we discuss the role of constraints (5) and (6). Recall
that the updating optimization program is selecting a joint
density f o

t+14�1�5 over the demand observation that was real-
ized in period t and the demand distribution indicator random
variable. The marginal density

∫

ì
f o
t+14�1�5d� in (5) is the

density over the possible demand observations. Of course, the
realized value of the observation is already known to be � ′

t .
Therefore, any valid marginal density (valid, in the sense that
it reflects what the DM already knows) should place all its
weight on � = � ′

t and no weight on � 6= � ′
t . However, it also

needs to be a legitimate density function. These two require-
ments are fulfilled by using the Dirac delta function (see
Endnote 5) and setting

∫

ì
f o
t+14�1�5d�= �4� − � ′

t5 ∀� ∈¤,
which is constraint (5). Finally, constraint (6) is a normaliza-
tion that ensures f o

t+14�1�5 is a joint density in the sense
that it integrates (over all possible values of both arguments)
to 1. We note this constraint is in fact redundant given
the property that

∫ �

−�
�4x5dx = 1, but we include (6) for

expositional clarity.
This updating program is an infinite-dimensional optimiza-

tion program that has a continuously differentiable convex
objective function and linear constraints. This allows us to
use KKT-like conditions along with the variational principle
to characterize the global optimum solution, f ∗o

t+14�1�5.
Let �̄t and �t be the Lagrangian multipliers for the upper
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bound and lower bound in constraint (3), respectively. Let
�t4u5 and �t4�5 represent the multipliers for (the infinite
number of) constraints (4) and (5), respectively. Defining
gt4�5 2= 4�̄t − �t5�14�5+

∫

¤ �t4u5�24�1u5du, we are able
to obtain the following closed-form result.

Theorem 1 (Second Order Joint Belief Updating). The
solution to the optimization program (2)–(6) is given by:

f ∗o
t+14�1�5=

ft4�1�5�4� − � ′
t5e

−gt4�5

∫

ì
ft4�

′
t1 �̃5e

−gt4�̃5 d�̃
0

Proof. All proofs are contained in Appendix B (available
as supplemental material at http://www.dx.doi.org/10.1287/
opre.2015.1454).

Corollary 1 (Second Order Belief Updating). The
updated density, ft+14�5, over the demand distribution
indicator (� ∈ì) is:

ft+14�5=
ft4�5ft4�

′
t ��5e

−gt4�5

∫

ì
ft4�̃5ft4�

′
t � �̃5e

−gt4�̃5 d�̃
1

where ft4�
′
t ��5= f �

D 4�
′
t5.

Remark 1 (Bayesian Updating). When the moment and
tail bounds, i.e., constraints (3) and (4), are not binding in the
updating optimization program, the updating result simplifies
to ft+14�5= ft4�5ft4�

′
t ��5/4

∫

ì
ft4�̃5ft4�

′
t � �̃5 d�̃5. That is,

the updating result reduces to a traditional Bayesian updating
result. This occurs when (i) there are no moment and tail
bounds, or (ii) these bounds are sufficiently loose that they
do not constrain the DM’s updated beliefs, i.e., when they are
not informative given his prior belief. In general, however,
the updating is performed using an exponential modifier that
captures the effect of the moment and tail bound information.
This is an important result with widespread applications
beyond the motivating example of this paper. It establishes
SOBME as a generalization of Bayesian updating for settings
in which partial distributional information is available in
addition to data/observations.6

Recall that we make no restriction on the family or
families of distributions included in the ambiguity set. From
this perspective, SOBME can be viewed as a nonparametric
approach to belief representation and updating. Furthermore,
we emphasize that the SOBME belief representation and
updating result are not limited to a repeated newsvendor
setting. They apply to any setting in which a DM has partial
distributional information (in the form of an ambiguity set
and, possibly, moment and tail bounds) about a random
variable of interest, and wishes to dynamically combine
this information with an evolving history of observations.
Finally, we note that there are alternative formulations to the
optimization program (2)–(6), and SOBME can be derived
from these alternatives. For example, one can implicitly
invoke the Dirac delta function used in constraint (5) and
define a new distribution f̃t4�5 = ft4�

′
t1�5. Introducing

this notation, program (2)–(6) can be rewritten as one that
minimizes the KL divergence between the posterior ft+14�5
and the prior f̃t4�5 subject to moment and tail constraints.

In what follows, we apply the SOBME approach in a
repeated newsvendor setting. Considering the sequence
of events described in §3, we have the following. At the
beginning of period t, the DM determines his order quantity
qt ¾ 0 to minimize the expected newsvendor cost given
his current belief about the demand distribution, which is
represented by the density function ft4�5 over the set of
possible demand distributions contained in the ambiguity set
D 2= 8F �

D 2 � ∈ì9. Applying the well-known newsvendor
quantile result, the optimal quantity decision under SOBME
is given by:

qSOBME
t 2= inf

{

q ∈¤2 Ɛ�6F
�
D 4q57¾ p

p+h

}

1 (7)

where Ɛ�6F
�
D 4q57 =

∫

�∈ì
F �
D 4q5 ft4�5d�. After ordering

this quantity, the order is received, demand � ′
t is realized,

the newsvendor cost L4qSOBME
t − � ′

t5 is incurred, and new
exogenous research, if any, arrives regarding moment and
tail bounds. At the end of period t, knowing the realized
demand and the latest moment and tail bounds, the DM
updates his belief from ft4�5 to ft+14�5 using Corollary 1.

For later use, let QSOBME
t denote the period-t order quantity

random variable. QSOBME
t takes on a realized value qSOBME

t ,
specified by (7), given any particular sample path of demand
realizations in periods 11 0 0 0 1 t − 1. Let

q�∗

= inf
{

q ∈¤2 F �∗

D 4q5¾ p

p+h

}

denote the optimal order quantity if the DM knows the true
distribution. This optimal order quantity is static, because
the true distribution is stationary. In the next section, we
show that QSOBME

t → q�∗

almost surely as t → �.

