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Abstract. Problem definition: Autonomous sensors connected through the internet of
things (IoT) are deployed by different firms in the same environment. The sensors measure
an important operating-condition state variable, but their measurements are noisy, so
estimates are imperfect. Sensors can improve their own estimates by soliciting estimates
from other sensors. The choice of which sensors to communicate with (target) is chal-
lenging because sensors (1) are constrained in the number of sensors they can target and
(2) only have partial knowledge of how other sensors operate—that is, they do not know
others’ underlying inference algorithms/models. We study the targeting problem, ex-
amine the evolution of interfirm sensor communication patterns, and explore what drives
the patterns.Academic/practical relevance:Many industries are increasingly using sensors
to drive improvements in key performance metrics (e.g., asset uptime) through better
information on operating conditions. Sensors will communicate among themselves to
improve estimation. This IoT vision will have a major impact on operations management
(OM), and OM scholars need to develop and examine models and frameworks to better
understand sensor interactions. Methodology: Analytic modeling combining decision-
making, estimation, optimization, and learning is used. Results: We show that when
selecting its target(s), each sensor needs to consider both the measurement quality of the
other sensors and its level of familiarity with their inference models. We establish that the
state of the environment plays a key role in mediating quality and familiarity. When sensor
qualities are public, we show that each sensor eventually settles on a constant target set, but
this long-run target set is sample-path dependent (i.e., dependent on past states) and varies
by sensor. The long-run network, however, can be fully defined at time zero as a random
directed graph, and hence, one can probabilistically predict it. This prediction can be made
perfect (i.e., the network can be identified in a deterministic way) after observing the state
values for a limited number of periods. When sensor qualities are private, our results reveal
that sensors may not settle on a constant target set but the subset among which it cycles can
still be stochastically predicted. Managerial implications: Our work allows managers to
predict (and influence) the set of other firms with which their sensors will form information
links. Analogous to a manufacturer mapping its supplier base to help manage supply
continuity, our work enables a firm to map its sensor-based-information suppliers to help
manage information continuity.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2020.0958.
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1. Introduction
The internet of things (IoT) and its sensor-based
monitoring offer firms across a wide range of in-
dustries (including energy, healthcare, manufactur-
ing, retail, and transportation) a vast opportunity to
improve their operations through better information.
Take the process industries, from upstream explo-
ration through downstream commodity production,
as an example. Asset uptime and worker safety are
crucial operational metrics: a single day lost to un-
planned downtime can cost a natural gas platform up

to $25 million (Winnig 2016), and “on a global scale,
unplanned shutdowns in the process industry cost
5 percent of total annual production—that’s as much
as $30 billion a year” (GEPower 2018, p. 2). Downtime
is often caused by abnormal operating conditions;
excessive vibration, for example, can be an important
source or a leading indicator of equipment failure
(FlukeCorp 2020), and an excessive ambient chemical
concentration can cause a fire/explosion or be det-
rimental to worker health. Thus, process industries
are increasingly turning to the IoT to improve asset
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uptime and promote worker safety by deploying
sensors on equipment and workers to monitor key
variables—for example, vibration and trace chemicals—
so as to help prevent equipment failure and other
unsafe conditions (BehrTech 2020).1

An oil refinery depends on the correct function-
ing of tens of thousands of machines (Evans and
Annunziata 2012), and “a typical oil drilling plat-
form today might use 30,000 sensors, watching over
the performance of dozens of systems” (McKinsey
2015, p. 9). This McKinsey (2015) report claims
that there is a vast untapped potential to use sen-
sor information to make better operations decisions
related to predictive maintenance and worker safety,
and the report states that “the real value of IoT ap-
plications [comes] from analyzing data frommultiple
sensors” (McKinsey 2015, p. 104). Critical operating-
condition variables such as vibration and trace chem-
ical levels are challenging to measure, and sensor
estimates are inherently noisy. An important motive
for sensor communication on an industrial worksite
is to improve estimation of the operational variables
of interest by sharing estimates across multiple sen-
sors; that is, sensor communication can improve
estimation. In turn, better estimation of key operating-
condition variables enables more informed decisions
and actions—for example, when to dispatch techni-
cians or remotely switch off/slow down certain ma-
chines if vibration levels are in awarning state orwhen
to evacuate workers from a certain area if dangerous
gases reach a certain level. These actions directly
contribute to asset uptime and worker safety.

To appreciate the challenges and opportunities pre-
sented by communication among vibration sensors
on different pieces of equipment or among chemical
sensors on equipment and workers, for example, one
must account for the scale and decentralized nature
of process-industry worksites. From a scale perspec-
tive, a large oil refinery complex can have more than a
thousand workers and, as noted earlier, many thou-
sands of critical equipment assets. Although it would
be theoretically desirable to have all vibration sensors
(or chemical sensors) in the same local environment
communicatingwith each other at each instant in time,
it is not practically possible. Bandwidth, channel ca-
pacity, and/or energy-consumption concerns place
important limits on communication in sensor net-
works such that a sensor can only communicate with a
subset of the other sensors in its environment at any
given moment (Shi and Zhang 2012, Han et al. 2017,
Wu et al. 2020). Therefore, a sensor cannot simulta-
neously solicit estimates from the tens, hundreds, or
maybe even thousands of other relevant sensors in its
environment: it must choose at eachmoment a relatively
small subset of the others sensors to target. This limi-
tationmight suggest that a sensor should target themost

precise (highest quality) sensors in its environment,
that is, those with the lowest measurement noise.
This intuition breaks down when one considers

that “the oil and gas industry’s business model and
workforce include many stakeholders and partners.
A single oil platform or refinery represents multiple
companies; oil company employees work next to
contractors, services organizations, and consultants.
A range of manufacturers provides heavy equip-
ment” (Winnig 2016, p. 16) that often “sits side by side
with competitors’ equipment” (Winnig 2016, p. 8).
Although estimation performancewould be highest if
firms shared all relevant information, sensor tech-
nology (e.g., inference model, measurement tech-
nique, and raw readings) is often proprietary and
closely guarded, so companies are reluctant to share
all sensor-related data. However, according to a GE
Oil & Gas executive discussing sensor communica-
tion in operations, firmswill engage in partial sharing
of sensor-generated information as “they realize they
can learn from each other” (Jernigan et al. 2016, p. 6).
For example, a vibration sensor from one company
might share its current estimate with a sensor from
another company but not share its actual reading or
its underlying inference algorithm. Therefore, when
choosing at each moment which other sensors to
target to improve its own estimate, a sensor must
account not just for the quality of other sensors (which
it may or may not know) but also for its limited under-
standing of how the other sensors form their estimates.
There are at least two important aspects to the

process-industry vision of using widely deployed sen-
sors to improve operational performance: (1) gener-
ating better operating-condition information through
sensor communication, and (2) enabling smarter de-
cisions and actions through this better information.
These two aspects are somewhat related but also
quite decoupled because better decisions and actions
are enabled by better estimation, irrespective of the
specific decision–action context. In this paper, we
focus on the first aspect—the sensor communication
aspect—and we seek to answer the following ques-
tion: in a dynamic environment populated by sensors
from different firms, each trying to maximize its own
estimation performance, which subset of other-firm
sensors should a sensor target at each point in time
(given a limit on the number targeted), and how does
that subset evolve over time (when one accounts for
the fact that receiving estimates from other sensors
can enable a sensor to learn something about the
inference models used by these sensors)? We discuss
the second aspect as a direction for future research in
the conclusion of this paper.
We have adopted the process industry as a moti-

vating context, but there are many other settings in
which noisy sensors from multiple firms operate in a
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common environment and therefore can benefit from
communication. Indeed, the concept of information
“fusion across sensors [that] nominally measure the
same property [to] reduce or eliminate noise and
errors” (Mitchell 2007, pp. 4–5) is envisioned as a
remedy for sensor quality concerns in a wide range of
IoT settings, including energy, environmental mon-
itoring, healthcare, infrastructure, and various other
industrial applications. Furthermore, systems of sensors
“will not necessarily be owned by one group [and]
more often than not, more than one organization
will operate in the same system” (International
Electrotechnical Commission (IEC) 2014, p. 33). In
healthcare, for example, many firms are developing
minimally invasive wearable biosensors to measure
blood glucose levels, and it is envisioned that a dia-
betic person might simultaneously wear multiple
sensors (Xiong et al. 2011). More broadly, the
emerging concept of Industry 4.0—the marriage of
the digital and physical worlds in manufacturing
and supply chain systems (Lennon Olsen and Tomlin
2020)—will depend on sensors that “connect and
communicate with one another, . . . and decentralized
decision making—the ability of cyber-physical systems
to make simple decisions on their own and become as
autonomous as possible” (Marr 2016).

With autonomous IoT sensors communicating across
companies, firmswill “become enmeshed in a network
of organizational relationships that require dedicated
resources and management attention” (Jernigan et al.
2016, p. 14). Therefore, analogous to the current in-
terest that consumer, media, and technology firms
have in understanding social network formation
(Momot et al. 2020), industrial firms will increasingly
seek to understand the formation and evolution of
autonomous interfirm IoT sensor communication pat-
terns as Industry 4.0 matures. The goal of this paper
is to take the first steps in developing such an un-
derstanding. If one considers humans to be fully ra-
tional (as sensors are), then our work can be applied
to a wisdom-of-the-crowd social network problem, in
which individuals forecasting a dynamically evolv-
ing variable (e.g., product demand) choose over time
which other individuals from whom to solicit fore-
casts when individuals do not know but can learn
about the forecast models used by other individuals.
Full rationality is arguably a strong assumption for
human forecasters (Tong and Feiler 2017). Therefore,
our paper applies more directly to information fusion in
decentralized—that is, multifirm—sensor networks.

