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To increase resilience in supply chains, we investigate the optimal design of flexibility in a backup system. We model the
dynamics of disruptions as Markov chains, and consider a multiproduct, multisupplier supply chain under dynamic disruption
risks. Using our model, we first show that a little flexibility in the backup system can go a long way in mitigating dynamic
disruption risks. This raises an important and fundamental question in designing flexibility in the backup system: to achieve
the benefits of full backup flexibility, which unreliable suppliers should be backed up? To answer this question, we connect
the supply chain to various queueing and dam models by analyzing the dynamics of the inventory shortfall process. Using this
connection, we show that backing up suppliers merely based on first moment considerations such as their average reliability or
average product demand can be misleading. All else equal, it is better to back up suppliers with (1) longer but less frequent
disruptions, and (2) lower demand uncertainty. In addition to such second moment effects, by employing the Renyi’s Theorem,
we demonstrate that when disruptions are relatively long (if they occur), backing up the suppliers for which the expected
wasted backup capacity is minimum provides the best backup flexibility design. We also develop easy-to-compute and yet
effective indices that (a) guide the supply chain designer in deciding which suppliers to backup, and (b) provide insights into
the role of various factors such as inventory holding and shortage costs, purchasing costs, suppliers reliabilities, and product
demand distributions in designing backup flexibility.
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1. Introduction
Some companies, like Ericsson, have learned the hard way
that even minor incidents can cause disruptions of major
economic consequence. For Ericsson, a very small fire
in a small production cell was put out in ten minutes;
however, the impact on a critical clean room resulted in a
serious loss of production capacity. Ultimately, $200M in
insurance compensation was paid out (see, e.g., Norrman and
Jansson 2004). Although it is obvious that the frequency of
supply disruptions varies greatly depending on the products
involved, the business practices in place, the transportation
modes, and stability of the political and infrastructural
environment, disruptions are much more frequent than is
commonly recognized. A recent large-scale international
survey performed by Business Continuity Institute indicates
that 85% of firms around the world experience at least one
supply chain disruption each year, and more than 50% face
between one and five (Business Continuity Institute 2011).
We are particularly motivated to study effective backup
flexibility designs for businesses with recurring disruptions.

Many firms, with electronics sector companies being
among the leaders, are pursuing more rigorous business

continuity and contingency plans. As identified in Norrman
and Jansson (2004), Ericsson now frames contracts with
specific attention to the identification of and plans for
response at a backup site or resource. Ericsson is moving to
incorporate both top tier suppliers and important subsuppliers
into a risk management approach that considers both the
length of disruptions (recovery time) and their financial
cost (Norrman and Jansson 2004). Our study considers a
microeconomic model of the disruption cost in terms of
backorders (and indirectly, inventory holding costs when
extra inventory is carried as a disruption mitigation strategy).
We also introduce a Markov chain model of disruptions
that permits heterogeneity in the rate of supplier disruptions
(reliability) versus the mean length of the disruption duration
(recovery time). This permits a business analytics approach
that can expose the importance of business recovery time
in addition to supplier reliability in predisruption planning.
For example, we investigate in §4 the decision of which of
two suppliers is more important to back up when one has
higher availability than the other, but also longer disruption
durations.

Investing in backup suppliers has been used by many
leading companies. For example, Toyota used it to reduce its
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exposure to disruptions (see Kim 2011). Kouvelis and Li
(2008, p. 184) provide an insightful description of a business
environment that is particularly suited to this approach of
creating an emergency backup supplier for a single high
disruption risk product, stating that “Frequently, in just-in-
time environments where the buyer 4manufacturer5 runs a
continuous-flow system for high-volume low-uncertainty
goods (“functional goods” 0 0 0 ), the most frequent cause in
creating supply-demand mismatches is not demand uncer-
tainty but unreliable supply 0 0 0 ” Although the majority of
studies focusing on the benefits of creating backup capacity
develop models that are essentially single-period, ours allows
inventory to carry over, a mechanism that is typically used
in practice to mitigate disruptions.

As Tang (2006) posits, one of the fundamental strategies
for increasing the robustness of the supply chain is to
increase the flexibility of the supply base. The area of
operational flexibility provides a rich landscape of paradigms
which could be used to increase the flexibility of the supply
chain in the sense of better maintaining high service levels
despite a disruption from a primary supplier. In contrast to
the traditional approach of providing an inflexible backup
supplier, we note that either full or partial flexibility in
the backup supplier can be more economically attractive
than the traditional use of “dedicated” backups. Considering
this, firms are increasingly thinking about ways to create
backup capacity in a flexible manner as an alternative
to having a dedicated backup supplier for every product
or carrying extra inventories, which are both expensive
practices. It is often desirable (e.g., in the case of circuit
board production or semiconductor manufacturing) to have
a single pooled flexible backup supplier that is capable
of ensuring supply continuity (at some capacity level) for
multiple products in the event that one or more primary
suppliers are disrupted. This type of approach has received
some attention to date (see, e.g., Tomlin and Tang 2008,
Saghafian and Van Oyen 2012).

It should be noted that process designs for a backup
supplier’s operation may be quite different than that for the
primary supplier because of issues of volume and utilization.
Particularly, when the volumes are large, primary suppliers
are likely to have assembly line processes, which provide
economy of scale at high volume but are usually expensive to
make flexible. Unless the primary supplier has very frequent
disruptions, production is required only intermittently from
the backup supply infrastructure, and thus high volume
assembly lines in the backup may not be economical. Rather,
it is more likely that such backup suppliers have job shop,
batch, or reconfigurable production processes, all of which are
more flexible than automation-intensive assembly lines (and
could easily process a wide range of products in areas such
as circuit board assembly or semiconductor manufacturing).
The higher the reliability of the primary supplier, the lower
the average demand for the backup supplier and the greater
the barrier to justifying the investment in the backup supplier.
The above issues justify the “economy of scope” that can

be harnessed by investing in flexible backup manufacturing
infrastructure.

Although attractive, injecting full flexibility into the backup
system is typically impossible due to various technological
and economical burdens. The choice to pool capacity in a
backup supplier when full flexibility is impossible, poses an
interesting and fundamental predisruption risk management
question: which suppliers should be backed up by the flexible
backup capacity? In fact, the optimal design of backup
flexibility is an important question in practice, which has
not received enough attention in the academic literature.
It is our goal in this paper to fill this gap: we attempt to
generate insights into effective ways of designing flexibility
in a supply chain backup system. Importantly, we first
show that a little flexibility in the backup system can go a
long way in mitigating dynamic disruptions, suggesting that
partial flexibility can effectively achieve the benefits of full
flexibility for mitigating dynamic disruption risks. However,
to achieve such benefits, the partial flexibility should be
designed intelligently. This, of course, is inextricably linked
with the ability to carry inventory over time and update
inventory safeguards for different products as an alternative
way to mitigate disruptions.

To address the optimal design of flexibility in the backup
system, we consider a supply chain with limited backup
capacity, multiple products, and multiple unreliable suppli-
ers. We allow for disruption risks to dynamically change
over time, and model the dynamics of a supplier’s dis-
ruption risk as a Discrete Time Markov Chain (DTMC)1

with several threat levels indicating the “health level” of
suppliers. As one example, the S&P credit risk rating sys-
tem with states 81 = AAA12 = AA13 = A14 = BBB15 =

B/BB16 = CCC/CC/C9∪ 80 = Default9 is an analogous sys-
tem for which Markov chain modeling is commonly used.
We analyze the inventory shortfall process (the difference
between desirable inventory safeguards and inventory levels,
a potentially positive quantity because of a limited capac-
ity when primary suppliers are disrupted) and connect it
to single-server queueing systems as well as dam storage
processes.

Using such a connection, we show that backing up sup-
pliers merely based on first moment effects such as their
average reliability or product demand can be misleading.
We find that, all else equal, it is better to back up suppliers
with (1) longer but less frequent disruptions, and (2) lower
demand uncertainty. These shed light on the important role
of disruption lengths and demand variabilities in design of
backup flexibility. To generate further insights into the role of
demand distributions (not just the first and second moments),
we also consider situations where disruptions are relatively
long when they occur, i.e., scenarios with long “time to
recovery.” By using the Renyi’s Theorem (which provides an
approximation for geometric random sum of i.i.d. random
variables) for the inventory shortfall process under long
disruptions, we show that backing up the suppliers for which
the expected wasted backup capacity is minimum provides
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the best backup flexibility design. Computing the expected
wasted backup capacity requires the supply chain designer to
evaluate the cumulative distributions of the product demands
at the available backup capacity. This sheds further light on
the role of demand distributions (not just their averages) in
the design of backup flexibility, especially in supply chains
under long “time to recovery.”