4.3. Asymptotic Behavior of SOBME: Consistency
and Convergence Rate

In this section, we study two important asymptotic properties
of SOBME. The first property is consistency. The second
property relates to the rate at which the demand distribution
built by SOBME converges to the true distribution. We for-
malize the consistency concept below, but loosely speaking,
this means that the DM eventually places (almost) all his
weight on the true demand distribution, with the result that
the DM’s quantity decision converges (with probability one)
to the quantity decision under full distributional information:
QSOBME

t → q�∗

almost surely as t → �. This requires one
to consider a shrinking neighborhood of �∗, and to show
that the DM will eventually assign a weight of one to this
shrinking neighborhood. The type of consistency depends
on how such a shrinking neighborhood is constructed. We
establish weak consistency, which considers weak neigh-
borhoods of �∗. That is, we consider those � ∈ ì that
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are “close” to �∗, where closeness is measured in terms of
an expectation-like distance (see Appendix A for formal
definitions).

To establish consistency and a rate of convergence, we
need to introduce the notion of coherent information for the
moment and tail bounds.

Definition 2 (Coherent Information). The sequence
of information 8F̂t2 t ∈´9 is said to be coherent if (i) the
sequence of lower (upper) bounds on the first moment, i.e.,
8Ɛt4D52 t ∈´9 (8Ɛ̄t4D52 t ∈´9), is nondecreasing (nonin-
creasing), with Ɛt4D5¶ Ɛ4D5¶ Ɛ̄t4D5 for all t ∈´ where
Ɛ4D5 is the true demand mean, and (ii) for any u ∈¤, the
sequence of tail upper bounds 8bt4u52 t ∈´9 is nonincreasing
with bt4u5¾ F �∗

D 4u5.

If the moment and tail bound information is not coherent,
then we should not expect an approach that uses such infor-
mation to necessarily converge to the true distribution. For
example, the information might either be “wrong” in some
period, i.e., the moment and tail bounds may rule out the
true distribution, or the sequence of bounds might be non-
monotonic, e.g., periodic, which could prevent convergence
even if the information is correct.

Recall that ft4�5 is the density function (at the start
of period-t) over the demand distribution indicator �. Let
F SOBME
t denote its cumulative distribution, where we use the

superscript SOBME to highlight that it is the result of the
SOBME updating method. The following result establishes
the weak consistency of SOBME. We refer the reader to
Appendix A for formal definitions of weak consistency and
KL neighborhoods used in the following theorem.

Theorem 2 (Consistency of SOBME). Suppose that
(a) the sequence of information 8F̂t2 t ∈ ´9 is coherent,
and (b) the initial distribution F SOBME

1 is such that
∫

K�
�∗

dF SOBME
1 > 0 for every � > 0 (where K�∗

� is a KL
neighborhood of �∗). Then:

(i) F SOBME
t is weakly consistent.

(ii) QSOBME
t → q�∗

almost surely as t → �.

In addition to consistency (showing almost-sure conver-
gence to the true distribution), it is useful to explore the
rate/speed of convergence. In a later section, we will examine
this and other questions numerically. Here, we develop an
almost-sure analytical bound on the distance between the
true demand density and the one constructed using SOBME.
To this end, for x ∈¤, let f SOBME

D1 t 4x5 2=
∫

�∈ì
ft4�5f

�
D 4x5d�

denote the demand density generated by SOBME at the start
of period t.

Theorem 3 (Rate of Convergence). Suppose that the
sequence of information 8F̂t2 t ∈´9 is coherent and that
regularity conditions 3 and 4 (see Appendix A) hold. Then,
there exists constants �1 and �2 such that for large enough t:

dH4f
�∗

D �f SOBME
D1 t 5¶ 6�16�

2
t + 2e−�2t�

2
t 771/2 a.s.1

where �t = max8rt1 y
1/2
t 9, with rt and yt defined in Appendix

A, and dH4f1�f25 is the Hellinger distance (defined in
Appendix A) between any two probability densities f1 and f2.

The above result establishes �t = max8rt1 y
1/2
t 9 as a con-

vergence rate for SOBME. As discussed in Appendix A,
this rate of convergence depends on the tightness of the
ambiguity set (measured through rt) and the precision of the
initial prior (measured through yt).

5. Newsvendor’s Cost of Ambiguity:
A Performance Guarantee

Having characterized the asymptotic behavior of SOBME,
we next explore the increase in the average cost per period
(during a horizon of T <�) that the DM experiences because
of ambiguity. We refer to this cost as the newsvendor’s cost
of ambiguity. We will derive an analytical upper bound for
the newsvendor’s cost of ambiguity when SOBME is used.
This will enable us to develop a performance guarantee. To
that end, let

CSOBME
T 2=

1
T

T
∑

t=1

Ɛf �∗

D
6L4QSOBME

t −Dt5−L4q�∗

−Dt57 (8)

denote the random average (per period) newsvendor’s cost of
ambiguity under SOBME, which depends on the demand real-
izations up to the beginning of period T , i.e., the realization
of vector DT = 4Di1 i = 1121 0 0 0 1 T − 15 which is generated
based on the true distribution. Taking the expectation with
respect to this vector, we denote by

cSOBME
T 2= ƐDT

6CSOBME
T 71 (9)

the expected average per period newsvendor’s cost of ambi-
guity. It should be noted that CSOBME

T is a random variable
but cSOBME

T is a number. In (8), QSOBME
t is a random variable

with a realization that depends on Dt: the expectation in
(8) is only with respect to Dt , whereas this randomness is
removed through the outer expectation in (9).

The following results provide upper bounds for CSOBME
T

and cSOBME
T when the support of all the distributions in the

ambiguity set can be bounded from above. Bounded demand
is not a strong assumption in practice because demand is
never infinite.

Theorem 4 (Newsvendor’s Cost of Ambiguity). Suppose
the support ¤ is 601 d̄7 for some d̄ ∈ �+. Letting k 2=
2
√

2d̄max8p1h9, the following hold for any T :

4i5 CSOBME
T ¶ k

√

1
T

T
∑

t=1

dKL4f
�∗

D �f SOBME
D1 t 51 (10)

almost surely.

4ii5 cSOBME
T ¶ k

√

ƐDT

[

1
T

T
∑

t=1

dKL4f
�∗

D �f SOBME
D1 t 5

]

0 (11)

Part (i) of the above result shows that the random aver-
age per period KL divergence between the true density
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and the one built using SOBME nicely bounds, in the
almost sure sense, the average per period cost of ambiguity.
Part (ii) shows a related result for the expected average
per period cost of ambiguity. We next develop a bound for
ƐDT

641/T 5
∑T

t=1 dKL4f
�∗

D �f SOBME
D1 t 57, the expected average per

period KL divergence between the true density and the one
built using SOBME. Because of the result of Theorem 4 part
(ii), this will enable us to reach our end goal of providing a
performance guarantee for SOBME.