In this paper, we consider a collection of autono-
mous sensors (i.e., no central governing entity) op-
erating in a common environment in which a state
variable (representing an operating condition such
as vibration) evolves according to an autoregressive
time-seriesmodel. Each sensor is unbiasedbut imperfect

and generates a private zero-mean noisy signal of the
state in each time period. After observing its own
private signal of the state in a period, each sensor
chooses a subset of other sensors to target (i.e., from
which sensors to solicit state estimates) so as to gen-
erate an improved estimate. Sensors do not know the
inference models used by other sensors for estimation
but can learn about them over time if they commu-
nicate. In our base model, we assume that sensors
know the qualities of all other sensors. We then relax
the known-quality assumption and adopt a robust
optimization approach in which the knowledge about
other sensor qualities is ambiguous. For expositional
clarity, we focus on the setting in which a sensor can
choose only one target during each period, but in the
Online Appendix A, we show how our results extend
naturally to the setting in which multiple simulta-
neous targets are allowed.
Among other results, we establish that the updat-

ing of the sensor’s state estimate depends on (1) the
qualities of both the targeted and targeting sensors,
and (2) the targeting sensor’s beliefs about the tar-
geted sensor’s inference model, which update over
time the more that sensor is targeted—that is, the
more “familiar” a sensor becomes with another sen-
sor’s inference model parameters. We show that the
state of the environment plays a key role in deter-
mining the weights placed on quality and familiarity
when selecting a target in any given period.We prove
that when qualities are known and asymmetric, each
sensor will eventually target a single sensor in all
future periods, but this long-run contact can vary by
sensor. State dependency means that these long-run
contacts are sample-path dependent, and hence, even
for each particular sensor, the long-run contact can
vary, depending on the realization of state over time.
Nevertheless, we demonstrate that the long-run com-
munication network that forms between sensors can
be fully defined at time zero as a random directed
graph, which means that one can probabilistically
predict the long-run communication patterns that will
emerge. Furthermore, this prediction can be made
perfect (i.e., deterministic as opposed to probabilistic)
after observing the state values for a limited number of
periods.When qualities are not common knowledge—
that is, sensors face ambiguity with respect to other
sensor qualities—randomizing across some subset
of sensors may be optimal in the long run, but we
provide an intuitive sufficient condition under which
a deterministic targeting policy is optimal.
These technical results have a number of important

managerial implications. In particular, we note that
sensor communication enables improved estimation,
but it creates a dependency on other firms’ sensors.
Consider a multifirm worksite in the process industry,
for example.Afirm’s asset uptimewill depend to some

335
Saghafian, Tomlin, and Biller: Internet of Things and Information Fusion
Manufacturing & Service Operations Management, 2022, vol. 24, no. 1, pp. 333–351, © 2021 INFORMS



degree on sensors from other firms if that firm’s
sensor targets those other sensors to improve its own
vibration estimate. Therefore, those other firms are
information suppliers to the firm. Ourwork helps a firm
identify which other firms have a high likelihood of
being its long-run information suppliers. Just as a
manufacturer maps its supply base and monitors
events (e.g., bankruptcies) that can impact supply
continuity, a firm canmap its important sensor-based
information suppliers and monitor for events that
might affect information continuity—for example, a
corporate ownership change of an important group of
targeted sensors that might negatively affect infor-
mation sharing. Our results also establish the key
levers that a firm can use to influence which other
firms will be its long-run contacts (information sup-
pliers). Knowing these levers, a firm can then exert
influence over the set of firms on which it depends.

The rest of this paper is organized as follows. The
most relevant literature is discussed in Section 2. The
base model is described in Section 3. Analysis and
results are presented in Sections 4 and 5. The exten-
sion to unknown sensor quality is developed and
analyzed in Section 6. A number of other extensions
are summarized in Section 7 and fully developed in
the online appendices. Conclusions are discussed in
Section 8. Appendices A–C are available in the online
appendix. Appendices D–I are available in an un-
abridged version (Saghafian et al. 2018) available on
the Social Science Research Network (SSRN).

2. Related Studies
Our research is related to a number of streams of
literature that examine information sharing for the
purpose of improved estimation or forecasting. The
idea of sharing information between sensors is not a
newone.Multisensor data fusion, defined byMitchell
(2007, p. 3) as “the theory, techniques and tools which
are used for combining sensor data . . . so that it is,
in some sense, better than would be possible if the
data sources were used individually” emerged as a
problem domain in the 1990s because of the U.S.
military’s desire to enable more complete or higher-
quality surveillance of geographic areas. It has since
grown to encompass diverse applications in artificial
intelligence, robotics, and environmental, equipment,
and health monitoring. Sensor fusion is typically
focused on developing efficient and effective data
architectures, processing techniques, and protocols
for aggregating information collected by a defined
network of sensors (Hall and Llinas 1997, Mitchell
2007, Khaleghi et al. 2013). Recognizing that band-
width, channel capacity, and/or energy-consumption
concerns place important limits on sensor communi-
cation, there is a stream of sensor fusion work related
to sensor scheduling in which a sensor can only

communicate with a limited number of other sensors
in a given period (Shi and Zhang 2012, Vitus et al.
2012, Yang et al. 2014, Han et al. 2017, Wu et al. 2020).
The sensor fusion and sensor scheduling litera-

tures presuppose a collection of sensors deployed by
a single governing entity such that all sensors are
willing to share all relevant information; the challenge
is to efficiently communicate and aggregate the in-
formation. Our work differs significantly in intent
from that literature and is distinguished by its focus
on settings in which autonomous sensors are deployed
by different firms without a central governing entity.
In such settings, sensors do not have full information
on the estimation approaches of other sensors but can
learn about them over time.
Forecasting is a central concern in operations man-

agement, and it has long been recognized that com-
bining demand estimates/information from multiple
individuals or firms can improve forecast accuracy
(e.g., Fisher and Raman 1996, Swaminathan and Tayur
2003, Gaur et al. 2007, Simchi-Levi 2010). More re-
cently, motivated by the emergence of external and
internal prediction markets, Bassamboo et al. (2018)
empirically explore the effect of group size on fore-
cast accuracy, finding that aggregation across larger
groups improves accuracy. The notion that aggre-
gation of a large number of estimates can improve
estimation—sometimes described as the wisdom of
crowds—has also received significant attention in
the decision analysis, economics, forecasting, social
network, and other literatures (e.g., Bates and Granger
1969; Ashton and Ashton 1985; Winkler and Clemen
2004; Wallis 2011; Acemoglu et al. 2014a b; Atanasov
et al. 2016; Tsoukalas and Falk 2020). Through that
lens, one can view our work as exploring a related but
different question: when each individual in a crowd
wants to improve his or her own estimate (but cannot
ask everyone in the crowd), then who in the crowd
should an individual target?
With this lens inmind, the papermost related to our

work appears to be that of Sethi and Yildiz (2016),
who examine communications between human ex-
perts that independently observe a static white noise
process. In each period, each expert estimates the
current state with some randomly drawn precision
(i.e., quality), whose realization is publicly observable
to all experts. These human experts may differ in their
private opinions on the mean level of the process.
Each expert can solicit an estimate from one other
expert in each period. The authors examine the types
of long-run communication networks that can emerge.
Although sharing certain features (e.g., target selec-
tion must trade off between quality and unknown
beliefs), our work differs significantly from that of
Sethi and Yildiz (2016) in some fundamental aspects
that are driven by our IoT sensor-motivating context.
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For example, we consider a dynamic (not static) en-
vironment because that is a typical feature of the
environments in which sensors are deployed. We
establish the importance of this distinction by proving
that—different from a static random environment—
the state and its dynamics are a crucial driver of target
selection. Furthermore, the human experts’ qualities
are randomly redrawn in every period in Sethi and
Yildiz (2016), with realizations being common knowl-
edge. This highlights two other critical differences in
ourwork driven by the IoT context: sensor qualities are
not typically random, and more important, sensor
qualities may not be known to other sensors. To ac-
commodate this unknown quality reality, we adopt
a robust optimization framework in which sensor
qualities are ambiguous, and target selection needs to
be robust to this ambiguity. Importantly, ambiguity
differs from risk, and we refer to Saghafian (2018) and
the references therein for related discussions.

Finally, our work is also related to the general
theory of robust optimization and estimation; rele-
vant papers from the operations literature include
Liyanage and Shanthikumar (2005), Perakis and Roels
(2008), Delage and Iancu (2015), Saghafian and Tomlin
(2016),Mišić and Perakis (2021), and references therein.
For some general theoretical results on the percentile
optimization approach that we use, we refer interested
readers toNemirovski and Shapiro (2006), Delage and
Mannor (2010), Bren and Saghafian (2019), and ref-
erences therein.

