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Abstract. Telemedical physician triage (TPT) is an example of a hierarchical knowledge-
based service system (HKBSS) in which a second level of decision agent (telemedical
physician) renders a decision on cases referred to him or her by the primary level agents
(triage nurses). Managing the speed-versus-quality trade-off in such systems presents a
unique challenge because of the interplay between agent knowledge and flow of work
between the two levels. We develop a novel model of agent knowledge, based on the beta
distribution, and deploy it in a partially observable Markov decision process model to
describe the optimal policy for deciding which cases (patients) to refer to the second level
for further evaluation. We show that this policy has a monotone control-limit structure
that reduces the fraction of decisions made at the upper level as workload increases.
Because the optimal policy is complex, we use structural insights from it to design two
practical heuristics. These heuristics enable an HKBSS to adapt efficiently to workload
shifts by adjusting the criteria for referring decisions to the upper level based on partial
real-time queue length information. Finally, we conduct analytic and numerical analyses
to derive insights into the management of a TPT system. We find that (1) the telemedical
physician should evaluate more patients as congestion in the emergency room waiting
area increases; (2) training that improves accuracy of the physician and/or nurses can
be effective even if it only does so for a single patient type, but training that improves
consistency must do so for all patient types to be effective; and (3) patient classification
in triage should consider environmental and operational conditions in addition to the
patient’s medical condition.
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1. Introduction
Triage is the process used by hospital emergency de-
partments (EDs) to assess patient urgency, traditionally
through a short interview by a triage nurse.1 In addi-
tion to speed, accuracy is vital in triage because errors in
classification lead to errors in prioritization, which can
cause dangerous delays in treating urgent patients (see,
e.g., Wiler et al. 2010; FitzGerald et al. 2010; Saghafian
et al. 2012, 2014; Traub et al. 2015; and the references
therein). Seeking to improve triage decisions, somehos-
pitals have begun experimenting with telemedical physi-
cian triage (TPT) (see, e.g., Traub et al. 2013).
In TPT, a triage nurse has the option after exam-

ining a patient to refer that patient to a telemedicine
booth through which a remote physician conducts a
video conference and renders a triage decision. The
telemedical physician (TP) typically services multiple
hospitals; hence, patients referred to the TP may have
to wait in a queue. Therefore, when considering refer-
ring a patient to the TP, a triage nurse must balance the

queueing delay with the benefit from a review by the
more knowledgeable physician.

We use the term hierarchical knowledge-based service
system (HKBSS) to refer to a system like TPT in which
hierarchically organized agents with different knowl-
edge levels assess cases and must either issue a deci-
sion or refer the case to a higher level. In the TPT
setting, there are only two levels of hierarchy (i.e.,
triage nurses and TP), and the decisions are binary (i.e.,
patients are either urgent or not). Other HKBSS exam-
ples with two levels and binary decisions include the
U.S. Department of State Bureau of Consular Affairs, in
which agents must decide whether or not to grant visa
applications and can refer cases to a supervisor, and
the mortgage department of a bank, in which loan offi-
cers must decide whether or not to approve mortgages
and can refer cases to a manager.

While speed-versus-quality trade-offs are common
in operations management, those of an HKBSS pre-
sent a unique modeling challenge to incorporate a
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representation of agent knowledge and decisions into
a queueing model. Such a model is needed to address
the following questions: (1) What is the structure of
decisions at the lower and upper levels that strikes an
optimal balance between speed and quality? (2) How
do environmental factors (e.g., costs of decision errors,
case mix, fluctuations in workload, etc.) affect the opti-
mal policy? (3) What levers (e.g., agent training, infor-
mation sharing between levels, etc.) are effective for
improving system performance? (4) Are there simple
methods that can be used as practical policies for man-
aging case flow in a real-world HKBSS?
By addressing these questions in the context of TPT,

we generate new insights into the effective manage-
ment of telemedical physician triage and also provide
the analytic building blocks for evaluating any similar
HKBSS.

2. Related Studies
Researchers have explored knowledge-based organiza-
tions in the context of social networks and their effects
on organizational performance (see, e.g., Albrecht
and Ropp 1984, Brass 1995, Burt 1992, Huberman
and Hogg 1995). While promising, these knowledge-
management studies only address the information flow
aspect of an HKBSS.
In contrast, the field of operations management has

focused predominantly on the work flow aspect. There
are only a few papers in the operations management
literature that have combined task flow and informa-
tion/decision making. Among them, Shumsky and
Pinker (2003) studied a two-level system that pro-
cesses tasks with different levels of complexity. Using a
principal–agent framework, they focused on the impact
of performance-based incentives at the lower level
and investigated incentives that would lead to system-
optimal referral rates. However, unlike our study, they
do not (i) explicitly model knowledge-based deci-
sion making or (ii) address the ability of workload-
management policies to react to workload spikes.
Motivated by call centers that provide medical ad-

vice, Wang et al. (2010) considered the analysis of diag-
nosis service systems where one must strike a balance
between accuracy of advice, waiting time, and capac-
ity/staffing costs. In their study, a longer service entails
higher accuracy and a higher congestion. They use an
M/G/K queueingmodel to balance these. But, because
they consider only a single level of hierarchy, they do
not consider the issue of balancing quality and speed
by routing cases between levels, as we do in this paper.

In another study with a single level of hierarchy,
Anand et al. (2011) examined the trade-off between
service quality and speed by modeling quality as a
linearly decreasing function of service rate. In our two-
level framework, a better decision can be made by
a more knowledgeable agent, but only if the case is

transferred to the upper level. Because this involves a
workload-dependent delay in the queue of the upper-
level agent, the relationship between quality and time
is nonlinear.

Another study that considered a quality and speed
trade-off is that of Hopp et al. (2007), who modeled
the ability of employees to determine how much time
to allocate to customers. In their work, an agent can
decide when to terminate a “discretionary service,”
and the reward is an increasing concave function of
service time. However, in their model, customers are
homogenous, and service providers are assumed to
be perfectly knowledgeable. In contrast, in our study,
agents are neither homogenous nor perfectly knowl-
edgeable: they differ (across tiers) in skill level, and the
accuracy of their judgment depends on their skill level.
Another distinct feature of our study is the consider-
ation of a two-level hierarchy instead of a traditional
single-level service system.

Alizamir et al. (2013) also considered a single-level
service system inwhich an agent can decide to perform
more diagnostic tests to improve the quality of the cus-
tomer classification but at the expense of more delays.
Similar to our work, they studied the effect of conges-
tion, but unlike ours, only one case can be processed
at a time in their study, and there is no queue formed
after the first test is performed. Finally, their repre-
sentation of knowledge via the quality of sequential
Bayesian tests is less descriptive than our beta distribu-
tion model and, hence, cannot depict decision consis-
tency and other decision characteristics beyond accu-
racy. Thus, their model is not fully suited to studying
agent training, assessment sharing, and other relevant
policies to improving the performance of an HKBSS.

Rajan et al. (2015) studied the speed–quality trade-
off in telemedicine for treating chronically ill patients.
We also consider the use of telemedicine in this paper,
but rather than focusing on how to increase the use
of this technology, we focus on how to maximize its
effectiveness in a triage setting.

To consider the judgement accuracy/congestion
trade-off, de Véricourt and Sun (2009)2 modeled the
decision process of a service provider using binary
probabilistic cues. In their framework, customers
belong to one of two possible types, and accuracy is
defined as the probability that the customer type is
correctly identified assuming that only false negatives
may occur. We broaden this representation of server
knowledge by (1) using beta distributions to model the
knowledge level of the decision makers, which enables
consideration of consistency as well as accuracy of
assessments; (2) considering both class-based false neg-
ative and false positive errors and their costs by allow-
ing the assessment of the beta distributions to depend
on the true class of the customer; and (3) consider-
ing more than a single level of hierarchy in the system
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Table 1. Summary of Related Studies on Speed–Quality Trade-offs

Hierarchical Balking Separate false positive Assessment Knowledge-based Workload
decision or and false negative sharing decision fluctuations

Reference levels reneging error costs scenarios making

Shumsky and Pinker (2003) X
de Véricourt and Sun (2009) X
Wang et al. (2010) X X
Anand et al. (2011) X
Alizamir et al. (2013) X X
Debo and Veeraraghavan (2014) X
Others: Hopp et al. (2007);

Kostami and Rajagopalan (2013);
Tan and Netessine (2014);
Wang et al. (2015);

Our setting X X X X X X

to explicitly connect work flows and knowledge-based
decisions.
Table 1 provides a comparative summary of the

extent to which available studies on speed–quality
trade-offs address the key features of an HKBSS. Incor-
porating these features is an important part of our
contribution.

Finally, we note that some of the elements of
Table 1 have also appeared in studies that do not
consider speed–quality trade-offs. For instance, simi-
lar to our work, Bassamboo et al. (2006) studied work-
load spikes in queueing networks. They characterized
asymptotically optimal policies for dynamic routing
in such networks with varying arrival rates. How-
ever, unlike our study, they assumed that the customer
classes/characteristics are perfectly known to decision
makers. Hence, they did not consider decision-making
errors, which are a key element of almost anyHKBSS.

3. Modeling Hierarchical Knowledge-
Based Service Systems (HKBSSs)

We now turn to the development of a formal model to
analyze the performance of HKBSSs.We begin by sum-
marizing common characteristics of these systems.

• Hierarchical Structure: HKBSSs have a hierarchical
structure that allows a lower-level agent to pass a case
to a higher level for a decision. In this paper, we focus
on two-level systems inwhich cases are first assessed at
the lower level (e.g., triage nurses) and then sent to the
upper-level agent (e.g., the telemedical physician (TP))
if needed.

• Limited Capacity: Since agents at both levels require
time to process cases and make decisions, the system
has a limited capacity at each level. Because of this,
customers may balk if delays are too long. In the TPT
system, the ED may go on a “diversion,” which sig-
nals ambulances to take patients to another hospital,
if congestion becomes severe. Patients may also leave
without being seen if waits are too long (although typ-
ically this occurs after triage is done and the patient is

in the waiting area of the ED). Whether a patient balks
due to severe congestion at the lower or upper level,
the result is costly to the hospital in both financial and
reputational terms. However, to be thorough, we also
consider HKBSSs in which balking is not an issue. We
also discuss how our findings are relevant to HKBSSs
in which reneging is more prevalent than balking.

