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Addressing hospital emergency department (ED) overcrowding is a critical challenge for many healthcare

systems worldwide. Many hospitals (including our partner hospital) have been experimenting with innovative

patient flow designs to address this challenge. A promising new design is to separate patients who can be

served vertically (e.g., on a regular chair as opposed to horizontally on an ED bed) and route them to

a different area termed the Vertical Processing Pathway (VPP) unit. While this can potentially increase

operational efficiency by removing the burden caused by a main ED bottleneck—lack of bed availability—it

can degrade performance if patients that are routed to the VPP unit need to be sent back to be served

in an ED bed, or if some patients that could have been served in the VPP unit end up occupying an ED

bed. Successful implementation of this design, thus, significantly depends on understanding which patients

should be routed to the VPP unit and when.

To assist our partner hospital and other EDs, we develop a machine learning model trained on large-

scale data capable of providing a personalized risk score for each arriving patient on whether or not they

will eventually need an ED bed. We then feed these risk scores to an analytical model of patient flow to

characterize the optimal protocol for utilizing the VPP unit. We find that the optimal protocol depends

not only on the predicted risk scores but also on the machine learning model’s accuracy as well as some of

the main ED characteristics (e.g., patient arrival intensity and congestion level). To gain deeper insights,

we make use of simulation analyses calibrated with hospital data and compare the performance of our

recommended VPP-based patient streaming design with more traditional ED flow approaches such as “fast

track” or “physician in triage.” Our results suggest that following the VPP design under our recommended

protocol can bring several advantages to EDs, allowing them to significantly improve their operations.

Key words : Emergency Department, Machine Learning, Operational Efficiency; Vertical Processing;

Patient Flow

1. Introduction

Emergency Department (ED) overcrowding has been reported as a major issue of many

healthcare systems throughout the past two decades (Schafermeyer and Asplin 2003). The

COVID-19 pandemic further aggravated this problem, resulting in significant increases in
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emergency medicine patient volumes and additional delays and overcrowding to already

strained EDs. ED overcrowding is often exacerbated due to the “bed-block” problem, where

ED patients who need to be transferred to hospital inpatient units end up occupying ED

beds for long hours, mainly because of lack of bed availability in inpatient units (Saghafian

et al. 2023). To better understand this phenomenon, it is worth noting that, between 2010

and 2017, the number of total ED visits increased from 128.97 million to 144.82 million in

the U.S. (Lane et al. 2020, Moore and Liang 2020). Despite this, the hospital supply of ED

beds remained relatively stable (Schafermeyer and Asplin 2003, Venkatesh et al. 2021).

The combination of the aforementioned trends has escalated ED overcrowding to crisis

levels in many hospitals. Strained ED departments lead to excessive wait times for ED

treatment, compromising patient safety, not only within the ED but also throughout the

entire healthcare system (Di Somma et al. 2015, Wong et al. 2010). ED overcrowding has

been shown to cause delays in diagnosis and treatment, leading to poor patient outcomes

and quality of care (Association et al. 2002). The repercussions become even more promi-

nent in the cases of critically ill patients who remain an especially vulnerable population,

including those with an acute coronary syndrome, surgical emergencies, stroke, and septic

shock (Cowan and Trzeciak 2004, Derlet and Richards 2002). For those patients who are

not critically ill, overcrowding often leads to extremely long waiting times, fueling patient

dissatisfaction and walkouts, which can pose a threat to long-term, high-quality medical

care (Cowan and Trzeciak 2004). In addition, ED overcrowding causes significant stress

and overburden to physicians, increasing the risk of medical errors (Rondeau et al. 2005).

It can also lead to ambulance diversion and threaten disaster preparedness (Olshaker and

Rathlev 2006).

A direct way of addressing ED congestion is to deploy additional resources (e.g., physi-

cians, nurses, beds, or testing capacity). However, this remains a substantially expensive

option that is constrained by the physical space and financial resources. An alternative

method to address the overcrowding problem is to make use of advanced technology such

as telemedical triage, which allows EDs to offload some of their tasks to physicians that

are serving patients in a different hospital (Saghafian et al. 2018). Alternatively, the ED

can choose to “close the doors” through ambulance diversion. However, the Emergency

Medical Treatment and Labor Act (EMTALA) allows this approach only in the case of an

internal disaster. Under regular conditions, EMTALA mandates EDs to serve all patients
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who present to the facility, regardless of their insurance or financial status (Fields et al.

2001). Furthermore, ambulance diversion is not legal in some states even under congested

conditions. Therefore, an attractive approach to address these problems in EDs has been

to optimize patient flow processes, which may not require a significant investment in tech-

nology or additional resources.

Several studies have demonstrated that optimizing the ED patient flow process can result

in significant improvements (Saghafian et al. 2015). Patient streaming, for example, is a

well-established ED flow design (Saghafian et al. 2012), which in its basic format, improves

performance by separating and routing patients into distinct streams according to their

anticipated disposition. In contrast to pooling, where all types of patients are treated by

the same resources, this type of streaming can lead to improved system efficiency by sepa-

rating resources for patients that are predicted to be discharged home from ED and those

that might require hospital admission post-ED service (Saghafian et al. 2012). Stream-

ing can also be implemented in various other ways, including streaming based on medical

complexity (Saghafian et al. 2014), by using a dedicated Fast-Track (FT), implementing a

Physician In Triage (PIT) approach, or making use of a Vertical Processing Pathway (VPP)

unit (Hodgson et al. 2023). While FT and PIT approaches have been widely adopted by

EDs across the world, VPP still remains a hybrid, ad-hoc design. In particular, it has been

primarily proposed and adopted by our partner hospital, the Mayo Clinic (Hodgson et al.