After generating insights into the important effects of
length of disruptions, demand variability, and demand distri-
butions, we factor out such effects, and focus on the role of
other parameters such as inventory holding and shortage
costs and purchasing costs. We do this by (a) considering the
system under i.i.d. Bernoulli disruptions (a special case of our
general Markov chain model), and (b) assuming exponential
demand distributions. Under these assumptions, the dynamics
of inventory shortfall process becomes equivalent to that of
waiting time in a GI/M/1 queueing system. Taking advan-
tage of this equivalence, we characterize both the optimal
inventory base-stock levels and long-run average costs. In
turn, this enables us to develop an easy-to-compute and yet
effective index, which we term Backup Effect Index 4BEI5,
that (a) guides the supply chain designer in deciding which
suppliers to backup, and (b) provides interesting insights
into the role of various factors such as inventory holding and
shortage costs, purchasing costs, suppliers reliabilities, and
product demands in designing backup flexibility. Our results
suggest that, when demand distributions are close to expo-
nential, following a largest BEI policy is optimal in deciding
which unreliable suppliers to back up. We then extend this
result by relaxing the exponential demand assumptions (i.e.,
by considering general distributions) and analyzing a GI/GI/1
queueing counterpart to the inventory shortfall process. This
allows us to provide a generalized BEI (GBEI), and show
that in general backing up suppliers based on a largest GBEI
first policy provides an effective backup flexibility design,
enabling supply chain designers to effectively compensate
for disruption risks.

To generate further insights into the role of capacity
pooling in the backup system, we also develop a numerical
study and compare scenarios with dedicated backup suppliers
versus a single pooled backup capacity. We find that the value
of a flexible backup supplier is more than the summation
of benefits that can be obtained separately for each of
the products through dedicated backups: when one of the
primary suppliers is in a high threat level and the other is
in a low threat level, the pooled backup capacity can be
shifted toward the unreliable supplier which is at a higher
risk. Moreover, we observe that a firm will reserve at least
as much capacity from a backup flexible supplier as the
amount reserved in total from dedicated backup ones. Indeed,
the flexibility of a backup supplier provides the firm with
greater benefits, justifying reserving more backup capacity
because of the economic advantage of shifting the orders
whenever necessary. This observation sheds light on higher
fees charged in practice by flexible suppliers for reserving
their capacity compared to inflexible suppliers.

The remainder of the paper is organized as follows. We
review the literature in the next section, then in §3 we
describe our model. Section 4 generates insights into the
important role of length of disruptions as well as demand vari-
ability in designing backup flexibility. Section 5 neutralizes
the role of the factors studied in §4, and generates insights
into the role of some other important factors. Section 6
develops a numerical study and generates insights into the
capacity pooling advantage in the backup system. Section 7
summarizes the insights gained and concludes. All proofs are
presented in the Online Appendix (available as supplemental
material at http://www.dx.doi.org/10.1287/opre.2016.1478).

2. Literature Review and Contributions
The operational literature on supply chain disruption risks can
be viewed from two different perspectives: (A) time relative
to the disruption event, and (B) the way the disruption event
is modeled.

From the perspective of time relative to the disruption
event, Behdani et al. (2012) perform a literature review
and describe how the literature can be classified in three
categories: (A.1) predisruption studies, (A.2) postdisruption
studies, and (A.3) integrated studies of both pre and post-
disruptions. Most disruption management studies fall into
the first two categories. This paper is among the very few
studies to consider both pre and postdisruptions. We treat
several common predisruption approaches to supply flow
continuity: carrying additional inventory, investing in backup
capacity, and taking into consideration the dynamics of a
supplier’s likelihood of disruption (i.e., dynamic supplier
monitoring and assessment of its threat level). As a post-
disruption mechanism, the modeling of dynamic inventory
replenishment policies is especially meaningful in this paper.
We consider not only inflexible backup suppliers (which also
require a capacity investment decision), but also the proper
dynamic use of a pooled flexible backup supplier that can
serve multiple products out of its shared but limited capacity
(in response to disruptions in unreliable suppliers).

Whether static (e.g., single-shot or repeated settings) or
dynamic, the literature models disruptions in the following
four categories: (B.1) random disruptions (i.e., all-or-nothing),
(B.2) random yield, (B.3) random capacity, and (B.4) finan-
cial default. This paper is in the first category, dynamic
random disruptions.

For studies that consider the case of random disruptions,
we refer interested readers to Parlar and Perry (1996), Gürler
and Parlar (1997), Moinzadeh and Aggarwal (1997), Arreola-
Risa and DeCroix (1998), Tomlin (2006), Babich et al.
(2007), Saghafian and Van Oyen (2012), and the references
therein. Some studies including Wang et al. (2010) consider
a combination of the above-mentioned types of disruptions.
Moreover, although most studies have focused on static
disruptions, a few consider dynamic of disruptions. Tomlin
and Snyder (2006), for instance, develop multiperiod models
with dynamic disruptions in which the firm has a single
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unreliable supplier, as well as models with a second, perfectly
reliable supplier. Tomlin (2006) considers dynamic disruption
risks in a single-product setting with two dedicated suppliers:
one perfectly reliable and one unreliable. When the amount
ordered from the reliable supplier is a fixed percentage of
the demand in each period, Tomlin (2006) establishes the
optimality of a state-dependent base-stock policy. Dong and
Tomlin (2012) consider a setting that operationally resembles
the disruption model of Tomlin (2006) to study the interplay
between business interruption insurance and operational
measures.

The inventory control literature with Markovian supply
availability is also to some extent relevant to our study,
although it typically studies single-sourcing models without
any supply flexibility. Within this literature, Song and Zipkin
(1996) present a fundamental study with periodic review
inventory control where information about the evolution of
the supply system is modeled as a Markov chain. Parlar et al.
(1995) addresses a periodic-review setting with setup costs,
where the probability that an order placed now is filled in
full depends on whether supply was available in the previous
period (see also Özekici and Parlar 1999). We contribute
a new perspective by using the connections between the
dynamics of inventory shortfall process (under dynamic
disruptions) and various queueing and dam storage processes.

Another part of the literature includes multiperiod models
with repeated (but not dynamic) disruptions. Tomlin (2009)
uses a Bayesian approach for supply learning (i.e., reliability-
forecast updating) with i.i.d. Bernoulli disruptions and
characterizes the firm’s optimal sourcing and inventory
decisions. Anupindi and Akella (1993) study a finite-horizon,
discrete-time continuous demand model with two zero lead-
time random-yield suppliers.

In addition to considering a multiperiod dynamic disruption
model with an arbitrary number of suppliers, another distinct
feature of our modeling framework is that we allow for
product mix flexibility in the backup system, and study
how such flexibility can be used to selectively supplement
the production of primary suppliers based on the firm’s
inventory levels and suppliers’ threat levels. Operational
mix flexibility has been studied in various papers including
Jordan and Graves (1995), Van Mieghem (1998), Kouvelis
and Vairaktarakis (1998), Graves and Tomlin (2003), Tomlin
and Wang (2005), Iravani et al. (2005), Bassamboo et al.
(2010), Saghafian and Van Oyen (2011, 2012), Simchi-
Levi and Wei (2012), Simchi-Levi et al. (2013). Our study
contributes to this literature by (1) considering the value of
a flexible pooled backup supplier/resource to compensate for
unreliability of dedicated suppliers, and (2) addressing the
design of partial flexibility in the backup system.

In closing this section, we note that several recent papers
that study design of flexible queueing networks are also
relevant to our work. For instance, Tsitsiklis and Xu (2015)
show that two characteristics of fully flexible queueing struc-
tures, large stability regions, and asymptotically vanishing
waiting times, can be persevered in partially flexible systems

via expander-graph-based flexibility architectures. The graph
expander approach is also studied in Chen et al. (2015) and
Chou et al. (2011). Further insights on the design of partially
flexible queueing structures can be found in Bassamboo et al.
(2012), and the references therein. However, these papers
are focused on queueing networks, and do not attempt to
model supplier disruptions at the level of detail treated in
this paper. Future work may consider carefully designed
networks possessing structures of flexible backup suppliers.