3. The Model
We first present a high-level description before for-
malizing the model. We consider a collection of sensors
deployed by different firms in a common environment.
Each sensor estimates (using its own measurement
and inference model) a state variable representing the
operating condition in the environment—for exam-
ple, the vibration level. The objective of each sensor is
to generate the most accurate state estimate it can.We
intentionally omit any resulting operational action
because there is a wide class of action problems for
which the goal of the sensor is to generate the best
state estimate it can. Our model is, in fact, indifferent
to the action problem as long as action decisions
benefit from higher-quality state information. This
means that the model we study is quite general.2

Sensors generate quick but noisy estimates in their
local processing units. In practice, these noisy esti-
mates are sometimes augmented by more accurate
but less frequent or slower estimates. For example,
maintenance technicians might periodically record
“vibration data with a handheld data collector” (IKM
2019, p. 6) that can then be fed back to the sensor.3

Alternatively, in addition to its own rapid local (edge)
computation, a sensor might also offload its data to a

remote computer or the cloud for more computationally
intensive andmore accurate estimation, but this comes
at the expense of a communications delay (Ran et al.
2017, Ballotta et al. 2019, Xu et al. 2020). In our base
model, we assume that each sensor has a slower-but-
more-accurate estimation approach in place (e.g.,
technician inspection or remote offloading) and, for
simplicity, also assume that it incurs a delay of one
period and is perfectly accurate. In Online Appendix C,
we analyze relaxations in which the slower-but-more-
accurate approach has a general delay and may or
may not provide perfect estimation, and we also con-
sider relaxations in which the slower-but-more-accurate
approach does not exist. We show that our key results
extend to these relaxations.
We consider a partial-information-sharing regime

in which the sensor-owning entities are willing to
share some, but not all, information. In particular,
each sensor is willing to share its current state esti-
mate and possibly its underlying sensor quality but
not its inferencemodel or rawmeasurement. A sensor
can solicit estimates from other sensors to improve its
own estimate, but it is limited in the number of other
sensors it can target because of the communication
constraints discussed earlier in this paper.We explore
the problem of determining for each sensor (in each
period) which other sensor(s) it should target so as to
most improve the accuracy of its own state estimate.
In what follows, we formally describe the envi-

ronment, individual sensor measurement and state
estimation, sensor collaboration, and, finally, target-
selection problem whereby each sensor chooses from
which other sensors to solicit state estimates.

3.1. Environment
A collection N ≜ {1, 2, · · · ,n} of autonomous sensors
exist in a common environment that is defined by an
operating condition variable S ∈ R (e.g., vibration)
whose discrete-time state evolution is governed by a
first-order autoregressive (AR(1)) process:

St � α + βSt−1 + ε̃t, (1)

for t � 1, 2, · · · ,∞, where ε̃t are independent and iden-
tically distributed (i.i.d.) normal white-noise random
variables with mean zero and variance normalized to one.
We note that autoregressive behavior is a common phe-
nomenon and that ARmodels are used to estimate a wide
range of dynamic properties, including two of our moti-
vating examples: equipmentvibration (Thanagasundram
and Schlindwein 2006, Ayaz 2014) and blood glucose
level (Sparacino et al. 2007, Leal et al. 2010). We adopt
an AR(1) model for reasons of parsimony and note
that such a model has been adopted in the sensor
network literature—for example, Vitus et al. (2012),
Shi and Zhang (2012), and Ballotta et al. (2019).4
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3.2. Individual Sensor Measurement and
State Estimation

At the beginning of each time period t, each sensor
i ∈ N privately generates a noisy signal (observation)
Γit of the state variable St. In many IoT settings—for
example, when the variable of interest is difficult or
time-consuming to measure—this signal is indirectly
generated by measuring some other related proper-
ties and mapping these measurements into the vari-
able of interest. Different sensor technologies may
rely on different indirect properties and hence dif-
ferent mappings. To avoid unnecessary notational
burden, we suppress the raw readings and related
mapping and instead focus on the final noisy signal of
the current state (St) privately derived by sensor i:

Γit � St + εit, (2)
where εit are i.i.d.5 normal white noises with mean
zero and variance 1/(qi)2, with qi representing the
quality of sensor i. That is, a higher-quality sensor
has a higher precision.

Each sensor i ∈ N knows that the environment
evolves according to an AR(1) process but does not
know the true parameters of the AR(1) process. Spe-
cifically, when using its signal to estimate the current
state of the environment, sensor i uses its own infer-
ence model—developed based on its firm’s training
algorithms and data sets prior to deployment—which
is given by

Sit � α̂i + β̂iSt−1 + ε̃t, (3)
where α̂i and β̂i are sensor i’s estimates of the process
parameters α and β. Immediately before period t
starts, the realized value of the preceding period state
st−1 is revealed to each sensor (because of our base-
model assumption that the slow-but-more-accurate
estimation approach of each sensor is perfect with
a one-period delay), and the system moves to the
next period.6

At the beginning of each period t, knowing the
realization of the preceding period state st−1 but prior
to receiving the noisy signal Γit, sensor i believes
(based on its inferencemodel (3)) that the current state
St follows a normal distribution with mean α̂i + β̂ist−1
and variance one. On realizing the current signal
Γit � γit, sensor i updates its prior belief about the
current state according to the Bayes’ rule. Because
both the signal received about the state and the prior
on state have a normal distribution (see (2) and (3)), it
follows from the Bayes’ rule that sensor i’s posterior
belief about the state is also normally distributed but
with a mean and variance given by

E Sit|Γit � γit
[ ] � α̂i + β̂ist−1

1 + q2i
+ q2i
1 + q2i

γit (4)

and

Var Sit|Γit � γit
[ ] � 1

1 + q2i
, (5)

respectively. The higher the quality of sensor i, the more
weight it places on its signal when updating its mean
belief, and the larger is the associated variance reduction.

3.3. Information Sharing and Sensor Collaboration
Each sensor i ∈ N is aware of all the other sensors in
the environment. All sensors in the collection N are
willing to collaborate in the following manner: in
each period t, after all sensors have formed updated
beliefs based on their private signals (according to (4)
and (5)), any sensor j ∈ N is willing to share its best
estimate of state (according to the expected value of
the squared error loss), which is its updated mean
prediction of state E[Sjt|Γjt � γjt]with any other sensor
i that requests it.7 Sensors are deployed by different
firms, and therefore, sensor i ∈ N \ {j}may not know
the inference model parameters α̂j and β̂j used by
sensor j because firms typically train their sensors
(predeployment) differently using different algorithms
and training data sets that are often privately owned.
We assume that at time t � 0, sensor i believes that
sensor j’s inference model parameters α̂j and β̂j come
from independent normal distributions N(α̂j, 1/v2ij0)
and N(β̂j, 1/w2

ij0), respectively.8 In this setting, pa-
rameters vij0 > 0andwij0 > 0 represent sensor i’s initial
familiarity with sensor j’s inference model. Higher
familiarity values indicate more precise beliefs. A
setting in which sensor i fully knows sensor j’s in-
ference model parameters can be obtained by setting
vij0 � wij0 � ∞. To gain insights, in our base model, we
assume that sensor qualities qi are common knowl-
edge to all i ∈ N , but this is relaxed in Section 6.

3.4. Target Selection
In each period t, after updating its state estimate
based on its private signal as in (4) and (5), each sensor
i chooses a set of sensors from which to request state
estimates—that is, their updated mean beliefs about
the state. We do not model the actions of devices
associatedwith sensors but implicitly assume that the
action payoff is increasing in the quality of the state
estimate. Thus, in choosing which sensors to target,
sensor i selects sensors that will most improve its
own estimate. By most improvement, we mean that
sensor i’s resulting updated state distribution gives
the lowest expected squared error of estimation.9 In
particular, sensor i’s decision in each period t is based
on the following optimization problem:

min
s̃it∈R,ait∈ 0,1{ }n−1

ESt∼Faitit
s̃it − St[ ]2

subject to (s.t.) 0 < c
∑

j∈N \ i{ } aijt ≤ b,
(6)
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where the vector ait ∈ {0, 1}n−1 is composed of ele-
ments aijt with aijt � 1 if i targets j at time t and aijt � 0
otherwise, Faitit is the posterior distribution of sensor i’s
belief about the state after communicating with the
selected targets at time t, c is the cost of communi-
cation per target in each period, and b is a commu-
nication budget in each period. Thus, in (6), sensor i
decides on the vector ait ∈ {0, 1}n−1 (to whom to com-
municate to) subject to its communication budget.
This decision impacts the sensor’s posterior belief
about the state (once the communication is made),
and hence, the sensor is trying to communicate with
sensors that will allow for the most desired posterior
belief about the state, wheremost desired ismeasured
in terms of �2-norm loss in estimation.

We define k � b/c and refer to it as the targeting
channel capacity because �k� represents the maximum
number of targets from which a sensor can solicit
estimates in a period. For expositional ease, we focus
on the case where a sensor can choose only one tar-
get in each period—that is, �k� � 1—because this is
where choosing the right target is most important.
Our results readily extend to the case of �k� > 1, as
we mention at times in this paper and fully show in
Online Appendix A.

3.5. Other Extensions
In addition to the relaxations mentioned during the
model description (i.e., delayed and imperfect state
realizations, correlation in sensors’ errors, and in-
correct beliefs about the means of other sensors’ in-
ference parameters), we extend our base model to
consider nonmyopic sensors that care about estima-
tion in future periods and also extend it to consider
a setting in which sensors update their own infer-
ence models over time in a Bayesian fashion. All
these extensions and their results are summarized in
Section 7, but we relegate their detailed analysis and
discussion to the online appendices for brevity.

4. Preliminaries: Targeting Equivalence
and Familiarity Dynamics

As a preliminary to our exploration of how sensor
communications evolve over time, we first develop
an equivalent target-selection problem and analyze
how any given sensor’s beliefs about other sensors’
parameters update from one period to the next.

