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Abstract
We study how to admit and schedule heterogeneous patients by using simple, inter-
pretable, yet effective policies when capacity is scarce, no-show behavior is patient- and
time-dependent, service duration and reward are deterministic but patient-dependent,
and overtime is costly. Our work is motivated by the aforementioned operational chal-
lenges that typically face adopters of new technologies in the healthcare sector. We
anchor our study on a partnership with the proton therapy center of Massachusetts
General Hospital (MGH), which offers a new radiation technology for cancer patients.
We formulate the problem as a nonlinear integer optimization problem. However, as
the solution to this formulation lacks both tractability and interpretability, to be rele-
vant to practice, we limit our study to simple and interpretable policies. In particular,
we propose a simple index-based rule and derive analytical performance guarantees
for it. We also calibrate our model using empirical data from our partner hospital, and
conduct a series of experiments to evaluate the performance of our proposed policy
under practical circumstances. The analytical performance guarantees and our numer-
ical experiments demonstrate (a) the strong performance of the proposed policies, and
(b) their robustness to various practical considerations (e.g., to potential misspecifica-
tion of no-show probabilities). Our results show that our proposed policy, despite being
a simple and interpretable index-based rule, is capable of improving performance by
about 20% at an organization such as MGH, and of delivering results that are not
far from being optimal across a wide range of parameters that might vary between
organizations. This suggests that the proposed policy can be viewed as an effective
“one-fits-all” capacity allocation rule that can be used in a variety of environments in
which operational challenges such as no-shows and overtime costs need to be navigated
using simple and interpretable rules.

K E Y W O R D S
appointment scheduling, index rules, no-shows, nonmonotone submodular maximization

1 INTRODUCTION

Motivation
Adoption of new treatment technologies often enables orga-
nizations in the healthcare sector to drastically improve their
service quality and generate additional value. At the same
time, adoption of such technologies typically requires sub-
stantial investments (e.g., in new equipment or skilled labor).
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It is, therefore, crucial for adopters to allocate their new-
technology-enabled service to users in a way that makes the
best use of their installed capacity. On the surface, this crucial
task is facilitated by the ample demand that flocks to adopters.
Specifically, due to the advantages that such new technolo-
gies offer to users, organizations that adopt them typically
face a high demand level compared to the installed capacity.
This enables them to be more selective about which users to
admit and when to schedule them to receive the service. How-
ever, these admission and scheduling decisions are impeded
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by common practical considerations that often arise in such
contexts, most notably no-shows, overtime costs, and the need
for interpretable allocation rules.

No-shows. Users who are scheduled to receive service but
do not show up can cause serious problems for adopters of
new technologies particularly in light of their elevated oppor-
tunity and unused capacity costs. Although user’s no-show
propensity might be reduced by the new technology’s higher
service quality, it could also be offset by potentially increased
scheduling lead times owing to increased demand. The conse-
quences of no-shows is particularly compounded in services
in which capacity allocation requires some advance coordi-
nation and planning with users, which make it impossible
for the adopters to allocate the capacity assigned to a no-
show user to a new one. For example, patients accepted to
be treated with a new treatment technology need to be con-
tacted in advance, informed, checked for their insurance and
other documents, and scheduled for treatment starting a spe-
cific date. While waiting for their scheduled appointments,
patients might decide to use the old treatment technology
instead of waiting longer for the new one, especially if their
health condition starts to degrade. Thus, even though capac-
ity is allocated to a patient, he/she might not show up to use
it. Furthermore, the lengthy advance planning and coordina-
tion that is required to shift the allocated capacity to another
patient means that the allocated capacity will be wasted, as
last-minute replacements are often impossible in practice.

In view of the aforementioned considerations, selecting
which users to serve from the set of interested users and when
to schedule them to receive the service needs to be decided
upon in a way that accounts for the induced no-show behav-
ior of scheduled users. Of note, accurate predictions of who
is likely to “show up” and the related time sensitivities, there-
fore, can exceedingly help adopters of new technologies to
make better allocation and scheduling decisions. However,
such accurate predictions are rarely available to adopters, as
they deal with a newly introduced technology for which there
are not enough data to reliably estimate show-up probabil-
ities. Lack of data availability also impedes the ability to
identify important consumer features that can serve as strong
show-up predictors.

Overtime costs. Arguably, the most common approach to
compensate for the risk of wasted capacity due to no-shows
is overbooking.1 The flip side of overbooking is that it could
lead to overtime operations, which could be costly for the ser-
vice provider. In particular, for adopters in certain services,
access to flexible or slack capacity on demand to cover over-
time needs might be limited or very expensive. A hospital
offering a new treatment technology, for example, might need
to hire additional skilled labor that is knowledgeable about
the new treatment, or compensate existing staff for overtime.
Therefore, scheduling decisions need to carefully account for
potential overtime costs.

Interpretable allocation rules. Allocation of scarce, highly
valuable resources tends to be contentious in nature as it
could have important implications for the allocatees’ welfare.
Consequently, it is often highly desirable for the allocation

rules to be transparent and interpretable, so that they can
be easily understood and trusted by the allocatees. This is
especially important in sectors such as healthcare, because
denying or providing treatment to patients, and sometimes
even delaying the treatment for them due a prioritization rule
in place, could be a life-or-death related decision (Bertsi-
mas et al., 2013; Saghafian et al., 2014). Therefore, most
adopters of disruptive new technologies tend to be reluctant
to rely on complex “black-box” type algorithms as their allo-
cation rules, and rather prefer to make use of interpretable
and easy-to-implement rules instead.

Our study
In this paper, we develop a procedure to assist organizations
that face the above-mentioned issues with making two inter-
woven decisions: given a set of heterogeneous users, and
some limited service capacity over a time window, (a) who
to allocate the scarce capacity to (i.e., an admission deci-
sion), and (b) for those admitted, when to serve them (i.e.,
scheduling decisions). Our study of these decisions under
the foregoing issues is particularly motivated by the situa-
tion at the Proton Therapy Center of our partner hospital,
Massachusetts General Hospital (MGH).

By using protons rather than x-rays, proton therapy offers
a superior technology for treating cancer compared to the tra-
ditional radiation therapy. Specifically, proton therapy offers
two important advantages compared to the traditional x-
ray-based radiation therapy: (a) more radiation delivered to
the malignant tumor, and (b) less radiation delivered to the
healthy tissues surrounding the tumor. In addition, proton
therapy typically causes fewer and less severe side effects
such as low blood counts, fatigue, and nausea. Due to
these advantages, demand for proton therapy among cancer
patients is currently extremely high. However, as the tech-
nology is relatively new, only a few facilities in the United
States currently offer it (including a center at our partner
hospital, MGH), and capacity at each of these facilities is
fairly limited. Due to this typical high demand-to-capacity
ratio, some patients face long service lead times further pro-
longed by the lengthy insurance approval and proton therapy
planning process, in total taking a few (if not many) weeks.
Because patients waiting to receive treatment might seek
outside options (e.g., traditional radiation therapy), MGH
faces costly last-minute cancelations (i.e., no-shows).2 Fur-
thermore, compensating for the wasted capacity due to such
cancelations through overbooking often translates to sig-
nificant overtime costs at MGH. Finally, as decisions on
who should be accepted to receive treatment via this new
technology and when to serve accepted patients are sen-
sitive in nature (e.g., could be a matter of life or death),
MGH administrators are reluctant to implement “black-box”
rules. Instead, they are in need of allocation rules that can
be easily interpreted and described to patients, providers,
and stakeholder.

Our approach
We follow a step-by-step approach. Motivated by the sit-
uation at our partner hospital, we start by developing a
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framework to study joint admission and scheduling decisions
for a given set of heterogeneous users under the risk of (a)
patient- and time-dependent no-shows, and (b) overtime oper-
ations. We then analyze the optimal policy, and find it to be
complex and not interpretable for implementation in practice.
Thus, as part of our step-by-step approach, we try to first
gain an understanding of the complex problem faced by our
partner hospital by considering a simplified model that can
capture the main trade-offs discussed above. This allows us
to develop a simple heuristic rule that is expected to work
well in practice. We then relax some of the simplification
assumptions of our model, provide extensions, and make use
of simulations calibrated with hospital data to test the per-
formance of the proposed heuristic rule under more realistic
scenarios that better represent the complex environment at
our partner hospital.

A particular example of our step-by-step approach is the
fact that we begin our analysis by gaining insights into the
main trade-offs by assuming that each patient only requires
one visit. We then relax this assumption and provide an exten-
sion by considering more realistic situations in which some
patients require multiple (and a heterogenous number of)
visits. Finally, we note that hospital administrators need to
consider other practical issues that may exist in their practice
but do not systematically affect the main trade-offs we study
in this paper. For example, some proton therapy centers may
prefer to reserve a small portion of their capacity for specific
use (e.g., a small block of time of one of their gantry rooms
might be reserved for pediatric patients under anesthesia). We
highlight that such preferences (a) can be easily incorporated
into our heuristic rule3, and (b) are relatively case-by-case
without any systematic effect on the main driving forces we
strive to study.