3. The Model
The model is a multiperiod and multiproduct extension of the
one in Saghafian and Van Oyen (2012) under a generalized
capacity investment and flexibility setting. For readability,
we employ the same notation where possible. Consider
a firm that produces/sells n= �Î� products, where Î=

81121 0 0 0 1 n9 denotes the set of underlying products. The firm
has a primary unreliable supplier, labeled supplier j , that
supplies product j ∈Î (or perhaps one critical component
for that product). To operationally insure the supply stream
against future disruptions, the firm can also establish (or
contract with) a flexible backup resource, namely f , at a
limited capacity Q̄f ∈ 401�5 that can produce on demand
quantities of underlying products, the sum of which cannot
exceed Q̄f . We let g4uf 1 Q̄f 5 denote the investment cost at
the flexible backup capacity, which depends on the capacity
level Q̄f as well as a “per unit” investment cost, uf . We allow
for a general class of investment costs represented through
the cost function g4uf 1 Q̄f 5. However, to represent a “well-
behaved” investment cost function, we assume g2 �2

+
→�+

is continuous, increasing in uf with g401 ·5= 0, increasing
convex in capacity Q̄f with g4·105= 0, and supermodular
(twice differentiable with positive cross partials). We note that
a special case of this type of investment is that of reserving
some backup capacity through a capacity reservation contract
(also known as an option contract), where an up-front cost
of g4uf 1 Q̄f 5 = uf Q̄f reserves a backup capacity of Q̄f

units (see, e.g., Saghafian and Van Oyen 2012 and the
references therein). We also permit a product-dependent per
unit ordering cost cfj from the backup. For convenience, we
use subscripts for products, superscripts for suppliers, and
employ the following notation (j ∈Î):

hj : Holding cost per unit of product j per period;
pj : Penalty cost per unit of unmet demand of

product j;
rj : Revenue per unit of product j (set to zero

when unmet demand is backlogged);
cj : Per unit purchasing cost of product j from

dedicated/primary supplier j;
c
f
j : Per unit purchasing cost of product j from the

flexible backup supplier;
uf : Per unit capacity reservation cost of the

flexible backup supplier;
Q̄f : Reserved capacity from the flexible backup

supplier;
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Figure 1. The model with n products, n primary suppliers, and one flexible backup supplier.
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Note. The up front investment in backup capacity Q̄f and dynamic resupply orders are based on inventory levels and available information on supplier threat
levels, which evolve as Markov chains.

g4uf 1 Q̄f 5: Investment cost function at the flexible backup
capacity;

qj : Order quantity from dedicated/primary supplier
j;

q
f
j : Order quantity from the flexible backup

supplier for product j .

Figure 1 depicts the two-echelon supply chain model
under consideration.2 The firm has an option to establish (or
reserve) a desired amount of flexible backup capacity, Q̄f , at
time 0 to insure its supply system against future disruptions.
The firm then exercises a periodic review inventory control in
every future period, during which it can procure either from
the primary suppliers or from the limited reserved backup
flexible capacity or both. Unmet demand is backordered
and supply lead times and production cycles are negligible
in comparison with the review period. We assume the
following order of events within each review period: (1) The
firm observes the state of the system (inventory levels and
disruption threat levels). (2) The firm decides the order
sizes and orders from all suppliers subject to the contracts.
(3) Product demands are realized. (4) Holding costs or
shortage costs accrue. (5) The state of the system is updated,
including the inventory and disruption threat levels. The
firm has to pay the purchasing cost cj and c

f
j per order

of product j ∈Î delivered by dedicated (and unreliable)
supplier j and the flexible backup resource, respectively. The
flexible backup resource has a shared and limited capacity
Q̄f (a decision variable). It can deliver any combination and
quantity of products (qf

j 2 j ∈Î) as long as
∑

j∈Î q
f
j ¶ Q̄f .

We assume none of the products in set Î can be procured
for free; cfj + uf > 0 and cj > 0 for j ∈Î.

To address the optimal design of flexibility in the backup
system, we may also allow for only a subset of the product
types to share the flexible backup. This is done by defining

a flexibility set Æ¬ 8j ∈Î2 c
f
j <�9, and requiring it to be

a strict subset of Î. When Æ=Î, we say the backup
supplier is fully flexible; otherwise, when Æ⊂Î, we say
the backup supplier is partially flexible.

For j ∈Î, let Lj4x5= hj 6x7
+ +pj 6−x7+ and define the

expected one-stage cost

Gj4x5=EDj
6Lj4x−Dj57

= hj

∫ x

−�

4x− �5dFj4�5+pj

∫ �

x
4� − x5dFj4�51 (1)

where 6x7+ = max801 x9, and Fj4 · 5 is the cumulative dis-
tribution function (c.d.f) of the demand, Dj , for product j .
We assume that demands for each product j across periods
are i.i.d. random variables, and further, Dj and Dj ′ are
independent (for all j1 j ′ ∈Î s.t. j 6= j ′). We also assume
unmet demand in a period is backlogged.

We model the disruption risk processes of the dedicated
suppliers via a discrete time Markov process. Let sj denote
the threat level of dedicated supplier j (as an indicator
of its health), where sj = 0 means dedicated supplier j
is in the down (default) state and sj = k > 0 denotes that
it is in threat level k. We assume that the dynamics of
disruptions can be modeled as a Discrete Time Markov
Chain (DTMC) with state space Ój = 80111 0 0 0 1 kj9 for
dedicated supplier j . Let Wj = 6w

j
lm7 denote the transition

probability matrix (t.p.m.) of DTMC of supplier j , where
w

j
lm is the probability that it will be in threat level m in the

next period given that the current threat level is l. The set
×= 8Wj1 j ∈Î9 completely describes the dynamics of
disruptions of all unreliable suppliers, where each supplier
may have a different DTMC (regarding state space and/or
transition probabilities). For every j ∈Î, as a convention and
without loss of generality, we assume w

j
k0 <w

j
k′0 for every
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0 < k < k′ in Ój (i.e., the higher the threat level, the higher
the risk of disruption). We assume every element of × is
aperiodic and irreducible. Thus the underlying DTMC’s are
all ergodic and have a steady-state distribution which for
supplier j we denote by the vector � j = 4�

j
01�

j
11 0 0 0 1�

j

kj
5.

Hence, � j
0 is the long-run disruption probability of dedicated

supplier j and 41 −�
j
05 is its reliability, the long-run fraction

of time that it is not disrupted.
To perform our analysis, we let the vector x4t5= 4xj4t5 2

j ∈Î5 denote the inventory on hand at period t. Also, by
q4t5= 4qj4t52 j ∈Î5 and qf 4t5= 4q

f
j 4t52 j ∈Î5 we denote

the vectors of order sizes from the primary suppliers and
the flexible supplier at period t, respectively. Additionally,
we let � ∈ 40115 be the discount factor and s4t5= 4sj4t5 2
j ∈Î1 sj4t5 ∈Ój5 denote the state of disruption threat levels
of the unreliable suppliers at period t.

Let J̃ 4x4051 s4055 denote the optimal expected infinite-
horizon discounted cost of the firm (including the investment
cost at period t = 0) if the initial disruption threat levels are
s405 and the firm starts with an inventory on-hand vector of
x405. This value can be computed by the following program:

J̃ 4x4051 s4055= min
Q̄f ∈�+

{

g4uf 1 Q̄f 5+ JQ̄f 4x4051 s4055
}

1 (2)

where JQ̄f 2 �n × 4
∏

j∈ÎÓj5→�+ is the optimal infinite-
horizon discounted cost of the firm given the established
capacity Q̄f ∈�+. In (2), JQ̄f 4 · 1 · 5 can be computed using
the following Bellman equation for all t ∈�+:

JQ̄f 4x4t51s4t55

= min
q4t51qf 4t5¾02

∑

j∈Îq
f
j 4t5¶Q̄f

{

∑

j∈Î

6c
f
j q

f
j 4t5+�4sj 4t5>054c

jqj4t5

+Gj4xj4t5+qj4t5+q
f
j 4t555+�4sj 4t5=05Gj4xj4t5+q

f
j 4t557

+�ƐD4t5Ɛs4t+15 6JQ̄f 4x4t+151s4t+155 �x4t51s4t57
}

1 (3)

where the inventory transition rule from x4t5 to x4t + 15 is

x4t + 15= x4t5+ qf 4t5+ 4�8s14t5¾091�8s24t5¾091 0 0 0 1�8sn4t5¾095

· q4t5− d4t51 (4)

and threat level transitions from s4t5 to s4t + 15 are defined
through Markov processes governed by the set of t.p.m’s ×.

Solving program (2)–(3) derives the firm’s optimal
expected infinite-horizon discounted cost as well as its
optimal investment level. This in turn yields a measure for
the value of the flexible backup resource:

ãf 4x4051 s4055= J04x4051 s4055− J̃ 4x4051 s40550

For instance, ãf 4x405= 01×n1 s405= 11×n5 provides a good
measure for investigating the value of the flexible backup
resource by setting all initial inventory levels to zero and
placing all suppliers in their most reliable state.

In addition to the discounted cost, we may also use the
firm’s long-run average inventory related per-period cost
(holding and backlogging only), since it is a more convenient
measure for the purpose of connecting the inventory related
cost of the system to the queueing or dam storage processes.
The long-run average inventory related per-period cost under
any given backup capacity Q̄f can be obtained from (3), and
is defined as

lim inf
�→1−

41 −�5JQ̄f 4x1 s50

4. Backup Flexibility Design: The Role of
Disruption Length and Demand
Variability

In this section, we analyze the optimal design of flexibility in
the backup system, and generate insights into the important
role of disruption length and demand variabilities. To this end,
we consider the case of partial backup flexibility in which
the backup flexibility can cover only a subset of products Î
that belong to the flexibility set Æ¬ 8j ∈Î2 c

f
j <�9.