4.1. Targeting Equivalence
We begin by establishing that the target-selection
problem in (6) is equivalent to one in which sensor i
selects as its target the sensor that provides i with
the most informative signal about the current state,
where a less noisy signal (i.e., one with a lower var-
iance) is more informative.10 Importantly, we will
show that the informativeness of a signal depends not

only on the quality of the potential target sensor j but
also on the receiving sensor i’s familiarity with sensor
j’s inference model. In particular, given its privately
generated signal Γjt in period t, sensor j provides
sensor iwith its best current estimate of state, which is
E[Sjt|Γjt]—that is, its updated/latest expected belief
about the current state St. Now, from sensor i’s per-
spective, E[Sjt|Γjt] is formed according to

E Sijt|Γjt[ ] � α̂ijt + β̂ijtst−1
1 + q2j

+ q2j
1 + q2j

Γjt, (7)

which is similar to (4) but where α̂ijt and β̂ijt reflect
sensor i’s beliefs at time t about sensor j’s inference
parameters α̂j and β̂j. (The relevant dynamic updating
mechanism is developed later.) Because Γjt � St + εjt
from (2), this valueE[Sijt|Γjt]provides sensor iwith the
following noisy signal regarding the state St:

1 + q2j
q2j

E Sijt|Γjt[ ] � St + εjt + α̂ijt + β̂ijtst−1
q2j

. (8)

We denote the variance in this signal’s noise as

σ2t i, j, st−1
( ) � Var εjt + α̂ijt + β̂ijtst−1

q2j

[ ]
. (9)

There are two independent sources of noise in this
signal: (1) the inherent white noise εjt in sensor j’s
measurement Γjt (which has a variance of 1/q2j ), and
(2) the noise caused by sensor i’s lack of familiarity
with sensor j’s inference model. For notational con-
venience, we define the random variable Ξijt(st−1) �
α̂ijt + β̂ijtst−1, where its dependence on the prior state
value st−1 is explicitly noted. Defining the precision
ψijt(st−1)≜ 1/Var[Ξijt(st−1)], it follows from (9) that

σ2t i, j, st−1
( ) � q2j + 1/ψijt st−1( )

q4j
. (10)

Under a variance-reduction objective, sensor i’s target
in period t is

j ∗it ≜ arg min
j∈N \ i{ }

σ2t i, j, st−1
( )

� arg min
j∈N \ i{ }

q2j + 1/ψijt st−1( )
q4j

{ }
. (11)

The following result establishes that the original
target-selection problem in (6) is equivalent to the
variance-reduction target selection (11); that is, both
objectives result in the same target.11

Proposition 1 (Target Selection and Variance Reduction).
If channel capacity �k� � 1, then under (6), a∗ijt � 1{j�j∗it },
where j∗it is given by (11), and 1{·} is the indicator function.
This result readily extends to a general channel

capacity k ≥ 2: each sensor i will select the �k� other
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sensors that provide the lowest variance of signal.
That is, it chooses the �k� most informative sensors
(from its perspective) and solicits their state esti-
mates; see Online Appendix A for more details and
an extension of our results with k ≥ 2. This rank-
ordering structure also illuminates the importance
of studying the case where each sensor can only tar-
get one sensor (�k� � 1) during each period (while
targetsmay vary across periods). As noted earlier, this
is because �k� � 1 represents the scenario in which
choosing the right target is most critical.

Recall that, by definition, the variance of the random
variable Ξijt(st−1) � α̂ijt + β̂ijtst−1 is given by 1/ψijt(st−1).
In what follows, we therefore refer to ψijt(s) as the
familiarity function that sensor i has for sensor j at time
t, and we refer to ψijt(st−1) as the familiarity value—that
is, the familiarity function evaluated at the latest re-
alized state s � st−1. We use the term familiarity to
convey the notion that higher values imply less noise
in sensor i’s beliefs about sensor j’s underlying in-
ference model. Importantly, as we establish later,
sensor i does not need to separately update its beliefs
over time about parameters α̂ijt and β̂ijt of sensor j’s
inference model; it suffices to update the familiarity
function ψijt(s).

4.2. Familiarity Dynamics
To operationalize the target-selection problem (11),
we now examine how any given sensor’s familiarity
function with respect to some other sensor evolves
over time. In particular, we develop the mecha-
nism through which the time-t familiarity function
is updated to that at time t + 1—that is, how ψijt(s)
updates to ψij,t+1(s). To that end, we first note that it
follows from the definition ψijt(st−1)≜ 1/Var[Ξijt(st−1)]
that the initial familiarity function is given by

ψij1 s( ) � v2ij0w
2
ij0

w2
ij0 + v2ij0s2

. (12)

We also note that if sensor i communicates with
sensor j at time t, then it follows from (7) that i receives
the following signal about the random variable
Ξijt(st−1) � α̂ijt + β̂ijtst−1:

1 + q2j
( )

E Sijt|Γjt[ ] � Ξijt st−1( ) + q2j St + εjt
( )

. (13)

There are two independent sources of noise in this
signal: (1) the noise in sensor i’s own estimate of
the current state St, which has variance of 1/(1 + q2i )
(see (5)), and (2) the inherent white noise εjt in sen-
sor j’s measurement, which has a variance of 1/q2j .
Thus, based on (13), the variance in the signal’s noise
is given by Var[q2j (St + εjt)] � q4j /(1 + q2i ) + q2j . Using
Bayesian updating of the aggregated univariate ran-
dom variable Ξijt(st−1) after observing this signal,

which eliminates the need to explicitly update and carry
over the joint distribution of α̂ijt and β̂ijt (hence, their co-
variance matrix), we can show the following result.12

Proposition 2 (Familiarity Dynamics). For any s ∈ R:
a. The familiarity function satisfiesψij,t+1(s) �ψijt(s) +

δ(qi,qj,aijt), where δ(qi, qj, aijt)≜ f (qi, qj)aijt and

f qi, qj
( )

≜
1 + q2i
( )

q2j 1 + q2i + q2j
( ) . (14)

b. For all t � 1, 2, 3, · · ·, we have

ψij,t+1 s( ) � v2ij0w
2
ij0

w2
ij0 + v2ij0s2

+ f qi, qj
( )∑t

l�1
aijl. (15)

Intuitively, sensor i’s familiarity function for sensor j
changes from time t to time t + 1 if and only if i targets j
at time t—that is, aijt � 1. Moreover, if i targets j, then
the gain in i’s familiarity with j does not depend on
the state: the gain is given by f (qi, qj), whichwe refer to
as the stickiness factor. It is noteworthy, however, that
the gain depends on both the sender’s (j’s) and the
receiver’s (i’s) qualities. More important, it follows
from (15) that to calculate the current familiarity
function that sensor i has for sensor j, we only need to
know the number of times that i selected j as its target;
we do not need to know in which periods those se-
lections occurred. This is primarily due to the fact that
when i communicates with j in any given period, the
gain in i’s familiarity with j depends only on i’s ability
to interpret the signal from j about the state. This
ability to interpret depends only on the time-invariant
qualities of the receiver qi and the sender qj and does
not depend on the state, which is time varying.

5. Communication Networks:
Who Targets Whom?

With the equivalent target-selection problem and
familiarity dynamics developed,we now characterize
how target selection evolves over time. In choosing a
target in period t, any given sensor i needs to consider
both the quality of each other sensor j and its own
current familiarity valueψijt(st−1) for each sensor j (see
the targeting criterion (11)). That is, besides quality,
the attractiveness of j as a potential target for i de-
pends on the familiarity valueψijt(st−1). The familiarity
value, in turn, depends explicitly on the previous state
st−1 but also implicitly on all prior states through their
influence on prior targeting of sensor j by sensor i.
Thus, target selection in each period depends on the
history of state realizations up to that period.13

5.1. Initial Target Selection
It is informative to first consider target selection at
time t � 1 because this initial selection highlights a
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key ongoing tradeoff between sensor qualities and
state value. Consider any given sensor i, and assume
(without loss of generality) that it can select its target
from two sensors: a high-quality sensor (labeled h)
and a lower-quality sensor (labeled l). When should
sensor i target sensor h? When should it target sensor l?
How does this choice depend on the initial state s0?

To answer these questions, let r≜ ql/qh denote the
quality ratio of sensors l and h. By definition, 0 < r ≤ 1.
Using (11) and (12), it follows that sensor i strictly
prefers targeting the lower-quality sensor (l) if and
only if

r qh
( )2 + 1

vil0

( )2 + s0
wil0

( )2
r qh
( )4 <

q2h + 1
vih0

( )2 + s0
wih0

( )2
q4h

, (16)

where 1/v2ij0 and 1/w2
ij0 are sensor i’s initial belief

variances about sensor j ∈ {h, l} parameters α̂j and β̂j,
respectively. From (16), it can be seen that i strictly
prefers to target l if and only if

c0 + c1s20 > 0, (17)
where

c0 � r qh
( )2 r2 − 1

( ) + r2

vih0

( )2
− 1

vil0

( )2
, (18)

and

c1 � r2

wih0

( )2
− 1

wil0

( )2
. (19)

We note that c0 reflects a tension between the dif-
ference in sensor qualities and the differences in i’s
initial familiarity with the inference model parame-
ters α̂h and α̂l. Similarly, c1 reflects a tension between
the difference in sensor qualities and the differences
in i’s initial familiarity with the inference model pa-
rameters β̂h and β̂l. As (17) shows, state influences
initial target selection, and this is through the c1 term.
The following result presents the conditions under
which sensor i strictly prefers to target the lower-
quality sensor. Thus, it also sheds light on conditions
under which sensor i prefers to sacrifice quality for
familiarity. By an appropriate swapping of labels l
and h, it can also be used to highlight conditions under
which sensor i strictly prefers to target the higher-
quality sensor.