• Binary PrimaryDecisions: InmanyHKBSSs, includ-
ing TPT, the primary decisions are binary. As noted ear-
lier, in visa processing and consumer loan evaluation,
the decisions are restricted to “yes” or “no.” In the TPT
system, the key triage decision is whether the patient
is urgent or not.

• Knowledge-BasedDecisions: The quality of decisions
depends on the decision maker’s knowledge level. For
instance, in the TPT system, triage nurses and the TP
make judgments about whether the patient is urgent
or not based on their skill and experience.

• Speed–Quality Trade-off : Sending cases to an upper-
level agent (e.g., the TP) results in higher-quality deci-
sions (i.e., fewer decision errors) but also additional
delay and congestion at the upper-level agent. Because
of queueing effects, this trade-off is particularly pro-
nounced in systems with highly utilized servers (e.g.,
overcrowded EDs).

These characteristics provide us with a foundation
for modeling the performance of an HKBSS. Specifi-
cally, we consider the two-level hierarchy shown in Fig-
ure 1, in which there are K agents at the lower level (`),
labeled as agents 1, 2, . . . ,K, and one agent at the upper
level (u), designated as agent 0.
We assume that cases arrive at each of the lower-

level agents at rate λ` , so that each agent has his or
her own queue of cases. We consider the scenario in
which each lower-level agent serves a separate queue,
because it better represents a TPT setting in which
triage nurses are in different (e.g., pediatric and main)
EDs within a hospital, or are in different hospitals.
However, since our focus is mainly on systems that
are subject to high utilization, there is little difference
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Figure 1. Modeling Network Flows in a Two-Level Knowledge-Based Service System
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between systems with a pooled queue and a system
with separate queues. Furthermore, because the time
of the upper-level agent (e.g., the TP) is particularly
valuable, we assume that the system uses a protocol
of not sending cases to the upper level without first
examining them at the lower level.
To model the possibility of cases not being handled

due to congestion, we assume that there is a limit on
the agents’ queue lengths beyond which arriving cases
do not enter the system. Specifically, if a case arrives
when the number of cases in a lower-level agent’s
queue (including the case in service) is b` , then the
case does not enter the system and leaves without a
decision.When a case does enter the system, the lower-
level agent either makes a final decision and releases
the case from the system, or passes it to the upper
level. The upper-level agent also has a queue of cases
and, similar to the lower level, if a case arrives to the
upper-level agent when her queue is full (i.e., there are
bu cases at the upper level including one in service),
then the case does not enter the upper level and leaves
the system without a decision (e.g., a patient leaves
without being seen). Otherwise, the upper-level agent
processes the case, makes a final decision, and releases
the case from the system.3
Our model is general enough to cover HKBSSs with

no congestion-related rejection by setting b` and bu
to large numbers. For instance, setting bu very high
represents a system like TPT in which customers
(patients) rarely balk after being referred to the upper
level (telemedical physician). Furthermore, since queue
lengths are consideredwhenmaking referral decisions,
our main findings can be shown for an HKBSS with
reneging instead of balking. We choose balking sim-
ply because it better represents our main motivating
example.
We assume that the processing time of a case by

an agent at level j ( j � `, u) follows a known distri-
bution with a finite mean 1/µ j and is independent of
the agent’s decision. In most of the paper, we assume

that the interarrival and service times are exponentially
distributed, but we note that generalizations are pos-
sible. Since customer satisfaction is key in service sys-
tems, we characterize service quality via a holding
cost as well as a congestion-related balking cost, which
might not be symmetric across the two hierarchical
levels.

Another important aspect of HKBSSs is their ability
to make correct decisions. Therefore, we also penalize
wrong decisions by incorporating decision-error costs
at each level. In the TPT system, the challenge is to
determinewhether patients are urgent (yes) or not (no).
Hence, in TPT or any other binary HKBSS, arrivals can
be divided into cases for which the correct decision is
Y � 1 (yes) and cases for which the correct decision is
Y � 0 (no). We let p1

` denote the fraction of cases arriv-
ing at the lower level for which Y � 1, and 1− p1

` denote
the fraction of cases for which Y � 0.We further assume
that p1

` is known, and 0 < p1
` < 1. However, we assume

that the correct decision Y for an individual case is not
observable by an agent when the decision is made. If
the value of Y were known, the agent would always
make a correct decision, and the check provided by the
upper level would be redundant. In such a scenario, the
lower level would become a traditional flow network
in which the only concerns would be the congestion-
related balking and holding costs. However, because
the correct decisions are not known in our framework,
agents must examine each case and, based on their
knowledge and judgement, make a (possibly incorrect)
decision. Moreover, since lower-level agents may elect
to route cases to the upper level, decisions can signifi-
cantly affect the flow of cases.

After processing a case, the agent at level j ( j � `, u)
makes a decision a j , where the lower-level decision
a` ∈ {0, 1,UP} and the upper-level decision au ∈ {0, 1}.
When an UP decision is made, the case is passed on
to the upper level. Hence, the final decision for a case
is always zero or one (as long as it is not balked due
to system congestion). To consider the cost of decision
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errors, we let c1 (c0) denote the error cost when a case’s
correct decision is Y � 1 (Y � 0) but the agent’s decision
is a j � 0 (a j � 1). In TPT, c1 is the cost of misclassifying
an urgent patient as nonurgent (which leads to a longer
downstream wait and hence more risks), while c0 is
the cost of misclassifying a nonurgent patient as urgent
(which may put him or her ahead of urgent patients
who arrive later and increase their downstream wait
and risks). We represent the vector of decision-error
costs by ce , (c0 , c1).4 Similarly, we let cb , (cb , ` , cb , u) and
h , (h` , hu) denote the vector of balking and holding
costs, respectively, where for generality we allow for
asymmetric costs at the lower and upper levels. Since
the total cost in our setting considers both the network-
flow component (holding and rejection/balking costs)
and the decision-making component (decision-error
costs), these two aspects are linked in our model; an
optimal decision rule is one that strikes a speed-versus-
quality balance between these two components.

To formalize the optimizationmodel, wemake use of
the following notation. We represent by π � (π` , πu) a
control policy that jointly prescribes the agents’ actions
at the lower and upper levels at any time. With K ,
{1, 2, . . . ,K} denoting the set of all lower-level agents,
we represent the vector of queue lengths at the lower
level at time t by N`(t) , (Nk(t): k ∈ K). Similarly, we
let Nπ`

u (t) denote the queue length at the upper level at
time t, which depends on the control policy adopted at
the lower level, π` . We also let Eπ`` (t) , (¥

π`
`, 0(t),¥

π`
`, 1(t))

and Eπ` , πu
u (t) , (¥π` , πu

u , 0 (t),¥
π` , πu
u , 1 (t)) denote the vector

of cumulative number of decision errors up to time t
at the lower level and upper level, respectively, where
¥
π j

j, y(t) denotes the cumulative number of decision
errors made up to time t under policy π j for cases with
correct decision y ∈ {0, 1}. Also, let B`(t) and Bπ`

u (t) be
the cumulative number of customers who balked up to
time t at the lower and upper level, respectively.
Using the notation above, the long-run average total

cost of the system under a control policy (π` , πu) is

ϕ(π` , πu)

, lim inf
t→∞

1
t
Ɛ

[
ce(E

π`
` (t)+Eπ` , πu

u (t))T + cb(B`(t),B
π`
u (t))T

+

∫ t

0
h(N`(s)(1K)T ,N

π`
u (s))T ds

]
, (1)

where “T” represents the transpose operator, and 1K
is a K-dimensional vector with all elements equal to
one. Finally, with Π` and Πu denoting the set of all
admissible (nonanticipative) policies at the lower and
upper levels, respectively, we seek to find

(π∗` , π∗u)� arg min
π`∈Π` , πu∈Πu

ϕ(π` , πu), (2)

and refer to ϕ∗ , ϕ(π∗` , π∗u) as the optimal long-run
average cost.

3.1. Modeling Knowledge
The decision making in an HKBSS is based on agent
“assessments” that in turn depend on their knowledge/
experience level. An agent at level j makes an assess-
ment X j � x, where x ∈ [0, 1]. The value of X j may
be explicit (e.g., a normalized credit score) or implicit
(e.g., an estimate of agent’s confidence that the correct
decision is Y � 1). In either case, the value of x depends
on the agent’s knowledge. We use the beta distribution
to model the knowledge level of an agent as follows. If
the correct decision for a case is Y � y (y � 0, 1), then
the assessment by an agent at level j will be a random
variable X y

j with a beta probability density function
f y

j (x)with parameters αy
j and β

y
j :

f y
j (x)�

1
�(αy

j , β
y
j )

xα
y
j −1(1− x)β

y
j −1 ,

where �(αy
j , β

y
j )� ∫

1
0 vα

y
j −1(1− v)β

y
j −1 dv is the beta func-

tion. When needed, we assume αy
j ≥ 1, βy

j ≥ 1 to ensure
that f is bounded, which also implies that assessments
are continuous on the interval [0, 1]. Examples of such
beta distributions are shown in Figure 2. Notice that
assessment X j is equal to X1

j (to X0
j ) with probability p1

j
(with probability 1 − p1

j ). Hence, the density function
of X j is f j(x)� p1

j f 1
j (x)+ (1− p1

j ) f 0
j (x), where p1

j denotes
the fraction of cases entering level j for which the cor-
rect decision is Y � 1.5 We denote by Fy

j (x) and F j(x)
the cumulative distribution functions corresponding to
densities f y

j (x) and f j(x), respectively.6
The relationship between the parameters of the beta

distribution and an agent’s knowledge becomes clearer
when we consider the mean and variance of the beta
distribution. The mean of the above beta distribution,
Ɛ[X y

j ], is an indication of how close, on average, a level
j agent assessment is to the correct decision y. We refer
to this mean as the accuracy of the agent. In contrast,
Var(X y

j ) is an indication of the consistency of agent k’s

Figure 2. Examples of Beta Distributions for Modeling
Agents’ Assessments
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assessments of cases for which the correct decision is y
(y � 0, 1). Accuracy and consistency together describe
the knowledge of the agent. A more knowledgeable
agent typically has a better accuracy (i.e., Ɛ[X y

j ] closer
to y) and better consistency (i.e., lower Var(X y

j )) regard-
less of whether y � 0 or y � 1, although we do not
restrict our framework to such an assumption.
Using our notation, the mean and variance formula-

tions of the beta distribution can be written as

Ɛ[X y
j ]�

α
y
j

α
y
j + β

y
j

; Var(X y
j )�

α
y
j β

y
j

(αy
j + β

y
j )2(α

y
j + β

y
j + 1)

.