To bound ƐDT
641/T 5

∑T
t=1 dKL4f

�∗

D �f SOBME
D1 t 57, we need

some general conditions on (i) the (dynamic) information on
moment and tail bounds (F̂t), (ii) the ambiguity set (D′), (iii)
the initial prior used by the DM under SOBME (f SOBME

1 ),
and (iv) the convergence behavior around �∗. For (i), we use
the coherent information condition (Definition 2) to ensure
that the DM is not relying on false information. For (ii)–(iv),
we use the “smoothness” and “soundness” conditions dis-
cussed in Clarke and Barron (1990) for Bayesian updating
mechanisms. We briefly list those conditions here for our
above-mentioned goal, and refer interested readers to Clarke
and Barron (1990) for more detailed discussions. It should
be noted that the “smoothness” condition is related to the
behavior around �∗ and the “soundness” condition is related
to the speed of weight accumulation around �∗ as more and
more observations are made.

Condition 1 (Smoothness). The density f �
D 4�5 and the

divergence dKL4f
�∗

D �f �
D 5 are both twice continuously differ-

entiable at �∗. Furthermore, (i) there exists an � > 0 such
that:

Ɛ

[

sup
�∈ì2 ��−�∗�<�

∣

∣

∣

∣

¡2

¡�2
log f �

D 4�5

∣

∣

∣

∣

2]

<�1

and (ii) I4�5 and f SOBME
1 4�5 are both finite, positive, and

continuous at �∗, where I4 · 5 is the Fisher information and
f SOBME

1 4 · 5 is the initial prior density.

Condition 2 (Soundness). The ambiguity set is said to
be sound if the convergence of a sequence of � values is
equivalent to the weak convergence of the corresponding
demand distributions:

�→�∗
⇔ F �

D → F �∗

D 0

The above conditions allow us to provide an effective
bound for the expected value of the average per period KL
divergence under our proposed updating mechanism.

Theorem 5 (Expected Average per Period KL Diver-
gence). Suppose the coherent information, smoothness, and
soundness conditions hold. Then:

ƐDT

[

1
T

T
∑

t=1

dKL4f
�∗

D �f SOBME
D1 t 5

]

¶ 1
T

[

1
2

log
T

2�e
+

1
2

log I4�∗5+ log
1

f SOBME
1 4�∗5

+ o415
]

0

(12)

The above result states that the expected average per
period KL divergence between the true density and
the one built using SOBME is at worst of the form
41/T 56 1

2 log4T /42�e55+ l7 for some constant l that depends
on the initial prior and the Fisher information, which are
both also affected by the “tightness” of the ambiguity set, D′.
The important implication is that it allows us to provide the
following performance guarantee for our proposed SOBME
approach: based on Theorem 4 part (ii), the expected average
(per period) newsvendor’s cost of ambiguity under SOBME
goes to zero at worst at a fast rate

√
logT /T as T → �.

In other words, although a DM facing demand ambiguity
inevitably incurs an extra per-period cost compared to a DM
who knows the true demand distribution, the average extra
per-period cost approaches zero quite quickly if SOBME is
used. The actual rate depends on the quality of the dynamic
information the DM has on moments and tails; Theorem 5
provides an upper bound by considering the worst case, i.e.,
no information.

Theorem 6 (Performance Guarantee). If ¤= 601 d̄7 for
some d̄ ∈�+, then under the conditions of Theorem 5:

cSOBME
T ¶ k′

√

logT
T

+ o41/
√
T 51 (13)

where k′ = 2d̄max8p1h9, and hence, cSOBME
T → 0 as T → �

at a rate of
√

logT /T .

Theorem 6 establishes that the DM does not need to have
full distributional information to make suitable stocking
decisions: SOBME enables the DM to deal effectively with
ambiguity.

6. Numerical Experiments
As discussed in §1, companies reduce ambiguity in new
product introductions by devoting significant market-research
efforts to gather information about the demand distribution.
That is, firms do not rely exclusively on demand observations
when forming beliefs about an unknown demand distribution;
they can and do generate additional partial information about
the demand distribution. In this paper, such information is
codified by the ambiguity set and moment and tail bounds,
i.e., the exogenous research. It is managerially important to
understand the value of such exogenous research in an oper-
ational setting (here, a repeated newsvendor). Furthermore,
assuming there is value in the exogenous research, it is
helpful to examine which type of information (ambiguity set
or moment bounds) provides more value, and what factors,
e.g., newsvendor quantiles, affect the value. Answers to these
questions—which we provide through numerical studies
below—can help managers understand when it is worth their
effort to obtain exogenous information and what form of
information is most valuable.

A natural way to explore the value of exogenous research
is to compare our information setting—data and exogenous
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research—to two benchmark settings: (i) full information,
and (ii) a data-only information setting. For this second
benchmark, we need to choose an approach tailored to a
data-only setting. Various pure data-driven approaches have
been developed in the literature as we discussed in §2, among
which we consider the Sample Average Approximation (SAA)
approach (see, e.g., Kleywegt et al. 2002; Shapiro 2003;
Levi et al. 2007, 2015), Scarf’s method (Scarf 1958, Gallego
and Moon 1993), and the recently developed likelihood
robust optimization (LRO) approach (Wang et al. 2015).

Under SAA, the DM at the beginning of period t+ 1 sets

qSAA
t+1 2= inf

{

q ∈¤2 F̂ t
D4q5¾

p

p+h

}

1 (14)

where F̂ t
D4q5 is the empirical c.d.f. after t observations:

F̂ t
D4q5 2= 41/t5

∑t
k=1 �8�

k ¶ q9, with �k denoting the demand
realization in period k. In Scarf’s method, the DM minimizes
the worst-case expected cost among all the distributions that
have a mean equal to the sample mean and a variance equal
to the sample variance. Using Scarf’s result (Scarf 1958), the
optimal ordering quantity at the beginning of period t+ 1 is

qSCARF
t+1 2=mt +

st
2

(

√

p

h
−

√

h

p

)

1 (15)

where mt and st are the sample average and sample standard
deviation of the observations made in periods 1121 0 0 0 1 t.
In the dynamic LRO approach (Wang et al. 2015), the set
of possible distributions in each period t contains only
those that make the observed history of data achieve a
certain level of likelihood, and the optimal decisions are
made based on the worst-case distribution within that set. In
our repeated newsvendor setting, we numerically observed
that SAA (weakly) outperformed both Scarf’s method and
dynamic LRO, and so we adopt the SAA approach as the
representative for the data-only setting.7 That is, for brevity,
we do not present our numerical results for Scarf’s method
and LRO, and instead focus on the performance of SAA
among the pure data-driven approaches.