2023). At the time of our analysis, our partner hospital prepares the opening of a new

building for their ED, where the administration plans to make use of a fully operational

VPP unit. Our aim is to assist the administration at our partner hospital by studying and

recommending the best ways of utilizing the VPP unit. We also draw conclusions from

our study to help other hospitals in deciding whether and how a VPP-based flow design

should be implemented.

To these ends, we use a combination of analytical, Machine Learning (ML), and simula-

tion models, and we address the following questions:

• Can an ML model be developed to accurately predict whether an arriving ED patient

can be served in the VPP unit without eventually requiring an ED bed?

• Given predictions from an ML model, what patients should be prioritized for routing

to the VPP unit given the characteristics of the ED? What routing protocol optimizes

the performance under the VPP patient flow design?
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• For what hospitals does the VPP-based flow design outperform the FT and/or PIT

designs?

1.1. Introducing the FT, VPP, and PIT Flow Designs

Prior to addressing our research questions, it is helpful to first introduce and discuss the

key differences between FT, VPP, and PIT patient flow designs. Figure 1 illustrates the

patient flow in the ED under these three forms of patient streaming. Table 1 summarizes

their main differences in terms of who triages patients, how low-complexity patients are

initially determined (i.e., the selection criteria), and whether the selected low-complexity

patients are separated from the rest of the patients and assigned to a dedicated queue.

In an FT model, arriving patients are first triaged and assigned an Emergency Severity

Index (ESI) from 1 (most urgent) to 5 (least urgent) by a triage nurse. Patients with an

ESI greater than 3 are routed to a separate dedicated queue to be treated in a section

of the ED called the FT. In some hospitals, FT providers comprise nurse practitioners

or physician assistants dedicated to managing patients in that section of the ED. The

main idea of the FT design is to avoid having low acuity patients (who often have shorter

“processing times”) wait behind high acuity ones.

In a PIT model, as the name suggests, a medical provider licensed to order tests and

perform the treatment (e.g., physician or advanced practice provider) is assigned to the

triage stage working alongside a registered nurse (Franklin et al. 2021). PIT systems essen-

tially provide more flexibility and a higher degree of responsibility to the stage of triage,

leveraging medical experts with more advanced training. In addition to assigning an ESI

score, (a) ED tests can be initialized during triage, and (b) patients who do not need

sophisticated ED care are identified and discharged. Thus, triage providers have the discre-

tion to disposition patients directly. The PIT model has various benefits and drawbacks,

as discussed in the literature (Franklin et al. 2021) and has also been implemented in var-

ious formats over time (Traub et al. 2015, 2016). The operational success of such systems

depends on local contextual factors, and thus, mixed empirical results have been reported

in the literature (Benabbas et al. 2020).

Finally, in the VPP model, patients are triaged by a nurse and assigned an ESI level

and are then asked to wait to be seen in the main treatment area. However, a physician

1 γ ∈ [0,1]: unknown medical complexity level; τ ∈ [0,1]: classification threshold for the VPP.
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(b) Fast-Track (FT) design
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Figure 1 ED patient flow designs.

Model Triage Staff Assumed Low-Complexity Dedicated Queue Test Ordering

FT RN ESI > 3 Yes Yes
PIT PA/MD All patients No Yes
VPP RN Doctor’s discretion No Yes

Table 1 A Comparison Between FT, VPP, and PIT.

Notes. RN: Registered Nurse, PA: Physician Assistant, MD: Medical Doctor

can evaluate a waiting patient’s triage data and guess whether the patient is suitable

for treatment and discharge from the VPP unit after a quick visit (e.g., 15–20 minutes)
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without needing an ED bed. If the patient is evaluated in the VPP, but the physician

realizes that she needs to be treated on an ED bed, the patient is sent back to the waiting

area and is asked to wait until a bed becomes available.2 An important difference between

the VPP model and the PIT model is that under the latter, every patient is seen by a

physician during triage, and the ED assigns resources to the triage stage to reflect this.

In contrast, under the former, only a portion of patients are routed to the VPP because

it is not physically equipped or designed to handle all incoming patients: the VPP unit

is suitable for patients who can be served “vertically” as opposed to “horizontally.” Put

differently, the VPP unit is only appropriate for patients who do not need an ED bed—the

mode of service when a patient is on an ED bed is called “horizontal” since the patient

is often laying down. Thus, the VPP design is a patient routing mechanism that relies on

upfront predictions of who can be served without needing an ED bed. In contrast, PIT

does not involve any prediction-based routing.

1.2. Organization and Summary of Contributions

Our contributions can be summarized as follows:

• We train an ML model on data from our partner hospital and validate it. Our ML

achieves an out-of-sample Area Under the Receiver Operator Curve (AUC) of 88.7%

and reveals that the most important patient features in predicting the need for an

ED bed are ESI (negative association), age (positive association) and presence of

abdominal chief complaints (positive association).

• We combine our ML model with a patient flow model to determine the optimal protocol

for utilizing the VPP unit (based on both the characteristics of the ML model and

those of the ED).

• We develop a realistic simulation and calibrate it with hospital data from our partner

institution to examine the benefits of the VPP flow. We find that, if used under the

optimal protocol and in conjecture with our ML model, the VPP design can lead

to significant improvements in the average Length of Stay (LOS) and wait times

compared to the existing practice. We also make use of our simulation to generate

insights for other hospitals into whether and when they should adopt the VPP design.