Before considering systems with partial flexibility, however,
we shall establish a basic result under full flexibility: firms
that procure relatively more products benefit more from
establishing a fully flexible backup supplier, but the marginal
benefit diminishes.

Proposition 1 (Diminishing Rate of Return). Under
full flexibility (Æ=Î) and complete product symmetry
(product or supplier independent parameters), the value of
a fully flexible backup supplier has a diminishing rate of
return (increasing concave) in �Î�.

Comparing systems with full backup flexibility (Æ=Î)
and with partial backup flexibility (Æ ⊂ Î) under full
product symmetry, we next establish an important insight: for
mitigating dynamic disruption risks, a little backup flexibility
can go a long way.

Proposition 2 (Partial Backup Flexibility). Consider a
system with full product symmetry, and fix the product set Î.
The difference between the value of the flexible backup
supplier with flexibility set Î ( full backup flexibility) and
with Æ⊂Î (partial backup flexibility) is decreasing and
convex in the number of products in Æ.

Note that under each backup flexibility design, (e.g., for
each level of �Æ�) the available backup capacity Q̄f is
optimized accordingly, since the firm needs to pay a lump-
sum investment cost that depends on the reserved backup
capacity. Furthermore, the firm needs to pay a per-unit
purchasing cost at each period when utilizing the backup
capacity. Thus, even though the backup capacity depends
on the flexibility level/design, Proposition 2 states that
under product symmetry, partial backup flexibility provides
a diminishing rate of return and may rapidly achieve the
benefit of full flexibility as Æ grows to include more product
types. However, it should be noted that Proposition 2 does
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Figure 2. Which supplier to back up? Left: Effect of disruption length (supplier 2 reliability = 96%, supplier 2 average
disruption length = 5/3); Right: Effect of demand uncertainty (Ɛ4D25= 5, �2

D2
= 2).
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not discuss practical/achieveable “levels of convexity.” This
investigation is performed in Online Appendix B, where we
find that the level of convexity is indeed high. For instance,
we typically observe that 60% to 85% of the benefit of full
flexibility when �Î� = 2 can be obtained by only using a
1-flexibility design (�Æ� = 1), noting that 50% corresponds
to linearity.

It is also important to consider that in practice there may
be a constraint that limits how much, if any, flexibility
the backup supplier may have. Also, full flexibility may
not be optimal. Under asymmetry, intuition suggests that
backing up some of the suppliers will suffice in most cases,
because either the cost of backup capacity will be very high
or because disruptions are relatively rare for a subset of
suppliers, or because of other model parameters rendering
inventory carry-over a more cost-effective way to mitigate
the disruption risks for some of the suppliers. These motivate
the following question.

Question 1. Under asymmetry, which unreliable supplier(s)
should be backed up first?

When suppliers only differ in disruption risks, one may
expect that backing up the most unreliable supplier (lowest
percentage uptime) would be the best strategy, because it
allows using the backup more frequently, thereby more
significantly offsetting the fixed investment cost in the backup
supplier. Similarly, if they differ only with respect to their
product demands, then backing up the supplier of the most
“popular” product (highest average product demand) may be
seen as the best strategy, because it prevents the accrual of
high holding costs (if inventory is carried over to mitigate
disruption risks) or high penalty costs (if inventory is not
carried over, and hence, stockouts occur). However, we
find that focusing on these first moment effects (average
reliability and mean demand) can be misleading.

For instance, in Figure 2, we use our Markov decision
process (MDP) framework for a representative example
with Î= 2, and we model the disruption risk dynamics as
two-state Markov chains to generate insights into Question 1.

Specifically, in Figure 2 (left), we fix the supplier 2 reliability
at 96% and its average disruption length at 5/3 = 1067
(review) periods (i.e., we fix W2). Next, we vary W1, while
considering all other parameters to be equal for both suppliers
or products (cj = 2, hj = 105, rj = 405, pj = 305, uf = 002,
�= 009, uniform demand distributions in [1,5], cfj /c

j = 101
for all j ∈Æ, and g4uf 1 Q̄f 5= uf Q̄f , where Q̄f is optimized
for each scenario). As can be seen in Figure 2 (left), even
when supplier 1 has a higher reliability than supplier 2
(i.e., 96%), it can be better to back up supplier 1 than 2
because it faces sufficiently longer disruptions. This shows
the importance of considering the dynamics of disruptions
rather than only average reliabilities. Similarly, in Figure 2
(right), for this representative example, we fix Ɛ4D25= 5 and
�2
D2

= 2, and vary the mean demand of product 1 (within
the family of uniform distributions) while keeping all other
parameters the same, to investigate the effect of demand
variability. Interestingly, we observe that the intuition of
backing up the supplier of the best-selling product is also not
sufficiently subtle; it can be better to back up the supplier
with the lower mean product demand, if its product demand
is less uncertain than the other product. In summary, our
numerical investigations reveal that, in designing backup
flexibility, focusing only on first moment effects can be
misleading.

Observation 1. All else equal (including average supplier
reliability and mean product demand), it is better to back up
the supplier with (1) longer but less frequent disruptions
(than the supplier with shorter but more frequent disruptions),
and/or (2) lower demand uncertainty (than the supplier of
the product with less predictable demand).

The intuition behind part (1) is that longer disruptions (i.e.,
greater recovery times) reduce the advantage of carrying
inventories over time as a means to mitigate disruptions.
Even with frequent disruptions, the strategy of using inven-
tory safeguards remains more effective if disruptions are
sufficiently brief (and resulting in equal average reliability).
Similarly, part (2) states that inventory safeguards are more
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beneficial when used for the product with higher demand
uncertainty. This may seem counter-intuitive; however, the
inventory safeguards can also be used to respond to demand
volatility, i.e., a safety stock functionality. Hence, it is better
to use the backup resource for the supplier of the product
with more predictable demand, and benefit from inventory
safeguards for the other product. In addition, backing up the
supplier with the more predictable demand requires a lower
up-front investment in the backup system (as the optimum
investment level is increasing in demand uncertainty), making
this choice even more attractive.

Observation 1 provides insights into Question 1 through a
representative numerical experiment. But we can gain broader
insights by investigating the related trade-offs in a more
general setting. We do this by introducing and exploring the
dynamics of threat-dependent inventory shortfall,3 which
is the difference between the threat-dependent base-stock
levels and the inventory level caused by the limited supply
capacity during disruptions as well as the random demand
realizations. In particular, we will observe that the dynamics
of threat-dependent inventory shortfalls resemble the waiting
time of a customer in a single-server G/GI/1 type queue
where the distribution of inter-arrival times is given by a
two-state deterministic Markov modulated process. This fact
along with an analogous simple dam/storage process enables
us to answer Question 1 in more depth.

To this end, consider two suppliers indexed by j = 112
that have the same average reliability, but let supplier 1
experience longer (in terms of first order stochastic dom-
inance) but less frequent disruptions than supplier 2. For
simplicity, we assume both suppliers have the same threat
level state space denoted by Ó¬Ó1 =Ó2. If the transition
probability matrices Wj = 6w

j
lm7l1m∈Ó are such that w1

00 ¾w2
00

but �1
0 =�2

0 , then the required conditions hold. In particular,
although both suppliers have the same average reliability
(1 −�

j
0), the geometric random variables representing the

length of disruptions denoted by Lj satisfy L2 ¶st L
1, where

¶st denotes first order stochastic dominance. Moreover,
since �1

0 =�2
0 , we have that the frequency of disruptions

∑

i∈Ó1 i 6=0 �
j
i w

j
i0 is higher for supplier 2 than supplier 1. Using

this setting, we first study the effect of disruption length
in the absence of any backup capacity, and then extend
the result to situations where they can be backed up. To
do so, we note that the firm’s product j inventory at the
beginning of period t + 1 under the optimal base-stock
inventory control policy is recursively given by

X
j
t+1 = min8Xj

t −Dj
t +Kj4sjt 51 y

j4sjt 591 (5)

where yj4s
j
t 5 is the base-stock level of product j when its

supplier’s threat level at period t is sjt , Dj
t denotes the demand

of product j at period t, and Kj4s
j
t 5 can be thought of as a

state-dependent “random supply capacity” (of supplier j when
its threat level at period t is s

j
t ): Kj4s

j
t 5= �8s

j
t 6=09M , for some

sufficiently large number M that approximates the capacity
of the backup supplier.4 Denote by ë

j
t 4s

j
t 5= yj4s

j
t 5−X

j
t the

threat-dependent inventory shortfall of product j at period t.
Then, ë j

t 4s
j
t 5 can be recursively written as

ë
j
t+14s

j
t+15= max8ë j

t 4s
j
t 5−Kj4sjt 5+Dj

t 1090 (6)

The dynamics of threat-dependent inventory shortfall
presented above is similar to that of the waiting time (in
queue) of the tth customer in a single server queueing system
with inter-arrival and service times being represented by
Kj4s

j
t 5 and D

j
t , respectively. However, first it should be noted

that this interpretation of the shortfall as a waiting time is not
intuitively straightforward and differs from manufacturing
queues where time is continuous and queues are discrete:
the shortfall in period t in our framework is interpreted as
the waiting time (in queue) of customer t, and hence, time is
discrete whereas queues are continuous. Second, we note that
if the “random supply capacity” was not threat-dependent
(i.e., random variables Kj4s

j
t 5 were i.i.d. across periods), then

the Lindley type dynamics presented in (6) would be exactly
the same as that of waiting time (in queue) of a customer in
a GI/GI/1 queueing system. However, (6) shows that the
dynamics of shortfall is threat-dependent and resemble the
waiting time (in queue) of a customer in a G/GI/1 queueing
system in which the inter-arrival times (random variable
Kj4s

j
t 5) are deterministically defined based on an exogenous

two-state Markov-modulated process: Kj4s
j
t 5= �8s

j
t 6=09M .