From these, it is apparent that as α0
j decreases (or β0

j
increases), the mean becomes closer to 0, so the agent
hasmore accuracywhenY � 0. Similarly, as α1

j increases
(or β1

j decreases), the agent has more accuracy when
Y � 1. Moreover, when αy

j and βy
j increase proportion-

ally, the variance is reduced, implying that the agent is
more consistent in his or her assessments.
This flexible framework enables us to model a wide

range of agent knowledge scenarios including the
following.

• Perfect Knowledge: When α0
j � 1, β0

j→∞, β1
j � 1, and

α1
j →∞, we have X0

j

a.s.−−→ 0 and X1
j

a.s.−−→ 1, which implies
that the agent at level j has perfect knowledge about
both cases with correct assessment value Y � 1 and
Y � 0, and therefore will never make a mistake.

• No Knowledge: When αy
j � β

y
j � 1 (y � 0, 1), the beta

distribution becomes a uniform distribution on [0, 1],
regardless of the correct decisions. This implies that a
level j agent has no ability to diagnose cases beyond a
random guess.

• Biased Knowledge: When α0
j is very close to α1

j and
β0

j is very close to β1
j , the assessments have essentially

the same distribution regardless of the correct decision.
Hence, in this case, the agent is providing stochastically
the same assessment for both cases with Y � 1 and
Y � 0 regardless of the signals the agent receives from
cases. This enables us to model the cognitive biases of
the decision makers (see, e.g., Hogarth 1980, pp. 166–
170 for a complete list of such biases). For instance, the
agent might consistently be biased toward approving
(a positive bias) or rejecting (a negative bias) the cases
(or in the triage example, toward assigning to a specific
urgency/ESI level).

• General Knowledge: Adjusting parameters αy
j and

β
y
j alters the shape of the density function and hence

the knowledge structure of an agent. For example, we
can choose αy

j and β
y
j for two agents such that they have

the same consistency, but one agent has higher accu-
racy for cases with Y � y. To do this, we reduce α0

j and
increase β0

j (increase α1
j and reduce β1

j ) so that Ɛ[X0
j ]

decreases (Ɛ[X1
j ] increases) while Var(X y

j ) remains con-
stant. Alternatively, we can increase both α

y
j and β

y
j

proportionally, so that Ɛ[X y
j ] remains unchanged but

Var(X y
j ) is decreased, to model a second agent that has

the same accuracy but better consistency.

3.2. Modeling Assessment Sharing
Our framework also allows us to represent settings in
which lower-level agents share their assessments with
their upper-level agent, and settings in which they do
not. For instance, in TPT, the lower-level agents (triage
nurses) transfer patients to the upper-level agent (TP)
who examines them and makes a decision based solely
on his or her own assessment. In some other systems
(e.g., bank loan processing), the upper-level agent uses
the assessment of the lower-level agent as part of his or
her decision process. We study both scenarios to shed
light on the value of sharing assessments in HKBSSs. To
this end, we consider the following scenarios.

• Independent Assessments (IA): Under this scenario,
the upper-level agent makes an independent assess-
ment of the case referred to him or her. However,
based on our motivating examples, we assume that the
upper-level agent knows the lower agent’s referral pol-
icy (but not the lower level’s assessment); and note that
in this case, p1

u (and hence, p0
u � 1− p1

u) is a function of
the lower level’s referral policy. For instance, if the pol-
icy of the lower-level agent is to refer the cases to the
upper level only when his or her assessment is in set A
(for some set A ⊂ [0, 1]), then using the Bayes’ rule:

p1
u(A)� Pr{Y � 1 | X` ∈A}

�
(∫A f 1

` (x`) dx`)p1
`

(∫A f 1
` (x`) dx`)p1

` + (∫A f 0
` (x`) dx`)(1− p1

`)
. (3)

• Shared Assessment (SA). Under this scenario, the
assessment made at the upper level is a function of
both the upper- and lower-level agents’ assessments.
Specifically, using the Bayes’ rule:

p1
u(x`)� Pr{Y � 1 | X` � x`} �

f 1
` (x`)p1

`

f 1
` (x`)p1

` + f 0
` (x`)(1− p1

`)
.

(4)
Thus, under the SA (IA) structure, the density func-
tion of the upper-level agent’s assessment is not only
a function of the upper-level agent’s assessments, but
also the lower level’s assessment (referral policy). For
instance, under the SA structure:

fu(xu , x`)� p1
u(x`) f 1

u (xu)+ (1− p1
u(x`)) f 0

u (xu).7

Finally, we note that from an assessment-sharing per-
spective, the SA scenario can be viewed as a special
case of IA: in IA, the upper-level agent only knows that
x` ∈A (for cases referred to him or her), while in SA, the
upper-level agent knows the exact value of x` . If A �

(0, 1), then no information is shared; and ifA� {xl}, the
exact assessment is shared. However, the upper-level
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agent can consider amiddle caseA to take advantage of
the filtering made at the lower level, when sharing the
exact assessment is not possible. Ideally, such filtering
should take into account the queue-length information
(for all queues) at the time the case was referred to
the upper level. However, the information technology
infrastructure to allow reporting of the queue-length
information for each case routed to the upper level
would also allow sharing of the full lower assessments.
Since the latter makes the former superfluous, we do
not consider the scenario in which queue lengths are
shared without sharing assessments. Hence, for the IA
scenario, we assume A is either (0, 1) or a fixed strict
subset of it that is calculated for a given queue length
(e.g., the average queue length).

3.3. Modeling Rationality
For our model to represent reality, we must ensure
that the agents’ assessments are “rational” in the sense
that their assessments, x j , are positively (or at least
not negatively) correlated with the correct type of the
case, y. We believewith someminimum training, agent
assessments should possess this property. We formal-
ize rationality in the following definition.

Definition 1 (Rational Assessments). Agents’ assess-
ments are said to be rational if, and only if, Pr{Y �

1 | X j � x} is (weakly) increasing in x (for x ∈ (0, 1),
j ∈ {`, u}).
The following result connects the rational assess-

ments to the stochastic likelihood ratio ordering (denoted
by “≤lr”).8 All proofs are provided in Online Ap-
pendix A.

Lemma 1 (Rationality and Likelihood Ordering). In both
assessment-sharing scenarios (IA and SA), the agents’
assessments are rational if, and only if,X0

j ≤lr X1
j ( j ∈ {`, u}).

We note that since ≤lr is stronger than the usual
stochastic ordering (which yields ordering in expec-
tation), the above lemma also implies an ordering in
agents’ accuracy: when assessments are rational, we
have Ɛ[X0

j ] ≤ Ɛ[X1
j ].

We define rational assessments in the context of the
beta distribution model of agent knowledge as follows.

Definition 2 (Rationality Condition (RC)). The rational-
ity condition (RC) is said to hold if either (a) β0

j ≥ β1
j

and α0
j < α

1
j , or (b) β

0
j > β

1
j and α

0
j ≤ α1

j ( j ∈ {`, u}).
We note that the RC is not restrictive and holds for a

wide range of beta distributions. It can be viewed as a
minimum knowledge requirement for agents working
in a real-world setting.

Lemma 2 (Rationality). In both assessment-sharing scenar-
ios (IA and SA), the agents’ assessments are rational if, and
only if, the RC holds.

3.4. Optimal Knowledge-Based Decisions:
A POMDP Model

To address the first of the four fundamental ques-
tions raised in the introduction and characterize the
structure of the optimal decisions, we now model the
dynamics of the system. Because the correct decision
for each patient cannot be observed directly, we model
the dynamics of the system as a partially observable
Markov decision process (POMDP), where in addition
to the number of cases at the lower- and upper-level
queues, for each case in the system, we keep track of
the latest belief about the correct decision being Y � 1.
This latest belief serves as a sufficient statistic for each
case in the system and is updated in the following
manner. Each case arrives at a lower-level agent with a
prior probability of p1

l . Once assessed by a lower-level
agent, this probability is updated to p1

u , T1 (p1
l , xl),

where xl is the lower-level agent’s assessment (a noisy
observation/signal), and T1( · ) is a Bayesian updating
operator. If the case is referred to the upper-level agent
and is assessed by him or her, the probability is further
updated to p̃1

u , Tν
2 (p1

u , xu), where ν ∈ {IA, SA} rep-
resents the assessment-sharing scenario. In particular,
based on Section 3.2, when ν � SA, we assume that the
Bayesian operator Tν

2 utilizes the exact value of xl , and
when ν � SA, we assume it only utilizes the fact that
xl ∈A (even if it takes xl as an input).
Using the well-known uniformization technique, we

can transfer the underlying continuous-time Markov
chain to a discrete-time equivalent one. We can also
rescale time (without loss of generality) and assume
that the event rate is Λ , K(λl + µl) + µu � 1. In
this transformed system, we define the system state
to be (n` , nu ,p` ,pu), where n` � (nk : k ∈ K) is a
K-dimensional vector denoting the number of cases
in the lower-level agents’ queues, and nu denotes the
number of cases in the upper-level’s agent queue. Also,
p` denotes a K × b` matrix with its i , j element being
the prior probability of a case at the jth position9 in the
queue of the lower-level agent i (i ∈K, j ∈ {1, 2, . . . , b`}).
Thus, each element of p` is equal to p1

l ∈ (0, 1) unless the
corresponding position in the queue is empty, in which
case we assign a zero to that element (without loss of
generality). Similarly, pu is a vector with its jth element
denoting the belief that a case in the jth position of the
upper-level agent’s queue has a correct decision Y � 1.
To define the optimality equation, we let �+, b ,
{0, 1, . . . , b}, denote the state space by S , �K