2 When this happens, the same evaluating physician often remains assigned to the patient so as to limit the rework,
which is different from the FT and PIT approaches.
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• We also compare the VPP design with other ED flow designs such as FT and PIT, and

find that the VPP design can outperform other flow designs, especially in hospitals

where the proportion of low acuity patients is low. Our results indicate that in hospitals

with a high prevalence of non-acute patients, a PIT design often achieves the best

performance. We also find that, under some conditions, the FT design can lead to

comparable performance to the VPP design. Finally, our analyses show that the VPP

design is more robust than both FT and PIT designs due to its adaptive nature to

changes in patient population characteristics, including age and ESI levels.

The remainder of the paper is structured as follows. In Section 2, we describe the study

setting at our partner hospital, summarizing our data and the existing VPP implementa-

tion. We outline the related literature in Section 3. Section 4 presents a stylized model of

the ED flow with a VPP unit. Section 5 characterizes the optimal policy for VPP usage.

In Section 6, we develop and compare ML models that can determine VPP eligibility and

illustrate the clinical insights that inform the VPP design. In Section 7, we make use of a

simulation model calibrated with the data from our partner hospital to compare different

patient prioritization rules within the optimal routing policy for the VPP unit. Section

8 compares the optimal VPP design with the FT and PIT flow models, identifying the

relative merits of each approach. Finally, we conclude in Section 9 with a summary of our

overall insights about whether, when, and how a VPP unit can help EDs improve their

performance.

2. The VPP Unit at the Mayo Clinic

Prior to studying optimal ways of utilizing the VPP unit, we begin with a high level

overview of the patient population at the Mayo Clinic Arizona ED and the current imple-

mentation of the existing VPP unit. Section 2.1 describes the operational characteristics

of the ED while Section 2.2 focuses on the current implementation of the VPP unit.

2.1. The Emergency Department

The ED at the Mayo Clinic Arizona has 26 single treatment rooms, up to 9 hallway

spaces, and is staffed with board-certified emergency physicians. To study its operations

and ground our analysis to a real-world setting, we curated a retrospective dataset of rou-

tinely gathered ED operational data from the hospital’s electronic health records database.

Our dataset comprised de-identified records of all 49,350 patients who were served at the
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Variable Mean Std

ESI 2.8 0.67
Age* 55.1 19.3

Visited VPP 6.3% 2.4%
Received ED bed 98% 13%

Received ED bed after VPP 72% 45%
Length of stay (mins) 238 119.4

Table 2 Summary of Mayo ED records.

Note: *Patients who are 85 or older are listed as 85+ in our data set for privacy protection.

ED between October 7th, 2018 and the 31st of December, 2019. This time period coin-

cides with the initiation of a new electronic medical record and excludes visits seen during

the coronavirus pandemic. The Mayo Clinic review board, along with our host academic

institution, approved this protocol as minimal-risk research and waived the requirement

for informed consent.

Our data shows that the average LOS in the ED is 238 minutes, with a standard deviation

of 119 minutes (see Table 2). The peak demand hours for the ED were, on average, between

11:00 am and 2:00 pm, similar to the majority of other EDs (Lucero et al. 2021). We

observe that 71.94% of the patients who are first seen at the VPP unit are subsequently

assigned a bed in the ED, which shows a low accuracy in the current practice of identifying

patients that can be served in the VPP without needing an ED bed (i.e., patients that

can be served “vertically” and not “horizontally”). For those patients who were first seen

in the VPP unit, the average (standard deviation) LOS in the ED is 3.82 (2.96) hours.

Correspondingly, the average (standard deviation) LOS in the ED is 4.17 (2.83) hours for

patients who were not routed to the VPP unit. Figure 2 illustrates the average arrival rate

to the main ED as well as the fraction of patients that are routed to the VPP unit per

hour of the day. As indicated in this figure, the VPP unit is open every day between 7:00

am and 11:00 pm. The exact opening and closing times may vary on a individual day basis

depending on nursing staff availability.

2.2. Current Implementation of the VPP Unit

In the current practice, physicians identify potential VPP patients from their assigned

patient load and contact a nurse who moves the patient into the VPP room for this

assessment. The selection process for the VPP remains ad-hoc within the system and

depends on the physician’s perception regarding the patient’s condition. Specifically, if the

physician believes that a given patient in the waiting room can be served without the need
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Figure 2 Average hourly arrival rate to the main ED and the VPP unit.

for intravenous medication or other types of treatment that requires an ED bed, she can

request to see the patient in the VPP unit. Some physicians also use the VPP area not to

fully treat and discharge a patient but to initiate a first set of results for those patients

who they believe would benefit from an earlier assessment. After being seen in the VPP,

patients return to the waiting room. However, if a bed becomes available, they are moved

to that ED room or to a hallway bed. When all care can be facilitated from the VPP unit,

patients get directly discharged from the VPP. The VPP unit—a single room with a single

patient capacity—is located next to the waiting area in lieu of another ED ward in close

proximity to all the other beds available in the department as shown in Figure 3.

The VPP unit provides a tool for the ED to quickly process patients that require minimal

care in times of high traffic. However, when patients, that require more sophisticated care

that can be provided only in a main ED bed, are originally routed through the VPP,

further delays might be created in their treatment. In light of this, as the ED is moving

to a new building, the hope is to obtain the ability to identify patients who can be fully

served without needing an ED bed and route them the VPP unit. Currently, the decision

of routing patients to the VPP unit lies on the shoulders of the ED physicians in a period

and environment of high stress, and there are no specific protocols or set criteria for this

purpose. Furthermore, the physicians have at their disposal only patient information at

the time of triage, and thus, their decision-making remains a challenging task with a high

frequency of errors. As discussed in Section 1, one of our main goals is to assist decision-

making in this regard.



Feizi et al.: Vertical Patient Streaming in Emergency Departments
10

Main rooms

Main rooms

Main rooms

M
ai

n 
ro

om
s

Registration

Triage

VPP

Figure 3 Physical layout of the Mayo Clinic ED.