Our contributions
Our main contributions can be summarized as follows.

∙ We develop a simple, interpretable, and easy-to-implement
index-base rule that could be used to tackle joint admission
and scheduling decisions for heterogeneous users under
the risk of patient- and time-dependent no-shows, and
overtime operations, faced by various hospitals, including
MGH.

∙ We provide theoretical performance guarantee for our pro-
posed index-based rule. From a technical perspective, our
work extends the available results for the generalized
assignment problem (GAP). This is because, in contrast to
the literature on GAP, we deal with overtime costs, and
hence, an integer optimization problem with a nonlinear
objective function. Another key difference with the avail-
able studies on GAP is that we seek to find a policy that
is simple and interpretable, can allow for no-shows, and is
also robust to potential misspecifications of no-shows.

∙ We provide simulation-based evidence using hospital data
for the effectiveness of our proposed policy. In addition, we
find this policy to be robust to input data misspecifications
(e.g., patient- and time-dependent no-show probabilities,

which are inherently hard to calibrate in practice). Our sim-
ulation experiments also reveal that this policy performs
well under a wide range of factors that could vary among
hospitals. Thus, besides being an easy-to-implement and
effective policy, our proposed policy can be viewed as a
“one-fits-all” rule that can be used in a variety of hospitals.

∙ Employing machine learning and predictive analytics, we
also shed light on patient characteristics and useful learn-
ing approaches that can be utilized to effectively predict
no-show risks. This can be valuable in practice, as pre-
dicting no-show risks and incorporating them in admission
and scheduling decisions can yield substantial benefits.
Predicting no-show, however, is a challenging task, as
no-show risks often depend on a variety of patient char-
acteristics as well as the delay in offering the capacity (i.e.,
are patient- and time-dependent). Despite this challenge,
our machine learning approaches show promising results
for predicting no-show risks, and thus, offer new predictive
tools that can be implemented in practice.

2 MODEL AND RELATED STUDIES

We start by developing a simplified model that can capture
the main trade-offs discussed in Section 1. In doing so, we
take advantage of some of the observations we have made
based on collaboration with our partner hospital (one of the
authors of this paper is the medical director of Proton Therapy
Center of our partner hospital). Before we formally introduce
the model, we make three notable observations.

First, as we discuss in more in detail in Section 5, while
patients submit their requests/applications in a dynamic man-
ner, patient applications are batched and are reviewed only
periodically and with a fixed review cycle (e.g., 4 weeks).
That is, a group of physicians review all the collected patient
applications (e.g., medical documents, history, etc.) in the
beginning of each cycle and evaluate their suitability for
proton therapy. As reviewing applications require extensive
evaluations, this makes “online” (i.e., on-the-spot) decision-
making impossible. Instead, the practice involves collecting
all the applications and making decisions in an “offline” man-
ner. Once it is decided which patients should be accepted
(among those reviewed in that cycle), accepted patients are
then scheduled to receive treatment. Those who are reviewed
but not accepted (i.e., are rejected) are informed. These
rejected patients typically seek other treatment options (e.g.,
traditional x-ray therapy) and do not apply again, as waiting
further can be detrimental. In addition, reviewed applications
will not be re-reviewed in another cycle. Thus, decisions
made at each review cycle do not have a systematic impact
on those of the next review cycle. These facts allow us to
focus on studying the problem faced by the practitioners at
the beginning of each review cycle in isolation (i.e., as a static
problem as opposed to a dynamic one).

Second, as is detailed in Section 5, there are various fea-
tures in proton therapy that prevent assigning capacity that is
freed up due to a last-minute no-show to a different patient.
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For instance, delivering treatment in proton therapy requires
a physician (e.g., a radiation oncologist) to have enough time
to develop a radiation treatment plan along with a dosime-
try and medical physics team. In addition, prior to delivering
the treatment, multiple other preprocessing steps need to be
taken (e.g., clinical determination of region to be treated,
quality assurance testing, and peer review of treatment plan,
among others). Due to these preprocessing steps, no-shows of
scheduled patients almost always result in wasted scheduled
capacity. Thus, unlike many other healthcare appointment
scheduling studies, we consider a model in which no-shows
do not free-up capacity.

Third, we note that no-show probabilities in proton ther-
apy mainly depend on when a patient’s first visit is scheduled,
and are not affected by his/her follow-up visits—if any. That
is, once the treatment delivery process for a patient starts,
the patient adherence to using subsequent appointments is
very high.

With these observations from our partner hospitals in mind,
we proceed by developing a simple model that captures the
main trade-offs in admitting and scheduling patients. To this
end, we start by assuming that each patient requires only one
visit. The extension of the results gained to multiple visits is
relatively straightforward, and we defer the related discussion
and analysis to Section 6.

Consider a facility that has limited capacity to provide
some medical service over some future time window that
spans T time periods. A time period could be, for example,
1 day. On each such future time period there are C available
service time slots. If service runs in excess of this capac-
ity, overtime cost is incurred at a rate of 𝜃 per time slot.
Service on each time period cannot run for more than C
time slots under any circumstances. These capacity and cost
structures reflect that staffing is usually a primary part of
expenses for medical services. That is, given that schedules
for staffing have to be made ahead of time, the capacity C
should then be understood as the nominal capacity that has
been already “paid for” in advance (we hereafter often refer
to it as the “soft capacity”), and C as a physical constraint on
the available technology and/or a regulatory limit on staffing.

There are N patients who seek to be admitted and sched-
uled for the service. Each patient belongs to one of K different
classes, indexed by k ∈ [K].4 Let 𝜆k be the number of patients
who belong to the kth class. Providing service to a patient
of class k requires lk ∈ ℤ time slots and generates a reward
of rk ≥ 0.5 A patient scheduled to receive service at time
period t may or may not show up, depending on the class
he/she belongs to (i.e., his/her patient characteristics) and
the time t (i.e., the number of periods he/she has to wait to
receive the service). Specifically, let pk(t) be the probability
that a patient of class k shows up for service if scheduled
for time period t. The mapping pk : [T] → [0, 1] is assumed
to be nonincreasing to reflect preference for receiving ser-
vice earlier. Notably, although for a fixed time t no-shows
might be subject to individual patient preferences, herein we
assume that they are predominantly driven by the patient’s

class, which reflects common patient characteristics (e.g.,
medical urgency). Patients who do not show up irrevocably
depart the system, and no reward is collected. The parameters
{rk, 𝜆k, lk, pk(⋅)}K

k=1 are deterministic, class-dependent, and
can be estimated from data. In Section 5, we discuss the cali-
bration of all the model’s parameters (via a case study) using
data that we have collected from our partner hospital, MGH.

The facility’s decision maker (DM) needs to choose which
patients to admit and when to schedule them. Let xk,t denote
the number of patients of class k scheduled for service at time
period t (for k ∈ [K] and t ∈ [T]). The expected reward to be
collected by providing service at time period t is

∑
k∈[K]

pk(t)rkxk,t, (1)

and the expected overtime cost to be incurred at time period t
is

𝜃𝔼

[ ∑
k∈[K]

Binomial
(
xk,t, pk(t)

)
lk − C

]+
, (2)

where [⋅]+ = max{⋅, 0} and Binomial(𝜒, 𝜁) is a binomial
random variable with parameters (number of trials, success
probability) = (𝜒, 𝜁). The expected profit to be made at time
period t is the difference between the expected reward and
the expected overtime cost. To introduce some notation for
ease of presentation, let Gt : ℤK → ℝ map the numbers of
patients of each class scheduled for service at time period t,
x1,t, … , xK,t, into the expected profit for that time period, that
is,

Gt

(
x1,t, … , xK,t

)
:=

∑
k∈[K]

pk(t)rkxk,t

− 𝜃𝔼

[∑
k∈[K]

Binomial
(
xk,t, pk(t)

)
lk − C

]+

.

