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Abstract. Lockdown policies, such as stay-at-home orders, are known to be effective in 
controlling the spread of the novel coronavirus disease 2019. However, concerns over eco
nomic burdens of these policies rapidly propelled U.S. states to move toward reopening in 
the early stage of the pandemic. Decision making in most states has been challenging, espe
cially because of a dearth of quantitative evidence on health gains versus economic bur
dens of different policies. To assist decision makers, we study the health and economic 
impacts of various lockdown policies across U.S. states and shed light on policies that are 
most effective. To this end, we make use of detailed data from 50 U.S. states plus the Dis
trict of Columbia on various factors, including number of tests, positive and negative 
results, hospitalizations, ICU beds and ventilators used, residents’ mobility obtained from 
cellphone data, and deaths. Our analyses allow quantifying the total cost versus the total 
quality-adjusted life year (QALY) associated with various lockdown policies. We utilize a 
compartmental model with Markov chain Monte Carlo simulation to estimate the spread 
of disease. To calibrate our model separately for each U.S. state, we make use of empirical 
data on the intensity of intervention policies, age, ratio of Black/Hispanic populations, per 
capita income, residents’ mobility, and number of daily tests and feed them to a longitudi
nal mixed-effect model. Finally, we utilize a microsimulation model to estimate the total 
cost and total QALY for each state and perform cost-effectiveness analysis to identify poli
cies that would have worked best. Our results show that, compared with no intervention 
during March–June 2020, the policies undertaken across the United States saved, on aver
age, about 41,284.51 years’ worth of QALY (per 100K capita), incurring $164.01 million (per 
100K capita). Had the states undertaken more strict policies during the same time frame 
than those they adopted, these values would be 44,909.41 years and $117.28 million, respec
tively. By quantifying the impact of various lockdown policies separately for each state, 
our results allow federal and state authorities to avoid following a “one size fits all” strat
egy and instead enact policies that are better suited for each state. Specifically, by studying 
the trade-offs between health gains and economic impacts, we identify the particular states 
that would have benefited from implementing more restrictive policies. Finally, in addition 
to shedding light on the impact of lockdown policies during our study period (March–June 
2020), our results have important implications on curbing future fast-spreading variants of 
the coronavirus or other related potential epidemics.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/serv.2023.0321. 
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1. Introduction
The novel coronavirus disease 2019 (COVID-19) has 
wreaked havoc around the globe ever since its onset in 
November 2019. Based on some estimates, 14.9 million 
excess deaths occurred in 2020–2021 worldwide that 
were all associated with COVID-19 (World Health 
Organization 2022). In the United States, as of Novem
ber 4, 2022, more than 97 million total cases and more 
than one million total deaths have been confirmed 
(Centers for Disease Control and Prevention 2022). In 
response to the COVID-19 pandemic and in order to 

curb the progression of the disease, U.S. states each 
scrambled to implement various lockdown policies in 
the early stage of the pandemic, including stay-at-home 
executive orders, nonessential business closures, large- 
gathering bans, and school closures. These policies have 
been shown to be effective in lowering the growth rates 
of COVID-19 (see, e.g., Courtemanche et al. 2020). How
ever, they often bear economic implications, such as the 
cost of lost income and productivity (see, e.g., Shretta 
2020), which might have propelled states to proceed 
toward reopening prematurely (RAND Corporation 
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2020). As a result of reopening segments of the econ
omy, some states observed spikes in new cases and 
were forced to exert new lockdowns, delay their reopen
ing plans, or impose other restrictive policies (Gamio 
2020, Reuters 2020). In light of the challenges faced by 
the states, we aim to provide quantitative evidence and, 
for the first time (to our knowledge), investigate both 
the health and economic impacts of various lockdown 
policies that were or could have been implemented by 
each of the states. Our main goal is to shed light on poli
cies that are most effective in trading off the underlying 
health gains versus the potential economic burdens.

To this end, we provide an extensive analysis of the 
policies implemented in the early stage of the pandemic 
in each state, compare their performance with a hypo
thetical no-intervention scenario as well as a set of coun
terfactual policies that could have been imposed. We do 
so by first developing a compartmental model that cap
tures the dynamics of the disease progression over time. 
Utilizing data of 50 U.S. states plus the District of Colum
bia (DC) on various factors (e.g., number of COVID-19 
tests, infections, hospitalizations, ICU bed and ventilation 
usage, and deaths), we exclusively estimate our model 
parameters for each state via Markov chain Monte Carlo 
(MCMC) simulation. We then develop a longitudinal 
mixed-effect model to quantify the impact of different 
policies on potential reductions in disease transmission 
rates. Here, we adjust our analysis for each state by 
considering policies, their duration, sociodemographic/ 
economic factors (e.g., age, race, income), number of daily 
tests, and residents’ mobility, which we obtain from cell
phone data.

Specifically, we take into account the effect of race 
because Black or Hispanic populations are reported to be 
more vulnerable against the health/economic impacts of 
COVID-19 (Artiga et al. 2020). We also take into account 
the effect of residents’ mobility as compliance of residents 
to adhere with policies imposed by their state can play an 
important role in controlling the disease (Bodas and Peleg 
2020). However, information on the level of adherence is 
only available via limited surveys, which are not fully 
reliable. Instead, we make use of cellphone data to 
directly gauge the mobility of individuals in each state, 
and this can effectively approximate their level of compli
ance (Charoenwong et al. 2020). These allow us to per
form high-fidelity simulation analyses and compare the 
lockdown policies that were followed with potential poli
cies that could have been imposed by each state.

Our measurements of the impact of lockdown poli
cies include the total cost incurred as well as the total 
quality-adjusted life years (QALYs) saved, albeit with 
respect to certain factors considered in this study. To 
quantify the cost, we include both direct and indirect 
costs. Specifically, we consider (1) the direct cost of 
either utilizing existing hospital resources (e.g., beds 
and ventilators) or expanding these resources in case 

there is a limited supply of them and (2) the indirect cost 
of lost income as well as that incurred when infected 
individuals have to quarantine. To quantify QALY, we 
consider how quality of life is impacted by different 
stages of the disease (e.g., healthy, infected, hospital
ized, dead, etc.). Finally, in addition to quantifying both 
the costs incurred and the QALYs saved, we perform 
cost-effectiveness (CE) analyses to further shed light on 
suitable lockdown policies that could have been enacted 
in each state.

1.1. Policy Insights and Implications
Our results allow the government and public health 
authorities not only to observe the impact of their exist
ing policies retrospectively, but also to adopt more effec
tive policies for future pandemics. Specifically, our 
results indicate the following: 
• Compared with no intervention, the lockdown poli

cies imposed across the United States during March– 
June 2020 increased (on average and per 100K capita) the 
total QALY and cost 41,284.51 years and $164.01 million, 
respectively. Moreover, more strict policies (i.e., enacting 
lockdowns for a longer period than what were actually 
implemented) in the United States could have saved (on 
average and per 100K capita) 44,909.41 years of total 
QALY, costing $117.28 million.
• For subpopulations who are at higher risk (e.g., age 
≥65 and Black/Hispanic race), compared with no in
tervention, the policies enacted across the United 
States during March–June 2020 saved (on average 
and per 100K capita) 64,185.49 years’ worth of QALY 
and incurred $11.03 million. Under more strict poli
cies, these outcomes would have been 69,389.41 years 
and �$49.69 million.
• We find a significant amount of heterogeneity in 

the total QALY saved and the extra total cost across 
states. For example, we observe that New Jersey and 
New York have much higher total QALY gains and 
extra costs compared with states with a higher popula
tion, such as California and Texas. As one of the poten
tial reasons, this might be associated with the number of 
infections, hospitalizations, and deaths averted under 
lockdown policies in these states. For example, we find 
that, under more strict policies (compared with no inter
vention), a maximum of 100 and 50 daily deaths per 
100K capita would have been averted in New Jersey and 
New York, respectively, whereas this number in Califor
nia and Texas is about 6 and 0.4, respectively.
• Our results show that, for the majority of the states, 

the more restrictive counterfactual policies we study 
are typically more cost-effective than the policies that 
were implemented. This means that they could have 
saved more QALYs per dollar imposed to the society. 
Thus, federal and state authorities should have fol
lowed such more restrictive policies instead of what 
they enacted. However, we find that, in some states, 
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such as California and New Jersey, the enacted policies 
were quite comparable to such counterfactual policies.
• Regardless of the lockdown policy, lowering resi

dents’ mobility beyond 10 miles from their residence 
could be viewed as an effective strategy in that it tangi
bly improves the total QALY gains. Furthermore, the 
impact of lowering residents’ mobility is much higher 
under the policies implemented across the states than 
those more strict ones that could have been followed. 
This suggests that lowering mobility and imposing 
(lifting) restrictive policies have substitutive (comple
mentary) effects.

1.2. Related Literature
Our work is among the first to examine the state-wide dif
ferential impact of various lockdown policies in terms of 
both health gains and economic burdens for all U.S. 
states. For related studies, we refer interested readers to 
Debata et al. (2020), Ghaffarzadegan and Rahmandad 
(2020), Holtz et al. (2020), Lin and Meissner (2020), Lyu 
and Wehby (2020), Wilson and Stimpson (2020), Ziedan 
et al. (2020), Berry et al. (2021), Brauner et al. (2021), Cher
nozhukov et al. (2021), Donnelly and Farina (2021), and 
Rahmandad et al. (2022).

Furthermore, regarding the type of health outcomes 
considered in this study, we note that the majority of 
studies analyze more direct outcomes, such as number 
of infections, hospitalizations, and deaths. Whereas we 
reflect on these outcomes in our numerical results, we 
measure the QALY metric as our primary health out
come. For some of studies that incorporate this metric in 
the COVID-19 domain, one can refer to Briggs and Vas
sall (2021), Ferreira et al. (2021), Reif et al. (2021), Malik 
et al. (2022), Wouterse et al. (2022), and references 
therein.

There are also specific studies in the operations 
research/management (OR/OM) literature that are rele
vant to our work. Kaplan (2020) analyzes the timing of a 
specific policy (e.g., university opening). Blackmon et al. 
(2021) analyze the problem of food insecurity amid the 
pandemic and develop a decision support system to 
improve the underlying decisions. Shen et al. (2021) pro
pose a game-theoretic approach to address the impact of 
mask distribution in controlling the spread of the disease. 
Birge et al. (2022) develop an optimization model based 
on residents’ mobility to identify targeted policies for 
business closures. We also refer interested readers to 
studies that analyze the impact of lifting nonpharmacolo
gic interventions (see, e.g., Chhatwal et al. 2021, Linas et al. 
2022), the impact of testing and compliance to quarantine 
after a positive test on disease transmission (see, e.g., Yu 
et al. 2022), resource allocation for COVID-19 vaccines 
(see, e.g., Kim et al. 2021), simultaneous impact of non
pharmacologic interventions and COVID-19 vaccines on 
health outcomes (see, e.g., Patel et al. 2021), and the effect 
of balancing service waiting times and disease infection 

rates (see, e.g., Mondschein et al. 2022). Finally, for 
reviews of problems attributed to COVID-19 that can be 
addressed by OR/OM methods, we refer to Choi (2021), 
Gupta et al. (2022), and the references therein. In Table 1, 
we compare our work with some existing studies that 
evaluate related policy interventions in the COVID-19 
domain.