3. Related Literature

There are two main streams of research related to this paper: (1) data-driven models to

predict patient flow and outcomes in the ED, and (2) queueing models of patient routing

within ED operations. We highlight the key contributions and findings from each of them

below. For a complete review of operations research and management tools applied to

ED patient flow, we refer interested readers to Saghafian et al. (2015), and the references

therein.

Since the establishment of the Health Information Technology for Economic and Clin-

ical Health Act (US Department of Health et al. 2014), hospitals have been consistently

recording the trajectory of the patients within the ED in the form of electronic health

records (EHRs). Such abundance of healthcare data has permitted the development of an

increasing number of predictive models that attempt to estimate a patient’s LOS in the

ED. Chaou et al. (2017), Yoon et al. (2003) identified acuity level, age, and the need for

additional tests (e.g., laboratory, X-rays, CT scans) as the most predictive factors for a

longer LOS using multivariate logistic regression models. Gill et al. (2018) focused on FT

patients in the Australian healthcare system to identify the reasons that lead to prolonged

LOS. Similar to the previous work, the derived ML model showed that the most important
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variables are the time taken from a patient’s arrival to the time of ordering additional

tests, potential admission to the hospital, and bed assignment. These findings indicate that

the efficiency of ED streaming processes can be significantly affected when patients with

more involved care needs are not appropriately routed. The importance of accurate triage

on LOS was also highlighted by Partovi et al. (2001), who showed that a PIT model can

offer a moderate decrease in ED LOS, although it is associated with relatively high costs.

Nonetheless, there is a high degree of variation in LOS across ED physicians (Traub et al.

2018), making it a challenging outcome measure to predict at the time of triage accurately.

In addition to LOS, several studies have leveraged data-driven methodologies to pre-

dict other patient outcomes associated with ED visits at the time of triage. Hong et al.

(2018) used data from three hospital systems to predict hospital admission at the time

of ED triage, achieving an out-of-sample AUC of 87%. Raita et al. (2019) developed ML

models with equivalent performance on predicting hospital admission and a slightly lower

AUC (85%) on predicting intensive care unit (ICU) admission and mortality. Several other

studies have been published on predicting mortality at the time of ED arrival either for

the entire population or for specific diseases, using triage information (Lee et al. 2020,

Bertsimas et al. 2020a, Klug et al. 2020). However, to our knowledge, there has been no

study that proposes a validated approach to detect whether a patient visiting the ED will

need care on a bed (i.e., “horizontal” treatment) or not (i.e., “vertical” treatment). One

of the goals of our study is to address this gap in the literature.

From a queuing perspective, models for improving ED patient flow can be classified

based on whether their goal is to reduce boarding times (i.e., delay from when an ED

patient is admitted for inpatient care until they physically depart the ED) or to improve

patient flow prior to being either admitted for inpatient care or discharged to go home.

We refer readers to Feizi et al. (2022), Izady and Mohamed (2021), and (Saghafian et al.

2023) for reviews of the former but focus on the latter in this paper since the VPP has a

similar objective.

Most related to our paper are Saghafian et al. (2012, 2014, 2018) and Li et al. (2021).

Saghafian et al. (2012) uses a combination of a queueing model and simulations to deter-

mine when it is optimal to use a disposition-based patient streaming policy in the ED and

the conditions under which this policy would result in maximum performance. Saghafian

et al. (2014) proposes a complexity-augmented triage algorithm and demonstrates that
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including an estimation of patient complexity in the traditional ED triage and patient

streaming policies results in higher patient safety and lower overall LOS. Saghafian et al.

(2018) studies optimal teletriage designs in which ED triage can be done by physicians in

other physical locations and highlights the tradeoffs between speed and quality in making

patient routing decisions. Following an observation that discharge patients are prioritized

when the ED’s blocking level (i.e., number of boarding patients) is high, Li et al. (2021)

formulate a Markov Decision Process (MDP) and uses it to find a better patient priori-

tization policy based on patients’ urgency and the blocking level information. Our paper

adds to this literature by (a) investigating a VPP-based patient routing policy, which, to

our knowledge, has not been studied analytically, and (b) showcasing how an ML model

with a given level of accuracy can be implemented in an ED to improve its operational

efficiency while considering its main system parameters (e.g., arrival and service rates).

4. An Analytical Model of the ED

This section aims to characterize the best protocol for using the VPP unit. Since all arriving

patients at our partner hospital are randomly assigned to physicians through a rotational

patient assignment algorithm, physicians have a fair and equal load of patients. Thus, to

gain clear insights, we start by focusing on a single physician who balances her workload

between the VPP and main ED. In Section 7, we further test the validity of our findings

by developing and using a realistic simulation environment calibrated with hospital data.

4.1. Model Description

Patient Flow. The simplified patient-flow diagram for an ED physician serving arriving

patients is depicted in Figure 4, which consists of two main components: the VPP unit and

the main ED. Patients arrive with interarrival times drawn from an exponential distribution

at a rate of λ ∈ (0,1). For analytical tractability, we start by assuming that λ is time-

homogeneous, but we relax this assumption in our data-driven simulation analyses (Section

7). A fraction of the arriving patients denoted by τ are sent to the VPP unit, and the

rest, (1− τ), are routed to the main ED. The VPP unit and the main ED are assumed to

operate with service rates denoted by µV and µE, respectively. Without loss of generality,

we assume that µE is normalized to one (µE = 1) and µV ≥ 1, which reflects the fact that

the patients sent to VPP are served much faster than those seen in the main ED area.