6.1. Study Design

In addition to examining the value of exogenous information
by comparing the performances of SOBME and SAA,
our numerical study explores the performance of SOBME
relative to a DM who has full distributional information.
It also investigates how the performance of SOBME and the
value of exogenous information are influenced by the true
distribution, the type of exogenous information (ambiguity
set and moment bounds), and the newsvendor quantile
p/4p+h5.

True Distribution. The true distribution, F �∗

D , in our study
is assumed to have a mean of 15. The true distribution is
either normal (with a coefficient of variation (C.V.) of 0.2)
or exponential, with a label “A” denoting the normal case
and “B” denoting the exponential case.

Ambiguity Set. We consider two cases for the ambiguity
set D. In Case I, the ambiguity set contains all exponential
distributions with a mean in 6101205 as well as all normal
distributions with a mean in 6101207 and a C.V. of 0.2. In
Case II, the ambiguity set includes all those distributions in
Case I plus the mixtures (with equal weights of 0.5) of any
exponential with mean 6101205 and a normal with the same
mean (and a C.V. of 0.2). In other words, Case II represents
a larger ambiguity set that contains Case I and mixtures of
distributions in Case I.8

Therefore, the combination of ambiguity sets and the
true distribution leads to four different cases: I-A, I-B, II-A
and II-B. In all cases, we assume SOBME starts with a
uniform distribution on the ambiguity set, i.e., it starts with
the highest information entropy.

Moment Bound Information. For each of these four cases,
we consider two possible sets of moment bound information,
8F̂t2 t ∈ ´9. In one situation, the DM has no moment
information beyond those dictated by the ambiguity set
(referred to as the “No Bounds” situation). In the other
situation (referred to as the “Tight Bounds” situation),
the DM has dynamically evolving first moment bound
information. In this “Tight Bounds” situation, the initial
lower and upper bounds are those dictated by the ambiguity
set, i.e., Ɛ04D5= 10 and Ɛ̄04D5= 20, but these bounds get
progressively tighter by 1.5 units in each period until they
hit Ɛt4D5= 1405 and Ɛ̄t4D5= 1505, after which they remain
constant. To be conservative when evaluating SOBME, we
assume that the DM does not have tail bound information.
Such information, if available, would of course improve the
performance.

Newsvendor Quantile. The above combination of two
ambiguity sets, two true distributions, and two moment
information sets leads to eight cases. For each of these cases,
as our base-case scenario, we set the newsvendor quantile to
p/4p+h5= 0075, with h= 1 and p = 3. However, as we will
describe later, we also explore the impact of the newsvendor
quantile by varying its value in 80050100551 0 0 0 100959.

Runs. Each case is run for 100 periods and the average
cost is calculated for the SOBME approach, the full informa-
tion case, i.e., when the true distribution is known, and the
pure data-driven SAA approach. We purposely choose a
limited time horizon because we know that the performance
of both SOBME and SAA will asymptotically approach that
of full information as more and more demand observations
become available. In other words, when ample data exists, it
is less important which approach is used, as long as it is
a consistent approach. As such, we are mainly interested
in how well SOBME performs when data is limited. The
limited-data setting also better represents the new product
introduction we discussed in §1. The average costs are
calculated by conducting 50 independent replications with
each replication being a sample path generation, i.e., demand
realizations in periods 1 to 100. Under each sample path and
in each period, the related expected newsvendor costs are
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calculated directly and based on the closed-form newsvendor
overage plus underage costs of the DM’s ordered quantity.

In each period, the closed-form solution of Theorem 1
(and Corollary 1) are used to calculate the updated SOBME
belief function and then the newsvendor problem is solved
based on the updated beliefs. The belief-updating problem
involves calculating the function gt4�5 which requires finding
Lagrangian multipliers �̄t and �t . Note that �t4u5 can
be set to zero because there is no tail constraint. These
two multipliers are calculated efficiently in each period
t by employing a numerical search method which takes
advantage of the properties of the underlying optimization
problem.9 A similar numerical search can be used for
calculating �t4u5 when it is nonzero. We note that the
belief-updating optimization problem is independent of the
DM’s ordering problem, and so the belief-updating aspect
of SOBME can be applied for a wide range of decision-
making problems in which there is distributional ambiguity.
The computational burden in calculating various integrals
involved in our method (arising from the continuous first and
second-order distributional assumptions, i.e., the sets ¤ and
ì being continuous) is overcome by using high precision
function interpolations and advanced numerical methods for
calculating integrals.

6.2. Results

For each of the eight cases in the study design, Figure 1
reports the Average Cost Optimality Gap (%) for both
SOBME and SAA, where the optimality gap refers to the per-
centage difference in cost as compared to the full information
case in which the DM knows the true distribution. As can be
seen, SOBME performs very well: its optimality gap is less
than 1% after 20 periods in six of the eight cases. We next
discuss how the exogenous research information (moment
bounds and ambiguity set) and the true distribution impact
the performance of SOBME relative to full information and
to the pure data-driven representative, SAA.

The Effect of Exogenous Information. The impact of
the moment bound information on SOBME’s performance
can be explored by comparing the SOBME plots in the
left column (No Bounds) with the corresponding SOBME
plots in the right column (Tight Bounds). Moment bound
information is clearly valuable: SOBME’s optimality gap
approaches zero much more rapidly when tight moment
bound information is available. The impact of the ambiguity
set on SOBME’s performance can be explored by comparing
Case I-A with Case II-A and comparing Case I-B with Case
II-B. We observe that the performance is quite similar in
both comparisons, indicating that SOBME is quite robust to
the ambiguity set. We tested this observation further (for
the case in which the true distribution was normal) by also
considering a setting in which the ambiguity set contained
only normal distributions. Contracting the ambiguity set
did not materially impact SOBME’s performance. The fact
that SOBME’s performance is robust to the ambiguity set is
indeed an important benefit because it allows the DM to

expand his ambiguity set when he has more doubt about the
form of the true distribution.