The rest of this paper is organized as follows. In Sec
tion 2, we present our data and methodology. In Section 
3, we provide our numerical results and main findings, 
insights, and implications from our results. In Section 4, 
we discuss the limitations and future research directions 
and conclude the paper.

2. Data and Methodology
2.1. Data
Our study is focused on lockdown policies that were 
implemented in the early stages of the COVID-19 pan
demic (March–June 2020). For part of our analyses, we 
make use of the Star Schema data (Foldi and Csefalvay 
2020), which has the following data attributes: 50 U.S. 
states plus DC, date, number of daily total COVID tests, 
positive and negative results, hospitalizations, ICU beds 
used, ventilators used, and deaths in each state.1 The 
beginning date for each state in this data set varies, but 
the end date for all states is June 7, 2020. The second 
data that we utilize in our analysis are the timeline of 
the lockdown policies undertaken in each state, hereaf
ter referred to as current policies for simplicity. In our 
study, these lockdown policies consist of three main 
interventions: stay-at-home order and nonessential bus
iness closures, large-gathering ban, and school closures. 
For details regarding the current policies and the data 
we collected, see Table 2. We also utilize the data of pro
jected infections provided by the Institute for Health 
Metrics and Evaluation (2020) in order to test and vali
date our estimations (see Section 3.1.2). Finally, we 
make use of cellphone data (Cuebiq 2020) to obtain 
information on individuals’ mobility in each state.

2.2. An Epidemiologic Model
To analyze the spread of disease, we utilize an epidemio
logic compartmental model known as SEIRS that consid
ers susceptible, exposed, infected, and recovered populations. 
One of the main assumptions in this model is that an 
immunity obtained upon recovery will not be lifelong in 
the absence of treatments (see, e.g., Altmann et al. 2020), 
which was the case during the timeline of our study 
(American Journal of Managed Care 2021). To properly 
reflect on the problem under consideration, we make the 
following adjustments in our SEIRS model (the model is 
shown in Figure 1): 
• We note that being exposed to the disease can be 

the beginning of the presymptomatic period (see, e.g., 
World Health Organization 2020). Therefore, we do not 
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differentiate between exposed and presymptomatic 
conditions.
• We allow transmissions between (a)symptomatic 

infected and hospitalized populations.
• Among hospitalizations, we account for demand 

for common beds, ICU beds alone, or ICU beds with 
mechanical ventilators.
• We assume a ventilator is only used with an ICU 

bed (not a common bed), which is consistent with the 
medical literature (see, e.g., Gracey 1995, Wunsch et al. 
2013).

• For hospitalized patients who are discharged, we 
also consider the possibility of being infected (i.e., car
rier) postdischarge (Modern Healthcare 2020).
• For the current policies in each state, we consider 

the fact that there are overlaps between interventions 
resulting in different time frames. For example, for Ala
bama, we observed four time frames: March 7–April 3, 
April 4–30, May 1–11, and May 12–June 7 (see Table 2). 
Because of the type/number of interventions under
taken in each time frame, this can result in a potentially 
different disease transmission rate. We account for this 

Table 1. Summary of Some Existing Literature on the Evaluation of COVID-19 Policy Interventions

Study Study period Study location Policy type Outcome measure(s) Methodology/model

Ghaffarzadegan and 
Rahmandad 
(2020)

Feb–Mar 2020 Iran Current lockdownsa # infections 
# deaths

SEIR compartmental 
MCMC simulation

Holtz et al. (2020) Mar-Apr 2020 United States Current lockdowns Geographic/social 
network spillovers 
across the United 
States

Difference-in- 
differences (DID)

Kaplan (2020) 2020 (month not 
specified)

United States 
(Connecticut)

Crowd-size 
restrictions 

Hospital surge 
planning 

University opening

# infections 
# hospitalizations

Mathematical models

Lyu and Wehby 
(2020)

Mar–May 2020 United States 
15 states

Mask mandates Infection 
transmission rate

DID

Ziedan et al. (2020) Apr 2019–Apr 2020 United States Current lockdowns Non-COVID-19 
healthcare 
utilization

DID

Berry et al. (2021) Mar–May 2020 United States Current lockdowns # infections 
# deaths

DID

Brauner et al. (2021) Feb–May 2020 41 countries (not 
including the 
United States)

Current lockdowns Infection 
transmission rate

Bayesian hierarchical

Chhatwal et al. 
(2021)

Mar 2020–Dec 2021 United States Current lockdowns 
Mask mandates

# infections 
# hospitalizations 
# deaths

SEIR compartmental 
Simulation

Chernozhukov et al. 
(2021)

Mar–May 2020 United States Mask mandates 
Counterfactual 

mandates

# infections 
# deaths

Structural equations

Ferreira et al. (2021) Mar–Apr 2020 Portugal Current lockdowns Health-related 
quality of life 

Anxiety level

Survey analysis

Kim et al. (2021) Not specified United States Vaccines resource 
allocations

Infection attack rate SIR-D compartmental

Reif et al. (2021) Mar 2020–Mar 2021 United States Not specified QALYs lost State-transition 
microsimulation

Birge et al. (2022) Apr 2020 United States (New 
York)

Current lockdowns # infections Optimization

Wouterse et al. 
(2022)

2020 (month not 
specified)

Netherlands Not specified QALYs lost Simulation

Yu et al. (2022) Not specified United States Testing capacity and 
compliance

Infection 
transmission rate

SIR compartmental 
Simulation

Our study Mar–Jun 2020 United States 
All 51 states

Current lockdowns 
Counterfactual 

lockdowns 
No intervention

QALY 
Costb

SEIRS compartmental 
MCMC simulation

a“Current” refers to the time during the study period when the corresponding policy was implemented.
bBoth measures are estimated based on the number of infected, hospitalized, and dead individuals under different policies.
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by solving piecewise ordinary differential equations 
(ODEs) in our SEIRS model. As a result, the disease 
transmission rate in our setting depends on time. Of 

note, because transmission rates also affect other fac
tors in our model (e.g., hospitalization and death rates), 
such factors are also time-dependent in our analyses.

Table 2. Timelines of current intervention policies and data collected

State
Intervention 1a Intervention 2a Intervention 3a Data

Start End Start End Start End Start End

Alabama 04-Apr 30-Apr 04-Apr 11-May 04-Apr ROSYb 07-Mar 07-Jun
Alaska 28-Mar 20-May 28-Mar INDc 28-Mar ROSY 06-Mar 07-Jun
Arizona 31-Mar 15-May 17-Mar 16-May 15-Mar ROSY 04-Mar 07-Jun
Arkansas —d — 06-Apr IND 06-Apr ROSY 06-Mar 07-Jun
California 19-Mar IND 19-Mar IND 19-Mar ROSY 04-Mar 07-Jun
Colorado 26-Mar 30-Apr 26-Mar IND 26-Mar ROSY 05-Mar 07-Jun
Connecticut 23-Mar 20-May 23-Mar 20-Jun 23-Mar ROSY 07-Mar 07-Jun
Delaware 24-Mar 31-May 24-Mar IND 24-Mar ROSY 06-Mar 07-Jun
District of Columbia 01-Apr 29-May 01-Apr IND 01-Apr ROSY 05-Mar 07-Jun
Florida 03-Apr 04-May 03-Apr IND 03-Apr ROSY 04-Mar 07-Jun
Georgia 03-Apr 30-Apr 03-Apr IND 03-Apr ROSY 04-Mar 07-Jun
Hawaii 25-Mar 31-May 25-Mar IND 25-Mar ROSY 07-Mar 07-Jun
Idaho 25-Mar 30-Apr 25-Mar 30-Apr — — 07-Mar 07-Jun
Illinois 21-Mar 31-May 21-Mar 31-May 21-Mar ROSY 04-Mar 07-Jun
Indiana 24-Mar 01-May 24-Mar IND 24-Mar ROSY 06-Mar 07-Jun
Iowa 17-Mar 15-May 17-Mar IND 17-Mar ROSY 06-Mar 07-Jun
Kansas 30-Mar 03-May 30-Mar 04-May 30-Mar ROSY 06-Mar 07-Jun
Kentucky 26-Mar IND 26-Mar IND 26-Mar ROSY 06-Mar 07-Jun
Louisiana 23-Mar 15-May 23-Mar IND 23-Mar ROSY 07-Mar 07-Jun
Maine 02-Apr 31-May 01-May 31-May 02-Apr ROSY 07-Mar 07-Jun
Maryland 30-Mar 15-May 30-Mar IND 30-Mar ROSY 05-Mar 07-Jun
Massachusetts 24-Mar 18-May 24-Mar 18-May 24-Mar ROSY 12-Mar 07-Jun
Michigan 24-Mar 12-Jun 24-Mar 01-Jun 24-Mar ROSY 01-Mar 07-Jun
Minnesota 27-Mar 18-May 27-Mar 18-May 27-Mar ROSY 06-Mar 07-Jun
Mississippi 03-Apr 27-Apr 03-Apr IND 03-Apr ROSY 07-Mar 07-Jun
Missouri 06-Apr 03-May 06-Apr 03-May 06-Apr ROSY 07-Mar 07-Jun
Montana 28-Mar 24-Apr 28-Mar IND 28-Mar 07-May 07-Mar 07-Jun
Nebraska 10-Apr 30-Apr 10-Apr 04-May 10-Apr ROSY 05-Mar 07-Jun
Nevada 01-Apr 01-May 01-Apr IND 01-Apr ROSY 05-Mar 07-Jun
New Hampshire 27-Mar 15-Jun 27-Mar 15-Jun 27-Mar ROSY 04-Mar 07-Jun
New Jersey 21-Mar IND 21-Mar IND 21-Mar ROSY 05-Mar 07-Jun
New Mexico 24-Mar 15-May 24-Mar IND 24-Mar ROSY 06-Mar 07-Jun
New York 22-Mar 15-May 22-Mar IND 22-Mar ROSY 04-Mar 07-Jun
North Carolina 30-Mar 08-May 30-Mar IND 30-Mar ROSY 04-Mar 07-Jun
North Dakota 27-Mar 30-Apr — — 27-Mar ROSY 07-Mar 07-Jun
Ohio 23-Mar 29-May 23-Mar IND 23-Mar ROSY 05-Mar 07-Jun
Oklahoma 28-Mar 06-May 28-Mar IND 28-Mar ROSY 07-Mar 07-Jun
Oregon 23-Mar 15-May 23-Mar IND 23-Mar ROSY 04-Mar 07-Jun
Pennsylvania 01-Apr 08-May 01-Apr IND 01-Apr ROSY 06-Mar 07-Jun
Rhode Island 28-Mar 08-May 28-Mar IND 28-Mar ROSY 01-Mar 07-Jun
South Carolina 07-Apr 04-May 07-Apr IND 07-Apr ROSY 04-Mar 07-Jun
South Dakota — — 06-Apr 31-May 06-Apr ROSY 07-Mar 07-Jun
Tennessee 31-Mar 30-Apr 31-Mar IND 30-Mar ROSY 05-Mar 07-Jun
Texas 02-Apr 30-Apr 02-Apr IND 02-Apr ROSY 04-Mar 07-Jun
Utah 27-Mar 01-May 27-Mar IND 27-Mar ROSY 07-Mar 07-Jun
Vermont 24-Mar 15-Jun 24-Mar IND 24-Mar ROSY 06-Mar 07-Jun
Virginia 30-Mar 10-Jun 30-Mar IND 30-Mar ROSY 05-Mar 07-Jun
Washington 23-Mar 31-May 23-Mar IND 23-Mar ROSY 22-Jan 07-Jun
West Virginia 24-Mar 04-May 24-Mar IND 24-Mar ROSY 06-Mar 07-Jun
Wisconsin 25-Mar 26-May 25-Mar 26-May 25-Mar ROSY 04-Mar 07-Jun
Wyoming 25-Mar 01-May 25-Mar IND 25-Mar ROSY 07-Mar 07-Jun