Proposition 3 (Initial Selection). A sensor i strictly prefers
to target a lower-quality sensor (l) than a higher-quality
one (h) at t � 1 if and only if one of the following condi-
tions holds:

a. c0 ≤ 0, c1 > 0, and |s0| > ̅̅̅̅̅̅̅̅̅−c0/c1√
,

b. c0 > 0 and c1 < 0, and |s0| ≤ ̅̅̅̅̅̅̅̅̅−c0/c1√
, or

c. c0 > 0 and c1 ≥ 0.

This proposition highlights the interconnected roles
that (1) sensor qualities, (2) familiarities, and (3) state
play in target selection. Intuitively, if sensor i has more
familiarity with the high-quality sensor’s inference
model parameters (i.e., vih0 ≥ vil0 and wih0 ≥ wil0), then
the high-quality sensor is the inherently more at-
tractive target regardless of state. This is reflected in
Proposition 3 by the fact that c0 < 0 and c1 < 0 in this
case, and therefore, sensor h is preferred. By contrast,
if sensor i has more familiarity with at least one of the
low-quality sensor’s inference parameters, then the
high-quality sensor might not be the preferred target
because its estimate may prove to be more noisy from
i’s perspective (than the low-quality sensor). This
tradeoff between quality and familiarity depends on
the state (parts (a) and (b) of Proposition 3) unless the
familiarity advantage of the lower-quality sensor
compared with the higher-quality one is so large that
it makes the lower-quality sensor the preferred target
regardless of the state (part (3) of Proposition 3).
As the quality ratio r increases from zero to one

(all else held constant), there are at most three dis-
tinct regions of target selection that identify the role
of state, as illustrated in Figure 1.14 When the qual-
ity ratio r is low—that is, sensor h is of much higher
quality than l—then h dominates l—that is, h is tar-
geted in all states. This h-dominating region always
exists, but it does not cover the entire range 0 < r ≤ 1
unless vih0 ≥ vil0 and wih0 ≥ wil0—that is, when the
high-quality sensor is more familiar for both parame-
ters. In contrast, when the quality ratio is high—that is,
sensor qualities are relatively similar—then l domi-
nates h, meaning that l is targeted in all states. This
l-dominating region exists if and only if vih0 < vil0 and
wih0 < wil0—that is, when the low-quality sensor is the
more familiar for both parameters. Importantly, there
is an intermediate range of the quality ratio r (that
extends to r � 1 if the familiarity ranking differs
across v and w) in which state matters and the in-
difference curve |s0| � ̅̅̅̅̅̅̅̅̅−c0/c1√

completely character-
izes target selection. Figure 1 illustrates an instance
with parameters forwhich Proposition 3(a) applies. In
this case, a high absolute value of state induces sensor
i to emphasize familiarity over quality such that it
targets sensor l. In contrast, when the absolute value
of state is low, quality matters more than familiarity,
and i targets h. The reverse holds if case (b) applies.
When this intermediate region exits, then case (a)—that
is, high state favors high familiarity sensor—applies
over this entire intermediate region if r >

̅̅̅̅̅̅̅̅̅̅̅̅
wih0/wil0

√
,

but case (b)—that is, high state favors high-quality
sensor—applies over this entire intermediate region
otherwise. Put together, these results show that state
can play an instrumental role in mediating quality
and familiarity, even when target section is static
(i.e., does not evolve over time). In the next section,
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we turn our attention to exploring how target selec-
tion evolves over time.

5.2. Target Evolution and Long-Run
Target Selection

Analogous to initial selection, when choosing its
target in period t, any given sensor i needs to consider
the quality of each sensor j ∈ N \ {i} as well as its
current familiarity value ψijt(st−1) for sensor j. What
differs from the initial selection is that the familiarity
function ψijt(s) may have evolved because of past
targeting of j by i. As shown in Proposition 2, this
familiarity function still depends on the initial belief
variances 1/vij0 and 1/wij0, but now it also depends
on (1) i’s communication history with j as reflected
by the number of times i targeted j in the past, and
(2) the stickiness factor f (qi, qj). In particular, ψijt(st−1)
strictly increases in the number of times i has already
targeted j, so the attractiveness of j as a future target

for i increases every time i targets j. This is because the
signal received from j becomes more informative for i
as its familiarity with j builds.
The stickiness factor f (qi, qj) determines the gain in

familiarity that results each time i targets j. It is strictly
increasing in qi and strictly decreasing in qj (see (14)).
To understand these directional effects, first consider
qj—that is, the quality of the targeted sensor. For the
extreme case in which qj � ∞, sensor j’s state value
(what it sends to sensor i) will be independent of its
inferencemodel parameters (see (4) and replace iwith j),
so there is no information to be gained by i about j’s
model parameters. More generally, the higher the
quality of sensor j, the less weight it places on its
inference model in forming its state expectation, so
there is less for i to learn about j’smodel parameters as
qj increases. Therefore, i’s gain in familiarity decreases
in qj. Next, consider qi, the quality of the targeting
sensor. As qi increases, the targeting sensor’s own

Figure 1. (Color online) Initial Selection Between a Higher-Quality Sensor (h) and a Lower-Quality Sensor (l)

Note. The darker (lighter) area represents the region in which l (h) is the preferred sensor (Proposition 3(a) applies in the intermediate region
between the dashed lines).
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state estimate becomes more precise. This, in turn,
enables sensor i to better interpret and parse out
the inference model information contained in what
it receives from sensor j. To summarize, all else
equal, (1) higher-quality sensors can build familiarity
with other sensors more rapidly than can lower-
quality sensors, and (2) lower-quality sensors result
in larger familiarity gains if targeted.

To analyze how target selection evolves over time,
it is helpful to introduce the following definition
and result.

Definition 1 (Dominance). For two sensorsm, n ∈ N \ {i},
we say thatm dominates n at time t from the perspective
of sensor i (denoted by m �it n) if Pr(σ2t (i,m,St−1) ≤
σ2t (i,n,St−1)|Ht) � 1, where Ht is the history of com-
munications up to time t (H1 � ∅).

In other words, m �it n if sensor i almost surely
prefers to target sensor m instead of n at time t
given the history of all past communications. Using
Definition 1, we can establish the following preser-
vation result.

Lemma 1 (Dominance Preservation). If m �it n, then
m �it′ n, for all t′ > t.

This result establishes that dominance is preserved
(i.e., persists) over time. Therefore, if some sensor n
becomes dominated by some other sensor m from
the perspective of i at some time t, then sensor n will
never be targeted by i in the future. This allows sensor i
to reduce its set of potential targets over time. This
result enables us to analyze the long-run communi-
cation network.

In what follows, we first consider two special cases
and then explore the general case.

Special Case 1 (Common Initial Familiarities that Vary by
Sensor). Consider the case in which any given sensor i
has a common initial familiarity with all other sensors
j ∈ N \ {i}—that is, vij0 � vi0 andwij0 � wi0, for all j. This
common initial familiarity can vary by sensor i. Let h(i)
denote the highest-quality sensor j ∈ N \ {i} from i’s
perspective. It follows from Proposition 3 that h(i)
dominates all other sensors (from the perspective of i)
at time 1. Because dominance is preserved (Lemma 1),
the communication network at any time (including
the long run) is the same across all sample paths:
regardless of state realizations, each sensor i always
targets the highest-quality sensor available h(i). Put
differently, the highest-quality sensor targets the
second-highest-quality sensor, and all other sensors
target the highest-quality sensor.

Special Case 2 (Equal Qualities with Initially More Familiar
Sensors). Consider the case in which (a) the sensors are
all of the same quality, and (b) for any given sensor i,
there exists some other sensor ĵ(i) such that viĵ0 ≥ vij0

andwiĵ0 ≥ wij0, for all j ∈ N \ {i}. In other words, sensor
i has higher initial familiarities with both of ĵ(i)’s in-
ference model parameters than of any other sensor’s
parameters. It follows from part (c) of Proposition 3
that ĵ(i) dominates all other sensors (from the per-
spective of i) at time 1. Because dominance is preserved
(Lemma 1), the communication network at any time
(including the long run) is the same across all sample
paths: regardless of state realizations, each sensor i
always targets its initially most-familiar sensor ĵ(i).
In general, however, sensors may differ in their qual-
ities, and any given sensor may have heterogeneous
familiarities with other sensors. In such a setting, an
initially dominant target (for any given sensor) may not
exist. Therefore, we next develop results to help ana-
lyze this general case. To this end, letS∞ ≜ {s0, s1, s2, · · ·}
denote a long-run sample path—the realization of
states over an infinite horizon. Similarly, we denote by
St ≜ {s0, s1, s2, · · · , st} a finite sample path up to time t.
We also let S′t∞ denote a sample path that is equiva-
lent to S∞ up to time t but one that may deviate from
S∞ afterward: S′t∞ ≜St ∪ {s′t+1, s′t+2, · · ·}. To examine the
long-run networks that may arise, we first introduce
the following definition.