A fraction, denoted by p(τ), of patients sent to the VPP unit will end up needing

treatment in the main ED. Effectively, these patients endure the length of stay (LOS) of
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Figure 4 Simplified model of the ED flow with two units: main ED and the VPP.

both the VPP and main ED. Similarly, a fraction of patients denoted by q(τ) who were

sent to the main ED could have been served in the VPP and discharged.3 We note that p(·)
and q(·) are functions of τ , because they depend on the type of patients initially routed to

the VPP. We discuss how p(τ) and q(τ) depend on τ in Section 4.2 (see, e.g., Equations 7

and 8).

In practice, the patients in the main ED are prioritized and the physician will visit the

VPP only when she has idle time. Specifically, apart from occasions in which the main ED

queue is empty, idle time could also occur in practice when the physician is waiting for a

patient’s test results or the patient is administered a lengthy treatment such as an inter-

venous (IV) drug and requires no direct physician intervention until the treatment is over.

In such occasions, although a main ED bed is occupied, the physician can attend to the

VPP without compromising the LOS of the main ED patient. In contrast, VPP patients

always require physician presence since the VPP is designed for physicians to conduct

quick diagnosis and not lengthy treatments. Thus, we assume that the VPP operates as a

queue with vacations (i.e., the server cannot serve waiting customers for periods of time),

while the main ED operates as a queue without vacations.

In practical terms, this implies that the physician will serve her VPP patients, leave the

VPP to perform other tasks (i.e., won’t be able to serve VPP patients), and then return

to the VPP once again. For tractability, we also start our analyses by assuming that all

time durations (interarrival times, service times, and vacation times) are exponentially

distributed. Under these assumptions, the VPP queue depicted in Figure 4 is an M/M/1

queue with exponential vacations. The average waiting time in such a queue, E[WV ], is

calculated in Servi and Finn (2002), which in our setting translates to:

E[WV ] =
1

µV − τλ
+u, (1)

3 In our partner hospital, patients are not routed from the main ED to the VPP unit when there is a realization that
the patient could have been served in the VPP unit. However, q(τ) represents an opportunity cost, which must be
considered when deriving the optimal τ .
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where u is the average duration of the “vacation.” Note that the average vacation length

may be a function of how busy the main ED is; namely, if the physician is busy in the

main ED she will visit the VPP less frequently. However, we assume u is exogenous since,

in practice, it only depends on how frequently the physician decides to visit the VPP. In

other words, although the main ED patients are prioritized, the priority rule is not such

that the VPP is completely omitted during the times in which the main ED is extremely

busy.

To find the waiting time in the main ED, we note that it has an arrival stream that is

composed of two distributions: a Poisson process with a rate of (1− τ)λ and a non-Poisson

process that is based on departures from the M/M/1 queue with vacation, as derived in

Tang (1994). Using these two distributions, we derive the distribution of inter-arrival times

to the main ED in Lemma 1.

Lemma 1. Let fa(t) be the distribution of inter-arrival times to the main ED. We have:

fa(t) =− λ

(1−µV u)
[
p(τ)2λ2τ 2u2− 1

]
[
(−1+ τ − p(τ)τ)(−1+µV u)e

(−1+τ−p(τ)τ)λt+

p(τ)τ(µV −λp(τ)τ)u(1+ (1− τ)λu)e−
(
(1−τ)λ+1/u

)
t+

µV p(τ)τ((1− τ)λ+µV )u
2(−1+λp(τ)τu)e−

(
(1−τ)λ+µV

)
t

]
. (2)

The proof of Lemma 1 and all the other proofs are presented in the Appendix. Note that

Equations 1 and 2 denote the actual VPP wait time and main ED inter-arrival distribution,

respectively, and not the counterfactual scenarios that would result from considering the

q(τ)(1− τ) portion of system arrivals that could have been served in the VPP.

We next use Kingman’s approximation for the average wait time of a G/G/1 queue to

estimate the main ED’s average wait time, WE. Specifically, we have:

E[WE]≊
ρ

1− ρ

(C2
a +C2

s

2

)
, (3)

where ρ= τλ/µV is the utilization rate of the VPP, C2
a is the squared coefficient of variation

(SCV) of inter-arrivals which can be calculated from Equation 2 (C2
a = Var[Ta]/E[Ta]

2,
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Figure 5 Matching interarrival time distribution of main ED with Equation 2.

where Ta denotes the inter-arrival times to the main ED), and C2
s = 1 is the SCV of service

times. (Recall that the main ED’s service time is exponentially distributed.) Again, similar

to Equations 1 and 2, ρ is defined here for the actual system and not the hypothetical

scenario in which the q(τ)(1− τ) portion of the main ED patients are also served in the

VPP.

Remark 1. We use the empirical arrivals to the main ED in our data to demonstrate

the validity of the distribution derived in Equation 2. Specifically, we sort the actual

arrivals to the main ED by physician, then date/time, and subsequently focus on the

empirical distribution of arrivals for the time of day with peak arrival rates, 11 am - 12

pm, on each day of the week, separately4. As our data does not contain vacation lengths

or the specific LOS in the VPP, we estimate these two parameters within reasonable

practical ranges and show that Equation 2 matches what we observe from our data using

the Kolmogorov–Smirnov (KS) test. The results are shown in Figure 5. The p-values from

the KS-tests are denoted in the upper plots. They indicate that what we obtain from

Equation 2 closely matches our empirical data.

Patients. We assume each arriving ED patient has a true and unknown medical complexity

level that can be used for patient streaming (see, e.g., Saghafian et al. (2014)) denoted by

γ ∈ [0,1]. A patient will need to be treated in the main ED, if their complexity level exceeds

a threshold, α. In practice, α represents the baseline prevalence of patients who can be

discharged directly from the VPP. At our partner hospital, α= 0.205. However, to provide

4 We focus on the busiest time of the day because the data density is higher and allows for a better approximation of
the distribution.
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general insights useful for a range of EDs, in our model, we assume that 0<α< 0.5, which

implies that no more than half of the patients can be safely discharged from the VPP

without needing a bed in the main ED. It is a reasonable assumption, because in any given

ED it is extremely unlikely that over half of the patients will not require main ED care.