Since the Markov chain describing the dynamics of sjt is
ergodic, both s

j
t and s

j
t+1 converge in distribution (denoted

by
d

→) to the same random variable sj as t → �, which has
the distribution � j (i.e., the steady-state distribution). Hence,
there exists a random variable Kj4sj5 such that Kj

t 4s
j
t 5

d
→

Kj4sj5 as t → �. Thus, assuming that the underlying
queueing system is stable, ë j

t+14s
j
t+15

d
→ë j4sj5 where

ë j4sj5
d
= max8ë j4sj5−Kj4sj5+Dj1090 (7)

Using the discussion above, we first note that the firm’s
long-run average inventory cost associated with product j
(under a threat-dependent base-stock yj4sj5) is

Ɛsj 1ë j 4sj 51Dj 6hj4y
j4sj5−ë j4sj5−Dj5+

+pj4D
j
+ë j4sj5− yj5+7

= Ɛsj 1ë j 4sj 56Gj4y
j4sj5−ë j4sj557

=
∑

i∈Ó¬Ó1=Ó2

�
j
i Ɛë j 4i56Gj4y

j4i5−ë j4i5571 (8)

where Gj4 · 5 is defined in (1). Moreover, to use (8), it can
be easily seen that:

Ɛë j 4i56Gj4y
j4i5−ë j4i557

= hj

∫ yj 4i5

−�

4yj4i5− �5dFDj+ë j 4i54�5

+pj

∫ �

yj 4i5
4� − yj4i55dFDj+ë j 4i54�51 (9)
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where FDj+ë j 4i5 is the convolution of distributions of demand,
Dj , and shortfall, ë j4i5 (by independence). Since the above
function is convex (due to convexity of Gj4 · 5), it follows
from the first order condition that the optimal base-stock
level satisfies

Pr4Dj ¶ yj4i5−ë j4i55= Ɛë j 4i56F
j
D4y

j4i5−ë j4i557

=
pj

pj +hj

1 (10)

or equivalently

yj4i5= F −1
Dj+ë j 4i5

(

pj

pj +hj

)

1 (11)

where for any random variable æ with a c.d.f. Fæ4�5,

F −1
æ 4y5= inf8�2 Fæ4�5¾ y90 (12)

Replacing the optimal base-stock level characterized
by (11) in (8) and (9) will enable us to compare the optimal
cost of product/supplier 1 to that of product/supplier 2. Using
this, we first establish that a stochastically larger “waiting
time” (in queue) in the corresponding queueing system
means both a higher optimal base-stock level and cost in
the original inventory system. This will later enable us to
show the important insight that, keeping average reliability
the same, longer but less frequent disruptions cause higher
average costs.

Lemma 1 (Queueing Comparison). In the absence of any
backup capacity, if ë 24i5¶st ë

14i5 ( for all i ∈Ó¬Ó1 =

Ó2), then (i) the state-dependent optimal base-stock levels
satisfy y24i5 ¶ y14i5, and (ii) having only product 2 is
preferred to having only product 1: Î= 819�Î= 829,
where � represents preference in terms of associated expected
long-run average cost.

We next show that longer but less frequent disruptions
(all else equal including average reliabilities) indeed implies
a stochastically larger “waiting time” in the corresponding
queueing system (i.e., larger shortfalls in the inventory sys-
tem), which is analogous to a well-known fact in queueing
systems: a stochastically higher interarrival time variabil-
ity typically implies a longer average waiting time. To
show this result, we consider the following dam model
or storage process5 with an input Dt at the beginning of
period t. In each period, a decision regarding whether to
open the dam is made: the dam is kept completely closed if
st = 0, and is completely opened (i.e., instantaneous release)
otherwise. This dam model allows us to characterize the
threat-dependent inventory shortfall as a compound random
variable (i.e., a random sum of i.i.d. random variables) and
state the following.

Lemma 2 (Role of Disruption Length). In the absence
of any backup capacity, the inventory shortfall of product j
given risk state i ( for all i ∈Ó¬Ó1 =Ó2) satisfies

ë j4i5
d
= �8i=09

Lj
∑

t=1

Dt1 (13)

where random variables Dt are i.i.d., and Dt is the demand
in period t. Hence, if supplier 1 has longer but less frequent
disruptions than supplier 2 but all else is equal, then in the
absence of any backup capacity ë 24i5¶st ë

14i5 ( for all
i ∈Ó¬Ó1 =Ó2).

It is noteworthy that although the base-stock levels are
different for different threat-levels, the shortfall process
characterized in the above lemma only depends on whether
the system is up or down, providing a much simpler process
to analyze.

Combining Lemmas 1 and 2 we observe that, in the
absence of any backup capacity, if supplier 1 has longer
but less frequent disruptions than supplier 2, then (a) the
firm tends to keep stochastically higher levels of on-hand
inventory of product 1 than 2, and (b) product 1 is associated
with a higher optimal average cost. The following lemma
extends this result to the case where a given secondary
capacity can be assigned to back up unreliable suppliers.

Lemma 3 (Disruption Length and Backup Capacity).
When a given capacity Q̄f is assigned to back up supplier
j ∈ 81129, for all i ∈Ó¬Ó1 =Ó2

ë j4i5
d
= �8i=09

Lj
∑

t=1

4Dt − Q̄f 5+0 (14)

Hence, if supplier 1 has longer but less frequent disruptions
than supplier 2 but all else is equal, then (i) ë 24i5¶st ë

14i5
( for all i ∈Ó¬Ó1 =Ó2), and (ii) Î= 819�Î= 829.

In addition to characterizing the effect of backup capacity
on inventory shortfall, the above lemma shows that disruption
length and backup capacity are substitutes: the effect of a
longer disruption length can be offset by a higher backup
capacity level. Using the above lemma, we next establish
the interesting insight that when a backup capacity exists,
it is better to back up the supplier with longer but less
frequent disruptions (all else equal). Recalling the problem
of determining the optimal flexibility set Æ (which indicates
the set of suppliers to backup), this insight is presented in
the following result.

Proposition 3 (The Effect of Disruption Length on
Backup Flexibility Design). Let Î= 81129, and while
keeping all else equal (including average reliabilities),
suppose supplier 1 has longer but less frequent disruptions
than supplier 2. (i) For any available backup capacity Q̄f ,
Æ= 829�Æ= 819�Æ= 81129. (ii) The result of part (i)
holds even when the backup capacity is optimized separately
for each of the three flexibility designs.

We note that the above result is congruent with the
numerical insights captured in Observation 1. Whether
the backup capacity is fixed across the alternative designs
or optimized separately for each, it proves the following
important insight in designing backup flexibility: the length of
disruptions plays a critical role in deciding which supplier(s)
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to back up. Therefore, paying attention only to suppliers’
average reliabilities can be misleading, because it might be
better to backup a supplier with higher average reliability, if
its disruptions are lengthier. Moreover, Proposition 3 can
be easily extended to a setting with an arbitrary number of
products as follows. Let Î= 81121 0 0 0 1 n9 for some n, and
suppose that suppliers are only different in their length of
disruption in the sense of stochastic dominance while all
else is equal. If only a partial flexibility with �Æ� = k < n
is possible, then the optimal backup flexibility design is
the one in which Æ is chosen to be the set of k suppliers
with the lengthiest disruptions: a longest disruption length
first policy. This agrees with the focus on “time to recover”
recently emphasized in Simchi-Levi et al. (2014).

We now turn our attention from the supply side to the
demand side. Specifically, we establish that, similar to the
supply side, merely paying attention to the average demand
can be misleading. To this end, we can again benefit from
the dynamics of inventory shortfall. Since a higher demand
variability in the original system implies a higher service time
variance in the queueing counterpart, and the performance of
queueing systems typically is roughly inversely proportional
to service time variance, we can explore the answer to
Question 1 in more depth. This is done in the following
proposition, where variability is captured through convex
stochastic ordering.