+, b`
×

�+, bu
× [0, 1]Kb`+bu , and represent by F the set of all

real-valued functions defined on S . We then consider
the functional operators TA, k , TS, k , and TS, u (all from F
to F ) corresponding to an arrival event at lower-level
agent k ∈K, service completion at that agent, and ser-
vice completion at the upper level, respectively. For any
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function J ∈ F , we then define the functional operator
T̃∗: F →F as

T̃∗ J ,
∑
k∈K
(λlTA, k J + µlTS, k J)+ µuTS, u J. (5)

With these, the optimal long-run average cost opti-
mality equation for any state (n` , nu ,p` ,pu) ∈S can be
written (in the functional form) as

ϕ∗ + J(n` , nu ,p` ,pu)� T∗ J(n` , nu ,p` ,pu), (6)

where T∗ J(n` , nu ,p` ,pu) , h(nl(1K)T , nu)T + T̃∗ J(n` , nu ,
p` ,pu), and ϕ∗ is the optimal long-run average cost.
In (5), the operators TA, k , TS, k , and TS, u are defined as
follows:

TA, k J(n` ,nu ,p` ,pu)
, �{nk�b` }cb , ` +�{nk,b` } J(n` +ek ,nu , ψk , nk+1

(p` , p1
`),pu),

(7)

where � is the indicator function, ek is a K-dimensional
vector with a one as the kth element and zeros else-
where, and ψi , j(A, ξ) is a matrix operator that changes
the i , j element of matrix A to ξ. In addition,

TS, k J(n` , nu ,p` ,pu) , �{nk�0} J(n` , nu ,p` ,pu)

+ �{nk,0}

∫ 1

0
f`(x`) min

i∈{0, 1, 2}
{φi(n` , nu ,p` ,pu , x`)} dx` ,

(8)

where

φ0(n` , nu ,p` ,pu , x`)
, J(n` − ek , nu , ψk , nk

(p` , 0),pu)+ c1T1(p1
` , x`), (9)

φ1(n` , nu ,p` ,pu , x`)
, J(n` − ek , nu , ψk , nk

(p` , 0),pu)+ c0(1−T1(p1
` , x`)),

(10)

and

φ2(n` , nu ,p` ,pu , x`)
, �{nu�bu }(cb , u + J(n` − ek , nu , ψk , nk

(p` , 0),pu))
+ �{nu,bu } J(n` − ek , nu + 1, ψk , nk

(p` , 0),
ψ1, nu+1(pu ,T1(p1

` , x`))) (11)

represent the cost-to-go under decisions a � 0, a � 1,
and a �UP by the lower-level agent k ∈K (aftermaking
assessment xl), respectively. Finally,

TS, u J(n` , nu ,p` ,pu) , �{nu�0} J(n` , nu ,p` ,pu)

+ �{nu,0}

∫ 1

0
fu(xu) min

i∈{0, 1}
{φ̃i(n` , nu ,p` ,pu , xu)} dxu ,

(12)

where φ̃0(n` , nu ,p` ,pu , xu) , J(n` , nu − 1,p` , ψ−(pu)) +
c1Tν

2 (pu ẽT
1 , xu) and φ̃1(n` , nu ,p` ,pu , xu) , J(n` , nu − 1,

p` , ψ−(pu)) + c0(1 − Tν
2 (pu ẽT

1 , xu)) denote the cost-to-go
under decisions a � 0 and a � 1 by the upper-level agent
under the assessment-sharing scenario ν ∈ {IA, SA},
respectively. In these definitions, ψ−( · ) is a vector oper-
ator that takes a vector, deletes its first element, and
shifts all other elements one position to the left. Fur-
thermore, ẽ1 is a bu-dimensional vector with a one as
its first element and zeros elsewhere.

3.5. Structure of Optimal Decisions
We start by analyzing the optimal decisions at the
upper level. We define the critical fractile value

x∗u(pu ẽT
1 ) , (Tν

2 )−1
(
pu ẽT

1 ,
c0

c0 + c1

)
, (13)

where for all y ∈ [0, 1],

(Tν
2 )−1(pu ẽT

1 , y) , inf{x ∈ [0, 1]: Tν
2 (pu ẽT

1 , x) ≥ y}. (14)

We note that this critical fractile is similar to that of
a newsvendor problem with underage cost c0, overage
cost c1, and a demand distribution Tν

2 that depends on
pu ẽT

1 . In the following result, we show that the min-
imization in (12) is fully characterized by the critical
fractile x∗u(pu ẽT

1 ). This proves that the upper-level opti-
mal policy is a control-limit policy defined by x∗u(pu ẽT

1 )
for both ν � IA, SA.10

Proposition 1 (Control-Limit Policy: Upper Level). Under
the RC,

min
i∈{0, 1}

{φ̃i( · )} � �{xu≤x∗u (pu ẽT
1 )}
φ̃0( · )+ �{xu>x∗u (pu ẽT

1 )}
φ̃1( · ).

(15)
Hence, for both ν � IA, SA, the optimal decision at the upper
level is a control-limit policy defined by the following con-
vex policy regions: a∗u(xu)� 0 for all xu ∈ [0, x∗u(pu ẽT

1 )] and
a∗u(xu)� 1 for all xu ∈ (x∗u(pu ẽT

1 ), 1]. Furthermore, when the
monotonicity of Tν

2 (pu ẽT
1 , xu) in xu (established in Lemma 6

in Online Appendix A) is strict, x∗u( · ) is the unique solu-
tion to

f 0
u (x∗u)

f 1
u (x∗u)

�
p1

u c1

(1− p1
u)c0

, (16)

for both ν � IA, SA, where p1
u � pu ẽT

1 .
We now turn our attention to the optimal policy

at the lower level. We start by establishing Proposi-
tion 2, which states that the cost of adding a case with
updated belief p1

u , T1 (p1
l , xl) to the upper-level agent’s

queue is concave in p1
u . The proof of this result is estab-

lished via Lemmas 3 and 4, which demonstrate that (i)
the functional operator T∗ preserves this concavity prop-
erty and (ii) the function J( · ) can be viewed as the limit
(as the discount rate goes to zero) of a relative cost differ-
ence, where costs are calculated in an infinite-horizon
discounted cost setting. Moreover, the proof of point (i)
itself is based on the fact that the integration and min-
imization operators in (8) and (12) preserve concavity,
which we show in Lemma 5.
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Proposition 2 (Concavity in Updated Belief). The function
J(n` , nu ,p` , ψ1, nu+1(pu , p

1
u)) is concave in p1

u ∈ [0, 1] for all
states with nu < bu .
Lemma 3 (Concavity Preservation). Let F c ⊆ F be the set
of all real-valued functions defined on S that satisfy the
concavity property of Proposition 2, and denote by Jn ∈F the
optimal discounted cost function over n periods. If Jn ∈ F c ,
then Jn+1 � T∗ Jn ∈ F c .
Lemma 4 (Limiting Behavior). There exists a sequence of
discount rates ζi∈�→ 0 such that

J(n` , nu ,p` , ψ1, nu+1(pu , p
1
u))

� lim
i→∞
[Jζi
∞ (n` , nu ,p` , ψ1, nu+1(pu , p

1
u)) − Jζi

∞ (0, 0, 0, 0)],
(17)

where Jζi
∞ ( · ) is the infinite-horizon discounted cost when the

discount rate is ζi .
Lemma 5 (Concavity Preservation Operation). Let
g1(y ,x), g2(y ,x), . . . , gm(y ,x) be m real-valued concave
functions in y. Then, the function

g(y) , ƐX∼ f (x)

[
min

i∈{1,2,...,m}
gi(y ,X)

]
�

∫
x

[
min

i∈{1,2,...,m}
gi(y , x)

]
f (x) dx (18)

is also concave in y.
The concavity property established by Proposition 2

significantly simplifies characterizing the optimal pol-
icy. We first note that, because of this result and the
fact that functions φ0( · ) and φ1( · ) are affine in p1

u ,
T1 (p1

` , x`), the minimization in (8) is pointwise mini-
mum of three concave functions (which is itself con-
cave). To characterize this minimization, similar to (13),
we define the critical fractile value

x∗`(p1
`) , (T1)−1

(
p1
` ,

c0

c0 + c1

)
, (19)

where for all y ∈ [0, 1]

(T1)−1(p1
` , y) , inf{x ∈ [0, 1]: T1(p1

` , x) ≥ y}. (20)

The critical fractile x∗`(p1
`) defined above is the lower-

level agent’s assessment for which he or she would
be indifferent between decisions a � 0 and a � 1, had
he or she not have the option of referring the case to
the upper level. With these, we can now establish the
optimal policy of the lower level as a double control-
limit policy, where only cases with assessments that
fall between the two control limits11 enter the queue of
the upper level. The main intuition behind the proof
of this result is shown in Figure 3, which depicts the
behavior of functions φi( · ) for i ∈ {0, 1, 2} in terms of
the lower level’s updated belief p1

u , T1 (p1
` , x`). Due to

this specific structure, it is first shown that all of the
policy regionsmust be convex sets, which in turn results
in the double control-limit structure.

Figure 3. (Color online) Structure of Decision Making
at the Lower Level as a Function of the Updated Belief
p1

u , T1 (p1
` , x`) [p∗1u , c0/(c0 + c1)]

0 pu*
1 pu*

1 pu
1pu*

1 1

�0(·) �2(·) �1(·)

Proposition 3 (Double Control-Limit Policy: Lower Level).
Under the RC, there exist

¯
x∗`(n` , nu ,p` ,pu) and x̄∗`(n` , nu ,

p` ,pu), where 0 ≤
¯
x∗`(n` , nu ,p` ,pu) ≤ x∗`(p1

`) ≤ x̄∗`(n` , nu ,
p` ,pu) ≤ 1, such that

min
i∈{0, 1, 2}

{φi( · )} � �{x`≤¯
x∗` ( · )}

φ0( · )+ �{x`≥x̄∗` ( · )}
φ1( · )

+ �{
¯
x∗` ( · )<x`<x̄∗` ( · )}

φ2( · ). (21)

Hence, for both assessment-sharing scenarios ν � IA, SA,
the optimal decision at the lower level is a double control-
limit policy defined by the following convex policy regions:
a∗u(xu) � 0 for all x` ∈ [0, ¯

x∗`(n` , nu ,p` ,pu)], a∗`(xu) � 1 for
all x` ∈ [x̄∗`(n` , nu ,p` ,pu), 1], and a∗`(xu)� UP otherwise.