(3)

Similarly, let G : ℤKT → ℝ map all patient admission and
scheduling decisions, x = {xk,t}k∈[K],t∈[T], into the DM’s
expected profit, that is,

G(x) :=
∑

t∈[T]

Gt
(
x1,t, … , xK,t

)
. (4)

The DM’s problem is to make joint patient admission
and scheduling decisions so as to maximize the expected
profit. It can be formulated as the following nonlinear integer
optimization problem

maximize G(x) (5)

subject to
∑

t∈[T]

xk,t ≤ 𝜆k ∀k ∈ [K] (6)
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k∈[K]

lkxk,t ≤ C ∀t ∈ [T] (7)

xk,t ∈ {0, 1, … ,N} ∀k ∈ [K], ∀t ∈ [T], (8)

with variable x ∈ ℤKT .
Because G is a nonlinear, complex function, solving the

optimization problem (5)–(8) is intractable for even moder-
ate problem sizes. However, even if exact solutions to this
problem were attainable, they would be of limited practical
relevance due to lack of interpretability. In particular, a
patient admittance approach that uses optimization problems
such as (5)–(8) operates essentially as a “black-box” that
is nearly impossible to explain to or communicate with
patients and/or physicians. Indeed, as noted in Section 1,
interpretability of admission and scheduling rules in utilizing
a new technology is highly desirable in practice, if not
necessary.

In addition to interpretability, our goal is to devise a pol-
icy with the following desiderata. First, to be implementable
in practice, the policy needs to be computationally efficient
and scalable in order to accommodate large-scale problem
instances. Second, the policy needs to provably perform well,
that is, have analytical performance guarantees vis-a-vis the
optimal value of problem (5)–(8). Finally, because it is often
hard to accurately calibrate no-show probabilities (e.g., due to
lack of large-scale data caused by the fact that the technology
is new and has not been offered for a sufficiently long-period
of time), the policy’s performance needs to be robust against
potential misspecification of no-show probabilities.

To achieve our goal, we focus our attention on devising
index policies that allow for making joint admission and
scheduling decisions. By design, and owing to their simplic-
ity, index policies are both interpretable and scalable. In the
analysis that follows, we derive an index policy that also
enjoys analytical performance guarantees, is robust against
potential misspecification of no-show probabilities, and per-
forms very well in numerical experiments calibrated with
data from our partner hospital. Prior to doing so, however,
we first briefly review the studies that are related to our work.

2.1 Related studies

Owing to their pervasiveness and ubiquitous use in service
operations, scheduling techniques have been studied in a
large body of the literature. Herein, we make no attempt
to survey the literature, but rather focus on papers that are
closest to ours.

Healthcare operations
Patient scheduling under no-shows has received a lot of atten-
tion in healthcare operations. Cayirli and Veral (2003) and
Gupta and Denton (2008) provide a broad literature review
of some earlier works in this stream. Most of the exist-
ing studies on patient scheduling under no-shows consider
only homogeneous no-show probabilities (Hassin & Mendel,

2008; Kaandorp & Koole, 2007; LaGanga & Lawrence,
2012). In Luo et al. (2012), the authors consider a patient
scheduling problem with no-shows and service interrup-
tions. Feldman et al. (2014) study the inter-day appointment
scheduling problem with homogeneous patients under no-
shows and patient preferences. Because the general problem
is computationally intractable, they provide an optimal pol-
icy for the static model, and propose a heuristic solution
for the dynamic model. The key difference of our approach
is that we seek to derive interpretable index policies with
performance guarantees.

Another different but closely related problem is schedul-
ing of jobs with time varying status, motivated by disaster
response scenarios (Argon et al., 2008; Chan et al., 2013).
Different from these studies, we consider overtime costs
and derive performance guarantees, alongside a robustness
analysis. Master et al. (2016) consider a discrete time, multi-
server system with jobs whose values decay as time elapses.
Because the problem is intractable, they propose and analyze
the performance of several approximation algorithms. Our
model is closely related to that of Master et al. (2016), but
with several notable differences; we consider overtime opera-
tions as well as multiple capacity constraints, which introduce
new challenges as one needs to simultaneously and carefully
balance profit generation and capacity consumption.

Other related studies within the healthcare operations liter-
ature include Patrick et al. (2008), Wang and Gupta (2014),
Helm and Van Oyen (2014), Diamant et al. (2018), Saghafian
et al. (2019), and Saure et al. (2020). Patrick et al. (2008)
design approximate dynamic programming method to sched-
ule patients with different priorities to a diagnostic facility
in a public healthcare setting. Wang and Gupta (2014) study
nurse staffing with heterogeneous absenteeism (no-shows).
Helm and Van Oyen (2014) consider the problem of assigning
elective patients with different rewards to different hospi-
tal units under capacity constraints. Diamant et al. (2018)
develop a dynamic model of patient scheduling with rewards
and no-shows in which a clinic assigns patients to an appoint-
ment day but delays the decision of which assessments
patients undergo until it is observed who arrives. Saghafian
et al. (2019) study the problem of assigning patients admit-
ted through the ED to hospital inpatient units, where patients
have different rewards, waiting costs, and service needs
(capacity use). Saure et al. (2020) study the problem of
scheduling multi-priority, multi-class patients with random
service duration.

Finally, for other studies related to patient scheduling with
time-dependent no-shows, we refer to Begen and Queyranne
(2011), Kong et al. (2019), Liu et al. (2009), Zacharias and
Pinedo (2013), Zacharias and Yunes (2019), Zeng et al.
(2010), and the references therein. These studies are, how-
ever, mainly motivated by medical appointments in which (a)
there is a single patient type (e.g., Begen and Queyranne,
2011; Liu et al., 2009; Zacharias and Yunes, 2019), and (b)
admission is rather exogenous and does not play an impor-
tant role (e.g., appointments of a primarily care physician
Zacharias & Pinedo, 2013; Zeng et al., 2010). As noted

 19375956, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pom

s.13886 by H
arvard U

niversity, W
iley O

nline L
ibrary on [02/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



552 SAGHAFIAN ET AL.Production and Operations Management

before, our focus in this study is on joint admission and
scheduling decisions among a pool of heterogenous poten-
tial users, and we are motivated by settings in which the
scarce capacity of a new technology (e.g., proton therapy)
needs to be allocated to appropriately selected users at
appropriate times.

Generalized assignment problem
When the overtime cost is large enough and overbooking
is always detrimental, our problem reduces to maximiz-
ing reward, and hence, becomes closely related to the
GAP (Chekuri & Khanna, 2006; Feige & Vondrák, 2006;
Fleischer et al., 2006). Computing the optimal solution for
GAP is in general NP-hard, but efficient approximation

schemes exist. Fleischer et al. (2006) propose an
e−1

e
-

approximation algorithm to solve the problem. Feige and
Vondrák (2006) further improve the approximation ratio to

(
e−1

e
+ 𝜖) for some 𝜖 > 0. However, both of them require

exponential preprocessing time (for the value oracle) and
complicated rounding techniques. Cohen et al. (2006) also
propose an efficient combinatorial local search algorithm to

solve the problem to a worse (
1

2
− 𝜖)-approximation.

A key difference between our study and the literature on
GAP is that we deal with overtime costs, and hence, an inte-
ger optimization problem with a nonlinear objective function.
Another key difference with the aforementioned studies is
that we seek to find a policy that is simple and interpretable,
can allow for no-shows, and is also robust to potential mis-
specifications of no-shows. As noted earlier, these features
are typically important for adopters of new technologies, and
our focus on them is particularly motivated by the situation at
our partner hospital.

Submodular maximization under a knapsack constraint
When the overtime cost is moderate, overbooking may
be profitable. In that case, as we will see, the objective
function of our problem can be approximated by a (non-
monotone) submodular function, and thus, relates to the
problem of submodular maximization under a knapsack con-
straint. For monotone submodular maximization under a
knapsack constraint, a simple marginal reward/weight with

a fixed scheme is a
e−1

2e
-approximation (Khuller et al., 2019;

Krause & Guestrin, 2005; Thibaut Horel, 2015). This tech-
nique combined with a preprocessing step, which conducts
an exhaustive search of all feasible solutions with small
cardinality, can further improve the approximation ratio to
e−1

e
. Nevertheless, this is impractical in our case as it can

drastically increase the computational cost given the large
number of patients. For nonmonotone submodular maximiza-
tion under a knapsack constraint, Lee et al. (2009) propose

a
1

5
− 𝜖-approximation algorithm, and Kulik et al. (2013)

develop a randomized
1

e
− 𝜖-approximation. Similarly, Feige

et al. (2011) present approximation algorithms with approxi-

mation ratios ranging from
1

4
to

1

2
. However, these algorithms

are not suitable for our problem as they typically involve

a sophisticated rounding technique, and thus, severely lack
interpretability and transparency.

Treatment planning in radiation therapy
Several papers in the literature address appropriate design
of treatment plans in radiation therapy. For this stream of
research, we refer interested readers to Bortfeld et al. (2008),
Chan and Misic (2013), and the references therein. Treatment
plans are, however, designed once the decision to allocate the
capacity to the patient is made. Thus, our work differs from
this stream of literature in that we focus on the more strategic-
level decisions of capacity use (admission and scheduling)
as opposed to the operational-level decisions related to the
design of treatment plans for admitted patients.