Notes. Timelines of interventions, sources: Kates et al. (2020), Wu et al. (2020), and Treisman (2020). Timelines of data, source: Foldi and Csefalvay 
(2020).

aIntervention 1: stay-at-home order and/or nonessential business closures. Intervention 2: large-gathering ban. Intervention 3: school closures.
bROSY: remainder of school year.
cIND: indefinitely (at the time of data collection, June 7, 2020).
dAn executive order was not issued in that state.
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As shown in Figure 1, the outputs in our SEIRS 
model are the number of people in each compartment 
on each day, for example, susceptible, exposed, infected 
symptomatic/asymptomatic, hospitalized with com
mon bed, ICU bed, or ventilator, and death. We solve 
our model using the following ODEs (for the notation 
used, see Table 3):

dS(t)
dt �

�β(t)S(t)
P

i∈{A,S,H,PD}Ii(t)
S(t) + E(t) +

P
i∈{A,S,H,PD}Ii(t) + R(t) + ξR(t)

+ µ

 

S(t) + E(t) +
X

i∈{A, S, PD}
Ii(t) + R(t)

!

� νS(t),

(1a) 
dE(t)

dt �
β(t)S(t)

P
i∈{A,S,H,PD}Ii(t)

S(t)+E(t) +
P

i∈{A,S,H,PD}Ii(t)+R(t)� (σ + ν)E(t),

(1b) 
dIA(t)

dt
� pAσE(t)� (λH + γA + ν)IA(t), (1c) 

dIS(t)
dt
� pSσE(t)� (λH + γS + ν)IS(t), (1d) 

dIHRi(t)
dt � λH(IA(t) + IS(t))λi � (ϑ1i + φi)IHRi(t)

for i ∈ {1, 2, 3}, (1e) 

dIPDi(t)
dt

� ϑ1iIHRi(t)� (ϑ2i + ν)IPDi(t) for i ∈ {1, 2, 3},

(1f) 
dR(t)

dt
� (γAIA(t) + γSIS(t)) +

X3

i�1
ϑ2iIPDi(t)� (ξ + ν)R(t),

(1g) 
S(0) � N(0)� e0, E(0) � e0, IA(0) � IS(0) � IH(0)
� IPD(0) � R(0) � 0: (1h) 

2.3. Potential Lockdown Policies
In addition to analyzing the performance of current pol
icies, we study the impact of some potential policies that 

Figure 1. The SEIRS Compartmental Model 

Notes. Dashed and dotted arrows represent recovery/discharge flows and vital dynamics, respectively. For graphic simplicity, “infected/carrier 
posthospital discharge” is shown with one compartment (there are three of them). “Hospitalization required” is only shown for illustrative pur
poses and is not among the compartments.

Table 3. Summary of Notations for the SEIRS Model

t Time index (in days), t � 0, 1, : : : , T (T: time horizon)
S(t) # susceptible (#: number of people)
E(t) # exposed to the virus
e0 # initially exposed (at the onset of disease)
P(t) # presymptomatic, P(t) � E(t)
IA(t) # infected and asymptomatic (not developing symptoms)
IS(t) # infected and symptomatic
IH(t) # infected needed to be hospitalized, IH(t) �

P3
i�1 IHRi(t)

IHRi(t) # requiring hospital resources, i ∈ {1 :

Common=non-ICU bed, 2 : ICU bed alone, 3 :

ICU bed with ventilator}
IPDi(t) # infected/carrier of the disease posthospital discharge for 

index i ∈ {1, 2, 3}, IPD(t) �
P3

i�1 IPDi(t)
D(t) # deaths from COVID-19
R(t) # recovered from the disease
N(t) Total number of people (sum of numbers in all 

compartments at time t)
lI Incubation period (time between exposure/being 

presymptomatic and appearance of signs/symptoms of 
disease)

σ � 1=lI: rate of becoming infected 
postexposure/presymptomatic period

lRk recovery period for 
k ∈ {A : asymptomatic, S : symptomatic}

γk: recovery rate for 
k ∈ {A : asymptomatic, S : symptomatic}, γk � 1=lRk

lW Immunity waning period
ξ: waning rate, ξ � 1=lW

LOSi Hospital length of stay for index i ∈ {1, 2, 3} (see above for 
description of index i)

ϑ1i: hospital discharge rate for index 
i ∈ {1, 2, 3}, ϑ1i � 1=LOSi

ϑ2i: full recovery rate after a hospital discharge for index 
i ∈ {1, 2, 3}, ϑ2i � 1=max{lR �LOSi, 0}

β(t) Transmission rate at time t (rate at which the disease is 
transmitted between a susceptible and an exposed 
individual)

pS Probability of a symptomatic infection
pA Probability of an asymptomatic infection, pA � 1� pS
λH Rate of hospitalization
λi Rate of hospitalization for index i ∈ {1, 2, 3},

P3
i�1 λi � 1

φi Covid-related death rate for index i ∈ {1, 2, 3}
µ Vital dynamics (natural birth rate; not occurred during 

hospitalization)
ν Vital dynamics (natural death rate; not occurred during 

hospitalization)

Note. Compartments indices 1–12 refer to S, E, IA, IS, IHRi and IPDi 
for i ∈ {1, 2, 3}, R and D compartments, respectively.
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could have been followed by states (see Table 4) as well 
as a hypothetical no-intervention policy. These potential 
policies are set based on the current lockdown policies 
with the exception that we typically explore a longer 
duration, representing more strict policies compared 
with the current policies. Because most states initiated 
their policies in March and the end date in our data are 
June 7, we analyze these policies for March through 
June of 2020. These policies are labeled such that they 
are ordered in their degree of leniency. Thus, policy 3 (1) 
in Table 4 is the most (least) strict policy. Our assump
tions on the way the states would have transitioned 
between these policies (e.g., first implementing all inter
ventions, then lifting the stay-at-home order, and so on) 
is consistent with what has been reported by the author
ities for each state (see Table 2).

2.4. Adjusting Disease Transmission Rates
As we estimate the disease transmission rates in our 
SEIRS model, there exist underlying factors that could 
affect the dynamics of the disease but are not reflected 
in the SEIRS model, for example, population’s age and 
race (Artiga et al. 2020), income (Smialek 2020), compli
ance to following policies (Bodas and Peleg 2020), and 
number of daily tests (Pitzer et al. 2021). As a result, we 
cannot directly apply these estimated transmission rates 
to examine the impact of potential lockdown policies. 
To address this, we develop a longitudinal mixed-effect 
regression model, which allows us to measure the im
pact of policies on potential reductions in transmission 
rates. For each state, we adjust our analysis by duration 
and intensity of interventions, age, the ratio of Black or 
Hispanic populations, per capita income, and number 
of daily tests. In addition, we make use of the shelter- 
in-place analysis data (Cuebiq 2020) on the ratio of 
mobile devices moving within 1 mile, between 1 and 10 
miles, or more than 10 miles from home in each state. 
Also, for the number of daily tests, we make use of the 
Star Schema data (Foldi and Csefalvay 2020). Table 5
shows the summary of the independent variables used 
in our longitudinal regression model (for details about 
this model, see Section 3.2).

2.5. Measuring Health and Economic Impacts
2.5.1. Health Outcomes. Under each policy, we mea
sure health outcomes by making use of QALYs. This 
quantifies the number of years an individual can accrue 
depending on the individual’s health status; for exam
ple, full health (death) accounts for one (zero) year(s) of 
quality of life accrued, and a medical condition such as 
infection yields a value that is strictly between zero and 
one over one year. In our setting, the SEIRS model has 
12 compartments, each representing a different stage of 
the disease (see Section 2.2 for more details). Let X(t) �
(X1(t), : : : , X12(t)) represent the state of the model at 
time t, where Xi(t) denotes the number of people esti
mated to be in compartment i ∈ {1, 2, : : : , 12} at time t. 
Let qi ∈ [0, 1] represent the quality-of-life (qol) score for 
compartment i. This is a number between zero and one, 
and one (zero) represents full health (death) based on a 
one-year time frame. Also let Qi be the terminal qol 
score that a patient accrues at the end of the time hori
zon for the rest of the patient’s life. We quantify total 
QALY as the quality-adjusted life years that a popula
tion can accrue over the time horizon:

Total QALY �
XT�1

t�1

X12

i�1
qiXi(t) +

X12

i�1
QiXi(T): (2) 

As mentioned in Section 2.4, we adjust the disease trans
mission rate based on age, ratio of underrepresented 
populations, per capita income, people’s mobility, num
ber of daily tests, and type and duration of policies. As 
a result, the number of people in different compart
ments and, hence, our measure of QALY reflects these 
factors. Of note, Equation (2) reveals a linear function 
that accounts for between-compartment distribution 
of health benefits. However, it does not account for 
within-compartment distribution, such as subpopula
tions with specific health conditions (e.g., obesity, dia
betes, immunodeficiency, etc.) that might be more 
susceptible to COVID-19. Because our data does not 
include such granular information for each state, we 
focus on broader sociodemographic information in 
Table 5. We also perform a sensitivity analysis on 
the estimated qol scores (and, hence, QALY values) to 