Proposition 4 (The Effect of Demand Variability on
Backup Flexibility Design). Let Î= 81129, and while
keeping all else equal (including average demand for prod-
ucts 1 and 2), suppose D1 ¶cx D

2 (where ¶cx denotes convex
stochastic ordering6), implying that demand for product 2
has a higher variability than product 1. (i) For any given
backup capacity Q̄f , Æ = 829 � Æ = 819 � Æ = 81129.
(ii) The result of part (i) holds even when the backup capac-
ity is optimized separately for each of the three flexibility
designs.

To gain further insights into the effect of demand dis-
tributions on backup flexibility design, we next consider
scenarios where disruptions are long (i.e., in long time-to-
recovery situations). This allows us to factor out the effect
of disruption lengths and focus on the effect of demand
distributions. The reader should note that, because of the
Markov process governing disruptions, disruption durations
are geometrically distributed in our framework.

Relatively Long Geometric Disruptions. When disruptions
are long, to characterize the inventory shortfall distribution
and thereby generating more insights, we can use the Renyi’s
Theorem for geometric sums of random variables. Renyi’s
Theorem can be stated as follows: Let SL =

∑L
i=1 Xi be the

sum of L i.i.d. random variables having a common positive
but finite mean Ɛ6X7. If L is geometric with mean l, then

Pr
{

SL
l
> �

}

= e−�/4Ɛ6X75
+ o4151 (15)

as l → �. That is, SL is approximately exponential with
rate 4lƐ6X75−1 (see Blanchet and Glynn 2007 for more
discussions and a connection to the Cramer-Lundberg approx-
imation when �l → �). It should be noted that the approxi-
mation remains exact in some cases. For instance, when Xi’s
are i.i.d. exponentials, SL has an exponential distribution
with rate 4lƐ6X75−1 for any finite l > 1.

Let dj = Ɛ6Dj7 and lj = Ɛ6Lj7. Since Lj in our Markov
chain model of disruptions has a geometric distribution,
using Lemma 3 along with the Renyi’s Theorem, we observe
that, when disruptions are relatively long (i.e., as l→ �),
the inventory shortfall in steady-state satisfies

ë j4i5
d
= �8i=09æ

j1 (16)

where æj has an approximately exponential distribution
with mean Ɛ64Dj − Q̄f 5+7Ɛ6Lj 7= 4dj − Q̄f 5lj41 − F

j
D4Q̄

f 55.
Furthermore, as l → �, it can be shown that Dj +ë j4i5 can
also be approximated as an exponential random variable
with mean 4dj − Q̄f 5lj41 − F

j
D4Q̄

f 55 when i = 0. Also,
from (16), when i 6= 0, Dj +ë j4i5

d
=Dj . These, together with

Equations (8) and (11), allow us to establish the following
result.

Proposition 5 (Long Disruptions: The Effect of De-
mand Distributions). Suppose disruptions are relatively
long in duration (i.e., let l → �), and a capacity of Q̄f is
assigned to back up supplier j . Then:

(i) The optimal base-stock level for product j is

yj4i5'



















4dj
− Q̄f 5lj41 − F

j
D4Q̄

f 55 ln
(

1 +
pj

hj

)

2 i = 01

F −1
Dj

(

p

p+h

)

2 i 6= 00

(ii) Under the optimal base-stock level of part (i),
Ɛë j 4056Gj4y

j405−ë j40557' hjy
j405. That is, the long-run

average inventory cost related to default periods is linear in
the base-stock level yj405 with a slope equal to hj .

(iii) Provided Î = 81129 and suppliers differ only in
their product demand distribution, then, assuming 4d2 − Q̄f 5
FD24Q̄f 5¶ 4d1 − Q̄f 5FD14Q̄f 5 without loss of generality, we
have Æ= 829�Æ= 819�Æ= 81129.

The above result provides an important insight about which
supplier to back up: when disruptions are relatively long if
they occur, backing up the suppliers with the highest value
of 4dj − Q̄f 5FDj 4Q̄f 5 provides the best backup flexibility
design. This strategy is equivalent to backing up the suppliers
with the lowest Ɛ64Q̄f −Dj5+7, suggesting that the goal
should be backing up the suppliers for which the expected
excess/wasted backup capacity will be minimum. Again,
we observe that even when all else is equal, the simplistic
belief that it is best to back up the supplier with the most
“popular” (i.e., highest average demand) product provides
only limited insight into a more complex reality.
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5. Backup Flexibility Design: The Role of
Other Factors

In the previous section, we gained insights into the role
of two important factors in designing backup flexibility:
disruption length and demand variability/distribution. In this
section, we generate insights into the role of other factors
such as inventory costs, purchasing costs, average demand
and supplier reliabilities, etc. To this end, we consider a
special case of our model in which disruptions are i.i.d.
Bernoulli, allowing us to factor out the effect of disruption
lengths. We start by considering the case where the demand
random variables are exponentially distributed, which enable
us to also neutralize the role of demand variability, and focus
on our goal of understanding the effect of other factors such
as inventory costs, purchasing costs, supplier reliabilities, etc.
We then expand our results to other demand distributions.

5.1. Exponential Demand Distribution

Consider an i.i.d. random supply capacity counterpart to
our model, and assume the supply capacity in each period
is (independent of anything else) a large number, M (i.e.,
the primary supplier is up) with probability 1 −�

j
0 , and is

Q̄f (i.e., the primary supplier is down) with probability �
j
0 .

Let Kj denote a random variable which gets value M with
probability 1 −�

j
0 and Q̄f otherwise. The Lindley dynamics

of shortfall, similar to (7), results in the steady-state equation:

ë j d
= max8ë j

−Kj
+Dj1091 (17)

which is that of waiting time in a GI/GI/1 queueing system.
In particular, if we assume demand is exponential, we obtain
the dynamics of waiting time in a GI/M/1 queueing system.
Suppose Ɛ6Dj7= dj , and let �j be such that the Laplace
transform of Kj evaluated at 4dj�j5−1 is 1 − 1/�j :

Ɛ6e−Kj/4dj�j 57=�
j
0e

−Q̄f /4dj�j 5
+ 41 −�

j
05e

−M/4dj�j 5

= 1 −
1
�j

0 (18)

From standard results for GI/M/1 queueing systems (see,
e.g., Kleinrock 1975), we note that there exists a unique
�j > 1 satisfying the above equation when Ɛ6Kj7 > dj .
Furthermore, from such results, we obtain that the shortfall
(representing the waiting time in queue) in steady-state has a
mixture distribution: it is zero with probability 1/�j and
is exponential with mean dj�j with probability 1 − 1/�j .
These allow us to characterize the optimal base-stock level
and cost.

Theorem 1 (GI/M/1). Suppose the demand related to sup-
plier j is exponential with mean Ɛ6Dj 7= dj , and a capacity
of Q̄f is assigned to back up supplier j . Then:

(i) FDj+ë j 4�5= 1 − e−�/4dj�j 5.
(ii) The optimal base-stock level for product j is yj =

dj�j ln41 +pj/hj5.

(iii) The long-run average inventory related cost of prod-
uct j is hjy

j = hjd
j�j ln41 +pj/hj5.

From the above result, we observe that the optimal base-
stock levels are linear in the average demand but logarithmic
in pj/hj . Furthermore, the long-run average inventory related
cost of each product is linear in its optimal base-stock
level with a slope equal to the per unit holding cost. Both
the optimal base-stock levels and inventory costs are also
linear in parameter �j (i.e., inversely proportional to the
steady-state probability of observing a zero shortfall), which
depends on various system parameters including the backup
capacity and the supplier’s reliability among others. Or, one
could note that they are also linear in dj�j , which is the
conditional mean shortfall given that a shortfall has occurred.
Below, we generate further insights by characterizing the
value of �j . To this end, we note that Theorem 1 presents
results for a general backup capacity Q̄f , but considering
some special cases can be fruitful.

In particular, it should be noted that if the average demand
can be fully satisfied via the backup supplier, then an
enormous investment in the backup supplier’s infrastructure
is required. Indeed, it might not be accurate to think of it as
a backup, but rather a dual supplier more on the level of
a primary supplier. In practice, however, backup capacity
is typically expensive, and therefore limited compared to
average demands. This makes the question of which supplier
to back up more challenging for managers, and is reflected
in our model via the up-front capacity investment/reservation
cost function. We are able to gain further relevant insights
and closed-form results by exploiting this observation and
considering the special case of Theorem 1 where Q̄f is small
relative to average demand dj .