By comparing the difference between SOBME’s perfor-
mance and that of SAA in each subfigure, we see that the
DM benefits significantly from exogenous information in the
form of the ambiguity set and moment bounds. This indicates
that there is potentially great value in marketing research and
related actions that can generate this kind of information. In
addition, our results suggest that the information contained
in the moment bounds is more valuable than those contained
in the ambiguity set. Hence, the DM should prefer a tighter
set of moment bounds than a tighter ambiguity set: efforts
that result in tighter moment bounds are in general more
valuable than those that result in tighter ambiguity sets.

The Effect of the True Distribution. Comparing the nor-
mal cases (I-A and II-A) with the exponential cases (I-B
and II-B), we see that SOBME performs better when the
true distribution is exponential. In the exponential cases,
SOBME’s optimality gap is less than 1% after a few periods
under both “No Bounds” and “Tight Bounds” situations.
That SOBME performs better when the true distribution
is exponential is due to the fact that the newsvendor cost
is much more sensitive to distributional mis-specification
when the true distribution is normal than when the true
distribution is exponential. To observe this consider the
following cases within our numerical setting (h = 1 and
p = 3): (i) the true distribution is normal (C.V. = 002), but
the DM believes with probability one that it is exponential
(C.V. = 1) (both having a mean of 15), and (ii) the true
distribution is exponential (C.V. = 1) but the DM believes
with probability one it is normal (C.V. = 002) (both having a
mean of 15). In case (i) the DM orders 20.79 units whereas
the true optimal ordering quantity is 17.03. This results in an
optimality gap of about 55.15% (in terms of the percentage
additional expected cost incurred). In case (ii), the DM
orders 17.03 whereas the true optimal ordering quantity
is 20.79. This results in an optimality gap of only about
2.48% (in terms of the percentage additional expected cost
incurred). Comparing these two cases shows that a wrong
distributional assumption is less consequential when the true
distribution is exponential than when it is normal. Hence,
having a good estimate of the true distribution is more
important when the true distribution is normal than when it
is exponential. This fact shows why SOBME performs better
when the true distribution is exponential than when it is
normal. Interestingly, however, SAA’s performance is slightly
better when the true distribution is normal than when it is
exponential. What accounts for this? There is a force that
counteracts the robustness under the exponential distribution.
The DM sees a more volatile set of observations under an
exponential distribution than under the normal distribution.
This significantly influences the rate of convergence of SAA.
This second driving force is stronger than the first one for
SAA. This is not the case for SOBME, because it is not as
reliant on observations as SAA, i.e., SOBME is not using an
empirical distribution.
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Figure 1. Comparison of SAA and SOBME under various cases.
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(b) Case I-A-tight bounds
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(d) Case I-B-tight bounds
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Figure 2. Sensitivity analyses on the newsvendor quantile p/4p+h5.
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The Effect of the Newsvendor Quantile. To explore the
impact of the newsvendor quantile on the performance of
SOBME, we focus on the four Case I studies (exponential
and normal true distributions; No Bounds and Tight Bounds
information), and vary the newsvendor quantile p/4p+ h5 ∈

80050100551 0 0 0 100959, while fixing h= 1. Figure 2 shows the
performance of SOBME and SAA for each of the four cases.
The performance of SAA and SOBME are averaged over 50
replications as well as the first 20 periods. We first note that
our study confirms what has already been reported in the
literature for SAA: its performance significantly degrades
as the newsvendor quantile increases (see, e.g., Levi et al.
2015). In contrast, we observe that SOBME’s performance
is much more robust: its performance degradation is very
low. For instance, in Figure 2(a), although SAA has an
optimality gap of 55% for a newsvendor quantile of 009,
SOBME has an optimality gap of only 10%. When moment
bound information is available, Figures 2(b) and (d), the
difference in performance between SOBME and SAA is even
greater. Recall that the difference in performance between
SOBME and SAA measures the value of the exogenous
information. Thus, our result suggests that this type of
information is particularly valuable in settings characterized
by high newsvendor quantiles. Moreover, the robustness of
SOBME to the newsvendor quantile suggests that SOBME is

a very suitable approach if a high service level is required or
if inventory cost parameters are subject to estimation error.

In summary, the above study has the following managerial
implications: (i) there is significant value in exogenous
information (as measured by the comparison of SOBME
and SAA), (ii) market research that leads to tighter moment
bounds is more valuable than research that leads to a more
compact ambiguity set, and (iii) it is especially important to
avail of exogenous information (through SOBME) when
the newsvendor quantile is high because pure data-driven
approaches (SAA) perform much worse at high quantiles.

As mentioned above, the SOBME approach is not limited
to a repeated newsvendor setting. It can be used in any
multiperiod setting in which a DM has partial distributional
information (in the form of an ambiguity set and, possibly,
moment and tail bounds) about a random variable of interest.
A general measure of SOBME’s performance is the quality
of the distribution generated by SOBME, i.e., how close
is it to the true distribution from which the observations
are drawn? We investigate this in two different studies in
Appendix C, the second of which uses data from a case
based on a real-world setting (Allon and Van Mieghem 2011)
to show how moment bounds can be developed from “like-
products.” Among other results, we find that the quality of
the SOBME-generated distribution is very good, that partial
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information in the form of moment bounds is particularly
valuable early in the horizon, and that companies can get
significant benefit from moment bound information even if
the number of like-products is quite limited. We refer the
reader to Appendix C for further details.

6.3. Extensions

6.3.1. Endogenous Bounds. We have assumed to this
point that the sequence of moment bound information
8Ɛt4D51 t ∈´9 and 8Ɛ̄t4D51 t ∈´9 are derived solely from
exogenous research. However, our SOBME framework can
also accommodate dynamic bounds that are endogenously
generated from the data observations. For instance, using the
Central Limit Theorem (CLT) at the end of period t, a 1 −�
confidence interval for the first moment is given by

It 2= 4mt − z�/2 × st/
√
t1mt + z�/2 × st/

√
t51 (16)

where z�/2 is the inverse of the standard normal c.d.f.
evaluated at 1 −�/2, and mt and st are the sample average
and sample standard deviation obtained from observations
made in periods 1121 0 0 0 1 t. In the absence of exogenous
bounds, the DM can use the boundaries of It as moment
bounds. If the DM has exogenous bounds given by some
sequences 8Ɛt4D51 t ∈´9 and 8Ɛ̄t4D51 t ∈´9, then he can
replace them with the respective boundaries of It in a period t
when It ⊂ 6Ɛt4D51 Ɛ̄t4D57, i.e., when the endogenous bounds
are tighter than the exogenous ones. This ensures that the
moment bound information remains coherent when the
exogenous bound information is coherent.