3.6. Sensitivity of Optimal Policy
In this section, we delve into the second question posed
in the introduction: How do environmental factors
affect the optimal policy? This is a vital question from
a managerial standpoint because it raises the issue of
what characteristics must be considered when design-
ing an effective system. By understanding how vari-
ous factors affect the optimal policy, we can also gain
insights into howdifferentHKBSSs should bemanaged
differently. Here, we explore the impact of: (i) decision-
error costs (c0 , c1), (ii) the population mix entering the
system (p1

`), and (iii) systemworkloads (n` , nu , λl).
3.6.1. The Effect of Decision-Error Costs. The source
of decision-error costs c0 and c1 differs among HKB-
SSs. In the TPT system, these costs are influenced
by downstream conditions—notably, the number and
type of patients waiting in the waiting area of the ED
to be treated following the triage stage. If the wait-
ing area is empty, then c1 is close to zero, because the
patient will move immediately into treatment regard-
less of whether or not the patient is classified correctly
as urgent. But if the waiting area is full of nonur-
gent patients, then c1 is high because misclassifying
an urgent patient will result in a long, and potentially
dangerous, wait. Similarly, c0 is close to zero if the wait-
ing area is empty, because no one will be forced to wait
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longer due to misclassifying a nonurgent patient as
urgent. However, if the waiting area has many nonur-
gent patients, then each of them will incur a delay cost
by jumping the misclassified patient ahead of them.
Worse, an urgent patient who arrives after the mis-
classified nonurgent patient has entered treatmentmay
have to wait. So, c0 increases in both the number of
nonurgent patients in the waiting area and the arrival
rate of urgent patients. These observations imply that
c0 and c1 will vary in both magnitude and ratio over
the course of a day for exogenous reasons.
In contrast, in a visa-processing system, c0 and c1 are

typically independent of the downstream conditions,
and are relatively stable over long periods of time. The
cost of granting someone a visa who should not receive
one, c0, might change as attitudes toward terrorism or
international students change, but such changes would
be on a time scale of months or years rather than hours.
The following result describes the effect of decision-

error costs on the control-limit structure established in
Section 3.5.

Proposition 4 (The Effect of Decision-Error Costs). The
function

¯
x∗`( · ) is nonincreasing in c1, x̄∗`( · ) is nondecreas-

ing in c0, and x∗u( · ) is nondecreasing (nonincreasing) in
c0 (c1) for both assessment-sharing scenarios ν � IA, SA.
Furthermore, (i) x̄∗`( · ) − ¯

x∗`( · ) → 0+ as c0 , c1 → 0+, and
(ii) x̄∗`( · ) − ¯

x∗`( · )→ 1− as c0 , c1→∞.

The implication of Proposition 4 for the TPT system
is as follows. When the waiting area of the ED is rel-
atively empty, decision-error costs c0 and c1 are both
negligible, so Proposition 4 suggests that cases should
not be routed to the TP. Thus, utilizing a TP during
such hours may not be economical. In contrast, when
the waiting area is crowded and the ED expects a high
near-term arrival rate of urgent patients, c0 and c1 are
both high, and Proposition 4 suggests that most cases
should be routed to the TP. This may require the ED
to hire additional TPs or implement other capacity-
management mechanisms to avoid overloading the TP.
Of note, when the waiting area is crowded but the
ED does not expect a high near-term arrival rate of
urgent patients, c1 might be high while c0 might be
in a middle range, because c0 is less sensitive (com-
pared to c1) to the current situation of the waiting area
and is more sensitive to the delay of future arrivals
who are truly urgent. Proposition 4 suggests that in
such circumstances,

¯
x∗`( · )will be close to zero but x̄∗`( · )

may be in a middle range, implying that not all cases
should be routed to the TP. This can limit the need for
hiring additional TPs or implementing other capacity-
management mechanisms.
3.6.2. The Effect of Population Mix. The mix of cases
served by an HKBSS may depend on many fac-
tors including geographical location, type of service
provided, and various economic factors. In the TPT

system, for instance, the ratio of urgent to nonurgent
patients varies among EDs, with level 1 trauma centers
on one side of the spectrum and small community-level
EDs on the other. The following result provides some
insights into the impact of case mix on the optimal con-
trol policy.

Proposition 5 (The Effect of Population Mix). The control-
limits

¯
x∗`( · ), x̄∗`( · ), and x∗u( · ) are all nonincreasing in p1

` for
both assessment-sharing scenarios ν � IA, SA.

Proposition 5 establishes that, regardless of the as-
sessment-sharing scenario, anHKBSS that sees a higher
percentage of Y � 1-type cases should impose lower
control limits for making a zero or one decision at both
the lower and upper levels. This means that an increase
in the percentage of Y � 1-type cases translates to a
decrease (increase) in the size of the region for which
a∗j(x) � 0 (a∗j(x) � 1). Interestingly, however, the effect of
an increase in percentage of Y � 1-type cases on the size
of the region forwhich the cases are routed to the upper
level (i.e., the region for which a∗`(x) � UP) is not nec-
essarily monotone. For the TPT system, it means that
a level 1 trauma center may or may not need to route
more cases to theTP compared to a community hospital
ED.Moreover, Proposition 5 implies differences in how
patients could be classified in the two EDs. For exam-
ple, it suggests that a TP that serves EDs in both a level 1
trauma center and a community hospital should assess
some patients in the level 1 trauma center as urgent but
assess identical patients asnonurgent in the community
hospital. This is in sharp contrast with the prevailing
belief that triage classification should depend only on
the medical conditions of a patient. Because triage clas-
sifications are used for prioritization, they need to be
viewed as relative rather than absolute ratings, which
implies that environmental conditions alsomatter.12

3.6.3. The Effect of Workload. Workload obviously
impacts the performance of an HKBSS. Understanding
this impact and how it can be managed by using infor-
mation about workload can help managers respond
efficiently to fluctuations (e.g., spikes) in workload.
Clearly, if the workload increase is large enough, more
capacity (e.g., triage nurses) will be needed. But, since
capacity is expensive, it might be essential to look
for more cost-effective alternatives for helping the sys-
tem to cope with workload spikes. In this section, we
investigate how the optimal control-limit policy reacts
to changes in the workload.13 In Section 4, we will
use the resulting insights to design effective heuristic
workload-rebalancing policies that alter the criteria for
directing/referring cases from the lower level to the
upper level in response to shifts in workload levels.

We start by presenting the following result.

Proposition 6 (Inverted V-Shape: Queue Lengths). The
control limits

¯
x∗`(n` , nu ,p` ,pu) and x̄∗`(n` , nu ,p` ,pu) are
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Figure 4. Typical Inverted-V-Shape Structure of a Lower-Level Agent Optimal Decision in (x , nu) Space (Left) and (x , nk) Space
(k � 1, 2, . . . ,K) (Right), Where x Represents the Lower-Level Agent’s Assessment

Assessment x
0

ak*(x) = 0 ak*(x) = 1

ak*(x) = UP

ak*(x) = 0 ak*(x) = 1

ak*(x) = UP

1
Assessment x

0 1

nonincreasing and nondecreasing in nk (∀ k ∈ K: nk < b`)
for both assessment-sharing scenarios ν � IA, SA, respec-
tively. Therefore, the optimal policy has the following prop-
erty at the lower level in both SA and IA scenarios:

a∗`(x)�1 (0) at queue length n`
�⇒ a∗`(x)�1 (0) at queue length n` +ek

(∀ k ∈K: nk < b`).
Proposition 6 implies that the optimal decision rule

for any lower-level agent follows an inverted-V-shape
structure in his or her queue length, a typical pat-
tern of which is shown in the right-hand panel of
Figure 4. A similar but rather intuitive fact—that the
“UP” region shrinks as the upper-level queue length
increases—is shown in the left-hand panel of Figure 4.
Similarly, corresponding to an increase in the arrival
rate, we have the following property at the lower level:
Proposition 7 (Inverted V-Shape: Arrival Rate). The con-
trol limits

¯
x∗`(n` , nu ,p` ,pu) and x̄∗`(n` , nu ,p` ,pu) are non-

increasing and nondecreasing in λl for both assessment-
sharing scenarios ν � IA, SA, respectively. Therefore, the
optimal policy has the following property at the lower level
in both SA and IA scenarios:

a∗`(x)� 1 (0) at arrival rate λ`
�⇒ a∗`(x)� 1 (0) at arrival rate λ` + ε,

for any ε > 0.
Proposition 7 implies that the optimal decision rule

for any lower-level agent also follows an inverted-V-
shape structure in the arrival rate, a typical pattern of
which is shown in Figure 5.

Returning to the workload-rebalancing policies,
Propositions 6 and 7 suggest that, to be effective, any
decision under an optimal workload-rebalancing pol-
icy that uses queue-length but not arrival-rate informa-
tion (arrival information but not queue lengths) must
mimic to the extent possible the property described
by Proposition 6 (Proposition 7). Moreover, the deci-
sions under an optimal policy (which uses both queue-
length and arrival-rate information) are described by
both Propositions 6 and 7, a typical pattern of which is
shown in Figure 6.