3 THE MAX-RATE ADMISSION AND
SCHEDULING POLICY

In this section, we describe our proposed joint admission
and scheduling policy, which we term MAX-RATE policy. This
policy is a dynamic index-based rule that prioritizes classes
and sequentially assigns available slots to patients from the
prioritized class.

At a high level, the policy works as follows. It sweeps
through the time periods in ascending order, t = 1, … ,T , and
for each of them it sequentially schedules patients following
an index rule. The index is class-specific and is based on an
approximation of the incremental expected profit of schedul-
ing a patient from each class, which is dynamically updated
to reflect the remaining capacity and the expected overtime.
Specifically, as formally described in Algorithm 1, for each
time period t, the MAX-RATE policy observes 𝜆k,t, the period’s
number of remaining patients in class k (𝜆k,1 is initialized to
𝜆k, i.e., line 3 of Algorithm 1), and keeps track of the run-
ning expected and maximum total service duration, C′ and
C′′ (both initialized to 0 at the beginning of each time period,
i.e., line 5 of Algorithm 1). Using C′, it first computes the
following index for time period t and each patient class k that
has remaining patients (i.e., line 7 of Algorithm 1. Here, the
notion 𝕀{⋅} denotes the indicator function)

kth class index

:=
pk(t)rk

lk
− 𝜃

(
[C′ + pk(t)lk − C]+ − [C′ − C]+

lk

)
, (9)

and then schedules a patient from the class with the highest
index value. This process runs until either the hard capacity
constraint is met or scheduling any additional patient yields a
negative index (i.e., lines 8 and 9 of Algorithm 1). Finally, the
algorithm compares the expected total profit of the selected
patients against the expected profit of the single most prof-
itable patient and picks the one with higher expected reward
(i.e., lines 14 and 15 of Algorithm 1).

The proposed policy is evidently simple and interpretable.
Scheduling priority of a patient for a time period, as dictated
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A L G O R I T H M 1 MAX-RATE policy

1: input: The patient classes {rk .𝜆k, lk , pk(⋅)}k∈[K], the unit overtime cost

𝜃, the scheduling horizon T , the soft and hard capacity C and C;

2: output: The admission control and scheduling decision {xk,t}k∈[K]t∈[T];

3: Initializing 𝜆k,1 ← 𝜆k , xk,t ← 0, ∀k ∈ [K]∀t ∈ [T];

4: for t = 1, … ,T do

5: Setting C′ ← 0,C′′ ← 0,Pt ← 0;

6: while True do

7: Find the next patient from a nonempty class to be scheduled: k′ ←

arg maxk∈[K]
pk(t)rk−𝜃([C′ + pk(t)lk−C]+−[C′−C]+)

lk
𝕀{𝜆k,t > 0};

8: if C′′ + lk′ ≤ C and
pk′ (t)rk′ − 𝜃([C′ + pk′ (t)lk′ − C]+ − [C′ − C]+) > 0 then

9: Schedule one more class k′ patient for time period t :
xk′ ,t ← xk′ ,t + 1, and update the expected capacity consumption
C′ ← C′ + pk′ (t)lk′ , the hard capacity consumption C′′ ← C′ + lk′ ,
and the expected approximate profit
Pt ← Pt + pk′ (t)rk′ − 𝜃([C′ + pk′ (t)lk′ − C]+ − [C′ − C]+);

10: else

11: Break;

12: end if

13: end while

14: if maxk∈[K](pk(t)rk − 𝜃[pk(t)lk − C]+)𝕀{𝜆k,t > 0} ≥ Pt then

15: Find the single most profitable patient
k′ ← arg maxk∈[K](pk(t)rk − 𝜃[pk(t)lk − C]+)𝕀{𝜆k,t > 0}, and fix the
schedule (x1,t, … , xk′ ,t , … , xK,t) ← (0, … , 1, … , 0);

16: end if

17: Update 𝜆k,t+1 ← 𝜆k,t − xk,t ∀k ∈ [K];

18: end for

19: return {xk,t}k∈[K]t∈[T];

by the index, bears the following rather intuitive explana-
tion. Scheduling of a patient of class k can be viewed as an
“investment” of lk slots. The index score then comprises two
terms. The first term is the expected reward per slot for such
investment, and resembles a knapsack-style index score. The
second term provides a simple and intuitive approximation of
the expected overtime cost per slot. In this way, the second
term captures the salient overtime cost in our model without
negatively affecting either interpretability or scalability. Note
that the approximation of the overtime cost is also suitably
designed to ensure strong performance.

Given that the MAX-RATE policy is evidently both inter-
pretable and scalable for use in practice, we now switch
our focus to the remaining desired properties, namely,
performance and robustness.

4 PERFORMANCE ANALYSIS

In this section, we provide a theoretical guarantee for the per-
formance of the MAX-RATE policy. For our analysis, we use
the following definition.

Definition 1. For a maximization problem M(⋅), given an
input instance , denote by x and x∗ solutions returned by
a policy  and by an optimal policy, respectively. We say
that policy  returns an (𝛼(), 𝛽())−approximate solution
if M(x) ≥ 𝛼()M(x∗) + 𝛽(), and a 𝛾−approximate solution
if M(x) ≥ 𝛾M(x∗), for all x.

Among the steps we follow so as to analyze the MAX-RATE
policy, we approximate the expected profit (4) with an upper
bound that can be obtained by exchanging the order of the
expectation 𝔼[⋅] and the max operators [⋅]+ in the calculation
of the expected overtime cost. Let Pt : ℤK → ℝ provide our
expected profit approximation for each time period t ∈ [T],
that is, given x1,t, … , xK,t, the approximate profit for period t
is

Pt(x1,t, … , xK,t) :=
∑

k∈[K]

pk(t)rkxk,t − 𝜃

[∑
k∈[K]

pk(t)lkxk,t − C

]+

.

(10)

Also, let P : ℤK → ℝ provide the resulting total approximate
profit:

P(x) :=
∑

t∈[T]

Pt
(
x1,t, … , xK,t

)
. (11)

An approximation of the optimization problem (5)–(8) can
then be obtained as

maximize P(x) (12)

subject to
∑

t∈[T]

xk,t ≤ 𝜆k ∀k ∈ [K] (13)

∑
k∈[K]

lkxk,t ≤ C ∀t ∈ [T] (14)

xk,t ∈ {0, 1, … ,N} ∀k ∈ [K], ∀t ∈ [T]. (15)

The MAX-RATE policy can be thought of as sequentially
“filling up” the schedule for each time period, starting from
the first one (motivated by the show-up probability func-
tions being nonincreasing in time). Thus, we can think of
the policy as decomposing the original problem and approx-
imately solving a series of optimization problems, one for
each period t:

maximize Pt(x) (16)

subject to xk,t ≤ 𝜆k,t ∀k ∈ [K] (17)

∑
k∈[K]

lkxk,t ≤ C (18)

xk,t ∈ {0, 1, … ,N} ∀k ∈ [K], (19)
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for time period t ∈ [T], where 𝜆k,t represents the number of
patients left in class k ∈ [K] after scheduling allocations have
been performed for time periods 1, … , t − 1.

At a high level, our performance analysis proceeds in three
steps. In the first step, we characterize “how well” the index
score of the MAX-RATE policy performs when solving an
instance of the decomposed problem (16)–(19). To this end,
we leverage the submodularity of Pt—a property that can be
readily verified (Krause & Guestrin, 2005). If Pt were further
monotone with respect to each of its arguments, a standard
greedy algorithm would provide us with an optimal solution
to the decomposed problem. However, Pt is not necessarily
monotone as scheduling one more patient may incur more
overtime cost than reward. Nevertheless, we exploit the piece-
wise linear structure of the profit functions using a novel
technique, and derive for the index score we use an approxi-
mation ratio in solving the decomposed problem. As a second
step, we characterize the performance loss due to the time
decomposition. In particular, we utilize an inductive argu-
ment to analyze the approximation ratio of the MAX-RATE
policy in solving optimization problem (12)–(15). In the third
step, we bound the loss due to approximating G(x) via P(x).
Finally, a salient point of the analysis is whether the overtime
cost 𝜃 is high enough, in particular higher than the maximal
expected reward of a single patient, that is,

𝜃 ≥ 𝜃 := max
k∈[K]

pk(1)rk, (20)

so that no overtime is warranted under any circumstances.
Putting all these pieces together, we arrive at the follow-
ing performance guarantee result for our proposed policy
(the proof is included in Appendix A in the Supporting
Information).