When patients with γ > α are routed to the VPP, they will need a bed in the main ED

after their VPP service. Similarly, when patients with γ ≤ α are routed to the main ED,

they could have been discharged from the VPP. Based on these, we next develop a decision

support tool that makes use of a machine learning model, and aids decision-making by

determining the best routing policy considering the associated costs of misrouting patients.

4.2. A Decision Support Tool

Recall from Figure 4 that VPP patients need to be re-routed to the main ED with probabil-

ity p(τ), and main ED patients could have been discharged from the VPP with probability

q(τ). To derive p(τ) and q(τ), and hence the associated costs of misrouting patients, we

first discuss a machine learning model that can be used as part of the decision support

tool.

Machine Learning Model. We consider an ML that uses up-front patient features (e.g.,

triage information) to predict for each patient i a class label, Yi ∈ {0,1}, defined as whether

they will need a bed in the main ED (Yi = 1) or can be safely discharged from the VPP

without eventually needing an ED bed (Yi = 0).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4
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1

Best model
Medium model
Worst model

Figure 6 Probability of needing an ED bed as a function of the estimated complexity score γ̂.
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In essence, while the true complexity of the patient (γ) is unknown, the ML model maps

the up-front patient information available into a predicted complexity, γ̂. A threshold of τ

is then used to route patients; patients with γ̂ ≤ τ are sent to the VPP unit and the rest

are routed to the main ED. A perfect ML model would predict γ̂ such that a classification

threshold of τ = α would separate the two classes with 100% accuracy. Specifically, the

model would suggest that Pr(Yi = 1|γ̂) is equal to 1 for any γ̂ > α, and is 0 otherwise.

For an arbitrary ML model, we assume that the probability of needing a main ED bed is

a piece-wise constant function of γ̂ as stated in Equation 4 and depicted in Figure 6 for

α= 0.2055. Essentially, this models the behavior of any ML model with a non-linear shape

(e.g., Sigmoid), in which the highest F1-score is achieved when the classification threshold

is set to α.6

Pr(Yi = 1 | γ̂) =

k1, if γ̂ ≤ α

k2, if γ̂ > α
(4)

In Equation 4, k1 ∈ (0,1 − α) is a constant that describes the model’s quality. k2 is

calculated based on the fact that, ultimately, 1−α patients need a main ED bed, regardless

of what prediction model is used. Namely:

∫ 1

0

Pr(Yi = 1 | γ̂)dγ̂ = 1−α ∴ k2 = 1− k1α

1−α
. (5)

It is helpful to discuss the properties of the assumed ML model in Equation 4 for further

clarification. First, k1 → 0 represents a “perfect model” with an Area Under Curve (AUC)

of AUC → 1. Conversely, if the model makes predictions randomly (i.e., “worst model”) we

have k1 → 1−α and AUC → 0.5. In the latter case, γ̂ has no meaningful relationship with

γ so the probability of needing a bed in the main ED is equal to the baseline probability

for all γ̂ values. Second, the AUC of the model, in general, can be calculated using Lemma

2.

Lemma 2. For any α∈ (0,1) and k1 ∈ (0,1−α), we have:

AUC = 1− k1
2(1−α)

. (6)

5 As mentioned earlier, 20.5% of patients are seen in the VPP unit at our partner hospital. Thus, we set α= 0.205 in
Figure 6.

6 Recall that α is a threshold level of patient complexity, below which patients do not need a main ED bed. Thus, an
effective ML model will separate patients with γ > α from those with γ ≤ α.
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Remark 2. While we use k1 and α as the main ML model parameters, we present the

results in Section 5 using an AUC measure for higher clarity. Furthermore, without loss

of generality, we may assume that γ̂ comes from a uniform distribution. To implement

in practice, γ̂ can be thought of as quantiles, deciles, or any other equal division of the

predicted values. For example, if τ = 0.15, this is equivalent to routing the bottom 15% of

γ̂ values to the VPP regardless of the true underlying distribution of γ̂.

Probabilities of Misrouting (p(τ) and q(τ)). We state that a patient is misrouted if they

are sent to the VPP but then needed a main ED bed, or if they were sent to the main ED

but could have been seen and discharged from the VPP (i.e., without needing an ED bed).

With Pr(Yi = 1 | γ̂) defined, we can now derive the system-level conditional probability

that a patient needs a main ED bed given that she has been routed to the VPP. For a

given threshold, τ , p(τ) is derived in Equation 7.

p(τ) = Pr(Yi = 1 |VPP, τ) = 1

τ

∫ τ

0

Pr(Yi = 1 | γ̂)dγ̂ =


k1, if τ ≤ α

(τ −α)(1−α)+αk1(1− τ)

(1−α)τ
, if τ > α

(7)

Similarly, the system-level probability that a patient sent to the main ED could have

been served in the VPP is given by q(τ) is derived in Equation 8.

q(τ) = Pr(Yi = 0 |Main ED, τ) =
1

1− τ

∫ 1

τ

Pr(Yi = 0 | γ̂)dγ̂ =


α− τ(1− k1)

1− τ
, if τ ≤ α

αk1
1−α

, if τ > α

(8)

Figures 7a and 7b depict the p(·) and q(·) functions, respectively, for different values

of k1 while setting α= 0.205. Note that with the best model, k1 ≈ 0, p(α)≈ q(α)≈ 0, as

expected; and in the worst model equivalent to random selection, k1 = 1−α, p(τ) = 1−α

and q(τ) = α which denote the baseline probabilities of needing and not needing a main

ED bed, respectively.