3.7. Levers for Improving Performance
To address the third question raised in the introduc-
tion, aboutwhich levers are effective for improving sys-
temperformance, we examine two options that address
the knowledge-based decision making that is central
to any HKBSS: (i) agent training and (ii) information
sharing between levels.
3.7.1. Agent Training. Agent training can improve per-
formance by increasing agent knowledge (accuracy
and/or consistency) and/or reducing cognitive biases.
We find that, regardless of the assessment-sharing
structure, the impact of a one-sided training program
(which helps agents to make better assessments about
either “yes” or “no” cases but not both) relative to a
two-sided program (which helps agents to make bet-
ter assessments about both type of cases) depends
on whether the implemented training program tar-
gets improving an agent’s consistency or accuracy.
Figure 7 illustrates this for an upper-level agent by
depicting his or her optimal control limits and percent-
age reduction in error cost under two training strate-
gies: strategy 1 (highly effective one-sided training)
and strategy 2 (moderately effective two-sided train-
ing).14 In the left-hand side of Figure 7, the training
is assumed to improve the agent’s consistency (vari-
ance) while keeping the accuracy (mean) constant. It
does so by assuming α0

u � f (ξ0), β0
u � 2 f (ξ0), α1

u �

3g(ξ1), and β1
u � g(ξ1), where f (ξ0) � (2 − 9ξ0)/27ξ0

and g(ξ1) � (3−16ξ1)/64ξ1. In this setting, Var(X0
u) �

ξ0 and Var(X1
u)� ξ1, while the accuracy levels are con-

stant: Ɛ[X0
u] � 1/3 and Ɛ[X1

u] � 3/4. We further assume

Figure 5. Typical Inverted-V-Shape Structure of a
Lower-Level Agent Optimal Decision in (x , λ`) Space, Where
x Represents the Lower-Level Agent’s Assessment

ak*(x) = 0 ak*(x) = 1

ak*(x) = UP

Assessment x
0 1
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Figure 6. Typical Inverted-V-Shape Structure of a Lower-Level Agent Optimal Decision in (x , nu , λ`) Space (Left) and
(x , nk , λ`) Space (Right), Where x Represents the Lower-Level Agent’s Assessment

Assessment x
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Larger �k

0 1
Assessment x

0 1

ak*(x) = 0

ak*(x) = 1

ak*(x) = UP

ak*(x) = 0

ak*(x) = 1

ak*(x) = UP

ξ0 , ξ1 ∈ (0,3/80] so that variances are positive and var-
ious suitable conditions (RC, boundedness, etc.) hold.
To capture the effect of strategy 1, we fix ξ0 � 3/80 and
let ξ1 � (3 − γ)/80, where γ ∈ {0,1,2} represents the
agent’s training level. Under strategy 2, we let ξ0 � ξ1 �

(3 − γ/2)/80. Thus, in the left-hand side of Figure 7,
strategy 1 represents a highly effective one-sided con-
sistency improvement, and strategy 2 represents amod-
erately effective two-sided consistency improvement.

Figure 7. Effect of Training Programs on Optimal Decision Thresholds (Top) and Cost Improvements (Bottom)
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Notes. Left: consistency training; right: accuracy training. Strategy 1: highly effective one-sided training. Strategy 2: moderately effective
two-sided training. Main parameters: c0 � 2, c1 � 1, p1

u � 0.5.

In the right-hand side of Figure 7, the effect of train-
ing is captured by improving the agent’s accuracy
while keeping the consistency constant. We do this
by finding the appropriate values of α and β parame-
ters such that the variances are fixed at the base level
of 3/80 while means are improved through training.
In particular, under strategy 1, we set α0

u � f (ξ0) and
β0

u � 2 f (ξ0) for a fixed ξ0 � 3/80, and find α1
u and β1

u
such that Var(X1

u) is fixed at 3/80 but the mean (for
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cases with y � 1) varies according to Ɛ[X1
u] � 3/4 +

0.1γ, where γ ∈ {0, 1, 2} represents the agent’s training
level. Under strategy 2, we find α and β parameters
such that Var(X0

u)�Var(X1
u)� 3/80, while Ɛ[X0

u]� 1/3−
0.1γ/2 and Ɛ[X1

u]� 3/4+ 0.1γ/2 (γ ∈ {0, 1, 2}). Thus, in
the right-hand side of Figure 7, strategy 1 represents
a substantial one-sided accuracy improvement, and
strategy 2 represents a moderate two-sided accuracy
improvement. We can summarize our insights about
agent training (from this and many similar experi-
ments we performed) as follows:
Observation 1 (Agent Training). The impact of training
programs depends on whether the training program
targets improving an agent’s consistency or accuracy.
When training targets consistency, a moderately effec-
tive two-sided strategy typically has a stronger impact
than a highly effective one-sided strategy, but for train-
ing programs that target an agent’s accuracy, the result
is reversed.
In practice, training programs may affect both accu-

racy and consistency of assessments. Nevertheless,
Observation 1 can guide decision makers in deciding
whether they should focus more on (a) accuracy or
consistency, and (b) two-sided or one-sided training
strategies. For instance, in the TPT setting, triage nurses
can be trained via presenting them with a balanced
mix of urgent and nonurgent patients, or with a mix
that emphasizes one of these two types. Furthermore,
training techniques may put their main emphasis on
nurses’ accuracy or on their consistency. Improving
consistency typically requires presenting nurses with
a wide range of cases that cover the whole spectrum
of patients who truly fall in one category (urgent or
nonurgent), while improving accuracy requires consid-
ering the most likely assessments of a nurse and shift it
toward zero (one) for patients who are truly nonurgent
(urgent). Observation 1 suggests that training nurses
to be more consistent in their assessments requires
improving consistency for both urgent and nonurgent
patients. However, training nurses to be more accurate
in their assessments can achieve a substantial improve-
ment in performance even if the accuracy applies only
to urgent or nonurgent patients.
3.7.2. Assessment Sharing. Passing the lower-level
assessment to the upper level can improve the perfor-
mance of an HKBSS by improving upper-level deci-
sions. For example, triage assessments made by nurses
can be communicated to the telemedical physician via
electronic forms. While it is not surprising that addi-
tional information improves decisionmaking, themag-
nitude of the benefit and the conditions under which
sharing is most valuable are not obvious. For exam-
ple, consider two scenarios: one in which the knowl-
edge gap between the upper- and lower-level agents is
primarily caused by higher accuracy of the upper-level
agent (labeled HA gap), and one in which this gap is

caused primarily by higher consistency of the upper-
level agent (labeled HC gap). Knowing which of these
scenarios benefit more from assessment sharing is of
potential value in managing and designing an HKBSS,
since implementing assessment sharing will typically
involve a cost.

To provide insights, we fix the knowledge of the
lower-level agent and vary the gap between consis-
tency and/or accuracy of the upper and lower level.
We do so by assuming α0

` � 1, β0
` � 2, α1

` � 3, and β0
` � 1

so that Ɛ[X0
`] � 1/3, Var[X0

`] � 1/18, Ɛ[X1
`] � 3/4, and

Var[X1
`] � 3/80. We then consider a low gap ηL � 5%

and a high gap ηH � 20%, and find the upper-level
agent’s beta distributions parameters separately for
each scenarios so that (a) under the HA gap scenario:
(i) Ɛ[X0

u]� (1− ηH)Ɛ[X0
`], (ii) Var[X0

u]� (1− ηL)Var[X0
`],

(iii) Ɛ[X1
u] � (1 + ηH)Ɛ[X1

`], and (iv) Var[X1
u] � (1 −

ηL)Var[X1
`]; and (b) under the HC gap scenario:

(i) Ɛ[X0
u]� (1− ηL)Ɛ[X0

`], (ii) Var[X0
u]� (1− ηH)Var[X0

`],
(iii) Ɛ[X1

u] � (1 + ηL)Ɛ[X1
`], and (iv) Var[X1

u] � (1 −
ηH)Var[X1

`]. Next, we consider a case entering the sys-
tem for which the lower agent makes an assessment
x` ∈ A and routes the case to the upper level. We
assume P` � 0.5 (in the base case), A � [0.4, 0.6], and
assessment sharing follows the IA and SA settings
introduced in Section 3.2.

To capture the impact of assessment sharing, we con-
sider the cost improvement due to assessment sharing
(i.e., cost difference in the IA and SA settings) under
scenario i ∈ {HA,HC}, and denote it by ∆i(SA| |IA).
Figure 8 compares the impact of assessment sharing
under HA and HC gap scenarios. From this figure, we
observe that the impact depends on the ratio of error
costs c0/c1. In particular, when c0/c1 is low, assessment
sharing is more impactful when it yields better deci-
sions for cases that are of true type Y � 1. Hence, when
upper-level knowledge for such cases is not much bet-
ter than that of the lower level, the upper level can
significantly benefit from the lower-level assessment.

Figure 8. Effect of Assessment Sharing Under HA and HC
Knowledge Gap Scenarios for Various Lower-Level
Assessments (x` ∈ {0.45, 0.50, 0.55})

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

0.5

1.0

1.5

c0
c1

�
H

A
 (

SA
 ||

 I
A

)

�
H

C
 (

SA
 ||

 I
A

) xl = 0.55
xl = 0.50
xl = 0.45



Saghafian et al.: Telemedical Physician Triage
Management Science, 2018, vol. 64, no. 11, pp. 5180–5197, ©2018 INFORMS 5193

Interestingly, we observe that this occurs more under
the HA scenario than under the HC scenario. That is,
when c0/c1 is low, assessment sharing has a higher
impact under the HA scenario than under the HC sce-
nario. However, the result is flippedwhen c0/c1 is high.
Based on Figure 8 and similar experiments we per-
formed, we make the following:

Observation 2 (Assessment Sharing). In HKBSSs in
which c0/c1 is low (high), assessment sharing is most
valuable when the knowledge gap between the upper
level and lower level is mainly due to higher accuracy
(consistency). Furthermore, the relative advantage of
assessment sharing under HA and HC gap scenarios,
∆HA(SA‖IA)/∆HC(SA‖IA), increases as the lower-level
assessment increases.

The implication of our results for managing an
HKBSS is that implementing assessment sharing is
particularly beneficial in systems in which (a) upper-
level knowledge is characterized by higher accuracy
compared to the lower level, and (b) c0/c1 is low. For
instance, asmentioned earlier, in the TPT system, triage
nurses make judgements about whether the patient
is urgent (Y � 1) or not (Y � 0). In such a setting,
classifying an urgent patient as nonurgent is typically
more costly than classifying a nonurgent patient as
urgent, and hence, c0/c1 is low. Thus, our results sug-
gest that assessment sharing is particularly valuable in
TPT systems in which the knowledge gap between the
telemedical physician and the nurses is due to better
accuracy. The gain from assessment sharing in such
systems is also higher for patients that have a higher
nurse assessment (i.e., are considered more likely to be
urgent).

4. Heuristic Workload-Rebalancing
Policies

Finally, we turn to the fourth question raised in the
introduction, whether simple methods can be used as
practical policies for managing workload fluctuations
in an HKBSS. The optimal policy characterized in Sec-
tion 3.5 provides important insights, but it (i) requires
full information about arrival rates, which are not
always available in practice, and (ii) prescribes a differ-
ent set of decision control limits for each queue length,
which may be impractical to implement. Furthermore,
as can be seen from the results in Sections 3.5 and 3.6,
the optimal policy depends on many parameters that
may change over time. In this section, we appeal to the
properties of the optimal policy to guide development
of more practical alternatives.