Table 4. Summary of Potential Intervention Policies

Policy Stage 1 Stage 2 Stage 3 Number of time frames

P1 Start: 01-Mar, end: 30-Apr Start: 01-May, end: 31-May Start: 01-Jun, end: 30-Jun 3
Duration: 61 days Duration: 31 days Duration: 30 days
Interventions 1/2/3a Interventions 2/3 Intervention 3

P2 Start: 01-Mar, end: 31-May Start: 01-Jun, end: 30-Jun — 2
Duration: 92 days Duration: 30 days
Interventions 1/2/3 Interventions 2/3

P3 Start: 01-Mar, end: 30-Jun — — 1
Duration: 122 days
Interventions 1/2/3

aIntervention 1: stay-at-home order and nonessential business closures; intervention 2: large-gathering ban; intervention 3: school closures.
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Table 5. Summary of Sociodemographics and Mobility Information

Average Median Race
Mobility ratioe

State PCI, $a,b Ageb Ratiob,c Time frame 1d Time frame 2 Time frame 3 Time frame 4

Alabama 25,746 38.7 0.30 (0.315,0.298,0.386) (0.396,0.281,0.321) (0.319,0.290,0.390) (0.311,0.281,0.406)
Alaska 35,065 33.9 0.10 — — — —
Arizona 27,964 37.2 0.36 (0.335,0.359,0.305) (0.461,0.308,0.230) (0.485,0.301,0.213) (0.407,0.329,0.263)
Arkansas 24,426 37.9 0.23 (0.343,0.302,0.354) (0.344,0.296,0.359) — —
California 33,128 36.1 0.44 (0.328,0.364,0.306) (0.470,0.301,0.227) — —
Colorado 34,845 36.5 0.26 (0.420,0.273,0.306) (0.554,0.230,0.214) (0.438,0.263,0.297) —
Connecticut 41,365 40.8 0.27 (0.331,0.362,0.306) (0.508,0.294,0.196) (0.392,0.343,0.263) —
Delaware 32,625 39.8 0.30 (0.316,0.351,0.332) (0.474,0.295,0.230) (0.370,0.328,0.301) —
District of 

Columbia
50,832 33.9 0.56 — — — —

Florida 28,774 41.8 0.41 (0.360,0.310,0.329) (0.466,0.277,0.255) (0.368,0.302,0.328) —
Georgia 28,015 36.4 0.41 (0.321,0.288,0.390) (0.422,0.268,0.309) (0.313,0.281,0.404) —
Hawaii 32,511 38.8 0.12 — — — —
Idaho 25,471 35.9 0.14 (0.397,0.283,0.318) (0.481,0.265,0.253) (0.379,0.290,0.329) —
Illinois 32,924 37.7 0.31 (0.285,0.306,0.408) (0.434,0.266,0.298) (0.328,0.288,0.382) —
Indiana 27,305 37.5 0.16 (0.308,0.310,0.381) (0.474,0.267,0.258) (0.355,0.297,0.346) —
Iowa 30,063 38.1 0.09 (0.284,0.290,0.425) (0.441,0.252,0.305) (0.353,0.270,0.375) —
Kansas 29,600 36.3 0.17 (0.392,0.247,0.360) (0.478,0.240,0.280) (0.382,0.254,0.362) —
Kentucky 25,888 38.6 0.12 (0.314,0.305,0.380) (0.391,0.287,0.321) — —
Louisiana 26,205 36.4 0.37 (0.268,0.313,0.418) (0.408,0.284,0.306) (0.303,0.295,0.400) —
Maine 29,886 44.3 0.03 (0.390,0.298,0.311) (0.492,0.268,0.239) (0.394,0.295,0.310) (0.346,0.308,0.345)
Maryland 39,070 38.5 0.39 (0.364,0.314,0.321) (0.509,0.267,0.223) (0.408,0.300,0.291) —
Massachusetts 39,913 39.4 0.19 (0.393,0.389,0.217) (0.553,0.308,0.138) (0.435,0.372,0.192) —
Michigan 28,938 39.6 0.19 (0.337,0.308,0.353) (0.501,0.257,0.240) (0.367,0.294,0.338) —
Minnesota 34,712 37.9 0.11 (0.367,0.271,0.360) (0.478,0.240,0.281) (0.377,0.261,0.361) —
Mississippi 22,500 36.9 0.41 (0.315,0.275,0.408) (0.412,0.267,0.320) (0.309,0.277,0.413) —
Missouri 28,282 38.4 0.15 (0.367,0.283,0.349) (0.425,0.268,0.305) (0.326,0.283,0.390) —
Montana 28,706 39.8 0.04 (0.481,0.224,0.293) (0.569,0.205,0.224) (0.450,0.238,0.311) —
Nebraska 29,866 36.3 0.15 (0.419,0.234,0.345) (0.463,0.233,0.304) (0.405,0.247,0.347) (0.378,0.240,0.380)
Nevada 28,450 37.7 0.38 (0.436,0.292,0.271) (0.512,0.261,0.226) (0.435,0.280,0.284) —
New Hampshire 36,914 42.7 0.05 (0.350,0.321,0.327) (0.468,0.290,0.241) (0.367,0.320,0.312) —
New Jersey 39,069 39.6 0.34 (0.301,0.398,0.300) (0.541,0.286,0.172) — —
New Mexico 25,257 37.3 0.51 (0.376,0.332,0.291) (0.493,0.294,0.211) (0.428,0.312,0.259) —
New York 35,752 38.4 0.33 (0.323,0.352,0.323) (0.529,0.267,0.203) (0.424,0.307,0.268) —
North Carolina 28,123 38.4 0.31 (0.310,0.315,0.375) (0.418,0.292,0.289) (0.340,0.302,0.357) —
North Dakota 34,256 35.1 0.07 (0.446,0.211,0.341) (0.507,0.204,0.288) (0.391,0.230,0.378) —
Ohio 29,011 39.3 0.16 (0.292,0.330,0.376) (0.443,0.285,0.271) (0.321,0.317,0.362) —
Oklahoma 26,461 36.3 0.18 (0.328,0.273,0.398) (0.414,0.267,0.318) (0.315,0.275,0.409) —
Oregon 30,410 39.2 0.15 (0.373,0.344,0.282) (0.496,0.287,0.215) (0.427,0.308,0.263) —
Pennsylvania 31,476 40.7 0.18 (0.395,0.321,0.283) (0.509,0.280,0.209) (0.399,0.316,0.284) —
Rhode Island 33,315 39.9 0.22 (0.347,0.387,0.265) (0.536,0.310,0.153) (0.419,0.372,0.208) —
South Carolina 26,645 39.0 0.32 (0.324,0.304,0.370) (0.400,0.291,0.308) (0.314,0.302,0.383) —
South Dakota 28,761 36.8 0.06 (0.438,0.238,0.323) (0.484,0.234,0.280) (0.385,0.251,0.362) —
Tennessee 27,277 38.6 0.22 (0.306,0.305,0.388) (0.411,0.288,0.300) (0.306,0.300,0.392) —
Texas 28,985 34.3 0.52 (0.357,0.263,0.378) (0.457,0.250,0.292) (0.363,0.264,0.372) —
Utah 26,907 30.5 0.15 (0.379,0.317,0.303) (0.476,0.283,0.240) (0.381,0.311,0.307) —
Vermont 31,917 42.8 0.03 (0.340,0.306,0.353) (0.476,0.268,0.255) — —
Virginia 36,268 38.0 0.29 (0.346,0.309,0.344) (0.420,0.285,0.293) — —
Washington 34,869 37.6 0.17 (0.342,0.354,0.302) (0.483,0.291,0.225) (0.401,0.318,0.280) —
West Virginia 24,774 42.2 0.05 (0.320,0.325,0.354) (0.478,0.276,0.245) (0.367,0.302,0.329) —
Wisconsin 30,557 39.2 0.13 (0.331,0.309,0.359) (0.459,0.266,0.273) (0.349,0.295,0.355) —
Wyoming 31,214 37.0 0.10 (0.392,0.346,0.261) (0.497,0.298,0.203) (0.393,0.333,0.272) —

Note. For number of daily tests, we use the data in Foldi and Csefalvay (2020).
aPCI: Per capita income/year. PCI and median age are obtained from Mathematica, Wolfram Research, Inc. (see Online Appendix A).
bIn our simulation, we consider a 610% variation for this measure (based on the point estimate reported here).
cRatio of Black or Hispanic population (Henry J. Kaiser Family Foundation 2018).
dMobility information is obtained from Cuebiq (2020). Numbers in (.) represent the average ratio of mobile devices moving within 1 mile, 

between 1 and 10 miles, and more than 10 miles from home, respectively. Mobility data for Alaska/District of Columbia/Hawaii was not 
available. For these states, we take the average mobility rates from other states.

eFor characterization of time frames, see Sections 2.1 and 2.2.
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test the validity of our main findings (see Section 3.4.2). 
Finally, in addition to reporting the total QALY per 100K 
capita, we also evaluate the QALY values by focusing on 
high-risk subpopulations formed by people 65 years or 
older or those with Black/Hispanic race.

2.5.2. Economic Outcomes. We measure economic im
pacts using the sum of direct and indirect costs (see, e.g., 
Meltzer et al. 1999). The direct costs entail the costs 
related to utilizing existing healthcare resources, such as 
common beds, ICU beds, and ventilators, as well as 
expanding these resources when facing higher demands 
for them. Following the notation introduced in Table 6, 
the total direct cost is measured as

Total direct cost �
XT

t�1
[c1X5(t) + c2X6(t) + c3X7(t)

+ ĉ1max{0, X5(t)� C1(t)}
+ ĉ2max{0, X6(t)� C2(t)}
+ ĉ3max{0, X7(t)� C3(t)}], (3) 

where the first (second) line represents the daily cost of 
utilizing (expanding) resources.