Corollary 1 (Limited Backup Capacity). Suppose a
capacity of Q̄f is assigned to back up supplier j , the demand
related to supplier j is exponential with mean Ɛ6Dj 7= dj ,
and Q̄f is small relative to average demand dj . Then:

(i) �j ' 41 −�
j
04Q̄

f /dj55/41 −�
j
05.

(ii) The optimal base-stock level for product j is yj '

44dj −�
j
0Q̄

f 5/41 −�
j
055 ln41 +pj/hj5.

(iii) The long-run average inventory related cost of prod-
uct j is hjyj ' hj44d

j −�
j
0Q̄

f 5/41 −�
j
055 ln41 +pj/hj5.

Using Corollary 1, we can also characterize the optimal
level of backup capacity investment.

Proposition 6 (Backup Capacity Investment). Under
the conditions of Corollary 1 and with g4Q̄f 5 being a convex
function denoting the average per-period cost of investing in
Q̄f units as a backup, the optimal back up capacity level
Q̄f ∗ is

Q̄f ∗
'

[

g′−1

(

�
j
0

1 −�
j
0

hj ln
(

1 +
pj

hj

))]+

1 (19)

where g′−14 · 5 is the inverse function of the derivative of g4 · 5.
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Figure 3. (Color online) Sensitivity of the predictions made by the Backup Effect Index (BEI) to the value of Q̄f /dj .
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0 = 0001, c1 = c2 = 006, cf1 = 008, cf2 = 006, p1 = p2 = 1, d1 = d2 = 1, exponential
demand distributions, i.i.d. disruptions, h2 = 003 for part (a), and h1 = 003 for part (b)].

In Online Appendix C, we investigate the value of a
backup supplier as the amount of capacity reserved is varied.
We find that even a small backup capacity can greatly reduce
the costs.

In addition to characterizing the optimal backup investment
level, Corollary 1 enables us to achieve our ultimate goal of
developing a simple-to-use tool for supply chain designers
in deciding which unreliable suppliers to back up.

Theorem 2 (Backup Effect Index (BEI)). Let Î= 81129.
Define the Backup Effect Index (BEI)

Ij
=

�
j
0

1 −�
j
0

hjQ̄
f ln
(

1 +
pj

hj

)

−�
j
0d

j4c
f
j − cj51 (20)

and without loss of generality assume I2 ¶I1. Under the
conditions of Corollary 1, Æ= 829�̃Æ= 819�̃Æ= 81129,
where �̃ denotes preference with respect to the total long-run
average approximate cost.

Theorem 2 provides an important index for deciding what
supplier to back up first (in response to Question 1 we
raised earlier): it suggests to follow a largest BEI first policy,
where BEI is easily calculable and is given by (20). It also
clearly shows why backing up the supplier of the most
“popular” product or the supplier with lowest reliability is
too simplistic. For instance, even if the per unit purchasing
cost from the backup and from the primary supplier is equal
for all products, the manager still needs to consider supplier
reliabilities along with inventory holding and backlogging
costs. When suppliers are equal in terms of (a) their average
product demand, (b) reliabilities, and (c) inventory holding
and backlogging costs, what matters according to the BEI is
the per unit purchasing cost difference between the backup
and the unreliable supplier. Setting aside the logarithmic
effect of pj/hj , an appealing and interesting fact about BEI
is that it is linear in all the other system parameters.

When there are n unreliable suppliers and only k < n of
them can be backed up, Theorem 2 suggests a design method
in which one sorts the suppliers based on a decreasing
BEI order, and back up the first k ones. This is a powerful
result derived for cases in which (a) demand distributions
are close to exponential, and (b) the back up capacity is
small compared to average demands. We relax the first
assumption in the next section by extending our results
to cases with general demand distributions. To investigate
the dependency of our results to the second assumption,
we perform sensitivity analyses on the value of Q̄f /dj to
observe whether the predictions made by BEI remain useful
even when Q̄f /dj is not so small. To this end, in Figure 3,
we use the recommendations/predictions made by the BEI,
and compare it with the true results (using Theorem 1). As
can be seen in Figure 3, the BEI provides robustly correct
results even when Q̄f /dj is not so small; we find that the
recomendations/predictions made by BEI are not sensitive
and typically work well even when Q̄f /dj is as large as
0.35 (i.e., when 35% of the average demand can be supplied
from the secondary, backup capacity).

5.2. General Demand Distribution

Consider the Lindley equation (17), and let �j be the
solution to MDj−Kj 4�j5= 1, where MDj−Kj 4 · 5 is the moment
generating function of Dj −Kj . Observe that �j is such that
the Laplace Transform of the supply random variable Kj

evaluated at �j is equal to the 4MDj 4�j55−1 (assuming the
moment generating function of demand exists):

Ɛ6e−�jKj

7=�
j
0e

−�j Q̄f

+41−�
j
05e

−�jM
= 4MDj 4�j55−11 (21)

which is a generalization of (18). Since M is large, when
�jQ̄f is small (which is typically the case when Q̄f is
smaller than average demand), it can be seen using the
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Taylor expansion of e−�j Q̄f
that �j is approximately the

solution to

MDj 4�j5=
1

�
j
0

41 +�jQ̄f 50 (22)

Recalling that ë j in our model is equivalent to the steady-
state waiting time in a GI/GI/1 system, we can use the
approximation results for the waiting time distribution of a
GI/GI/1 system to characterize the optimal base-stock level
and inventory costs in our system. This will in turn enable
us to develop a generalized version of BEI, and provide a
comprehensive answer to Question 1.

Analyzing waiting times in a GI/GI/1, Kingman (1964 and
1970) showed that when �j is the solution to MDj−Kj 4�j5= 1:

ce−�j� ¶ Pr4ë j > �5¶ e−�j�1 (23)

for some constant c, Ross (1974) improved such bounds,
and Abate et al. (1995) argued that

Pr4ë j > �5' �je−�j�1 (24)

where

�j
' �j Ɛ6ë j 70 (25)

Using (24), we observe that:

Pr4ë j
+Dj > �5= ƐDj 6Pr4ë j

+Dj > � �Dj57

' ƐDj 6�je−�j 4�−Dj 57= �̃je−�j�1 (26)

where �̃j = �jMDj 4�j5. That is, the convolution of ë j and
Dj has an approximately exponentially decaying tail. This
fact allows us to approximate the optimal base-stock level
and inventory cost.

Theorem 3 (GI/GI/1). Suppose a capacity of Q̄f is
assigned to back up supplier j . Then:

(i) FDj+ë j 4�5' 1 − �̃je−�j� .
(ii) The optimal base-stock level for product j is yj '

41/�j56ln41 +pj/hj5+ ln �̃7.
(iii) The long-run average inventory related cost of prod-

uct j is approximately 4hj �̃
j/�j56ln41 +pj/hj5+ ln �̃j +

1/�̃j − 17.

When demand is exponentially distributed, �̃j = 1 and
�j = 4dj�j5−1. Hence, Theorem 1 is recovered from Theo-
rem 3, and the approximations are exact.

Theorem 3 allows us to develop a generalized version of
the Backup Effect Index (BEI) introduced in Theorem 2
for designing backup flexibility in supply chains. Since our
goal is to develop a simple-to-calculate index, we use the
inventory cost from part (iii) of Theorem 3, and further
approximate it by assuming that ln �̃j + 1/�̃j − 1 ' 0 (which
holds as an exact equality when demand is exponential, and

as a useful and accurate approximation for a variety of other
distributions). Doing so, we define the cost function

f j4Q̄f 5=
hj �̃

j

�j
ln
(

1 +
pj

hj

)

'
1

�
j
0

hj Ɛ6ë
j 741 +�jQ̄f 5 ln

(

1 +
pj

hj

)

(27)

'
1

�
j
0

hjd
j

(

�j

1 −�j

)(

c2
kj

+ c2
dj

2

)

·

(

1 +�jQ̄f

)

ln
(

1 +
pj

hj

)

1 (28)

where the first part of (27) follows from part (iii) of Theo-
rem 3, and the second part of it follows from (22) and (25).
Also, with �j = Ɛ6Kj 7/dj denoting the traffic intensity, and
c2
kj

and c2
dj denoting the squared coefficients of variation of

supply and demand, respectively, (28) follows from King-
man’s approximation for average waiting time in a GI/GI/1
system.

Next, we note that the inventory cost reduction for sup-
plier/product j because of assigning a small backup capacity
Q̄f is

f j405− f j4Q̄f 5' −Q̄f f j ′4051 (29)

where f j ′405 is the derivative of f j evaluated at zero. This
allows us to develop a simple index (for the general demand
distributions case) as follows.

Theorem 4 (Generalized Backup Effect Index (GBEI)).
Let Î= 81129, and define the Generalized Backup Effect
Index (GBEI)

GIj
= −Q̄f f j ′405−�

j
0d

j4c
f
j − cj50 (30)

Suppose a relatively small backup capacity is available,
and without loss of generality assume GI2 ¶GI1. Then,
Æ= 829�̃Æ= 819�̃Æ= 81129.