Definition2 (Long-RunContacts). Given a sample pathS∞,
the set of long-run contacts of sensor i is

T i S∞( )
≜ j ∈ N \ i{ } : lim

t→∞ψijt st−1( ) � ∞|s0, s1, s2, · · · ∈ S∞
{ }

.

(20)

Remark 1 (Infinitely Often Communication). It immedi-
ately follows from (15) that along any sample path S∞,
sensor i targets sensor j infinitely often if and only
if j ∈ T i(S∞).
If two (or more) sensors have the same quality,

then, depending on the initial familiarity of some
sensor iwith these equal-quality sensors, there might
exist some sample paths along which the long-run set
of contacts of sensor i includes more than one sensor,
and sensor i keeps alternating between the sensors
in its long-run set of contacts such that it targets each
of them infinitely often along the sample path. This
alternating behavior is caused by the value of state in
each period, which, as noted earlier, plays a central
role in target selection.
However, when qualities differ across sensors, we

establish in what follows that for any given sensor i
and along any fixed sample path S∞, (1) T i(S∞) is a
singleton—that is, |T i(S∞)| � 1—and (2) the unique
long-run contact in T i(S∞) can be identified in the
almost sure sense in finite time—that is, T i(S∞) �
T i(S′t∗∞ ) a.s. for some t∗ < ∞. These two results, in turn,
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will allow us to establish the following: at time zero, one
can fully define the long-run communication network
as a random directed graph—that is, a directed graph
with given probabilities assigned to each link ij that
indicate the probability that j will be the long-run
target for i. Furthermore, there exists a finite time after
which the graph can be defined as a deterministic
directed graph—that is, with all probabilities being
zero or one—that fully specifies the long-run target
for each sensor.

To establish these results, we start by presenting the
following lemma.

Lemma2. For any ε> 0, there exists a fixed threshold ψ̄ε ∈ R

such that if ψijt(st−1) > ψ̄ε and
qj
qj′

> 1 + ε, then j∗it �� j′.
This lemma states that a sensor j′ will not be tar-

geted by a sensor i if (1) there is another sensor j of a
higher quality than j′, and (2) sensor i’s familiarity
with j reaches a fixed threshold. The importance of
this result lies in the fact that the threshold is a fixed
number, and hence, is independent of sensor i’s fa-
miliarity with sensor j′. Thus, Lemma 2 holds re-
gardless of how familiar i is with j′ at time t: if i’s
familiarity with j passes the fixed threshold, then j′
will not be targeted by i. This, in turn, allows us to
show that when sensor qualities are asymmetric
(defined later), the set of long-run contacts of each
sensor i along any sample path S∞ only includes
one sensor.

Definition 3 (Asymmetric Qualities). Sensor qualities are
said to be asymmetric if and only if qj �� qj′ , for all j, j′ ∈ N
with j �� j′.

Proposition 4 (Unique Long-Run Contact). If sensor qual-
ities are asymmetric, then given any sample path S∞,
|T i(S∞)| � 1, for all i ∈ N .

It is noteworthy that although the long-run set of
contacts of each sensor i has a unique member (when
sensor qualities are asymmetric), this unique member
is (1) sample-path dependent, and (2) is not necessarily
the highest-quality sensor in N \ {i}. As Proposition 3
showed, at t � 1, any given sensor i might target a
sensor of lower quality than some other potential
target. Because of the stickiness factor introduced in
Proposition 2, this may create amomentum for sensor
i to target the same sensor in future periods as well.
This may result in a lower-quality sensor dominating
the higher-quality sensor from the perspective of
sensor i at some period t. Because dominance persists
(see Lemma 1), the higher-quality sensor may not be
the long-run contact of sensor i.

Using the preceding result, we next show that
when the sensor qualities are asymmetric, the long-
run set of contacts of each sensor can be determined in
finite time. That is, transient analysis is sufficient for

characterizing the communication network that will
be formed in the long run. This is because the role of
state in target selection eventually vanishes—that is,
the effect of past targeting outweighs the role of state.

Proposition 5 (Transient Analysis). If sensor qualities are
asymmetric, then along any sample path S∞, there exists a
finite period t∗ such that for all i ∈ N ,

T i S∞( ) � T i S
∗t∗
∞

( )
almost surely.

This results allow us to characterize the long-run
network of communications.15 First, at time zero,
this network can be viewed as a random directed graph

G(N ,E,P), where N (i.e., the set of sensors) is the set
of vertices, E≜ {(i, j) : i, j ∈ N } is the set of directed
links, and P is a set of probability distributions that
assign to link (i, j) probability pij defined as

pij ≜
∑

∀S∞: j∈T i S∞( )
Pr S∞( ). (21)

Second, as the following result shows, the network
can be defined as a deterministic directed graph after
some finite time.

Proposition 6 (Deterministic Random Directed Graph). If
sensor qualities are asymmetric, then there exists a finite
time t∗ such that given the sample path up to t∗ (i.e., St∗ ),
the long-run communication network can be defined as

G(N ,E,P) introduced earlier with the additional property
that pij ∈ {0, 1}, for all i, j ∈ N .

In Online Appendix A, we show that all the pre-
ceding results extend readily to a setting in which a
sensor can simultaneously target �k� > 1 other sen-
sors. The long-run contact set of each sensor will,
however, contain min{�k�, |N | − 1} sensors, assuming
that sensor qualities are asymmetric.

5.3. Managerial Implications
As discussed in the Introduction, firms in the process
industries are increasingly using sensors to improve
asset uptime and worker safety through better real-
time knowledge of important operating condition
variables such as vibration (whose effective estima-
tion is key to condition-based maintenance). Sensor
communication enables improved estimation, but it
creates a dependency on other firms’ sensors. That is,
firm A’s asset uptime depends to some degree on
sensors from other firms if firm A’s sensor targets
these other sensors to improve its vibration estimate.
These other firms are information suppliers to firm A.
The results developed earlier allow a firm to predict
which other firms will have a high likelihood of
being its long-run information suppliers, both for
(1) an individual asset on a particular worksite, and
(2) in aggregate across its fleet of assets over all
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worksites by examining the targeting frequency across
its portfolio of sensors. Analogous to a manufacturer
mapping its supplier base and monitoring corporate
events (e.g., takeovers, divestments, bankruptcies, etc.)
that might affect supply continuity, our results enable
a firm to map its important sensor-based-information
suppliers so that they can be monitored for events that
might affect information continuity—for example, a
change in ownership of an important group of tar-
geted sensors that might impact information sharing.

In addition to predicting and mapping its infor-
mation suppliers, a firm might want to influence
which suppliers are likely to be chosen (targeted) by
its suppliers. For example, for reasons of corporate
relationships or geopolitical considerations, a firm
might be more comfortable being dependent on some
firms rather than others. From our results, the long-
run probability pij, defined in (21), increases in vij0 and
wij0; that is, all else equal, sensor j is more likely to the
long-run contact of sensor i as i’s initial familiarity
(belief precision) in j increases. Therefore (labeling
firms in the same manner as their sensors), if firm i
would prefer to be dependent on firm j over firm k,
then firm i should invest upfront effort building fa-
miliarity with firm j’s sensor, either strategically
through corporate relationships or more tactically
through personnel on a specific worksite. All else
equal, firms that are more willing to promote initial
familiarities with each other’s sensors are more likely
to end up as each other’s targets, so firms in existing
alliances may find that those relationships persist.
Initial familiarities may also be enhanced through past
exposure to firms in different environments (worksites).
If firm i has experience targeting sensors from firm j
in analogous environments previously, then its initial
familiarity with j in this new environment should be
higher, making it more likely that j will be the long-
run contact. In this way, past targeting relationships
between firms may promote future relationships and
create opportunities for alliances that, although perhaps
not originally planned, should be fostered because of
mutual information dependence.

Looking at the quality lever, it follows from our
earlier results that the probability that some sensor j
will be the long-run contact of some other sensor i
increases in the quality of sensor j; that is, pij, defined
in (21), increases in qj. This then implies that firms
deploying high-quality sensors are more likely to be
the long-run contacts of other firms’ sensors and,
therefore, to be more connected to other firms—that
is, be a central node. The implication of this observa-
tion is that firms with high-quality sensors will serve as
information suppliers to many other firms. Because, as
discussed in the Introduction, connections can build
organizational relationships that require resources
and attention, firms deploying high-quality sensors

should anticipate the opportunities and consequences
of being more central in IoT-enabled networks. Al-
though beyond the scope of this particular research,
this raises the interesting possibility of sensor-quality-
based pricing for information sharing to enable firms
tomonetize the value of having higher-quality sensors.
Firms may have less control over the underlying

state dynamics that govern the environment’s oper-
ating condition variable. However, the communica-
tion pattern that emerges will be influenced by the
underlying dynamics. This is illustrated in Figure 2,
which presents the long-run communication patterns
for a collection of three sensors and nine different
cases for the environment’s AR(1) parameters (α, β).
The sensor qualities and initial familiarities were
chosen such that sensor 1 is the most attractive from
a quality perspective but that sensor 3 is the most at-
tractive from an initial familiarity perspective. Sensor 2
lies in between sensors 1 and 3 in that it represents
midvalues of both quality and initial familiarity. (Full
details and discussion of this numeric study and others
can be found in Appendix I of the unbridged version
(Saghafian et al. 2018).)
Although no sensor is initially dominant from the

perspective of any other sensor (by study design),
observe in the top-left panel of Figure 2 (low α and
low β) that the long-run contact of each sensor is
always the high-quality sensor—that is, sensor 1 even-
tually always targets sensor 2, and sensors 2 and 3
eventually always target sensor 1. However, observe
in the bottom-right panel (high α and high β) that the
long-run contact of each sensor is always the high-
familiarity sensor— that is, sensors 1 and 2 target
sensor 3, and sensor 3 targets sensor 2. In contrast, at
intermediate values of α and β—for example, in the
center panel, the long-run contact of each sensor
typically depends on the sample path: for some sample
paths, the higher-quality sensor wins, and for others,
the higher-familiarity sensor wins. It is important to
emphasize that although the underlying state dy-
namics affect the communication pattern, a firm can
(as discussed earlier) influence its centrality in the pat-
tern irrespective of the underlying dynamics through
its sensor quality and its willingness (or not) to in-
crease others’ initial familiarity with its sensor model.
It can also influence who it is likely to target (irre-
spective of the underlying state dynamics) by in-
creasing its familiarity with targets it sees as desirable
for certain corporate reasons.