The indirect costs, however, relate to other expenses, 
such as those associated with lost income/productivity 
and quarantining. Using the notation introduced in 
Table 6, the total indirect cost is measured as

Total indirect cost � PCI × η ×
XT

t�1
[lost income (t)

+ quarantine cost (t)], (4) 
where

lost income (t) �
X4

j�1
pj(t)θj

X11

i�1
[Xi(t) + X12(t)

(365 × (max{0, 65�Age}� t + 1))],
(5a) 

quarantine cost (t) � (IN
A (t)dA + IN

S (t)dS)

× (qHcH + qFcF) × γ, (5b) 

where the first sum on the right-hand side (RHS) in (5a) 
captures the percentage of lost income. The second sum 
on the RHS in (5a) calculates the number of people who 
lost their income in the population. This is measured 
separately for death (i � 12) and other compartments in 
the SEIRS model. Of note, when an individual dies, the 
income is lost for the rest of the individual’s working 
life. Assuming the working life ends at 65 years of age 
for an alive person, the number of days income is lost 
for a person who dies on day t is measured as 365 ×
(max{0, 65�Age}� t+ 1). Furthermore, the first factor 
in (5b) reveals the number of individuals quarantining 
adjusted by the duration of their quarantine period (in 
days), and the second factor represents the cost of 
quarantining per person per day. Of note, our calcula
tions differentiate between asymptomatic and symp
tomatic infections because they often have different 
quarantine periods (see, e.g., Centers for Disease Con
trol and Prevention 2021). Finally, γ is the proportion of 
people who have to quarantine when infected. Whereas 
we set this parameter exogenously, we conduct sensitiv
ity analyses on this (and many other parameters and 
assumptions) in our robustness checks.

Using Equations (2)–(5b), we compare the total QALY 
saved and the total cost incurred under different 
lockdown policies compared with a hypothetical 
no-intervention scenario. Further details about our esti
mation of QALY and costs parameters can be found in 
Online Appendix C. Moreover, in Section 3.4, we perform 
extensive sensitivity analyses to test the robustness of our 
main findings against the estimated parameters.

Finally, we also compare the cost-effectiveness of 
different policies by measuring the incremental 

Table 6. Summary of Notations for the Economic Outcomes

Cost: direct ci Operating cost ($/day) of a unit of existing resource i, i �1 (common bed), 2 (ICU bed), 3 (ICU bed & ventilator)
ĉ i One-time cost ($) for adding a unit of resource i

Xk(t) # in compartment j on day t, k � 5 (hosp w common bed), 6 (hosp w ICU bed), 7 (hosp w ICU bed & ventilator)
Ci(t) Current capacity of resource i on day t (updated on a daily basis)

Cost: lost 
income

PCI Per capita income per day
η Employment rate

pj(t) % of working population who lose between 0:25(j� 1)and 0:25j of their income, j � 1, : : : , 4
θj % of lost income for individuals who lose between j� 1 and j quartiles of their income, θj ∈ [0:25(j� 1), 0:25j]

Xi(t) # in compartment i on day t (patients in compartments i � 1, : : : , 11 are alive)
X12(t) # patients who die on day t

Cost: 
quarantine

qH Probability of a quarantining person doing that at home
qF Probability of a quarantining person doing that at a facility (e.g., hotel), qF � 1� qH
cH Cost ($/day) for quarantining at home
cF Cost ($/day) for quarantining at a facility
dA # days of quarantine if asymptomatic
dS # days of quarantine if symptomatic

IN
A (t) # new asymptomatic infections on day t

IN
S (t) # new symptomatic infections on day t
γ % of people who do quarantine when infected (set exogenously, subject to sensitivity analysis)
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cost-effectiveness ratio (ICER) (see, e.g., Drummond et al. 
2015):

ICER � Incremental total cost ($)
Incremental total QALY (years)

�

Total cost (potential policy)
� Total cost (current policy)

Total QALY (potential policy)
� Total QALY (current policy)

:

(6) 

Let WTP represent the willingness to pay defined as the 
maximum amount that the society is willing to pay to 
obtain one extra QALY (in years). Then, a potential policy 
intervention is said to be more cost-effective than the cur
rent policy if ICER ≤WTP (see, e.g., Drummond et al. 2015).

3. Numerical Results and Analyses
3.1. Parameter Estimations and Model Validation
3.1.1. Estimations. Table 7 shows the estimated para
meters of our SEIRS model in terms of their 95% con
fidence intervals (CIs). To estimate these parameters, 
we conduct an MCMC simulation via the Metropolis– 
Hastings algorithm (Chib and Greenberg 1995).2 The 
MCMC simulation generates the posterior estimates of 
parameters based on observed data of the number of 
infections, hospitalizations, and deaths. Following Bayes
ian inference, we first construct a log-likelihood function 
of the observed data conditional on model parameters 
(prior), in which the log likelihood is based on Poisson 
distributions for the number of infections, hospitaliza
tions, and deaths (see, e.g., Bootsma and Ferguson 2007, 
Ghaffarzadegan and Rahmandad 2020). For a given U.S. 
state, we denote by vD � [vD,t]t∈F the vector of a statistic 
(e.g., infections, hospitalizations, or deaths) observed 
from our data over time frame F. We let vE � [vE,t]t∈F be 
the corresponding vector whose values (e.g., infections, 
hospitalizations, and deaths) are obtained by running the 
deterministic Equations (1a)–(1h) in the SEIRS model. 
After assuming a uniform prior U[0, 1] for all parameters 
that are defined as rates (Bootsma and Ferguson 2007) 
and different uniform distributions for other parameters 
(e.g., length of stay), we then form the Poisson log- 
likelihood function as (Taboga 2021)

log L(vD, vE) �
X

t∈F
[� vD,t� log(vE,t!) + log(vD,t)vE,t]:

(7) 

Using the log-likelihood function in (7), we resort to the 
MCMC simulation to iteratively construct the posterior 
distribution of parameters given the observed data. We 
run multiple chains to avoid wide CIs, which are typically 
idiosyncratic to MCMC simulations with a single chain. 
In addition, for the convergence of the Metropolis– 
Hastings algorithm, we use the modified potential scale 
reduction factor (Brooks and Gelman 1998) (further 
details are provided in Online Appendix C.6). Finally, 

to identify the burn-in period (i.e., number of initial 
iterations of the algorithm to discard), we visually 
inspect the variations in estimated parameters over 
iterations to detect nonstationary behavior. For further 
details about the Metropolis–Hastings algorithm, we 
refer to Robert (2015) and Van Ravenzwaaij et al. (2018).

3.1.2. Validation. To validate our model, we compare 
our predictions of number of infections, hospitaliza
tions, and deaths with those observed in the data (see 
Online Appendix B). For each state, we iterate our SEIRS 
model 1,000 times, and in each iteration, we randomly 
select a value for each parameter from the respective CI 
reported in Table 7. From our results, we observe that 
the values we observe from the data are within the cor
responding CIs from our predictions, and in most cases, 
the mean value of our predictions closely mimics that of 
the data.

3.2. Mixed-Effect Longitudinal Model
The disease transmission rate that we estimate in Sec
tion 3.1 is obtained based on the data gathered under 
the actual lockdown policies undertaken across the 
United States. However, we also aim to analyze some 
counterfactual policies, in which their intensity and 
duration differ from the one under which the data are 
gathered (see Table 4). Therefore, we need to adjust the 
transmission rate accordingly. To accomplish this, we 
develop a longitudinal mixed-effect regression model to 
quantify how much the transmission rates are impacted 
by intervention policies, their durations, population 
age, ratio of Black or Hispanic populations, per capita 
income, mobility rates, and number of daily tests in 
each state. The outcome is the amount of reduction in 
transmission rate at any given time compared with the 
baseline rate (i.e., when there is no intervention). Using 
the notations in Table 8, our first model is as follows:

Model 1 : β0 � βi � b0 + b1 ∗ policyi + b2 ∗ durationi

+ b3 ∗mobility1
i + b4 ∗mobility2

i
+ b5 ∗ testsi + b6 ∗median age
+ b7 ∗ race ratio + b8 ∗ PCI: (8) 

We also make use of two nonlinear models (labeled as 
models 2 and 3), in which we consider all pairwise 
and/or triplewise interactions between variables in (8). 
Comparing these models in Table 9, we observe that 
performance measures are not unanimous in favoring 
one model. For example, model 1 results in better Bayes
ian information criterion values, whereas model 3 yields 
better Akaike information criterion and log likelihood 
values. Because of its simplicity and its quality that is 
fairly comparable with models 2 and 3, we select model 
1 in order to perform our simulation analyses (see Sec
tion 3.3). From Table 10, we observe that increasing the 
intensity and duration of lockdown policies as well as
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number of daily tests is associated with more reductions 
in transmission rates (statistically significant). Further
more, increasing per capita income and reducing the 
ratio of Black/Hispanic populations could also poten
tially improve the transition rates, but we do not ob
serve any statistically significant results in this regard. 
Finally, our estimated coefficients presented in Table 10
indicate that increasing the mobility rate within 10 miles 
from home (compared with the distance beyond that) 

can positively impact reductions in transmission rates. 
However, our results do not provide any statistically 
significant evidence on this potential impact of mobility.

Because mobility, race ratio, and per capita income 
have large P-values, the predicted difference in disease 
transmission rates could have large variance when ana
lyzed over these specific covariates. This can be caused, 
for example, by the relatively large standard error of the 
estimated coefficients for these three covariates. How
ever, this is not the case for the other covariates in Table 
10. Overall, our results in Online Appendix C.7 show 
that our estimates for disease transmission rates are 
fairly robust and not sensitive to potential misestima
tions (see Online Appendix C. 7 for more details).

3.2.1. Endogenous Transmission Rates and Costs. As 
mentioned earlier, we aim to compare our proposed 
policies and the current policies with a hypothetical 
no-intervention scenario. There is empirical evidence 
in the literature that, even without societal interven
tions, people would not have endangered themselves 
and taken the risk of going out (see, e.g., Abouk and 
Heydari 2021). This implies that the transmission rate 
would naturally decline based on the risk perception 
about the negative outcomes of the pandemic in the 
population (e.g., number of infections, hospitaliza
tions, or deaths). This results in the transmission rate 
under the no-intervention policy to be endogenous.3
For each state separately, we accommodate this 

Table 8. Summary of Notations for the Mixed-Effect 
Regression Models

β0 Baseline transmission rate (when there is no 
intervention)a

βi Disease transmission rate when there is a policy 
intervention in time frame i (unique under each 
policy)a

policyi Intervention policy in time frame i, pi ∈ {0, 3, 2, 1} (i.e., 
categorical variable)b

pi � 0: no-intervention policy
pi � 3: three lockdown policies in time frame i (stay- 

at-home order, large-gatherings ban, and school 
closures)

pi � 2: two lockdown policies in time frame i (large- 
gatherings ban and school closures)

pi � 1: one lockdown policy in time frame i (school 
closures)

durationi Duration of time frame i under the current policiesc

mobility1
i Average rate of mobility in time frame i (within 1 

mile from home)d

mobility2
i Average rate of mobility in time frame i (within 1 

and 10 miles from home)d

testsi Average number of daily tests in in time frame ie
median age Median age in each stated

race ratio Ratio of state’s population with Black or Hispanic 
raced

PCI Average per capita income in each stated

aFor estimations of β0 and βis, see Table 7.
bOrder of intervention policies is set as 0→ 3→ 2→ 1.
cObtained from information in Table 2.
dInformation presented in Table 5. Also, to avoid collinearity, we 

do not consider mobility rates of more than 10 miles from home.
eObtained from the Star Schema data (Foldi and Csefalvay 2020).