Theorem 1. The MAX-RATE policy returns a solution x with

(
e−1

3e−1
,

(e−1)T𝜃C

3e−1
+

2(e−1)
∑

t∈[T−1] 𝜃[maxk∈[K] pk(t)C−C]+

3e−1
)− approx-

imate expected profit for optimization problem (5)–(8), that
is,

G(x) ≥
e − 1

3e − 1
G(x∗) −

(e − 1)T𝜃C
3e − 1

−
2(e − 1)

∑
t∈[T] 𝜃

[
maxk∈[K] pk(t)C − C

]+
3e − 1

, (21)

where x∗ is an optimal solution to (5)–(8), if the overtime
cost is low, that is, 𝜃 < 𝜃. If the overtime cost is high, that is,
if 𝜃 ≥ 𝜃, we have

G(x) ≥
1
3

G(x∗). (22)

The approximation factors in the theorem above compare
favorably with other factors obtained in the literature for
similar types of problems. To this end, let us compare the
approximation guarantees we provide for our problem with
those provided for the classical GAP, which is a much sim-

pler problem whereby no overtime considerations are present.
As we remarked in our review of related papers, state-of-

the-art algorithms for GAP achieve guarantees of
e−1

e
or

1

2
, depending on their complexity. Nevertheless, all of them

involve complicated computation procedures lacking inter-
pretability. The difference between these and our coefficient,
e−1

3e−1
, can then be attributed to (a) the increased complex-

ity of dealing with a nonlinear objective G that accounts
for overtime, and (b) the fact that we limit the policy space
to simple, interpretable index rules. These additional chal-
lenges also come at a cost of additive terms in our guarantee,

for example,
e−1

3e−1
𝜃TC. It is important to note, however,

that under practical circumstances, these terms are likely

to be insignificant and dwarfed by
e−1

3e−1
G(x∗). To see this,

note that TC is the total number of time slots available
and recall that 𝜃 is the per-time-slot overtime cost. If we
write G(x∗) = (average reward per time slot at optimality) ×
TC, the comparison of the two terms then boils down to the
comparison between the average reward we can optimally
extract versus the overtime cost, per time slot available. How-
ever, in practice the former is likely to be much larger than
the latter. In proton therapy, for example, rewards are asso-
ciated with saving lives. Nonetheless, even if the overtime
cost becomes high, the additive terms in our guarantees van-

ish entirely. In that case, we simply obtain a factor of
1

3
, which

in part reflects our limiting of the policy space to simple,
interpretable index rules.

4.1 Effect of misspecification of show-up
probabilities

Among the model parameters, show-up probabilities pt(k) are
often the most challenging to accurately estimate from data.
In particular, as noted earlier, it is very likely that the true
show-up probabilities, p̃k(⋅), would deviate in practice from
the ones estimated using data. This can occur for a variety of
reasons, including (a) lack of large-scale data caused by the
fact that the technology is new and has not been in use for
a sufficiently long period of time, and (b) the fact that these
probabilities depend on both t and k. It is, therefore, desirable
to explore how robust the MAX-RATE policy is to potential
misspecifications of the show-up probabilities, pk(t).

To consider such misspecifications, we assume that the
exact show-up probability functions, p̃k(⋅), satisfy

p̃k(t) = min{𝜉k,tpk(t), 1}, ∀k ∈ [K], t ∈ [T], (23)

where 𝜉k,t are unknown perturbation parameters, assumed to
take values in the interval [1 − 𝜖, 1 + 𝜖], for some 𝜖 ≥ 0. As
in practice longer scheduling delays almost never yield higher
show-up likelihoods, we further assume that monotonicity in
t holds for both the true show-up probability functions and
the perturbed ones, and denote by E the set of all perturbation
parameters that satisfy these assumptions.
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Under this model of uncertainty, we consider the following
robust counterpart to our original optimization problem:

maximize min
{𝜉k,t}k∈[K]t∈[T]∈E

∑
t∈[T]

∑
k∈[K]

p̃k(t)rkxk,t

− 𝜃𝔼

[ ∑
k∈[K]

Binomial
(
xk,t, p̃k(t)

)
lk − C

]+

(24)

subject to
∑

t∈[T]

xk,t ≤ 𝜆k ∀k ∈ [K], (25)

∑
k∈[K]

lkxk,t ≤ C ∀t ∈ [T], (26)

xk,t ∈ {0, 1, … ,N} ∀k ∈ [K]t ∈ [T]. (27)

The above robust optimization problem has a maximin objec-
tive function. That is, it seeks a scheduling solution that
would maximize the worst-case (with respect to all possible
perturbations) expected profit. The next result characterizes
the performance of the MAX-RATE policy for this setting.

Theorem 2. For the problem (24)–(27):

∙ if 𝜃 < maxk∈[K](1 + 𝜖)pk,1rk, MAX-RATE policy pro-

vides a (
(1−𝜖)(e−1)

(1+𝜖)(3e−1)
, const)− approximate solution,

where const =
(8e𝜖−2𝜖+2(e−1))

∑
t∈[T] 𝜃[maxk∈[K] pk(t)C−C]+

(1+𝜖)(3e−1)
+

2𝜖[(4−𝜖)e+𝜖−2]TC

(1−𝜖)(1+𝜖)(3e−1)
+

(e−1)T𝜃C

3e−1
;

∙ if 𝜃 ≥ maxk∈[K](1 + 𝜖)pk,1rk, MAX-RATE policy provides a
1−𝜖

3(1+𝜖)
−approximate solution.

The approximation guarantees in Theorem 2 illustrate
how the performance of the proposed index policy depends
on potential misspecifications of the show-up probabilities,
as captured by the parameter 𝜖. Note that for 𝜖 = 0, the
approximation guarantees recover precisely those presented
in Theorem 1.

5 CASE STUDY: PROTON THERAPY
TREATMENT ADMISSION AND
SCHEDULING

To gain further insights into the performance and advantages
of the MAX-RATE policy for implementation in practice, we
conduct in-depth numerical performance analyses, using both
real and synthetic data. For the former, we utilize a data set
that we have collected from our partner hospital, MGH.

In summary, we find that our proposed policy strikes a
favorable balance between interpretability and performance.
In particular, being an index-based scoring policy, it is almost
as simple and has the same interpretable scoring-based for-

mat as the current practice at MGH (which we describe in
detail below). Importantly, our results show that it yields
about 20% performance improvement in expected clinical
benefits—an estimate we arrived at by using real data and the
same performance metrics as used by MGH. Furthermore,
we find that the MAX-RATE policy has a suboptimality gap
that ranges between 2% and 10%, demonstrating that inter-
pretability and good performance are not mutually exclusive.
Finally, our sensitivity analyses using synthetic data reveal
that the performance of the MAX-RATE policy is also robust to
main environmental factors that might vary across organiza-
tions (e.g., demand-to-capacity ratio, no-show probabilities,
and overtime costs).

In what follows, we first briefly describe the process of pro-
ton therapy treatment at MGH. We then introduce our data,
parameter estimation procedures, and analyses.

Proton therapy treatment process
To be treated via proton therapy, patients are required to
“apply” in advance. That is, in consultation with their physi-
cians, they decide to seek proton therapy treatment and
submit all the required documents. Subsequently, there are
a series of steps that need to be completed prior to treatment
commencing. First, each application is reviewed in detail so
as to evaluate the patient’s suitability for proton therapy and
expected clinical benefits. Second, once a patient is accepted
for treatment, the staff try to ensure that he/she is either cov-
ered through insurance and/or is able to pay the associated
costs out-of-pocket. Once these steps are done, the physician
(e.g., a radiation oncologist) begins to develop a radia-
tion treatment plan with a dosimetry and medical physics
team that involves multiple steps from clinical determina-
tion of region to be treated to quality assurance testing and
peer review of treatment plan. These processes are lengthy
in time, but are essential before the patient can start the
treatment.

Because all the aforementioned required steps prior to
treatment take at least a couple of weeks, there is usually
a delay between when the patient applies and when he/she
is scheduled to start the treatment. Lack of enough proton
machines compared to the demand creates further scheduling
delays. Of note, these required processes also prohibit com-
pensating for no-shows by assigning the capacity to another
patient: when a patient who is scheduled to receive treatment
does not show up, last-minute replacements are not possi-
ble. Patients who do not show up to receive their treatment
often seek treatment from other resources (e.g., traditional x-
ray radiation). This is, for example, the case for patients who
no longer can wait, those whose health condition suddenly
degrades, and those who receive advice against proton ther-
apy after applying for it. Similar to those patients who are
declined to receive the service, no-show patients almost never
apply again.

Proton therapy admission process at MGH
The number of prospective patients far exceed available pro-
ton therapy treatment capacity at MGH. Applications are
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reviewed periodically by a panel of expert oncologists, medi-
cal physicists, and dosimetrists who evaluate appropriateness
of each case with a collective determination made. That is,
applications are collected over some period at MGH, which
we refer to as “cycle,” and then the panel meets at the end of
each cycle to make a decision.