We investigated the value of endogenous bounds by apply-
ing this approach (using a 90% confidence interval) to cases
I-A-No Bounds and I-A-Tight Bounds. Figure 3 depicts
the performance of SOBME for the four possible situations

Figure 3. The effect of endogenous bounds on the per-
formance of SOBME (No.: no exogenous
or endogenous bounds; End.: endogenous
bounds only; Exg.: exogenous bounds only;
End. + Exg.: both endogenous and exogenous
bounds).
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(No/Tight Bounds with/without Endogenous Bounds). As can
be seen, endowing the DM with endogenous bounds does
not materially improve SOBME’s performance. Irrespective
of the endogenous bounds, SOBME is already availing of
the data to updates its probabilities across the potential
distributions in the ambiguity set. Therefore, the data used to
generate the endogenous bounds has also been used (indepen-
dently) to appropriately “weight” the possible distributions,
and those that conform to the endogenous bounds will have
received more weight. In other words, SOBME is already
using the observations, i.e.,“the endogenous data,” in an
effective way, and hence using them to create supplementary
moment bounds is not of significant help. We also note that
the endogenous bounds are typically tight and, therefore,
useful, only when they are generated based on ample data,
i.e., a large t. However, as discussed earlier, when ample
data exists, any estimation approach that is consistent will
generate good results and it matters less which one is used.
Moreover, it is precisely because they do not have ample data
that firms devote efforts to generating exogenous research
on the demand distribution.

6.3.2. Change Detection. We have assumed to this point
that the true demand distribution is stationary throughout the
horizon. In practice, however, the distribution may change at
certain points in time because of, for example, changes in
economic factors, competitor actions, market penetration,
and time of year. Some of these changes might be amenable
to prediction by managers, and SOBME can accommodate
such predications through updated moment bounds. Other
changes might not be predictable and completely hidden to
the DM, and so it is important to test how well approaches
such as SOBME and SAA detect and respond to unpredicted
changes.

We numerically examined the ability of SOBME and
SAA to detect and respond to such a hidden/unpredicted
change in the type of demand distribution. In particular, we
use a new setting, setting Case I-C, in which, unknown to
the DM, the true distribution changes from normal (C.V. =
002, mean = 15) to exponential (C.V. = 1, mean = 15) in
the middle of the horizon, i.e., period 50. We evaluate
the performance of SOBME (under both “No Bounds”
and “Tight Bounds”) and SAA compared to a DM that
knows the true distribution throughout the horizon, i.e.,
both before and after the change. The results are presented
in Figure 4. Not surprisingly, both SOBME and SAA are
affected by the change at period 50. The change initially
affects SOBME slightly more than SAA because SOBME
was already getting very close to the true distribution before
the change whereas SAA was further from it. Also, we
note the spike is lower (and comparable to that for SAA)
when SOBME has tight bounds. Very importantly, however,
irrespective of the bounds, SOBME recovers much more
rapidly than SAA: it quickly recognizes the hidden change
and adjusts to it. This reflects the fact (analytically established
in the performance guarantee and numerically observed) that
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Figure 4. Comparison of SAA and SOBME for change
detection (Setting Case-I-C) (NB: No Bounds;
TB: Tight Bounds).
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SOBME’s cost performance converges quite quickly to that
of full information. This characteristic is particulary desirable
in dynamic and nonstationary environments (where the
underlying true distribution is subject to inevitable changes)
as it allows the DM to automatically and quickly adjust its
decisions.

7. Repeated Newsvendor Under Ambiguity
Aversion

We assumed that the DM was ambiguity neutral in the
preceding sections. In general decision-making settings, a
DM may, in fact, be ambiguity averse, ambiguity neutral, or
ambiguity loving; see, e.g., Klibanoff et al. (2005, 2009).
In what follows, we extend our results and demonstrate
how the SOBME approach can be also used when the DM
is not ambiguity-neutral. We adopt the general framework
proposed by Klibanoff et al. (2005), hereafter KMM, for
smooth decision making under ambiguity. Tailoring the
KMM decision-making framework (see equation (1) of
KMM) to a newsvendor problem, we cast the DM’s quantity
decision at the beginning of period t as

max
qt¾0

Ɛf SOBME
t 4�56ê4Ɛf �

D
6−L4qt −D57571 (17)

where ê4 · 5 represents the DM’s ambiguity attitude, and
f SOBME
t 4�5 is the second-order belief built using SOBME.

When ê4 · 5 is affine, the DM is ambiguity-neutral, which
is the case considered in the previous sections. However,
when ê4 · 5 is concave (convex), the DM is ambiguity-averse
(loving).10

In the case of an ambiguity-neutral DM, as discussed in
§4.1, there is a type of period-t equivalence between second-
order and first-order approaches in the sense that the expected
value of the DM’s objective, see (1), depends on the belief
ft4�5 and the ambiguity-set densities f �

D 4x5 only through the
demand density f SOBME

D1 t 4x5 2=
∫

�∈ì
ft4�5f

�
D 4x5d�. There-

fore, a first-order approach that somehow arrived at an

identical demand density would result in the same period-t
objective. Importantly, this theoretical equivalence holds
only when the DM is ambiguity neutral. For settings with
an ambiguity averse/loving DM, the objective, i.e., (17),
depends on ft4�5 and f �

D 4x5 in a manner that cannot be
captured through f SOBME

D1 t 4x5 2=
∫

�∈ì
ft4�5f

�
D 4x5d�. There-

fore, it is crucial to adopt a distribution-over-distributions
approach. SOBME provides a natural and effective approach
for ambiguity averse/loving settings.