Table 9. Performance Measures for the Mixed-Effect 
Regression Models

Model

Akaike 
information 

criterion

Bayesian 
information 

criterion
Log 

likelihood

1 771.62 810.04 �372:81
2 790.95 944.66 �343:48
3 728.11 1,005.96 �270:06

Table 10. Results of Mixed-Effect Model (8)

Variablea Estimate, % Standard error, % t-value P-value

Intercept �10.128 6.137 �1.650 0.1054
policyi : 0→ 3 5.463 1.555 3.514 0.0007***
policyi : 0→ 3→ 2 5.945 0.775 7.671 < :00001***
policyi : 0→ 3→ 2→ 1 5.761 1.153 4.996 < :00001***
durationi 2.541 1.510 1.683 0.0953+
mobility1

i 3.190 8.842 0.361 0.7189
mobility2

i 19.28 14.74 1.308 0.1959
testsi 7.335 2.896 2.533 0.0129*
median age 4.468 2.760 1.619 0.1125
race ratio �0.195 3.595 �0.054 0.9573
per capita income 0.069 2.120 0.033 0.9738

Note. Results are obtained by the “lmer” function in the R computing package.
aFor notations, see Table 8.
Significance: ***0.001, **0.01, *0.05, +0.1.
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endogeneity as follows:

β̂0 � β0 + α ×
I

state′s population for α ≤ 0, (9) 

where β̂0 is the new transmission rate under no inter
vention, β0 is the baseline transmission rate that we 
already estimate (see Table 7), α is an exogenous param
eter that characterizes the level of risk perception, and I 
is the daily average number of infections under no inter
vention (this is obtained from the SEIRS model). As can 
be seen from (9), β̂0 is modeled endogenously because it 
decreases as the number of infections increases. Further
more, the amount of decrease depends on the level of 
risk perception, α.4

In addition to considering an endogenous disease 
transition rate, we also account for the endogenous cost 
of staying home because of the perception that attend
ing work might cause infection even though there is no 
government policy intervention (e.g., a stay-at-home 
order). We measure this by 

PT
t�1
P11

i�1 Xi(t) ×mobility1 ×

ξ × PCI × η, where the first factor denotes the total num
ber of people alive during the time horizon, the second 
factor is the percentage of people who stay home (we 
account for this via the rate of residents’ mobility within 
< 1 mile from their home), ξ is an exogenous parameter 
that represents the percentage of people who would 
lose income when staying home, and PCI × η is the per 

capita income adjusted by the population’s employment 
rate. For the no-intervention policy, we add this cost to 
the corresponding direct and indirect costs measured 
by Equations (3)–(5b). In our robustness checks, we per
form various sensitivity analyses on the aforementioned 
parameters and evaluate their impact.

3.3. Comparison of Intervention Policies
3.3.1. Microsimulation Model. We compare the perfor
mance of the current policies and our counterfactual poli
cies in each state against a hypothetical no-intervention 
benchmark. We make this comparison based on the total 
QALY accrued and total costs incurred throughout the 
time horizon of March 1 through June 30, 2020. To 
account for variations in the estimated values of various 
parameters for each state, we iterate our calculations of 
the QALY and the cost obtained under each policy 10,000 
times. The details of this microsimulation model are pro
vided in Online Appendix D.1.

3.3.2. QALY and Cost Comparisons. We now analyze 
the total QALY accrued and the total cost incurred for 
each state under various policies and report these mea
sures per 100K capita. Figure 2 shows the results, based 
on which we make the following observation.

Observation 1. Compared with no intervention dur
ing March–June 2020, the average increase in the total 

Figure 2. Distribution of Average Outcomes Across States 

Notes. Outcomes are obtained when comparing intervention policies with no intervention. Current: the current policies undertaken in each state 
during the timeline of our study. See Table 4 for intervention policies P1/P2/P3. Complete results for each state are provided in Online Appen
dix D.3.
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QALY and cost per 100K capita across the U.S. states 
is 

i. 41,284.51 years and $164.01 million under the cur
rent policy.

ii. 42,178.04 years and $141.05 million under policy 1.
iii. 43,885.49 years and $124.25 million under policy 2.
iv. 44,909.41 years and $117.28 million under policy 3.
Observation 1 reveals that imposing the counterfac

tual policies we study (policies 1–3) would result in 
higher total QALY gains and decrease the total cost 
(compared with the current policy). Of note, the poten
tial policies we study are typically more strict than what 
states imposed. Hence, these policies are able to better 
control the spread of the disease and yield improve
ments in QALY. Moreover, fewer infections implies less 
cost of quarantining. They also result in fewer hospitali
zations, which, in turn, lowers the cost of utilization and 
potential expansion of beds and ventilators in hospitals. 
Finally, we observe that more restrictive policies reduce 
the indirect cost of lost income that is incurred because 
of deaths. More restrictive policies, however, increase 
the lost income in the population because they prevent 
individuals from attending their work and engaging in 
their daily activities. Overall, combining the positive and 
negative effects, we find that more strict policies could 
have reduced the total extra cost.

In addition to the average results, we observe a sig
nificant amount of heterogeneity in the QALY gained 
or extra cost incurred when the same lockdown policy 
is undertaken across different states. Notably, our 
results reveal that an improvement in the total QALY 
or an increase in the total cost is not necessarily pro
portional to a state’s population (see Figure 2). For 
example, in Michigan, the average QALY gain per 
100K capita under policy 1 compared with no inter
vention is 102,000 years, whereas in New Jersey with 
about 1 million fewer residents than Michigan, this 
gain under the same policy is 167,720 years. Similarly, 
whereas New York and Florida have a similar number 
of residents, our results show that the impact of 
imposing policy 2 on QALY and costs compared with 
no intervention is vastly different for these two states 
(139,570 years and $1251.440 million for New York but 
12,440 years and �$97.070 million for Florida).

An important factor that can be associated with 
these variations in the total QALY and cost across 
states is the number of infections, hospitalizations, 
and deaths averted in those states under different 
lockdown policies. The higher these aversions, the 
higher the total QALY saved and the lower the cost of 
utilization or expansion of beds/ventilators and quar
antine (see our results in Online Appendix D.5). The 
ability of lockdown policies to increase these aver
sions, in turn, depends on various geographic and 
demographic factors that differ across states. Among 

all such factors, it is especially important to under
stand how policies affect the high-risk population 
within each state. Thus, we next focus our attention 
on high-risk populations within each state and rerun 
our analyses for this population.

3.3.3. Impact on High-Risk Population. It is known that 
some subpopulations are more susceptible to COVID-19 
complications. These include individuals with older age, 
minority race, diabetes, obesity, cancer, and immunodefi
ciency (Artiga et al. 2020, Mayo Clinic 2020). As a result, 
their QALY could be more severely impacted compared 
with the average population. Furthermore, differences in 
the percentage of such individuals in states can contribute 
to the heterogeneous impact of policies we find across 
states. To gain a better understanding, we now estimate 
the total QALY saved and the total extra cost under differ
ent lockdown policies for subpopulations formed by indi
viduals 65 years or older and with Black/Hispanic race 
(further details are provided in Online Appendix D.2). Of 
note, our data does not include more granular informa
tion on other risk factors in each state (e.g., cancer and 
immunodeficiency rates), and hence, we defer analyzing 
such factors to future research.

Our results related to individuals 65 years or older and 
with Black/Hispanic race are presented in Figure 2. We 
make the following observation based on our results.

Observation 2. Among individuals 65 years or older 
and with Black/Hispanic race compared with no inter
vention during March–June 2020, the average increase 
in the total QALY and cost per 100K capita across the 
U.S. states is 

i. 64,185.49 years and $11.03 million under the cur
rent policy.

ii. 65,638.82 years and �$19.28 million under policy 1.
iii. 67,625.69 years and �$41.32 million under policy 2.
iv. 69,389.41 years and �$49.69 million under policy 3.
Observation 2 shows that QALY gain (extra cost) per 

100K capita in the high-risk population is higher (lower) 
than that obtained for the average population (see Obser
vation 1). One reason for this observation is the fact that 
the number of infections, hospitalizations, and deaths 
averted under lockdown policies for the high-risk popu
lation is also higher than that for the average population. 
This not only improves the total QALY saved, but also 
reduces the extra cost incurred by lowering the cost of 
utilizing/expanding resources (as well as the cost of 
quarantining). Also, this high-risk population comprises 
senior people, and hence, the impact of lost income is 
lower in this group than the average population. We also 
observe a high variation across states in terms of these 
outcomes; for example, in Michigan (New Jersey), the 
average QALY gain per 100K high-risk capita under pol
icy 1 compared with no intervention is 130,950 (212,610) 
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years. Thus, our earlier results that (1) states with a simi
lar total population can see significantly different impacts 
of the same lockdown policy and (2) the impacts of poli
cies are not necessarily higher in more populous states 
are likely a result of the differences in the percentage of 
high-risk population. However, other factors, such as the 
population density of each state and a variety of sociopo
litical differences across states, can also play a role. A 
deep analysis of such factors is outside the scope of our 
work, and hence, we leave it to future research to study 
their effect.

3.3.4. Cost-Effectiveness of Intervention Policies. We 
make use of Equation (6) and measure the CE of a poten
tial policy compared with the current policy via the 
probability that ICER ≤ WTP (for more details, see 
Online Appendix D.1). The higher this probability, the 
higher the cost-effectiveness of the potential policy com
pared with the current policy. To gain more insight into 
the cost-effectiveness of these policies, we consider a 
range of WTP values between $0 and $100K per QALY, 
which is consistent with the literature (see, e.g., Echazu 
and Nocetti 2020). Our results in Figure 3 reveal that, 
within this WTP range, the potential policies we study 
are typically more cost-effective than the current poli
cies adopted by states. This is expected because our ear
lier result in Observation 1 shows that more strict 
policies could improve the QALY saved and incur less 
extra cost compared with the current policies. We also 

observe that the potential policies are particularly more 
attractive when state authorities are less willing to pay 
to gain one extra year’s worth of QALY (e.g., WTP ≤
$20K compared with WTP > $20K). This impact, how
ever, is not uniform across states. Specifically, our 
results show that the cost-effectiveness of the more 
restrictive policies for low WTP values is much more 
pronounced in states such as Indiana, Minnesota, Penn
sylvania, and Washington than other states such as Cal
ifornia, Massachusetts, New Jersey, and New York. 
This is yet another indication of the heterogeneity of 
health and economic outcomes across the states.