4.3. Cost Function

To generate insight into effective routing protocols, we consider a model in which the

decision-maker’s goal is to minimize the associated costs of misrouting patients with the
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(a) Probability of needing an ED bed, given

that a patient is served in the VPP.
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(b) Probability of not needing a bed, given

that a patient is served in the main ED.

Figure 7 Illustration of the p(·) and q(·) functions.

overarching goal of reducing the overall LOS in the ED. The total cost due to patient

misrouting is the sum of the additional LOS incurred in the system due to type I and II

misrouting errors, which for clarify we refer to as the over-utilization and under-utilization

of the VPP.

The over-utilization cost is associated with patients who need a main ED bed but are

misrouted to the VPP. Since they will be sent to main ED after being served in the VPP

unit, they experience both the LOS of the VPP and main ED. However, they could, ideally,

experience only the LOS of the main ED. Hence, the cost associated with over-utilization

of the VPP is:

CO(τ | α,k1, λ,µV ) =
(
LV

∣∣∣∣
λV =τλ

+LE

∣∣∣∣
λE=(1−τ)λ+p(τ)τλ

)
︸ ︷︷ ︸

need main ED bed

−
(
LE

∣∣∣∣
λE=(1−τ)λ+p(τ)τλ

)
︸ ︷︷ ︸

if routed to main ED

=LV

∣∣∣∣
λV =τλ

,

(9)

where CO denotes the over-utilization cost, and LE and LV represent the LOS of the ED

and VPP, respectively. Important to note is that the arrival rate of the ED would not

change even if the patients were routed correctly. This is because the patient flow is such

that all patients who need treatment in the main ED are eventually routed there. As such,

the over-use cost is simplified to the LOS of the VPP.
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The under-utilization cost relates to patients who were routed to the main ED while

they could have been entirely served in the VPP. For these cases, the cost function is the

difference of their expected LOS in the main ED with that of the VPP. Thus, we have:

CU(τ | α,k1, λ,µV ) =LE

∣∣∣∣
λE=(1−τ)λ+p(τ)τλ︸ ︷︷ ︸

could be seen in VPP

−LV

∣∣∣∣
λV =τλ+q(τ)(1−τ)λ︸ ︷︷ ︸
if routed to VPP

, (10)

where q(τ)(1− τ)λ in λV is added because the hypothetical scenario must consider the

additional load to the VPP.

For a given machine learning model and set of system parameters, our goal is to find

the optimal threshold τ ∗ for routing patients to the VPP. Note that p(τ)τ and q(τ)(1− τ)

portion of the patients experience the over-use and under-use costs, respectively. Hence,

τ ∗ minimizes the overall cost function and can be written as:

τ ∗ = argmin
τ∈[0,1]

{p(τ)τCO(τ | α,k1, λ,µV )+ q(τ)(1− τ)CU(τ | α,k1, λ,µV )}. (11)

5. Model Results

In this section, we derive the optimal threshold τ ∗, and discuss its main properties. Com-

bining Equations 2 and 3 to gain meaningful insights is mathematically intractable in

general. Therefore, in what follows, we first generate insights by assuming that u= 0, but

relax this in our simulation analyses in Section 7.

Solving Equation 11, we can find a unique solution for any given ML model and set of

system parameters as stated in the following result.

Theorem 1. For any combination of (µV , λ,α, k1), τ
∗ defined in Equation 11 is unique

and is given in Table EC.1.

Figures 8 shows the optimal threshold, τ ∗, as a function of the arrival rate and VPP

service rate, µV , for different levels of AUC. Theorem 1 enables us to make several key

observations.

Proposition 1. In the (µV , λ) space, denote the region in which τ ∗ = α by Ak for

k1 = k. If k < k′, then Ak′ ⊂Ak.
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Figure 8 Region plots showing τ∗ as functions of λ and µV for α= 0.206.

Recall that a lower k1 value corresponds to a higher AUC (Equation 6). Proposition

1 states that making use of a better ML model (with higher AUC) reduces the need for

“risk-taking” for larger combinations of (λ,µV ) because a higher accuracy in the model

essentially means that there is less filtering required at the VPP, and less opportunity cost

at the main ED. This implies that the classification threshold that maximizes the F1-score

of the ML model is also the optimal operational patient routing threshold for a larger

combination of (λ,µV ) values.

Lemma 3 below describes the relationship between τ ∗ and the (λ,µV ) values.

Lemma 3.
∂τ ∗

∂µV

≥ 0 and
∂τ ∗

∂λ
≥ 0.

Lemma 3 implies that as the VPP’s service rate increases, it becomes optimal to use the

VPP for more patients (all else equal). This is because the added LOS due to a (perhaps

unnecessary) VPP visit is substantially less than the LOS of the main ED, and thus,

the filtering mechanism of VPP in reducing the number of patients sent to the main ED

becomes particularly useful. In addition, Lemma 3 states that as the overall arrival rate

increases, more patients should be sent to the VPP unit (all else equal). Intuitively, this

implies that in hospitals where the arrival rate is high, it is beneficial to overuse the VPP

to filter some of the patients who can be discharged quickly—albeit with less certainty—in

an attempt to reduce overcrowding in the main ED.