Theorem 2 provides an important but simple-to-compute
index for deciding what supplier to back up: it suggests to
follow a largest GBEI first policy, where GBEI is given
by (30). Similar to BEI established by Theorem 2, the
first and second terms in GBEI represent the effect of
choosing supplier j to back up on inventory and purchasing
costs, respectively. It is worth noting that, for BEI (which
was developed under an exponential demand assumption),
f j ′405 = −4�

j
0/41 −�

j
055hj ln41 + pj/hj5, but in general

f j ′405 should be obtained from (28).

6. Backup Capacity Pooling Advantage:
A Numerical Study

In this section, we shed further light on the capacity pooling
advantage in the backup system. We do so by numerically
comparing the supply chain under consideration under
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Figure 4. (Color online) An analysis of two backups vs. one flexible backup.
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Note. Left: Cost improvement (%) compared to a no backup case; Right: Optimal capacity investment level (with the sum of the dedicated backups depicted).

dedicated backups with that under a single, pooled (i.e.,
fully flexible) backup capacity. To this end, consider a
firm procuring two products from unreliable suppliers and
let uf = 10, cf1 = 003, cf2 =ãc2 (where ã scales the cost
of dedicated supplier 2), � = 0091 c1 = c2 = 21 r1 = r2 =

3051 p1 = p2 = 2051 h1 = 11 h2 = 102, and g4uf 1 Q̄f 5= uf Q̄f ,
where Q̄f is optimized for each scenario. Assume the demand
distributions are uniform in 61157, and the dynamics of
disruption risks for both unreliable suppliers are defined by
the t.p.m.

W1
= W2

=

















0010 0040 0020 0010 0010 0010
0010 0010 0040 0020 0010 0010
0015 0005 0010 0030 0020 0020
0020 0010 0010 0010 0030 0020
0025 0010 0010 0010 0020 0025
0030 0010 0010 0010 0020 0020

















0

Figure 4 (left) reveals the insight that the value of the
fully flexible backup supplier is more than the summation
of benefits that can be obtained separately for each of the
products through dedicated backups (assuming that the
dedicated backup suppliers are priced similar to the flexible
backup one). This is mainly due to the capacity pooling
advantage of the flexible backup supplier; when one of the
primary suppliers is in a high risk threat level and the other
is in a low threat level, the reserved pooled capacity can
be used as needed. However, using the difference between
the two curves depicted in Figure 4 (left), we can make the
following observation.

Observation 2. The pooling advantage is not monotone in
ã and has its maximum effect when ã is in a middle range.
However, as ã increases, the pooling advantage vanishes:
the backup flexible supplier can only be used for a single
product, performing as a dedicated backup supplier.

Figure 4 (right) depicts the corresponding optimal invest-
ment levels in the backup suppliers. From this figure we
observe the following.

Observation 3. The sum of optimal capacities required
for product 1 and 2 in the case of two dedicated backup
suppliers is never larger than the optimal capacity for the
flexible backup supplier.

The observation above highlights the justification for
higher levels of investments (or capacity reservation) fees
charged in practice by flexible suppliers.

7. Summary of Findings and Concluding
Remarks

We investigated the optimal design of flexibility in the
backup system as a potent supply risk mitigation mechanisms.
Analogous to some models for credit risk rating systems
(e.g., S&P), we modeled the dynamics of disruptions as
discrete time Markov chains, and considered a multiproduct,
multisupplier supply chain under dynamically evolving
disruption risks.

We analytically showed the important insight that in
mitigating dynamic disruptions a little backup flexibility can
go a long way. When suppliers are asymmetric and full
flexibility is not possible (or is too expensive) this raises a
fundamental question: which unreliable supplier(s) should
be backed up? We addressed this question and observed
that focusing merely on the first moment effects such as
average demand (product popularity) or suppliers’ reliability
(percentage uptime) is insufficient to decide which supplier to
back up. Rather, managers should also consider the effect of
disruption dynamics (e.g., duration in addition to frequency)
as well as demand uncertainty (e.g., variance in addition to
average). In particular, characterizing the dynamics of the
threat-dependent inventory shortfall process as a queueing
system, we analytically established an important managerial
insight: all else equal, it is better to back up the supplier with
(1) longer but less frequent disruptions (than the supplier
with shorter but more frequent disruptions), and (2) lower
demand variability (than the supplier with less predictable
demand).7

We then considered supply chains with long “time to
recovery” and generated further insights into the role of
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demand distributions. When disruptions are relatively long,
using the Renyi’s Theorem, we characterized both the optimal
base-stock levels and inventory costs. Consequently, we
found that a strategy in which unreliable suppliers are backed
up according to a minimum excess/wasted backup capacity
is optimal. Such a strategy requires evaluation of demand
distributions at the available back up capacity, and sheds
more light on the importance of considering the whole
demand distributions (and not just their first or second
moments).

We next focused on the goal of understanding the effect
of other factors such as inventory holding and shortage
costs as well as purchasing costs in effectively designing
flexibility in the backup system. We first considered scenarios
in which demand distributions are close to exponential.
We established a connection between waiting time in a
GI/M/1 queueing system and the inventory shortfall process
in our system, which enabled us to characterize both the
inventory base-stock levels and costs. In turn, this allowed
us to develop an easy-to-compute and yet effective index,
which we termed Backup Effect Index (BEI). We showed
that when demand distributions are close to exponential,
following a largest BEI policy is optimal in deciding which
unreliable suppliers to back up. We then extended this result
by relaxing the exponential demand assumptions. For general
demand distributions, we established and analyzed a GI/GI/1
queueing counterpart to the inventory shortfall process in
our system. This allowed us to provide a generalized BEI
(GBEI), and show that in general backing up suppliers based
on a largest GBEI first policy provides an effective backup
flexibility design. Our indices (BEI and GBEI) provide
supply chain designers with easy-to-compute tools to decide
which unreliable suppliers to backup, enabling them to
effectively compensate for dynamic disruption risks.

Finally, we explored the backup capacity pooling advan-
tage by comparing dedicated backups versus a pooled (i.e.,
fully flexible) backup capacity in a numerical study. We
found that the value of a flexible backup supplier is more
than the summation of benefits that can be obtained sepa-
rately for each of the products through dedicated backups.
Furthermore, a firm will reserve at least as much capacity
from a backup flexible supplier as the amount reserved in
total from dedicated backup ones. Indeed, the flexibility of a
supplier provides the firm with greater benefits, justifying
reserving more backup capacity because of the economic
advantage of shifting the orders whenever necessary (capacity
pooling). This observation also justifies flexible suppliers
charging higher fees for reserving their capacity compared
to inflexible suppliers.

The analyses, modeling framework, and insights presented
in this paper can guide new practices to effectively increase
the resilience of supply chains. Increasing the resilience of
supply chains can in turn enable firms to deliver products
with better availability and better prices to end customers,
yielding social benefits. Although this study focused on the
cost to a firm, a fruitful path for future research is to examine

the possibility of creating such broader social advantages.
Moreover, future research may expand this study to consider
issues such as risk aversion or potential correlations between
the dynamic disruption risks of different suppliers. Relaxing
the assumption of known demand distributions in the vein of
recent data-driven studies (see, e.g., Saghafian and Tomlin
2016 and the references therein) is also another fruitful
avenue for future research.
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Supplemental material to this paper is available at http://dx.doi
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Endnotes

1. Our Markov model is a step forward from the prevalent assump-
tion of i.i.d. Bernoulli disruptions in the literature which does not
model the effect of the length of a disruption.
2. We note that Figure 1 (which is our focus) may only depict
part of a supply chain: we only treat the n products that have
particularly unreliable suppliers and so the flexible backup need
only cover these n suppliers modeled. This model also treats the
extension to subsets of products forming a partition, each with
a fully flexible backup suppliers for one subset of products in
the partition. As we will see, our model also allows for partial
flexibility.
3. For analysis of regular inventory shortfall in traditional inventory
models with a single, fully reliable supplier (under limited capacity)
we refer to Tayur (1993) and Glasserman (1997).
4. We consider M to be a sufficiently large number throughout
this paper, but our results rigorously follow by taking the limit as
M goes to infinity.
5. See, e.g., Prabhu (1965) and Tayur (1993) for some results
on inventory models with single, fully reliable, but capacitated
suppliers.
6. Note that D1 ¶cx D

2 if, and only if, Ɛ6f 4D157¶ Ɛ6f 4D257 for
all convex functions f defined on the support of Dj (j ∈ 81129),
which results in Ɛ4D15= Ɛ4D25 but Var4D15¶ Var4D25; see, e.g.,
Stochastic Orders by Shaked and Shanthikumar (2007), Chapter 3.
7. In addition to the backup flexibility design, these observations
can be also used for supplier selection purposes.
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