In closing this section, we emphasize that caution 
should be exercised in interpreting our cost-effectiveness 
results. Our findings are based on data from the early 
stage of this pandemic (March to June 2020). As the 
pandemic evolves (e.g., as the number of new cases 
rises, new variants of COVID-19 arrive, and vaccina
tions become more available), the numbers presented 
here will change as well. Decision making on what 
policies to impose, however, has been challenging for 
authorities, mainly because of a lack of quantitative 
evidence on health gains versus economic burdens of 
different lockdown policies. To the best of our knowl
edge, our findings are among the first to shed light on 
the heath versus economic impacts of COVID-19 lock
down policies separately for each state, and we hope 
they could facilitate the decision-making process for 
COVID-19 and future epi-demics.

Figure 3. Cost-Effectiveness Probability of Potential Policies Compared with Current Policies 

Notes. Results for other states are provided in Online Appendix D.4. A drop in the CE probability implies an improvement in the performance of 
the current policies compared with the potential policies.
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3.4. Robustness Checks and Relevant Managerial 
Implications

To test the robustness of our main results, we now per
form extensive sensitivity analyses on various para
meters, including residents’ mobility, qol scores and 
QALY values, the proportion of population losing their 
income, projected infections, the population level of risk 
perception (about the negative outcomes of the pan
demic), the proportion of individuals who would lose 
their income when staying home (under no interven
tion), the proportion of infected individuals who quar
antine, and the level of capacity of hospital resources.

3.4.1. Mobility. In our baseline comparisons of policies 
in Section 3.3, we utilize the actual mobility rates ob
served from cellphone data separately for each state. 
Under this actual scenario (referred to as M1, hereafter), 
the average mobility rates over all states for moving 
within 1 mile, between 1 and 10 miles, and more than 10 
miles from home are about 0.4, 0.3, and 0.3, respectively 
(see Table 5 for more details). We now consider two 
hypothetical scenarios: a 10% reduction in movements 
within 1 mile from home (M2) and no movement 
beyond 10 miles from home (M3). That is, under M2 
and M3, we allow the rates for moving within 1 mile, 
between 1 and 10 miles, and more than 10 miles from 
home to be 0.5, 0.3, and 0.2 and 0.5, 0.5, and 0.0, respec
tively. From the results in Figure 4, we observe that, 
under any intervention policy, lowering residents’ 
mobility beyond 10 miles from home would increase 
the total QALY gains (compared with no intervention). 

This typically comes at the expense of higher extra cost 
incurred compared with no intervention. However, we 
also observe that, in states such as New York, reduced 
mobility would result in lower extra cost. Furthermore, 
in a consistent fashion across the states, the less strict a 
lockdown policy, the more improvement in the total 
QALY gain under that policy when we reduce the resi
dents’ mobility beyond 10 miles. These results high
light the importance of individuals’ compliance to 
lockdown policies in managing the pandemic.

3.4.2. qol Scores and QALY Values. We consider two 
alternative scenarios for qol scores (and, hence, the esti
mated QALY values) in which they are selected from 
either higher or lower ranges compared with our baseline 
scenario. The results are provided in Online Appendix 
E.1. We observe that, as we lower qol scores (i.e., when 
health conditions across all compartments deteriorate), 
the savings in the total QALY from current/potential pol
icies increases compared with no intervention. This result 
supports the notion that more strict policies are better 
suited for populations with worse health conditions. Fur
thermore, we observe no consistent impact on the extra 
cost across states when changing qol scores. Overall, our 
results give us confidence that our findings are relatively 
robust to the estimates used in our main analysis for qol 
and QALY values.

3.4.3. Proportion of Population with Lost Income. We 
consider two alternative scenarios for the portion of the 
working population who have lost their income. Details 

Figure 4. Average Outcomes Under Different Intervention Policies and Mobility Scenarios 

Notes. Intervention policies are compared with no intervention. See Table 4 for intervention policies P1/P2/P3. M1: mobility observed in each 
state (see Table 5). M2/M3: other mobility scenarios used for robustness check.
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are provided in Online Appendix E.2. From our results, 
we observe that, as the ratio of the population who lost 
more than 50% of their income increases, the extra total 
cost incurred by current/potential policies compared 
with no intervention ramps up. However, as expected, 
we do not observe consistent changes in the QALY out
comes across states when changing the ratio of popula
tion with lost income.

3.4.4. Projected Infections. Because of factors such as 
limited capacity of COVID-19 tests (Gao and Rosenlof 
2020) and low (high) chance of false positive (negative) 
tests (Surkova et al. 2020, Watson et al. 2020), the number 
of observed positive cases could differ drastically from 
the true number of infected cases. Furthermore, it is 
reported that up to 40%–80% of people showing up for 
tests are asymptomatic (Gómez-Ochoa et al. 2020, Hene
ghan et al. 2020). In the absence of symptoms, the likeli
hood that a person tests positive could be a fraction of a 
randomly selected member of the population. Based on 
this premise, in our sensitivity analyses, we project the 
number of true daily infections in each state as follows:

Projected infections � rate of observed infections
× fraction of total population
× population size

�
# positive tests

# total tests
× fraction of total population
× population size: (10) 

For the fraction of total population in each state, we per
form a sensitivity analysis by considering scenarios in 
which the fraction is varied by setting it to either 10% or 
50%. For example, in a state with 1 million residents, if 
the numbers of positive and total tests are 2,000 and 
20,000 on a given day, respectively, then the projected 
number of infections under these values is 10,000 and 
50,000, respectively.

From our results in Online Appendix E.3, we observe 
that, as the projected number of true infections increases, 
the extra cost incurred under more strict lockdown 
policies (compared with no intervention) is typically 
reduced. This is because higher projected infections re
sult in higher hospitalizations/deaths, which can be 
averted under more strict policies. As a result, the cost of 
utilizing/expanding resources as well as the cost of 
quarantining would decrease. Furthermore, when pro
jected infections are higher, more QALY can be saved 
under more strict lockdown policies (compared with no 
intervention) in states such as Arizona, California, and 
Texas. However, this effect is not consistent across all 
states (e.g., in Georgia, the QALY saved would decrease).

3.4.5. Population Risk Perception. In Section 3.2.1, we 
introduce the parameter α ≤ 0 that captures the popula
tion level of risk perception. In our baseline setting, we 
consider α ��0:1, and for alternative scenarios, we use 
α ∈ {�0:2, �0:5}. We also consider the case in which the 
risk perception does not play any role. We do so by set
ting α � 0. As can be seen from our results in Online 
Appendix E.4, when people become more risk-averse 
against the negative outcomes of the pandemic under 
no intervention, the QALY saved under more strict lock
down policies decreases. This is expected because fewer 
people would take the risk of going out and potentially 
harming themselves, which, in turn, helps reduce the 
disease transmission rate absent any lockdown. Further
more, we notice that more risk aversion could lower the 
extra cost incurred under lockdown policies (compared 
with no intervention) in states such as Massachusetts, 
Michigan, and New York. However, we do not find this 
to be consistent across all states. For example, we 
observe a curvilinear impact in states such as California 
and Pennsylvania. One reason for this finding is that, 
although more risk aversion could control the spread of 
the disease (thus reducing the costs related to hospitali
zation) under no intervention, the amount of lost in
come resulting from staying home can increase.

3.4.6. Proportion Losing Income. In our baseline sce
nario, we assume that 50% of people who would not 
take the risk of going out under no intervention would 
lose their income. As alternative scenarios, we consider 
25% and 75% of individuals suffering from this under 
no intervention. Results are presented in Online Appen
dix E.5. We observe that, when this rate increases, the 
extra cost incurred under more strict lockdown policies 
(compared with no intervention) would typically in
crease. Whereas this is expected, we also notice that 
changing this proportion would have a little to no 
impact on the QALY saved under more strict policies.

3.4.7. Proportion Quarantining. In our baseline sce
nario, we assume that 50% of infected individuals quar
antine. We now consider two alternative scenarios in 
which this proportion is changed to 25% and 75%. Based 
on our results in Online Appendix E.6, we observe that, 
when a higher percentage of infected individuals quaran
tine, the extra cost incurred under more strict lockdown 
policies (compared with no intervention) would increase 
in states such as California, Georgia, and Massachusetts. 
However, we also observe that, in states such as Michigan 
and New York, the extra cost would be lowered when the 
quarantine rate increases. This might be because the num
ber of infections is typically reduced under more strict pol
icies, and hence, there are fewer individuals who have to 
quarantine. Furthermore, we observe that, in states such 
as Maryland, Massachusetts, and Michigan, when the 
quarantine rate increases, the QALY saved under more 
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strict policies (compared with no intervention) would 
decrease. This implies that quarantining would have more 
promise under less strict policies, mainly because of the 
higher number of resulting infections.

3.4.8. Capacity Level of Hospital Resources. In our base
line scenario, we consider the current number of beds 
and ventilators available in each state. As our alterna
tive scenarios, we consider 50% and 150% of the existing 
capacities of these resources. Our results in Online Appen
dix E.7 show that, if the states had more beds/ventilators 
in place, they would have born less extra cost under more 
strict policies (compared with no intervention). This is 
because these states would not have to pay for capacity 
expansion (this is noticeable in states such as California, 
Maryland, and Michigan). That said, we also notice that 
having a higher capacity might have a little to no impact 
on the extra cost incurred in some states (e.g., New York) 
and a curvilinear impact in others (e.g., Massachusetts). 
One justification for this observation is the fact that infec
tions/hospitalizations/deaths would be already down 
under more strict policies, and hence, the higher cost of 
capacity expansion may be offset by the lower cost of 
resource utilization, lost income, or quarantining. Finally, 
we observe no tangible difference in the QALY saved 
when increasing the capacity of resources.

Overall, our various robustness checks give us confi
dence about the validity of our main findings and reveal 
that the various calibration and validation steps we 
have taken (see, e.g., Section 3.1.2) are sufficient. In par
ticular, we observe that the outputs of our SEIRS models 
as well as the recommendations obtained from our pol
icy comparisons are not that sensitive to our estimation 
of the main input parameters.

4. Discussion, Limitations, Future 
Research, and Conclusion

4.1. Discussion
Since the onset of COVID-19, U.S. states have undertaken 
various societal intervention policies. Despite their effec
tiveness in controlling the spread of disease (Courte
manche et al. 2020), many states eased the lockdown 
policies within a few weeks to months since their enact
ment. The driving force behind this is the economic 
burdens of these policies, for example, lost income and 
productivity (RAND Corporation 2020, Shretta 2020). 
However, premature reopening has contributed to 
some states observing the resurgence of COVID-19 
cases, which forced states to retract their reopening de
cisions (Gamio 2020, Reuters 2020). Although the trade- 
off between health and economic impacts of lockdown 
policies is a well-known concept, what makes adopting 
effective policies currently challenging is the lack of 
quantitative evidence on this trade-off.