This elaborate and complex decision-making process is
currently guided by a scoring system developed by MGH,
which assigns each applicant with a prioritization score,
termed the “capstone” score. The capstone score was
designed to reflect the incremental medical benefit a patient
would have by receiving proton radiation, as opposed to
conventional therapies.6 In other words, the capstone score
approximates the utility that the center would derive by pro-
viding service to that patient based solely on clinical grounds.
Notably, no operational considerations, such as capacity con-
sumption, or no-show probability, are used in the calculation
of this score. By and large, the panel tends to prioritize and
schedule patients using the capstone scoring formula.

Data set
Our data set spans a period of 481 days in 2016–2017,
and includes information about all 1153 patients who were
reviewed to be treated at the MGH Proton Therapy Center
during this period. Due to incomplete data entries, we omit
data on five of these 1153 patients. Moreover, 75 patients
out of the remaining 1148 patients had data entry errors
(e.g., appointment dates earlier than the application date),
and hence, we omit them as well. Thus, our final data set
includes information about 1073 patients. For each patient,
the data include information about the patient’s application
date, demographic features such as age, gender, residency
location, and medical features such as Karnofsky score,7

comorbidities, and prior radion therapy records, among oth-
ers. For admitted patients, the data also include appointment
date, service duration, and an indicator of whether they
showed up or not. The capstone score is another piece
of information available for each patient in our data set,
which we utilize as the “reward” parameter in our model.
As remarked above, this score reflects medical benefits, and
tends to increase as the patient’s life year gains by the therapy
are expected to increase, and also as the patient’s alternative
treatment options beyond proton therapy become limited or
less effective.

Scheduling delays
For each admitted patient, we define the scheduling delay as
the difference between her scheduled appointment date at the
center and her application date (for simplicity, we also refer
to application date as “arrival date”). Figure 1 illustrates the
boxplot of these scheduling delays, and shows that the major-
ity of the patients have delays in the range of 7 to 154 days (1
week to 5 months). Furthermore, it can be seen from Figure 1
that the first and third quartiles of the scheduling delay are 27
days and 74 days, respectively.

F I G U R E 1 Boxplot for scheduling delays [Color figure can be
viewed at wileyonlinelibrary.com]

Experimental setup
As noted earlier, the current practice at our partner hospi-
tal involves periodic meetings (with a fixed number of days
between meetings as the cycle) among a review panel to
determine the patients who should be accepted and sched-
uled. To design and perform our experiments, we attempt to
make assumptions that best represent this and other aspects
of the practice at our parent hospital. In particular, follow-
ing the current practice, we divide our experiment’s horizon
(481 days) into cycles of equal time periods. For the ith cycle,
(i ≥ 3), admission and scheduling decision are made at the
end of (i − 2)th cycle, while treatment preparations, such as
the ones outlined in the treatment process discussion above,
take place during the (i − 1)th cycle. As decisions made at the
end of each cycle involve patients with arrival dates during
that cycle, this makes the minimum and maximum schedul-
ing delay one and three cycles, respectively. Because in our
data set the first and third quartile of scheduling delay are 27
and 74 days, respectively, we set the length of a cycle to be 30
days (i.e., 1 month) so that T = 30 and each patient experi-
ences scheduling delay in the range of [30,90], which is close
to the range [27,74] that we observe from our data set (see the
boxplot in Figure 1).

Estimating show-up probabilities and the number of
patient classes
In our data set, about 15% of the patients do not show up
in the scheduled time. To accurately estimate our show-up
probability functions, we take advantage of the information
available in our data. For a class k patient, we consider the
function pk(t) as a survival function. We then use clustering
and regression methods to estimate these survival functions.
Specifically, we first perform Cox regression and identify
features that are statistically significant in estimating show-
up probabilities. We then perform K-means clustering (with
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different K values representing the total number of patient
classes) using these features. We next calculate the weighted
area under the curve (AUC) to compare and choose the best
number of clusters. Finally, we consider patients belonging
to each cluster in the final result to be within the same class.
To this end, we consequently estimate other class-dependent
parameters (e.g., rewards and service durations) for each
formed class separately. Thus, each class has different param-
eters, but we prioritize making use of the functions pk(t) as the
basis for forming classes, mainly because functions pk(t) are
both class- and time-dependent.

Calculating soft capacity
As our data set does not indicate the duration of overtime
operations, we start our analyses by assuming that the system
runs with no overtime. This allows us to directly calculate
the total operating minutes on each day using our data set.
We assume that available capacity equals to this number
of total operating minutes on each day. It can be readily
seen that this calculation underestimates the actual capac-
ity. Making available to our policy this calculated capacity
enables our study then to report conservative estimates
about our policy’s actual performance. As we will describe
later, we also perform simulation analyses by allowing
overtime.

Estimating service duration for rejected patients
Our data set only includes service duration for patients who
are accepted/admitted by our partner hospital. That is, the
potential service duration of the patients who are rejected is
not observable to us, simply because they were not admitted
(and no treatment plan was designed for them) at our part-
ner hospital. As an alternative policy such as the MAX-RATE
policy might choose to accommodate some of these patients,
it is essential to estimate the service duration of all patients
(i.e., both admitted and rejected patients). To this end, we
treat the service duration of rejected patients as missing val-
ues, and make use of the MICE (multivariate imputation by
chained equations) package of R to impute and estimate their
values.

Fair comparison with current practice
As noted earlier, with a cycle time of 30 days, the majority of
the patients scheduled for the ith (i ≥ 3) cycle in our data set
arrive during the (i − 2)th cycle. Although this captures the
majority of the patients, this is not a flawless assumption: in
practice, occasionally some patients have a longer scheduling
delay. To perform fair comparisons with the current practice
(as a benchmark), and to ensure that our comparisons are not
biased toward our proposed algorithm, for such occasional
cases that are scheduled for the ith (i ≥ 3) cycle but have an
arrival date prior to the (i − 2)th cycle, we assume a random
arrival during the (i − 2)th cycle. This allows us to perform
a fair comparison with current practice, and report (slightly)
conservative values for the improvements achieved due to our
proposed algorithm.

Performance metrics
We measure reward from providing service to a patient
using the patient’s capstone score, as it was designed to
approximate the center’s utility and medical benefits from
treating that patient. Then, we measure the performance of
the MAX-RATE policy in terms of percentage improvement in
“profit” (i.e., expected reward minus expected cost):

Improvement =
Profit of MAX-RATE policy−Profit of current practice

Profit of current practice
.

(28)

Herein, in the absence of overtime, the profit of each pol-
icy can be readily calculated as the sum of the expected
rewards corresponding to the respective patients admitted by
that policy, whereby the expectation is taken with respect to
the associated show-up probabilities. We report the expected
value, standard deviation, and the 95% confidence interval
for the percentage improvement (calculated over 5000 itera-
tions). Further, we report the expected percentage optimality
gap (OPT gap) of the MAX-RATE policy:

OPT gap =
Optimal Profit − Profit of MAX-RATE policy

Optimal Profit
,

(29)

where the optimal profit is obtained via the optimal value of
(5)–(8). Note that in the absence of overtime, that is, 𝜃 = 0,
calculating the optimal value is tractable for the scale of
our instances.

Defining classes
Our data analyses show that the following vector of patient
characteristics is most significant in predicting show-up
probabilities:

(research origin, comorbidities, prior RT, capstone score,

service duration). (30)

Thus, we perform K-means clustering on these features and
vary K from one to seven. The results are shown in Table 1.
Setting a weighted AUC threshold of 90%, we observe from
this table that we should divide the patients into four or
five classes to achieve the maximum profit improvement
while having a good clustering result (weights represent the
percentage of total patients who fall in each cluster). We
also include the show up probability obtained from the data
and the estimated show up probability for K = 4 and 5 in
Appendix C in the Supporting Information.

Results
We measure the standard deviation, 95% confidence interval,
and the OPT gap for the cases with K = 4 or 5 clusters (see
Table 2). In summary, as it can be seen from the results pre-
sented in Table 2, the proposed MAX-RATE policy procedure
is significantly better than the current practice, delivering a
profit improvement of approximately 20%. In addition, it has
a relatively low optimality gap, between 8% and 10%. As the
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TA B L E 1 Weighted AUC and expected improvement for different number of clusters

K 1 2 3 4 5 6 7

Weighted AUC 0.9377 0.9457 0.9520 0.9586 0.9037 0.8348 0.7763

Improv. 11.0222% 11.0127% 11.0129% 19.6289% 21.3440% 13.2720% 11.1573%

TA B L E 2 Detailed measurements for K = 4 and K = 5 clusters

K
Weighted
AUC Improv. SD 95% CI

OPT
gap

4 0.96 19.62% 0.0067 [19.60, 19.64] 8.31%

5 0.90 21.34% 0.0095 [21.31, 21.37] 10.35%

optimal policy is complex and hard to implement in practice,
this suggest that MAX-RATE policy offers an effective and yet
easy-to-implement alternative for jointly making admission
control and scheduling decisions.