In what follows, we first explore some structural properties
of the decisions made by an ambiguity-averse newsvendor,
i.e., properties of the period-t objective (17), when ê4 · 5 is
concave. We then explore the effect of the DM’s ambiguity
aversion on the newsvendor ordering quantity. To this end,
we consider the negative exponential function ê4x5= −e−�x

with parameter �¾ 0, which is increasing concave and has a
constant coefficient of ambiguity �= −ê′′4x5/ê′4x5. In this
setting, a higher � represents a higher ambiguity aversion.
For notational convenience, we use U�4q5= Ɛf �

D
6L4q −D57

to denote the random variable that represents the expected
disutility of ordering q units, with its realization depending
on � ∈ì. The KMM objective (17) is then equivalent to

min
qt¾0

Ɛf SOBME
t 4�56e

�U�4qt57= min
qt¾0

MU�4qt5
4�51 (18)

where MU�4qt5
4�5 is the moment generating function of

U�4qt5 evaluated at �. For technical reasons, we assume that
(i) the ambiguity set D is such that this moment generating
function exists and is differentiable with respect to q, and
(ii) all the demand distributions in D are differentiable and
have densities in D′. Finally, we note that minimizing the
moment generating function in (18) is equivalent to minimiz-
ing the so-called entropic disutility 41/�5 logMU�4qt5

4�5, and
hence we use that form in proofs when more convenient.

Lemma 1 (Convexity). The moment generating function
MU�4q54�5 is convex in q (∀�¾ 0), and hence, (18) is a
convex program.

We let qKMM
t 4�5 denote the optimal solution to (18) on a

given sample path. That is, qKMM
t 4�5 is the period-t optimal

ordering quantity of a newsvendor (with a coefficient of
ambiguity �) given a particular realization of demands up
to and including period t− 1. We let QKMM

t 4�5 denote the
random variable associated with qKMM

t 4�5 when looking
over all possible sample paths through period t − 1.

Lemma 2 (Optimal Ambiguity-Averse Ordering Quan-
tity). For �> 0, let Z�4q5=U�4q5+ 41/�5 logF �

D 4q5. The
optimal ordering quantity qKMM

t 4�5 is either zero or the
solution to the implicit equation

MZ�4q54�5

MU�4q54�5
=

p

p+h
0 (19)

The above lemma proves that the optimal ordering quantity,
if positive, sets the ratio of the relevant moment generating
functions equal to the well-known newsvendor quantile
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p/4p+h5. This can be viewed as a generalization of the
classical newsvendor quantile result. Using this result, we
now establish how ambiguity aversion influences the optimal
ordering quantity (in any given period t), and how the
optimal ordering quantity (at any given ambiguity coefficient)
behaves as t tends to infinity.

Theorem 7 (Ambiguity Aversion Effect). The optimal
ordering quantity under ambiguity-aversion satisfies the
following:

(i) qKMM
t 4�5 is nonincreasing in �.

(ii) lim�→0+ qKMM
t 4�5= qSOBME

t (defined by (7)).
(iii) lim�→� qKMM

t 4�5= 0.
(iv) limt→� QKMM

t 4�5= q�∗ almost surely when the con-
ditions of Theorem 2 hold.

A higher level of ambiguity aversion, i.e., a higher �,
results in a lower ordering quantity. As � approaches zero,
the DM acts similarly to an ambiguity-neutral DM, that
is, his order quantity approaches qSOBME

t defined in (7). As
� approaches �, the DM only considers the worst-case
outcome, i.e., becomes a minimax optimizer, and hence
orders nothing so as to avoid any overage cost. Regardless
of the DM’s ambiguity aversion level, as more and more
demand observations are made (t → �), his ordering quantity
converges to that of a DM who completely knows the
true demand distribution. This highlights the asymptotical
suitability of SOBME under any ambiguity aversion level.

We numerically explore the performance of SOBME
under the KMM criterion by considering the “Case I-A-No
Bounds” setting introduced in §6.1. Figure 5 presents the
average cost optimality gap (%) for three levels of ambiguity
aversion: �= 00005, �= 00010, �= 00050. The average cost
optimality gap (%) is the percentage extra cost of the ordered
quantities of a DM who is facing demand ambiguity and uses
the objective (17) compared to a DM who completely knows
the true demand distribution. For each period shown in
Figure 5, the optimality gap is averaged over 20 independent
sample path replications, i.e., demand observations over
the horizon. Consistent with Theorem 7(iv), the average

Figure 5. Performance of SOBME under the KMM
criteria (Case I-A-No Bounds).
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optimality gap goes to zero as t increases. Moreover, as �
decreases, the performance under ambiguity aversion tends
to that observed in our previous ambiguity-neutral results.

Although Lemma 2 characterizes the period-t optimal
order quantity in general, a much sharper characterization can
be established in certain cases. In particular, under (i) low but
positive ambiguity aversion, or (ii) a normality assumption
on the disutility distribution, we can derive closed-form
solutions for the ambiguity-averse newsvendor problem
by applying the certainty equivalence principle. Using
this principle drastically simplifies the problem, because
we only need to consider the first and second moments
of the disability U�4q5 = Ɛf �

D
6L4q −D57 as opposed to

its moment generation function. In what follows, we let
F SOBME
D1 t 4�5 2= Ɛ�1 t6F

�
D 4�57=

∫

�∈ì
ft4�5F

�
D 4�5d� denote the

demand distribution built by SOBME (used for decision-
making in period t) and we let F SOBME4−15

D1 t 4 · 5 denote its
inverse. First, we consider the case in which the DM has a
low but positive level of ambiguity aversion.

Theorem 8 (Low Ambiguity Aversion). Let �4qt5 and
�4qt5 denote the mean and standard deviation of U�4qt5
(with respect to �), respectively. Then

(i) The optimal ordering quantity under ambiguity-
aversion is

qKMM
t 4�5=argmin

qt

{

�4qt5+
�

2
�24qt5+

�

2
�24qt5+O4�25

}

0

(20)

(ii) The solution to (20) is

qKMM
t 4�5= F

SOBME4−15
D1 t

(

p

p+h
−��4qKMM

t 5−O4�25

)

1

(21)

where �4qt5 2= Ɛ6F �
D 4qt5U

�4qt57− Ɛ64p/4p+h55U�4qt57.

We see that when the DM has a low but positive level of
ambiguity aversion, the optimal ordering quantity is a per-
turbed version of the traditional critical quantile newsvendor
solution. This perturbation, is approximately (with an error
of order �2 denoted by O4�25) linear in the coefficient of
ambiguity, �, with a slope of −�4qKMM

t 5.
Next, we consider a case where U�4q5 has an approxi-

mately Normal distribution based on the DM’s second-order
belief. See Appendix D for an example illustrating the
validity of this approximation.