4.1. Heuristics
We begin by noting that the queue length at the upper
level has a stronger impact on the choice of the opti-
mal control limit (at the lower level) than do queue

lengths at the lower level. That is, the optimal control
limits change more dramatically in nu than in nk (k �

1, . . . ,K), as illustrated in Figure 4. This suggests that
simple policies that effectively restrict the flow of cases
to the upper level as nu increases may perform well.
Based on this intuition, we propose the following two
simple and implementable heuristic policies for man-
aging workload fluctuations in an HKBSS.
Green/Red Light (��). Under this policy, when the
upper-level queue length is less than some num-
ber, N GR, the system uses fixed (i.e., queue length–
independent) thresholds that are chosen so as to
optimize performance under the normal arrival rate,
( ˆ
¯
x∗` , ¿x∗`). When the upper-level queue length is greater
than or equal to N GR, lower-level agents are prohibited
from sending cases to the upper level (i.e., the “light”
changes from green to red) and must make 0/1 deci-
sions based on their own judgements (i.e., the thresh-
olds collapse to ˆ

¯
x∗` � ¿x∗` , so there is no “UP” region).

Switching (��). Under this policy, when the upper-
level queue length is less than some number, N SW ,
the system uses the optimal thresholds for the nor-
mal arrival rate, ( ˆ

¯
x∗` , ¿x∗`). When the upper-level queue

length is greater than or equal to N SW , the system uses
a second set of thresholds that are optimal for the max-
imum arrival rate.15

Note that the �� policy is similar to the �� pol-
icy except that �� uses spiked workload thresholds
that satisfy ˆ

¯
x∗` ≤ ¿x∗` , but �� uses thresholds that satisfy

ˆ
¯
x∗` � ¿x∗` . This implies that there are fewer control vari-
ables in �� than in �� , so it requires less search to
find the best threshold. The reasons we consider both
policies are that (i) the �� policy is intuitive and well-
suited for practice, and (ii) it is useful to determine
cases in which �� performs as well as �� despite
having fewer control parameters.

In addition to computing referral thresholds, to im-
plement the �� and �� heuristic policies, we must
also compute the optimal queue-length thresholds,
N ∗GR and N ∗SW . In practice, these would be set by the
upper-level agent or an external controller so as tomin-
imize total expected cost over the possible range of
arrival rates. We will do this numerically in our perfor-
mance evaluations.

4.2. Benchmark Policies
We introduce some benchmark policies to evaluate the
performance of our proposed heuristics. Detailed cal-
culations of thresholds and costs under these policies
are given in Online Appendix D.
Normal Operation (�Ɔ). Continue using the same
decision thresholds as in normal situations (e.g., aver-
age arrival rate and queue lengths) without using infor-
mation about either the new arrival rate or current
queue length.
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Reoptimization (�Ɔ). Adjust the decision thresholds
so that they are equal to their optimal levels for the new
arrival rate (but do not make use of real-time queue-
length information to alter thresholds).

4.3. Performance Analysis
To evaluate the performance of the two heuristics,
we designed an extensive test suite that covers var-
ious parameter settings consisting of 85,750 cases.
A detailed description of these settings is presented in
Online Appendix B.
To consider performance across a range of utiliza-

tions, we let λnorm � 0.5 and λmax � 0.95 denote the
normal and max arrival rates (an average utilization
that varies between 0.5 and 0.95 at the lower level),
respectively. We consider 10 discrete arrival rates with
0.05 increments. Letting C i

π denote the expected cost
at arrival rate λi � 0.5 + 0.05i (i � 0, 1, . . . , 9) under
policy π, with C0

π representing the expected perfor-
mance under normal conditions, we consider the total
expected cost among all arrival rates: TCπ �

∑9
i�0 C i

π.
Here, we are giving equal weight to all C i

π values
becausewe believe a suitable policy is one that is poten-
tially prepared for all arrival rates. Hence, we regard a
policy π as a strong candidate if both TCπ and C0

π are
close to that of the lower benchmark policy.
We start by comparing the performance of �Ɔ with

the optimal policy under the IA scenario over 720 sym-
metric cases (i.e., p1

` � 0.5, c1 � c0 � 1, α1
j � β

0
j , and β

1
j � α

0
j

( j � `, u)). These symmetric cases cover different val-
ues of system parameters including α1

j , β
1
j , h, K, cr ,

and µu (see Online Appendix B for details). The results
are summarized in Table 2. As the table shows, the
optimality gap between �Ɔ and the optimal policy is
on average 0.02 and 0.01 with respect to TCπ and C0

π,
respectively. Furthermore, in more than 95% (98%) of
cases, the gap in TCπ (C0

π) is less than 5%. These indi-
cate that the performance of �Ɔ is indeed very close to
that of the optimal policy. This gives us confidence that
we can use �Ɔ as a lower benchmark policy through-
out the remainder of our numerical study.
To compare the performance of the proposed poli-

cies, we consider the following performance measures.
Opportunity (OP). This metric, which compares the
gap between the cost of the upper bound (�Ɔ) and
lower bound (�Ɔ) policies is defined as OP � (TC�Ɔ −
TC�Ɔ)/TC�Ɔ. The value of OP (which is always

Table 2. Performance Comparison Between �Ɔ and the
Optimal Policy (Denoted by “∗”)

Metric (TC�Ɔ −TC∗)/TC∗ (C0
�Ɔ −C0

∗ )/C0
∗

Mean 0.02 0.01
Max 0.17 0.16
Fraction of cases 95 98

with value <5% (%)

positive) indicates the potential for improvement by
using workload rebalancing to avoid cost explosions
under spiked workload conditions. The larger this
value, the more the potential benefit from workload
rebalancing.
Efficiency Loss (EF). Thismetric, whichmeasures loss
in overall performance when using a heuristic pol-
icy (�� or ��) instead of the lower benchmark pol-
icy (�Ɔ), is defined as EFπ � (TCπ − TC�Ɔ)/TC�Ɔ

(π ∈ {��,��}). Obviously, we expect EFπ ≤OP (∀π ∈
{��,��}). The lower the efficiency loss EFπ, the
better the heuristic policy π. When EF is close to zero,
it implies that the heuristic policy performs similarly
to the lower benchmark policy �Ɔ and, hence, is an
efficient workload-rebalancing policy. Note that since
�Ɔ does not yield a true lower bound, it is possible for
EFπ to be slightly lower than 0.
Adaptivity Loss (AD). This metric, which compares
performance under normal operating conditions of the
heuristic control policies (�� or ��) relative to the
lower benchmark policy (�Ɔ), is defined as ADπ �

(C0
π − C0

�Ɔ)/C0
�Ɔ (π ∈ {��,��}). If a policy achieves

low values of EFπ and ADπ, then it can be regarded as
a “one-size-fits-all” type of strategy, since it can both
resolve workload spikes effectively and perform well
when there is no workload spike. We call such a policy
“adaptive.”

Table 3 presents the main results using the above
metrics (for all 85,750 test cases) under IA and SA sce-
narios. In addition to computing the performance met-
rics, we performed paired T-tests on various system
parameters (e.g., lower- and upper-level knowledge,
lower- and upper-level error costs, upper-level holding
cost, and upper-level congestion-related balking cost)
to find the statistical relationship between these param-
eter values and the performance metrics. The results
of the paired T-tests, as well as more details about the
underlying numerical analysis, can be found in Online
Appendix B.

Column (1) of Table 3 shows that, regardless of
the assessment-sharing structure, the �Ɔ policy does
not work well compared to �Ɔ. As the table shows,
using workload-rebalancing policies under the SA (IA)
scenario can reduce the cost by an average of 22%

Table 3. Performance of Heuristic Policies Under the IA and
SA Scenarios as Measured by Average and Variance of
Various Metrics

(1) (2) (3) (4) (5)
Metric OP EF�� EF�� AD�� AD��

Average (IA) 0.22 0.01 −0.01 0.00 0.00
Variance (IA) 0.24 0.003 0.0001 0.0001 7E-05
Average (SA) 0.43 0.03 −0.01 0.00 0.00
Variance (SA) 1.3 0.010 0.0001 0.0001 9E-05
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(43%). This result together with the paired T-test
results lead to the following observation regarding the
opportunity metric.

Observation 3 (Opportunity). Workload rebalancing in
both SA and IA scenarios is an effective mechanism
for mitigating the negative effect of workload spikes.
Furthermore, regardless of the assessment-sharing
structure, OP typically increases as the holding cost
decreases, rejection/balking cost increases, lower-
level knowledge decreases, and upper-level knowledge
increases.16

The reasoning behind these results is as follows.
Under the �Ɔ policy, when the arrival rate is large, the
upper level is likely to be overloaded, resulting inmuch
higher rejection/balking and holding costs than under
the lower benchmark policy. This is particularly the
case in scenarios in which the “UP” region (see, e.g.,
Figure 4) is large under normal conditions, and hence,
the upper level is more likely to be a bottleneck. Obvi-
ously, when the holding cost decreases (resulting in
less incentive to allow cases to leave the system), lower-
level knowledge decreases, or upper-level knowledge
increases, there is more incentive to send a case to the
upper level, and hence the “UP” region becomes larger.
This causes OP to increase. The rejection/balking cost
also has a positive effect on OP. This is because extra
rejection/balking costs only occur when the upper
level is overloaded, which becomes less likely when
workloads are rebalanced. Hence, when the rejec-
tion/balking cost increases, TC�Ɔ increases, but TC�Ɔ

is not affected as strongly, which causes OP to increase.
Themanagerial implication of these results is that if the
holding cost is not too large, the rejection/balking cost
is not too small, and/or the upper-level agent is signif-
icantly more experienced than the lower-level agents,
then the system is vulnerable to a workload spike.
Columns (2) and (3) of Table 3, along with the paired

T-test results (Online Appendix B), lead to the follow-
ing observation about the efficiency of the proposed
heuristic policies (�� and ��).