6. Sensors of Unknown Qualities
To this point, we have assumed that sensor qualities
are common knowledge. This might not always be
the case; a sensor deployed by one firm may have
only limited knowledge about the quality of a sensor
deployed by a different firm.
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In what follows, we allow sensor qualities to be
ambiguous to other sensors. We do so by assuming
that any given sensor i believes that the quality of
sensor j ∈ N \{i} is contained in a set of possible
values (which we refer to as the ambiguity set), with
each possible value having some associated proba-
bility. We adopt a robust optimization framework
in which sensors select their target so as to be robust
to this ambiguity while trying to achieve the best
possible improvement in their estimation, as in previ-
ous sections. To this end, let P

Q
i denote the joint

probability that sensor i assigns to the possible qual-
ities of all other sensors. We consider a robust version
of the target-selection problem (6) where, similar to

previous sections, we assume that �k� � 1 for expo-
sitional ease. In each time period t, any given sen-
sor i follows a targeting strategy that is defined by a
|N | − 1-dimensional probability vector with elements
representing the probability that sensor i targets
sensor j ∈ N \ {i}. In particular,we assume that sensor
i’s problem at time t is to find the targeting strategy

π∗it � arg inf
π∈Πi

yπit , (22)
where

yπit � inf
yε∈R+

yε (23)
s.t. P

Q
i min

s̃it∈R
Eπ,St∼Fπit s̃it − St[ ]2 ≤ yε

{ }
≥ 1 − ε. (24)

Figure 2. (Color online) The Influence of Underlying State Dynamics on Communication Pattern
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That is, at time t, each sensor i optimizes over the set
of targeting strategies Πi (which contains all deter-
ministic and/or randomized strategies) to find the
current targeting strategy thatminimizes yπit , where yπit
represents the robust “cost” of a targeting strategy π.
This cost is defined as the (1 − ε)-percentile (with
respect to P

Q
i ) of sensor i’s estimation squared error

if it follows targeting strategy π. In (24), Fπit is the
posterior distribution of sensor i’s belief about the
state after applying the targeting strategyπ at time t.16

Parameter ε ∈ [0, 1] represents the level of optimism,
where ε � 0 yields robust optimization with respect
to the worst case (a pessimistic scenario), and ε � 1
yields robust optimization with respect to the best
case (an optimistic scenario).

The optimal targeting strategy given by (22) need
not be deterministic in general: a randomized strat-
egy might outperform any deterministic strategy be-
cause of the chance-constrained optimization nature
of the problem (22)–(24). This is formalized in Lemma
EC.5 in AppendixH (Saghafian et al. 2018). Aswewill
see in our numerical studies next, this randomization
may cause a sensor to have a long-run set of contacts
that includes more than one member, even if quali-
ties are asymmetric, which is in stark contrast to the
singleton result we established when qualities are
known (Proposition 4). That is, in order to be robust
to the fact that qualities of other sensors are not
perfectly known, each sensor may end up building
enough familiarity with more than one other sensor
in the long run and go back and forth between
them infinitely, often along any given sample path.
Even in this case, the long-run contact set, though
not a singleton, can be stochastically predicted, so our
earlier managerial implications about information-
supplier mapping still apply. However, there are
conditions under which one can restrict attention to
the set of deterministic targeting policies without any
loss. We present one such sufficient condition in the
following proposition.

Proposition 7 (Deterministic Communication). Suppose
that at period t for all j ∈ N \{i}, we have Vj̃ ≤s.t. Vj, for some
j̃ ∈ N \{i}. Then π∗it defined in (22) prescribes that sensor i
targets sensor j̃ at period t almost surely, regardless of ε.

Proposition 7 establishes a connection between
cases with unknown qualities and those with known
qualities. When qualities are known, sensor i targets
the sensor that provides the lowest signal variance—
that is, the most informative signal. When qualities
are unknown, this deterministic comparison has a
stochastic counterpart: if the signal variance from
one sensor j̃ is stochastically lower than that of other
sensors, sensor i targets sensor j̃with probability one,
regardless of the optimism level ε. Thus, sensor i still
behaves deterministically for any robustness level

imposed by ε. However, this deterministic behavior
may not hold if sensor i assigns probabilities to un-
known qualities in a way that no one sensor’s signal
variance stochastically dominates the others.
We numerically explored how the tradeoffs in the

known quality setting between (1) quality, (2) fa-
miliarity, and (3) state can be affected by the under-
lying ambiguity around qualities and/or the level of
optimism of sensors. We briefly summarize our ob-
servations here and refer the reader to Appendix I
(Saghafian et al. 2018) for full details and discus-
sion. For the case of known qualities, we analytically
established earlier that target selection is determin-
istic (i.e., sample-path independent) and time in-
variant in the case of common initial familiarities
(see Special Case 1): the highest-quality sensor targets
the second-highest-quality sensor; all other sensors
target the highest-quality sensor. However, when
qualities are unknown, the long-run contactmight not
be deterministic, even under a deterministic target-
ing policy each period; see Study 3 in Appendix I
(Saghafian et al. 2018). We also observed (Study 4 in
Appendix I (Saghafian et al. 2018)) that the opti-
mism parameter ε strongly influences long-run target
selection. Sensors are more pessimistic (optimistic)
about potential sensor qualities when ε is low (high),
and this, in turn, influences the emphasis placed on
familiarity versus possible qualities, which, in turn,
influences the role of state in target selection. The
optimism parameter used by a sensor will depend
on the firm that deployed it. Thus, organizational
attitudes toward ambiguity will impact target se-
lection and the resulting communication network that
evolves over time.

7. Extensions
In what follows, we summarize a number of exten-
sions of our base model. Full details and discussion of
these extensions can be found in the online appendices.
We assumed that each sensor could target only one

sensor (�k� � 1) in each period, both for expositional
ease and because that is when the targeting choice
is most crucial. However, we relax this assumption
in Online Appendix A and extend our results to a
general channel capacity �k� > 1. We establish that
each sensorwill follow a rank-ordering structure in its
targeting: In each period, it will (1) order all the
sensors from lowest to highest based on the variance
criterion established earlier—that is, (10)—and then
(2) pick the �k� best-ranked—that is, lowest-variance—
sensors as its targets. We prove that our key results
(Propositions 1, 2, and 4 and Lemma 2) extend in a
natural fashion based on this rank-ordering structure.
The extension of other results is then straightforward.
Our results also carry over directly to a setting in
which the channel capacity �k� varies by sensor.
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We assumed that the initial belief of a sensor about
another sensor’s inference model parameters is ac-
curate in their means. The extension to a setting in
which the means of these normal distributions are not
correct is contained in Online Appendix B, which
establishes that the key results in the paper still hold.

We assumed that each sensor has a slower-but-
more-accurate estimation approach in place (e.g.,
technician inspection or remote offloading) that has a
delay of one period and is perfectly accurate. In
Online Appendix C,we analyze various relaxations in
which the slower-but-more-accurate approach has a
general delay, and its estimation may or may not be
perfectly accurate. For a general delay with perfect
accuracy—that is, when state realization is simply
delayed—we show that the following key results still
hold: if sensor qualities are asymmetric, then (1) there
exists a unique, albeit sample-path-dependent, long-
run contact, (2) this contact can be determined in fi-
nite time, and (3) there exists a finite time after
which the long-run communication network can be
defined as a deterministic directed graph. That is,
Propositions 4–6 all continue to hold; see Propositions
EC.4–EC.6 in Online Appendix C for details. We
then establish that these results continue to hold
under a general delay with imperfect accuracy—that
is,when the slower-but-more-accurate approach does
not reveal state perfectly to the sensor. We also ex-
plore settings in which the slower-but-more-accurate
approach does not exist, so there is no state realization,
except for the first period or not even in the first period.