To provide such evidence, in the first part of our 
study, we develop a compartmental SEIRS model to 
capture the dynamics of COVID-19 infections over time. 
We estimate the parameters of this model for each state 
by conducting an MCMC simulation. To this end, we 
employ data of 50 U.S. states plus DC reporting on num
ber of tests, infections, hospitalizations, ICU bed and 
ventilation usage, and deaths between early March and 
June 7. We also make use of cellphone data to estimate 
individuals’ mobility in each state. After calibrating our 
models with these data, we analyze the impact of vari
ous lockdown policies on potential reductions in the dis
ease transmission rates via a longitudinal mixed-effect 
regression model. Our results reveal that an increase in 
the strictness of policies, their duration, number of tests, 
per capita income, and the residents’ mobility rate 
within 10 miles from their homes (compared with the 
distance beyond that) as well as a decrease in the ratio of 
Black/Hispanic populations are associated with more 
reductions in the COVID-19 transmission rates (albeit, 
not all of these effects are statistically significant).

In the second part of our study, we conduct an exten
sive simulation analysis to measure the QALY gained 
versus the cost incurred for both the current policy in 
place in each state (back in March–June 2020) and some 
counterfactual policies. Our findings provide quantita
tive evidence and important implications that can help 
public health authorities to not only evaluate the existing 
policies retrospectively, but also enact more effective pol
icies prospectively. Furthermore, our extensive robust
ness checks on parameters such as residents’ mobility 
rates, qol scores and QALY values, proportions of popu
lation with lost income, projected infections, population 
level of risk perception (about the negative outcomes of 
the pandemic), the proportion of people who would lose 
their income when staying home (under no intervention), 
the proportion of infected individuals who quarantine, 
and the capacity level of hospital resources reveal that 
our main findings on the performance of lockdown 
policies are relatively robust to variations in these para
meters. In particular, we observe that, even if our esti
mated values for such parameters are not perfectly 
accurate, the recommendations we provide through 
our policy comparisons remain fairly intact. Thus, 
authorities can make use of our main recommenda
tions without concerns over potential inaccuracies in 
estimating such parameters.

Finally, we note that the entire human life is typically 
valued at $8–$11 million, which accounts for $100K– 
$125K per year (Yakusheva et al. 2022). Albeit erring on 
the side of optimism, our estimate of the cost incurred 
per QALY saved (≈$4,000/QALY on average under the 
current lockdown policies) is close to some estimates 
reported by the literature (see, e.g., Cutler and Sum
mers 2020). The main reason for our low estimate is the 
fact that we not only measure QALY during our study 
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period, we also account for a patient’s quality of life 
had the patient stayed in a specific disease state for a 
long time/permanently. This is consistent with what is 
reported about the health implications of “long COV
ID” (see, e.g., U.S. Department of Health and Human 
Services 2021). Of note, for cost, the only long-term 
effect we consider is the cost of lost income for a dead 
person over the person’s remaining working lifetime.

4.2. Limitations
Although we analyze a range of variations for the ratio of 
population with lost income, this ratio may be impacted 
by various demographic and socioeconomic risk factors 
(Selden and Berdahl 2020), which can warrant further 
investigation. Also, we note that our estimations and 
results are obtained based on our specific data sources 
and time frames as well as the specific methodology we 
employ. An alternative model and/or new data source 
may result in different outcomes. Nevertheless, our study 
provides a reliable quantitative framework to streamline 
the process of analyzing and comparing different lock
down policies.

4.3. Future Research and Conclusion
In addition to addressing the limitations we discuss in 
the previous section, as the pandemic evolves and new 
data becomes available, future research can enhance our 
study through the following avenues. However, it is 
important to note that most of the factors discussed 
(e.g., public vaccination, contact tracing, etc.) were not 
widely in place during our study period (i.e., the early 
stages of COVID), and hence, data on them mainly 
exists outside our study period. 

1. In addition to factors that we account for in this 
study, future research can incorporate other driving 
forces, such as the cost associated with COVID-19 tests, 
the benefits attained via public vaccination, or second 
order impacts of COVID-19 on patients whose non- 
COVID-19 care is delayed or avoided (for reasons such 
as state mandates or limited capacity of healthcare 
settings).

2. Future research can make further adjustments in 
the disease transmission rate based on various factors, 
such as the type of infection (e.g., symptomatic and quar
antined versus undetected asymptomatic), the type of 
test results leading to detection (e.g., purely symptomatic 
testing, random asymptomatic testing, and contact trac
ing), and vaccination status.

3. Future research can also examine the impact of 
other intervention policies (e.g., mandating wearing 
face masks). It should be noted, however, that such pol
icies can only be impactful in the presence of more 
strict intervention policies (Lyu and Wehby 2020).

4. Future research can make use of more detailed 
mobility data and better adjust for mobility in rural 

areas, where people typically travel longer distances 
for daily activities.

5. In the absence of viable treatments or vaccination, 
a recovery from COVID-19 does not necessitate perma
nent immunity. Given the time between the presumed 
onset of COVID-19 in the United States and the pro
jected drug delivery, a recovered person can become 
susceptible/infected again. For example, our estima
tion for California shows that the average immunity 
rate is 0.38% (see Table 7), which implies an average 
immunity period of 10,000/38 � 263.16 days. Such sce
narios can aggravate the landscape of pandemics and 
may warrant even more strict lockdown policies. Eval
uating the cost-effectiveness of policies under such cir
cumstances would be another interesting avenue for 
future research.

Our study provides a detailed quantitative framework 
to analyze health versus economic impacts of these lock
down policies. In particular, for each state, we account 
for the direct costs of utilizing healthcare resources (e.g., 
beds and ventilators) or expanding them, the indirect 
costs of lost income and productivity, the indirect cost of 
quarantining, and the population’s quality of lives that 
could be saved under more restrictive policies. The 
results and insights provided in this study can help 
federal and state agencies to not only evaluate their poli
cies retrospectively, but also make better decisions on 
these policies to curb the spread of disease in the future. 
Finally, it is important to note that, whereas our work is 
focused on the COVID-19 pandemic, some of our policy 
recommendations and the insights generated might be 
valuable for curbing inevitable future pandemics.
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Endnotes
1 In addition to the database used in this study, there are several 
premier and widely used databases on U.S. state policies (see, e.g., 
Inter-University Consortium for Political and Social Research 2021).
2 MCMC simulation is used for estimating the dynamics of infec
tious disease (see, e.g., Bootsma and Ferguson 2007, Ghaffarzade
gan and Rahmandad 2020, Paul et al. 2020). For more details, see 
Van Ravenzwaaij et al. (2018).
3 For other studies incorporating an endogenous transmission rate 
and also why some CDC models might have failed in providing 
good predictions, see, for example, Ghaffarzadegan and Rahman
dad 2020, Institute for Health Metrics and Evaluation COVID-19 
Forecasting Team 2021, and Rahmandad et al. 2022.
4 We set α such that the transmission rate under no intervention 
would not fall below that under lockdown policies. Nevertheless, 
we also conduct sensitivity analyses on α to better gage its impact.
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Gavenčiak T, Stephenson AB, et al. (2021) Inferring the effec
tiveness of government interventions against COVID-19. Sci. 
371(6531):eabd9338.

Briggs A, Vassall A (2021) Count the cost of disability caused by 
COVID-19. Accessed May 3, 2022, https://www.nature.com/ 
articles/d41586-021-01392-2?proof=t%3B.

Brooks SP, Gelman A (1998) General methods for monitoring con
vergence of iterative simulations. J. Comput. Graphical Statist. 
7(4):434–455.

Centers for Disease Control and Prevention (2021) CDC updates 
and shortens recommended isolation and quarantine period for 
general population. Accessed May 5, 2022, https://www.cdc. 
gov/media/releases/2021/s1227-isolation-quarantine-guidance. 
html.

Centers for Disease Control and Prevention (2022) Coronavirus dis
ease 2019 (COVID-19)—Cases and deaths in the U.S. Accessed 
November 4, 2022, https://covid.cdc.gov/covid-data-tracker/ 
?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fcorona 
virus%2F2019-ncov%2Fcases-updates%2Fus-cases-deaths.html# 
cases_newcaserateper100k.

Charoenwong B, Kwan A, Pursiainen V (2020) Social connections 
with COVID-19-affected areas increase compliance with mobil
ity restrictions. Sci. Adv. 6(47):eabc3054.

Chernozhukov V, Kasahara H, Schrimpf P (2021) Causal impact of 
masks, policies, behavior on early covid-19 pandemic in the 
US. J. Econometrics 220(1):23–62.

Chhatwal J, Dalgic OO, Mesa-Frias M, Buyukkaramikli N, Cox A, 
Van Effleterre T, Griffin A, et al. (2021) When can we lift non- 
pharmaceutical interventions with the availability of COVID-19 
vaccine in the United States? Health Services Res. 56(S2):78–79.

Chib S, Greenberg E (1995) Understanding the Metropolis-Hastings 
algorithm. Amer. Statist. 49(4):327–335.

Choi TM (2021) Fighting against COVID-19: What operations 
research can help and the sense-and-respond framework. Ann. 
Oper. Res. 1–17. https://link.springer.com/article/10.1007/s10479- 
021-03973-w.

Courtemanche C, Garuccio J, Le A, Pinkston J, Yelowitz A (2020) 
Strong social distancing measures in the United States reduced 
the COVID-19 growth rate. Health Affairs 39(7):1–8.

Cuebiq (2020) Shelter-in-place analysis. Accessed June 25, 2020, 
https://www.cuebiq.com/visitation-insights-sip-analysis/.

Cutler DM, Summers LH (2020) The COVID-19 pandemic and the 
$16 trillion virus. JAMA 324(15):1495–1496.

Debata B, Patnaik P, Mishra A (2020) COVID-19 pandemic! Its im
pact on people, economy, and environment. J. Public Affairs 
20(4):e2372.

Donnelly R, Farina MP (2021) How do state policies shape experi
ences of household income shocks and mental health during 
the COVID-19 pandemic? Soc. Sci. Medicine 269:113557.

Drummond MF, Sculpher MJ, Claxton K, Stoddart GL, Torrance 
GW (2015) Methods for the Economic Evaluation of Healthcare Pro
grammes (Oxford University Press).

Echazu L, Nocetti DC (2020) Willingness to pay for morbidity and 
mortality risk-reductions during an epidemic. Theory and pre
liminary evidence from COVID-19. Geneva Risk Insurance Rev. 
45(2):114–133.
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