Observation 4 (Efficiency). Under both the SA and IA
scenarios, the heuristic policies �� and �� perform,
on average, close to �Ɔ. Furthermore, both policies are
typically more efficient when lower-level knowledge is
close to upper-level knowledge. However,�� becomes
typically more efficient as the holding cost increases,
but�� becomes typicallymore efficient as the holding
cost decreases.

To understand the intuition behind the above result,
we note that both �� and �� reduce the fraction of
cases that are sent to the upper level, albeit at a higher
error cost. When the gap between the knowledge level
of the lower-level agent and higher-level agent is small,
referring fewer cases to the upper level does not result

in a risk of a high error cost, and hence, the potential
loss due to errors is low. Moreover, both �� and ��
lose efficiency compared to �Ɔ (i.e., EF�� and EF��

increase) because the system can maintain a lower
holding cost if more cases leave. The efficiency of ��
is also low when the holding cost is low, since unlike
�� , it stops sending “difficult” jobs to the upper level
whenever the upper-level queue becomes higher than
a threshold. In such a situation,�� does not selectively
use the upper-level capacity to reduce error costs. But
when holding cost is not a dominant concern, paying
attention to error costs becomes more important.

From Table 3, we can also compare the performance
of the two myopic heuristic policies with each other by
considering columns (2) and (3). From this comparison
and the paired T-test results (Online Appendix B), we
can make the following observation:

Observation 5 (EF�� vs. EF�� ). On average, the over-
all performance of �� is better than that of ��. How-
ever, the �� policy can be used instead of the slightly
more complex �� policy without a significant perfor-
mance loss unless the holding cost is low, upper-level
knowledge is high, or the lower-level knowledge is low.

This is due to the fact that, unlike ��, �� mim-
ics the threshold structure from the optimal policy.
The managerial implication of the above results is that
when holding cost is low, upper-level knowledge is
high, and lower-level knowledge is low, the system
should keep sending the most difficult cases to the
upper level even when the upper-level queue length
is large. Therefore, the manager should choose the
slightly more complex �� policy over the �� pol-
icy under such conditions. Under other conditions, the
simpler �� policy is generally good enough.

We next consider the ADπ metric for policy π ∈
{��,��} (i.e., columns (4) and (5) of Table 3) and
present our main findings in Online Appendix F. As
indicated there, we observe that for realistic ranges of
parameters, the heuristics exhibit reasonable perfor-
mance under both normal and spiked workload situa-
tions, and hence, they should be considered as effective
“one-size-fits-all” workload-rebalancing policies.17

4.4. Robustness of Heuristic Policies
Finally, we study the robustness of our proposed
heuristic policies, �� and �� , to their optimal queue
length thresholdsN ∗GR andN ∗SW . This is of practical sig-
nificance, because as noted earlier many of the param-
eters that affect calculation of these thresholds may
change over time. Furthermore, for many other rea-
sons, it might not always be possible to find the exact
values of N ∗GR and N ∗SW in real-world settings. Our
results presented in Online Appendix E indicate that
the proposed heuristic control policies can be safely
implemented, even if their control parameter (N ∗π) is
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not fully optimized. This gives us further confidence
that the proposed heuristics are robust to a variety of
parameters that may change over time or parameters
that are subject to misestimations for other reasons.

5. Conclusions
Hierarchical knowledge-based service systems
(HKBSS), in which the interplay between workflow/
queueing dynamics and knowledge-based decision
making governs system performance, are prevalent in
modern organizations. In this paper, we focused on
the emerging practice of telemedical physician triage
(TPT), but also noted other settings in which similar
structures occur. We constructed a POMDP model
based on a novel model of agent knowledge, and used
this framework to provide an analytic description of
the optimal policy for processing and referring cases in
a two-level system with binary decisions. This showed
that the optimal decision thresholds are described by
control limits with an “inverted-V-shape” structure.
These imply that lower-level agents should make deci-
sions on a higher proportion of cases as theworkload at
the upper level grows. We used this structural insight
to design two practical heuristic policies, which we
term the green/red light and switching policies. Via
numerical tests, we demonstrated that these are both
effective in adjusting system performance to fluctua-
tions in workload and robust to errors in the heuristic
control parameters.
In addition to providing a practical framework

for managing the time-versus-quality trade-off in an
HKBSS, our work provides several important man-
agerial insights not obtainable from previously avail-
able models. By describing the sensitivity of the opti-
mal policy to various environmental parameters, our
results shed light on the factors that managers of HKB-
SSs need to consider. For example, by examining the
sensitivity of the optimal policy to the decision-error
costs and interpreting those costs in the context of the
TPT system, we showed that a hospital ED should
increase its use of a remote telemedical physician to
make patient triage decisions as congestion in the ED
waiting area increases. This is an insight that clini-
cians experimenting with TPT did not have prior to
our work. Furthermore, by examining the case mix
that varies among EDs (e.g., a level 1 trauma center
versus a community hospital), we demonstrated that
different EDs need to utilize TPT in different ways.
Specifically, if a patient with same medical condition
is evaluated by the same telemedical physician for a
level 1 trauma center and for a community hospital, the
optimal policy may recommend classifying the patient
as urgent in one but as nonurgent in the other. This
insight is in sharp contrast with the prevailing belief
that triage classification should depend only on the
medical conditions of a patient. Our model highlights

the reality that since triage classifications are used for
prioritization, they should take into account the envi-
ronmental and operational conditions in which they
are made.

By leveraging our model of agent knowledge, we
also described how agent training and information
sharing between agents can be used to improve system
performance. We showed that training can be useful
by improving either consistency or accuracy in agent
decision making. However, to be effective, training that
targets consistency must focus on improving consis-
tency for both types of patients in the binary space, but
training that targets accuracy can be effective even if it
improves accuracy for only one type of patient. These
findings can help managers design the most suitable
training strategies for their system.

Finally, we showed that sharing the assessment of
the lower-level agent with the upper-level agent can
improve decision making at the upper level. While the
benefit of information is intuitive, our model further
enabled us to show that assessment sharing is most
useful in systems in which the upper-level agent is
more accurate than the lower level and the ratio of
the error costs is low. A TPT system, where the error
cost of misclassifying a nonurgent patient is typically
smaller than that of misclassifying an urgent patient,
has this property and so would benefit significantly
from having the triage nurse share his or her assess-
ment with the telemedical physician (e.g., through
electronic forms). Again, this is a new and potentially
useful insight for designing TPT systems.

Endnotes
1Most EDs in the United States use the five-level Emergency Severity
Index (ESI) system. ESI-1 patients are life-threatening emergencies
that are routed immediately to a resuscitation area, while ESI-4 and
-5 patients are simple enough to be sent to a “fast track.” The patients
that remain in the main ED are ESI-2 patients, who cannot wait
without clinical risk and hence are “urgent,” and ESI-3 patients, who
can wait without risk and hence are “nonurgent.”
2This paper seems to be an earlier version of Alizamir et al. (2013).
3The model takes queue lengths into account, and hence, optimizing
it will determine whether it is better to refer cases to the upper level
and incur congestion-related rejection/balking cost there, or to make
a less accurate decision at the lower level without any referral.
4We use a bold font to denote vectors and matrices.
5Using our model in real-world settings requires estimation of the
model parameters p1

` and the beta distribution coefficients. These can
be estimated using historical data or expert judgments (through test
cases). For instance, once we have evaluated the correct decisions Y
for a sample of cases, we can estimate p1

` , and estimate the density
function f y

j (x). A more detailed explanation of this procedure is
given in Online Appendix C.
6We assume that these densities are tier dependent but the same
among the agents within each tier (e.g., among lower-level agents).
This assumption is made for tractability and also represents the fact
that, in practice, knowledge levels vary significantly across tiers (e.g.,
between nurses and physicians) but onlymoderately within each tier
(e.g., among nurses). However, extending our model and analyses
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to cases where these densities are different even within each tier is
relatively straightforward.
7For notational simplicity, however, we may suppress the depen-
dency of fu to x` (or set A), and use fu(x) whenever it is clear from
the context.
8 If f and g represent the densities or probability mass functions
of two random variables X and Y, respectively, and f (ξ)/g(ξ) is
increasing in ξ over the union of the supports of X and Y, then X is
said to be greater than Y in the likelihood ratio ordering (Y ≤lr X).
9First position is the patient under service, second is the first one in
line, etc.
10When ν � IA, the critical fractile x∗u(pu ẽT

1 ) is constant in pu ẽT
1 since

the Bayesian operator Tν
2 does not use the value of pu ẽT

1 . Neverthe-
less, for generality, we write it as x∗u(pu ẽT

1 ).
11These cases can be thought of as more complex ones for which the
agent has a less clear judgement.
12Other environmental factors that might vary across hospitals are
the decision-error costs, which may in turn be affected by the case
mix. For instance, as mentioned in Section 3.6.1, if the waiting area
is full of nonurgent patients (which is more likely to occur in a com-
munity hospital ED than in a level 1 trauma center, assuming that
they operate at an equal level of congestion), then c1 is high. This in
turn will affect the optimal threshold levels (in the direction implied
by Proportion 4). Thus, differences in decision-error costs caused by
the difference in case mix will further differentiate optimal decisions
in level 1 trauma centers from those in community hospital EDs.
13As noted in Section 3.6.1, the decision-error costs may also vary
based on the system’s downstream congestion. To provide clear
insights, we focus here on the role of workload by keeping all else
(e.g., the decision-error costs) equal.
14Note that keeping the effectiveness (i.e., the magnitudes of im-
provement in assessments’ accuracy and/or consistency) the same,
a two-sided training program is clearly better than a one-sided one.
Thus, it is sufficient to consider these two strategies.
15Such a maximum arrival rate is typically determined by the sys-
tem’s manager. Because of the balking behavior (maximum allowed
queue lengths), the network remains stable even for large arrival
rates. For instance, in some states, EDs are allowed to go on diver-
sion. However, for an HKBSS in which balking does not occur, this
arrival rate can also be found via stability analyses—the arrival rate
at the lower agents should satisfy two conditions: (a) it should be less
than the lower-level service rate, and (b) be such that the total arrival
rate of referred cases to the upper level under an optimal policy is
less than the upper-level service rate.
16Knowledge level is measured in terms of accuracy and/or consis-
tency of assessments.
17 In Online Appendix G, we also shed light on the ability of these
policies to improve performance via assessment sharing.
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