Remark 2 (Normal Approximation). Suppose at some
period t, U�4qt5 is approximately Normal with mean �4qt5
and standard deviation �4qt5. Then

(i) The newsvendor problem under ambiguity aversion is
equivalent to the mean-variance optimization minqt

�4qt5+

4�/25�24qt5. That is,

qKMM
t 4�5' arg min

qt

{

�4qt5+
�

2
�24qt5

}

0 (22)
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(ii) The solution to (22) is

qKMM
t 4�5

'F
SOBME4−15
D1t

(

p

p+h
−�Cov4F �

D 4qKMM
t 51U�4qKMM

t 55

)

0 (23)

As in the case of low ambiguity aversion, the optimal
ordering quantity is again a perturbed version of the tradi-
tional critical quantile solution, with the linear perturbation
now having a slope of −Cov4F �

D 4qKMM
t 51U�4qKMM

t 55.

8. Conclusion
There are many multiperiod settings in which a decision
maker does not have full distributional information about
a random variable of interest but may have some partial
distributional information in the form of bounds on moments
or tails. Over time, the decision maker gains access to demand
observations. Techniques which rely exclusively on partial
distributional information ignore the value of observations. In
contrast, pure data-driven techniques avail of observations but
ignore partial distributional information. With the growing
attention to business analytics, it is essential to bridge this
gap by developing approaches that allow decision makers to
benefit from both data and partial distributional information.

In this paper, using the maximum entropy principle, we
developed an approach (SOBME) that allows a decision
maker to effectively use partial distributional information
and data/observations. Moreover, SOBME can accommodate
dynamically evolving partial information. We established that
SOBME is a natural generalization of traditional Bayesian
updating; an exponential modifier is introduced to incorporate
the partial distributional information. This is an important
result, with applications far beyond the newsvendor focus of
this paper. We proved that SOBME is weakly consistent and
characterized its rate of convergence. Applying SOBME in a
repeated newsvendor setting, we introduced and analyzed the
notion of newsvendor’s cost of ambiguity. We provided an
analytical bound for this cost when the DM uses SOBME.
More broadly, our results indicate that information-theoretical
approaches, such as the one we developed in this paper,
provide a natural way for characterizing an upper bound for
the newsvendor’s cost of ambiguity.

Our numerical investigation demonstrated that SOBME
performs well, not just outperforming a pure data-driven
approach but often coming close to the performance of full
distributional information. We also found that unlike a pure
data-driven approach such as SAA, SOBME’s performance
does not significantly degrade as the newsvendor quantile
increases, making it a suitable candidate for settings with
high service level requirements. By comparing our approach
to pure data-driven approaches, we also generated insights
into the value of partial distribution information. Our results
indicate that it can be very beneficial to incorporate such
information when deciding about the stocking quantities.
Also, we found that information in the form of tighter

moment bounds is typically more valuable than information
in the form of tighter ambiguity sets.

Finally, we examined an ambiguity-averse version of our
repeated newsvendor problem, and showed how SOBME
can be applied in that setting. We established theoretical
results that characterize the optimal newsvendor quantity
under ambiguity aversion, and demonstrated that SOBME is
well-suited to an ambiguity-averse setting.

In closing, we emphasize that the SOBME belief represen-
tation and updating approach can be applied to any setting in
which a decision maker has access to observations/data and
some partial distributional information. We hope to apply
and test SOBME in various other settings in future work.

Supplemental Material

Supplemental material to this paper is available at http://dx.doi
.org/10.1287/opre.2015.1454.
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Endnotes

1. For clarity, we only consider the first moment, but the
approach and results are readily extended to higher moments.
2. We assume that the DM is ambiguity-neutral until §7
which considers other ambiguity attitudes.
3. At the beginning of period t = 1, the DM chooses an
initial density f14�5 to reflect his starting belief about
the probability of each demand distribution and his initial
moment/tail bound information. For instance, a uniform
density over all � ∈ ì (representing a maximum initial
entropy) would be appropriate, if (a) the DM did not believe
any particular distribution was more likely to be the true
one, and (b) ì is such that a uniform distribution over all
� ∈ì can be defined.
4. For the more general class of �-divergence, we refer
interested readers to Pardo (2006), Ben-Tal et al. (2013),
and the references therein. We also note that dKL4·�·5 is not
a metric in the usual sense as it is not symmetric.
5. The Dirac delta function, sometimes called the unit
impulse function, is a generalized function (often) defined
such that �4x5 = � if x = 0 and �4x5 = 0 otherwise,
with

∫ �

−�
�4x5dx = 1 (Kreyszig 1988). It can be defined

more rigorously either as a measure or a distribution.
It can be viewed as the limit of the Gaussian function:
�4x5= lim�→04e

−x2/2�2
/4

√
2��55. Importantly, the Dirac

delta function has the property that for any function g4 · 5,
∫ +�

−�
g4x5�4x− x05dt = g4x05.

6. Giffin and Caticha (2007) also show a related result,
but unlike our framework, they only derive it under the
very strong assumptions that the first moment is perfectly
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known and that this is the only information available, i.e.,
no tail bounds and no upper and/or lower moment bounds.
Furthermore, their work does not examine the asymptotic
behavior (consistency, rate of convergence, etc.) of the
updating mechanism nor does it embed the distribution-
formation problem in a decision-making context.
7. Our results for SAA, LRO, and Scarf’s method echo
those presented in Wang et al. (2015) which explores the
performance of LRO and Scarf’s methods as compared
to SAA for a single-shot newsvendor setting with ample
data. We also observed that SAA has certain computational
advantages over LRO, which is an important benefit in a
dynamic multiperiod setting such as ours. Scarf’s approach
is closer to SAA in terms of computational complexity, but
its performance is dominated by SAA.
8. In Case I, we consider ì= 6101307, where � ∈ 6101205
indicates an exponential distribution with mean �, and
� ∈ 6201307 indicates a normal distribution with a mean
�− 10 and a C.V. of 0.2. The construction of ì in Case II
is done in an analogous manner.
9. For our numerical experiments, we use a gradient-
based numerical method in Mathematica. Other numerical
approaches can also be used.
10. The internal expectation of the newsvendor cost L4 · 5
in (17) implies a risk-neutral DM. This could be relaxed but
we focus on incorporating ambiguity attitudes and not risk
attitudes.
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