In Appendix D (Saghafian et al. 2018), we extend
our base model to the case where the error terms in
sensor readings are correlated. We first consider a
symmetric correlated measurement errors case in
which the correlation between sensor errors is the
same for all pairs of sensors. We establish that the
optimal target choice will be the same aswhen there is
no correlation, and therefore, our key results devel-
oped in the main body still hold, and the network that
is formed among sensors (both in the short and long
term) will be the same as the one without correlated
errors. We then consider the asymmetric correlated
measurement errors case, in which the correlation in
measurement errors between a sensor i and a sensor j
is allowed to depend on i and j. We show that this
induces a target-selection criterion that is not, in
general, equivalent to the one established in the main
body. Hence, a sensor might target a different sensor
than it would if there was no correlation. However,
we are able to establish a condition (related to the ratio
of correlation difference to sensor qualities) under
which the target-selection criterion for each sensor
will be equivalent to that under no correlation, and
hence, our key results will hold. Taking both cases
together, it follows that the results for the case of

uncorrelated errors can be quite informative of what
happens, even if errors are correlated.
The extension to the setting in which sensors care

about the quality of future estimates and not just the
current-period estimate is analyzed in Appendix E
(Saghafian et al. 2018). We establish that this non-
myopic problem lies in the general class of restless
multiarmed bandit problems. Nonetheless, we show
that if the discount factor (for future estimates) is
below a certain threshold, then it is optimal for sen-
sors to act myopically (similar to the setting we
studied earlier). For any arbitrary discount factor, we
also establish a sufficient condition for myopic tar-
geting to be optimal in a given state.
Finally, in Appendix F (Saghafian et al. 2018), we

allow sensors to update their own inference param-
eters in a Bayesian fashion.We formally establish that
if each sensor’s initial precision of its own inference-
model parameters exceeds a certain threshold (and
this is publicly known), then one’s own inference
parameter updating will not alter the target selec-
tion of any of the sensors. This implies that if pre-
deployment training data sets are large enough to
result in sufficiently high initial precision, then net-
work formation among sensors can be accurately
studied without assuming that sensors update their
own inference models after deployment. Because, in
practice, firms typically use large amounts of training
data predeployment, minor updating of one’s own
inference-model parameters can be safely ignored
(thus, the setting we studied earlier). However, be-
cause different firms may use different sensor technol-
ogies, proprietary algorithms, and different training
data sets predeployment, their inference parameters
will be private, and therefore, learning about other
sensor’s parameters is still fruitful.

8. Conclusions
Much of the promise of the IoT stems from the idea
that better operational decisions will be enabled by a
vast array of sensors that provide almost real-time
knowledge of the state of things. In the process in-
dustries, assets and personnel from different firms
are often located in close proximity on the same
worksite, and sensors are now being widely deployed
to monitor key operating condition variables (vibra-
tion, for example) in an effort to improve asset uptime
and worker safety through more informed condition-
based maintenance. Sensors are not perfectly accu-
rate, but the sharing of estimates across sensors can
help improve estimation. However, sensors cannot
solicit information from all other sensors in their
environment because of very real communication
constraints, and sensors may not have full knowledge
of the inference models used by sensors deployed by
other firms.
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We characterize the initial and long-run commu-
nication network—who talks to who—for an arbi-
trary collection of sensors that do not know each
other’s underlying inference models and that may
not know each other’s qualities. We establish that
the state of the environment plays a key role in de-
termining the weights placed on quality and famil-
iarity (knowledge of another’s inferencemodel) when
selecting a target. We establish that if sensors differ
in their qualities, then each sensor will eventually
target a single sensor in all future periods. This long-
run target, however, can vary by sensor and is sample-
path dependent because state values influence the
weight sensors put on familiarity versus quality. We
establish that the long-run communication network
that forms between sensors can be fully defined at
time zero as a random directed graph, and that one
can probabilistically predict the long-run communi-
cation patterns that will emerge. When qualities are
not common knowledge, we show that a firm’s am-
biguity attitude can play an important role in target
selection. Our work sheds light on what kinds of
communication networks develop over time, and this
enables managers to not only make predictions about
which other firms their sensors will interact with but
to also influence the communication outcomes through
the levers of sensor qualities and initial familiarities.
This predictive ability and managerial control are
important in light of the fact that sensor communi-
cations build organizational ties that require atten-
tion and resources. For example, our work enables
a process-industry firm to map the sensor-based-
information suppliers that it will depend on, at least
to some extent, for improved uptime performance.

This specific research could be extended in a num-
ber of directions. The sensors might not operate in
the same environment but instead operate in corre-
lated environments such that signals are still some-
what informative to each other. The environment
might evolve according to a more general model than
the AR(1) model we used to generate insights. We
assumed that the receiver is always able to respond
to the sender (i.e., when i communicates with j, j
responds to i) and leave it to future research to ex-
plore potential relaxations. We assumed time-invariant
sensor qualities. If sensor qualities degrade signifi-
cantly over time, then this would introduce an im-
portant time dependence between quality and time
that would cause the familiarity-function dynamics
(Proposition 2) to depend not only on the number of
times a sensor was targeted but also on when it
was targeted.

Because the goal of this research was not to ex-
amine a highly specific application but rather to estab-
lish and analyze a general information-quality-based
communication framework that applies to a broad

range of emerging IoT settings, we were intentionally
silent about (1) the actions of the sensor-owning en-
tities, and (2) the incentives of these entities to share
information. With regard to point (1), because sensor
targeting in our framework faces a constraint on the
number of sensors targeted in a period, we could,
without loss of generality, ignore any actions taken
based on sensor estimates under the mild assump-
tion that better estimation allows better actions (and
hence, sensors have the objective of providing their
entities with the best estimates). However, if there
were financial costs to soliciting estimates from other
sensors, then the value of the improved estimation
would need to be taken into account when targeting,
and that would require a model of how optimal ac-
tions (e.g., condition-based maintenance) and payoffs
(e.g., asset uptime) depend on estimation perfor-
mance. We leave the development of models that
consider targeting costs and the value of better esti-
mation for future research. With regard to point (2),
we assumed a particular partial-information-sharing
regime in which the entities only share state estimates
but not their sensors’ proprietary inner processes
(e.g., inference models or readings). Future research
could study decisions regarding whether to share
(and what information to share) under different in-
centive structures.
Finally, we have focused on the information-quality

motive for sensor communication, but firms are also
interested in information completeness, in which the
states of distinct elements are combined to provide
an overall system state. In general, the IoT presents
manyopportunities toexplorehowto improveandexploit
information quality and information completeness in
various operations-related domains. We hope that
our paper motivates further research in this area.

Endnotes
1Vibration is a key variable, and “vibration analysis is the most
commonly used condition monitoring technique” (Syed and Pai 2016,
p. 58).
2Wemake no assumption that the devices associatedwith the sensors
are even engaged in related or analogous actions. We merely assume
that each sensor’s objective is to generate the highest-quality state
estimate it can for its associated device.
3Analogously, in the diabetic-monitoring context, it is thought that
wearable blood glucose (BG) biosensors will require “frequent cali-
bration against direct BG data” obtained by precise but invasive
means (Chen et al. 2017, p. 8).
4We acknowledge that higher-order models can have more predic-
tive power; however, it is a generally advised principle that one
should select a model of minimum order needed for a good fit, and
AR(1) models are sometimes used for estimation—for example,
Sparacino et al. (2007).
5 In Appendix D (Saghafian et al. 2018), we study scenarios in which
the measurement errors are correlated among sensors and show that
our main results extend to such scenarios. However, even when these
measurement errors are not correlated, it should be noted that
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sensors’ readings given in (2) are still correlated both within and
across periods.
6Our base-model analysis and findings immediately extend to a
setting in which state realization occurs less frequently (e.g., every
T > 1 periods because technician inspections or data offloading is
periodic because of travel or communication burdens), but target
selection remains constant between realizations; this only requires a
rescaling of time—that is, changing the definition of a period. Also,
see Appendix G (Saghafian et al. 2018) for generalizations in which
the slow-but-more-accurate estimation is not perfect and/or has a
general delay of more than one period.
7Our work easily extends to a setting in which jwill only collaborate
with some subset of N .
8The extension to a setting in which the means of these normal
distributions are not correct is contained inOnlineAppendix B, which
establishes that the key results in the paper still hold.
9As we will show, this implies that each sensor targets sensors that
provide it with the most information about the state. We use the
expected value of the squared error as our targeting objective function
mainly because it is a common-loss function used in the literature of
machine learning and estimation theory. However, all our results
hold for any targeting objective function that is strictly increasing in
the expected squared error of estimation.
10Note that the information entropy of any normally distributed
random variable depends only on its variance.
11Without loss of generality, we assume that ties in (6) and (11) are
broken by choosing the sensor with the lower index.
12We also provide a second proof of this result in which we explicitly
use the joint distribution of α̂ijt and β̂ijt and characterize how their
covariance matrix is updated over time; see proofs in Appendix G
(Saghafian et al. 2018).
13This state dependency does not arise if the underlying environment
is governed by a static i.i.d. white-noise process—that is, when β � 0.
In that case, it follows directly from the preceding analysis that the
familiarity function ψij,t+1(s) � v2ij0 + f (qi, qj)∑t

l�1 aijt. This is indepen-
dent of the state s, and therefore, target selection is sample-path
independent. From this perspective, one can view Proposition 2 as
generalizing the belief updating expressions (7)–(9) in Sethi and
Yildiz (2016) to the case of an AR(1) process.
14A complete closed-form analytical characterization of the region
thresholds exists, but it is algebraically cumbersome and not included
for reasons of space.
15The extension of the preceding results to settings with non-
asymmetric sensors is straightforward, although, as noted earlier,
Proposition 4 may no longer hold.
16This posterior distribution depends on the element of i’s ambi-
guity set (i.e., the particular qj values) as well as the past targeting
history (through the familiarity function at time t, which, in turn,
depends on qj values), but these dependencies are suppressed for
ease of notation.
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