5.1 Overtime considerations

As noted earlier, the data set from our partner hospital (MGH)
does not include information about overtime operations. As
the MAX-RATE policy can also incorporate overtime opera-
tions, we scale up our data set (in terms of 𝜆k’s) and use it
to examine the effect of overtime. We do so by considering a
scale factor that represents the ratio of the number of patients
in the scaled data set to that of the original one. We vary the
scale factor from 1 to 10, and set the hard capacity to 1.5 times
of the soft capacity of each day, and consider an overtime cost
of 𝜃 = 2.

For the purposes of measuring the optimality gap of our
policy, note that calculating the optimal profit via (5)–(8) now
becomes intractable. Therefore, we instead calculate the opti-
mal value of (12)–(15), which provides an upper bound for
the optimal profit, given that P(x) ≥ G(x), for all x (see Corol-
lary 1 in Appendix A in the Supporting Information). For the
MAX-RATE policy, we calculate its expected profit by simulat-
ing multiple sample paths of show-ups. We then obtain the
following

Surrogate OPT gap =
Upper bound on optimal profit − Expected profit of MAX-RATE policy

Upper bound on optimal profit

=
P(x̃) − G(x)

P(x̃)
, (31)

where x̃ is an optimal solution of (12)–(15) and x is the
solution returned by the MAX-RATE policy. One immediate
observation is that the surrogate OPT gap serves as an upper
bound for the OPT gap. Figure 2(a) and 2(b) depicts the sur-
rogate OPT gap of the MAX-RATE policy when the number of

TA B L E 3 Profit breakdown for K = 4

Scale 1 2 3 4 5 6 7 8 9 10

Reward (×104) 4.78 6.09 6.61 6.89 7.11 7.30 7.44 7.58 7.71 7.83

Overtime cost
(×103)

1.00 1.14 1.47 1.46 1.53 1.57 1.59 1.63 1.67 1.77

TA B L E 4 Profit breakdown for K = 5

Scale 1 2 3 4 5 6 7 8 9 10

Reward (×104) 4.51 5.90 6.47 6.80 7.06 7.24 7.38 7.50 7.61 7.70

Overtime cost
(×103)

1.00 1.17 1.43 1.46 1.55 1.53 1.60 1.66 1.73 1.71

clusters (i.e., patient classes) are 4 and 5, respectively. As it
can be seen from these figures, the MAX-RATE policy contin-
ues to have strong performance in the presence of overtime.
In particular, it has a fairly low surrogate optimality gap for
reasonable levels of the scale factor. As the surrogate OPT
gap is an upper bound for the actual optimality gap, this gives
us confidence about the performance of the MAX-RATE pol-
icy. We also include the detailed breakdown of the profits, in
terms of rewards and overtime cost, in Tables 3 and 4.

5.2 Sensitivity analysis with synthetic data

To go beyond the case study at our partner hospital, and inves-
tigate the suitability of the MAX-RATE policy more broadly,
we now perform various sensitivity analyses with synthetic
data. To this end, instead of using our data set, which may
only represent the environment at our partner hospital, we
design a new test suite and include various levels for the main

parameters that vary among hospitals. In particular, we start
by creating a representative base case scenario, and then vary
its number of patient classes, rewards, show-up probability
functions, soft and hard capacities, and overtime cost. This
allows us to measure the effect of these main parameters on
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F I G U R E 2 Surrogate OPT gaps on the scaled data set. (a) Surrogate OPT gap with K = 4 clusters. (b) Surrogate OPT gap with K = 5 clusters [Color
figure can be viewed at wileyonlinelibrary.com]

the optimality gap of the MAX-RATE policy, which we mea-
sure as before using the surrogate optimality gap (31). We
run each scenario for 100 iterations.

To gain deeper insights and have a benchmark, we also
measure the performance of another index-style policy with
the following ratio as its index:

Expected reward of class k
Service duration of class k

=
pk(t)rk

lk
. (32)

This index is the classical “knapsack-style” index and is a
popular heuristic for problems like ours.

Base case
In the base case, we set the number of patient classes to K =
5, and assume each class has 300 patients. Each patient class
has a reward drawn uniformly random from the interval [50,
150], and an inverse Weibull show-up probability function
with random parameters (ak, bk). The show-up probability
function of class k is then

pk(t) = exp

(
−

(
t

ak

)bk
)

(33)

and the hazard function of class k is

hk(t) =
bk

abk
k

tbk−1. (34)

In this setting, the class k’s show-up probability function is
increasing in ak, and the hazard function is increasing in delay
if bk > 1. However, if bk < 1, the hazard function is decreas-
ing in delay. If bk = 1, the hazard function is constant (i.e.,
corresponds to a exponentially distributed show-up probabil-
ity function). To cover a wide range of scenarios, we assume
that b1, b3, and b5 are drawn uniformly from (0, 1] while b2
and b4 are drawn uniformly from [1, 20]. We also choose the
ak values uniformly from [0, 50].

TA B L E 5 Summary statistics for the base case setting

Total number of patients 1500

Average service duration (min) 50

Total soft capacity (min) 37,800

Load factor 198.41%

We assume service duration for class 1, 2, … , 5 to be
30, 40, … , 70, respectively. All the patients arrive on the first
day of the cycle. The soft capacity and hard capacity for each
day are set to 1260 min (7 h × 3) and 2160 minutes (12 h × 3).
We also start our analysis by considering an overtime cost
𝜃 = 2. To make a fair comparison, we compare the expected
profit of the optimal policy and the MAX-RATE policy via OPT
gap for one cycle (30 days). Some summary statistics for the
base case setting are shown in Table 5, where load factor is
defined as:

Load factor =
Total service duration of all arriving patients

Total soft capacity during the cycle
.

(35)

The effect of load factor
We start our sensitivity analyses by considering the effect
of load factor. To examine this effect, we vary the number
of arriving patients from 1500 to 6000 with a step size of
500 while keeping the populations of each class the same.
The results are shown in Figure 3(a), which indicates that
the surrogate OPT gap drops from about 18% to as low as
5% as we increase the load factor from about 200% to 800%.
This is due to the fact that, as the number of patients in each
class increases, the MAX-RATE policy can identify the most
profitable patient class more effectively. Notably, our policy
outperforms the knapsack-style policy consistently across
the entire range of load factors. These results suggest that
our proposed MAX-RATE policy would likely be particularly
effective for hospitals in which demand compared to the
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F I G U R E 3 The effect of various parameters on the surrogate OPT gap. (a) The effect of load factor. (b) The effect of the number of patient classes.
(c) The effect of no-show probabilities. (d) The effect of 𝜃 [Color figure can be viewed at wileyonlinelibrary.com]

available capacity is high. As noted earlier, as proton ther-
apy is a relatively new radiation technology with many
advantages compared to traditional x-ray therapy most
hospitals that offer it already face high demand com-
pared to their capacity. Thus, we expect that the proposed
MAX-RATE policy can offer significant benefits to many
proton therapy centers.

The effect of the number of patient classes
To see the effect of the number of patient classes, we increase
the number of classes from 5 to 25 with a step size of
5. In each increment, we keep the service duration of the
five new classes as 30,40,50,60, and 70, and the total num-
ber of patients unchanged to maintain the same load factor.
The results presented in Figure 3(b) show that the sur-
rogate OPT gap increases only about 8% as the number
of classes increases from 5 to 25. This indicates that the
MAX-RATE policy is relatively robust to the number of patient
classes. Finally, we observe a significantly better performance

for the MAX-RATE policy compared to the knapsack-style
index, an advantage that persists across the range of patient
classes considered.

The effect of no-shows
Another factor that varies among hospitals is the no-show rate
of patients. Specifically, some hospitals have a low number of
no-shows while others face significant number of no-shows.
To see the effect of no-shows, we decrease the parame-
ter ak in the show-up probability function for each class
k by iteratively multiplying it by 𝛼 = 0.8 (for a maximum
number of five times). The results presented in Figure 3(c)
show that the surrogate OPT gap decreases very slowly as
the value of show-up probabilities decreases, which suggest
that the MAX-RATE policy is relatively robust to high no-
show probabilities. In addition, for small (large) no-show
probabilities, we observe that the MAX-RATE policy yields
a significant (modest) improvement over the knapsack-style
index.
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The effect of overtime cost
The cost of overtime operations depends on various factors.
As a result, there is a variation among hospitals in terms of
the compensations and other expenses that they incur due to
overtime operations. To examine the effect of the overtime
cost (parameter 𝜃), we increase it from 0 to 10 with a step size
of 1. From the results presented in Figure 3(d), we observe
that the surrogate OPT gap first increases from 14% to 18% as
𝜃 increases from 0 to 2. It then drops from 18% to 11%, and
remains at 10% for any 𝜃 ≥ 5. This is because, when the over-
time cost is sufficiently small, the loss due to overtime is also
small. However, as the overtime cost increases, both the opti-
mal policy and the MAX-RATE policy reduce the number of
patients scheduled during overtime, which in turn shrinks the
surrogate OPT gap. Once the overtime cost exceeds a thresh-
old, use of overtime operations becomes significantly costly,
and thus, the surrogate OPT gap remains constant for both
policies. These findings match our earlier analytical results,
which state that the surrogate OPT gap is larger when the
value of 𝜃 is moderate than when it is 0 or higher than some
threshold �̄�. Importantly, our results also indicate that the
MAX-RATE policy is robust to the overtime cost parameter.
In sharp contrast, the knapsack-style index (which does not
account for overtime) is highly sensitive and performs well
only when the value of 𝜃 is low.

6 EXTENSION: MULTIPLE VISITS

Put together, our analysis and numerical experiments so far
reveal that the MAX-RATE policy is an effective and yet easy-
to-implement policy. Importantly, its strong performance is
fairly robust to various factors that vary among hospitals (e.g.,
utilization, number of patient classes, show-up probabilities,
and overtime cost).

In this section, we showcase how one can readily general-
ize our policy to accommodate multiple visits, and perform
numerical analysis that demonstrate that the MAX-RATE pol-
icy retains strong performance under this extension as well.
To this end, suppose that class k patients require mk visits. The
vast majority of proton therapy protocols that include multi-
ple visits, require them to occur on consecutive days. Thus,
we assume that if a class k patient is scheduled to receive ser-
vice at time period t, he/she will consume lk time slots at time
periods t, t + 1, … , t + mk − 1. Notably, this assumption is
without loss of generality, and the algorithm can be extended
in a straightforward manner if treatment protocols prescribe a
different visit frequency. As we previously discussed, patients
who show up for their first appointment, continue to do so
for their subsequent appointments. The approximate profit
maximization problem can thus be re-formulated as

maximize
∑

t∈[T]

∑
k∈[K]

pk(t)rkxk,t

−𝜃

[ ∑
k∈[K]

pk(t)lk

t∑
𝜏=max{1,t−mk+1}

xk,𝜏 − C

]+
(36)

subject to
∑

t∈[T]

xk,t ≤ 𝜆k ∀k ∈ [K], (37)

∑
k∈[K]

lk

t∑
𝜏=max{1,t−mk+1}

x𝜏 ≤ C ∀t ∈ [T], (38)

xk,t ∈ {0, 1, … ,N} ∀k ∈ [K], ∀t ∈ [T]. (39)

Here, different than the single visit case, in computing the
overtime of each time period, we have to take into account
the patients scheduled in previous time periods. For exam-
ple,

∑t
𝜏=max{1,t−mk+1} xk,𝜏 is the number of class k patients

who would show up on time period t. These include class k
patients scheduled on time periods max{1, t − mk + 1}, … , t.

To extend our MAX-RATE policy for this setting, we
consider the following generalized policy, which we term
MAX-RATE.M policy: for each time step t = 1, … ,T , the pol-
icy keeps track of the running expected total service durations
C′(t), … ,C′(T) (all initialized to 0) for remaining time peri-
ods t, … ,T . It then computes the following index for time
period t and each patient class k that has remaining patients

kth class index :=
pk(t)rk

mk ⋅ lk

− 𝜃

(
t+mk−1∑

t′=t

[C′(t′) + pk(t′)lk − C]+ − [C′(t′) − C]+

mk ⋅ lk

)
,

(40)

and then schedules a patient from the class with the highest
index value. This process runs until either the hard capacity
constraint is met or scheduling any additional patient yields
a negative index. Notably, this is a straightforward general-
ization of our previous index policy, whereby we just now
account for the multiple visits that take place.

We numerically evaluate the MAX-RATE.M policy with
the same setting as that of Subsection 5.2. In particular,
we compare the surrogate OPT gap against a generalized
knapsack-type index policy with the following ratio as its
index:

Expected reward of class k
Service duration of class k

=
pk(t)rk

mk ⋅ lk
. (41)

We allow the number of visits of each class to be randomly
sampled from the sets {1, 2, … , 2i + 1} for i = 0, 1, … , 9, so
that the averaged load factor varies from about 198.41% to
1984.1% with a step size of 198.41%. The results, depicted
in Figure 4, illustrate that MAX-RATE.M policy retains strong
performance, and considerably outperforms the knapsack-
type index policy. Also, we note that both policies’ surrogate
OPT gap decrease as the average number of visits per patient
increases. This is because, as the average number of vis-
its per patient increases, the problem gets gradually closer
to a single-day setting, which is shown to enjoy a better
performance guarantee in Theorem 3 in Appendix A in the
Supporting Information.
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F I G U R E 4 The effect of multiple visits on the surrogate OPT gap
[Color figure can be viewed at wileyonlinelibrary.com]

7 CONCLUSIONS

Adoption of new technologies enable firms in the healthcare
sector to materially improve the quality of the service they
offer. Because adoption often requires significant resources,
healthcare organizations strive to utilize the available capac-
ity as efficiently as possible. In this paper, motivated by the
introduction of proton therapy—a new technology that pro-
vides superior treatment for many cancer patients—at our
partner hospital (MGH), we studied the problem of admitting
and scheduling patients for service in a way that addresses
operational issues that arise in this context.

In particular, we presented a model of allocating service
capacity in the presence of (a) patient- and time-dependent
no-show behaviors, and (b) overtime operations. To make
admission and scheduling decisions, we limited ourselves to
simple and interpretable index rules that can be implemented
in practice. We proposed a simple index policy, which bal-
ances the expected benefit from providing service to patients
with the risk of overtime cost. For this policy, we derived
analytical performance guarantees that compare favorably
with existing results in the literature for the simpler class of
generalized assignments problems.

Furthermore, we conducted in-depth numerical perfor-
mance analyses using both empirical data from MGH and
synthetic data. The analyses revealed that simple rules of the
type we propose are capable of efficiently balancing perfor-
mance and interpretability, and hence, are good candidates
for use in practice. Specifically, we found that, while sim-
ple and interpretable, our proposed policy was able to (a)
substantially improve upon current policies used at MGH,
and (b) yield results that are not too far from being optimal.
In addition, our results revealed that our proposed policy is
robust to a variety of factors that are hard to estimate (e.g.,
no-show probabilities) and/or might vary from hospital to
hospital (e.g., overtime cost, demand-to-capacity ratio, etc.).
Thus, it offers a “one-size-fits-all” rule that can be robustly
used in practice. Given the importance of devising simple,

interpretable, and robust policies that can effectively allocate
scarce capacity of new technologies to consumers, we hope
that future research continues our efforts in this vein.
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E N D N O T E S
1 Penalizing users who do not show up is often not an effective mechanism,

as such penalties cannot be very large due to a variety of regulatory con-
straints (among others). Thus, even when imposed, such penalties are not
large enough to offset the opportunity cost accrued due to unused expensive
technology. Moreover, in many nonprofit organizations (e.g., some hospi-
tals), there is no tangible financial gain for the service provider that can
be gained by imposing a penalty: the wasted capacity simply implies loss
of some social good (e.g., treatment that could be offered to a different
patient).

2 For simplicity, we refer to all last-minute cancelations as “no-shows.” How-
ever, the reader should note that in proton therapy there might be several
reasons for such cancelations, and some of them can be beyond the patient’s
discretion not to come. Example for last-minute cancelations include med-
ical (e.g., sudden changes in medical conditions indicating a need for more
chemotherapy or more time to recover from surgery or chemotherapy) and
financial (e.g., a much cheaper or logistically more convenient treatment
option becoming available).

3 For example, reserved capacity can be first deducted from the available
capacity, and the related patients can be removed from the set of patients
awaiting capacity allocation. Our proposed allocation rule can then be used
for the remaining patients and capacity.

4 For any positive integer Z, we denote the set {1, 2, … ,Z} with [Z].
5 In practice, these reward parameters are estimated using a variety of med-

ical factors that determine the suitability of treatment for the patient. See
Section 5, where we discuss in detail estimation of rewards and other
parameters of our model.

6 To develop the capstone scoring system, the MGH Proton Center conducted
a series of questionnaires, in which physicians were asked to rank hypothet-
ical patients based on the efficacy that they expected proton therapy to have
on the patients. Using these as input data, a regression model was fit by the
center so as to calculate this score for each applicant.

7 Karnofsky score is a measure between 0 = death and 100 = perfect health,
and is typically used in medicine to inform on a patient’s general well-
being.
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