We also note from Figure 8 that for some combinations of parameters τ ∗ = 1, meaning

that all arriving patients should be first routed to the VPP. This implies conditions under

which VPP should be used similar to the PIT (see Section 1), and occurs when the ML

model’s accuracy is below a threshold. Proposition 2 formalizes such conditions.
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Proposition 2. τ ∗ = 1 if:

• µV >µ4(k1, α) for all λ and k1 or;

• λ> λ4(k1, α,µV ) for µV >max(2, µ2(k1, α))

where µ2(·), µ4(·), and λ4(·) are defined as follows:

µ2(k1, α) =
(1−α)(1− k1)

2

k1

µ4(k1, α) =
1−α

αk1

λ4(k1, α,µV ) =
1−α−αk1µV

(1−α)2

Proposition 2 describes the conditions under which the VPP unit should be used similar

to a PIT model. This occurs when one of the following conditions holds: (1) The service

rate of the VPP unit is faster than a threshold, µ4(k1, α), which would justify the incurred

LOS penalty of erroneously being served in the VPP with the hope of not having to incur

the much longer main ED LOS. Since µ4 is decreasing in k1, this implies that as the

predictive power of the ML model improves, the VPP must be even faster for it to be

optimally used as a PIT. (2) The predictive power of the ML model is better than kA(α)

and the arrival rate is higher than λ4(k1, α,µV ); or (3) The predictive power of the ML

model is worse than kA(α), the arrival rate is above λ4(k1, α,µV ), and the VPP is faster

than µ2(k1, α). The second condition implies that if the ED’s arrival rate increases beyond

a threshold, the wait time of the main ED becomes so long that it is optimal to serve all

patients in the VPP first with the hope of removing all of those who can be discharged

directly via the VPP from the main ED queue. The third condition further implies that

when the predictive power of the ML model is worse than kA(α), the service rate of the

VPP must be faster than µ2(k1, α) for the overuse cost to be justified.

The following lemma establishes further insights into the structure of the optimal routing

policy.

Lemma 4.
∂µ2

∂k1
< 0,

∂µ4

∂k1
< 0, and

∂λ4

∂k1
< 0.

Lemma 4 states that as the predictive power of the ML model drops (i.e., as k1 increases),

the ED is better off using a PIT model under a wider set of system parameters. In other

words, the VPP is useful compared to a PIT model only when it is used in conjunction with

an ML model that has decent predictive power. We further test this finding in Section 7

using realistic simulation analyses calibrated with hospital data.
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Finally, the following proposition establishes conditions under which the VPP unit should

not be used (i.e., τ ∗ = 0).

Proposition 3. τ ∗ = 0 iff µV <µ1(k1, α), λ< λ1(k1, α,µV ) and 1/2<k1 < 1−α, where

µ1(·) and λ1(·) are defined as follows:

µ1(k1, α) =
1

1− k1
;

λ1(k1, α,µV ) =
1

2

(
2− (1−α)(1− k1)µV −

√
(1− k1)µV

(
4α+(1−α)2(1− k1)µV

))
.

Proposition 3 suggests the following. When a weak ML model is used, patients routed

to the VPP are highly misclassified and hence, need to be sent to the main ED after the

VPP visit.7 In addition, with a combination of low arrival rates and a slow VPP, it is

not justifiable to risk routing patients to the VPP, especially when the main ED’s LOS is

sufficiently low.

In closing this section, we note that Equation 6 and Figure 8 show that for a variety of

practical settings τ ∗ ∈ (0,1), meaning that only a proportion of patients should be routed

to the VPP unit. In what follows, we make use of hospital data and train ML models to

gain further insights into the characteristics of such patients.

6. Predicting VPP Eligibility Using Machine Learning

Leveraging data from our partner hospital, we train and validate ML models that predict,

for each arriving patient, whether they can be discharged by being served in the VPP unit

only (VPP eligibility). In this section, we describe the curated dataset, the proposed ML

models, and the clinical insights that we obtained from our analysis.

6.1. Data Description

Following standardized protocols across the country, the Mayo Clinic records patient demo-

graphic information, vital values, and a chief complaint from each patient. The decision

of whether a patient can be examined in the VPP unit takes place after triage while the

patient is in the waiting room. Thus, for the development and validation of the down-

stream ML models, we leverage only the limited information provided at the time of

triage as potential predictors. Table 3 provides an overview of the clinical characteristics of

the derived patient population, reporting the summary statistics for both continuous and

7 Recall that under the worst model p(τ) = α.
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binary variables as well as the percentage of missing values. At the time of data extraction,

chief complaints were grouped into 28 categories by the clinical team (see Table 3). The

clustering was conducted purely based on the clinical relevance and did not involve any

statistical methodology.

In addition to the clinical information at the time of triage, we received for each patient

whether and what type of additional examinations were subsequently performed. We also

obtained operational and discharge information regarding the timing and the part of the

ED where care was provided. This allowed us to analyze the entire patient trajectory in

the ED, and correspondingly calibrate our simulation models in Section 7.

6.2. Outcome of Interest

The outcome of interest for the target supervised ML model is whether a patient will

require a bed at the main ED prior to discharge. From our data, however, we do not

observe this variable for patients that could have been discharged without needing an ED

bed. That is, we only observe in our data patients who are discharged after being seen

in the VPP unit without being assigned an ED bed. However, a percentage of patients

who are assigned an ED bed, could have been discharged without it, if they had been

initially routed to the VPP unit (instead of the main ED). For this reason, and based on

conversations with ED physicians, we identify patients that can be discharged without an

ED bed using the following criteria:

• Patients who received care at the VPP and were subsequently discharged without the

use of an ED bed (N = 901).

• Patients with ESI scores of 2 or 3 who were treated using an ED bed but were dis-

charged home after their ED visit without being admitted to the hospital. In addition,

we require for this population the provision that no intravenous medication or fluids

were administered, neither X-rays, CT scans nor ultrasounds were performed during

the ED visit. Moreover, we require that the time from first contact to discharge was

at most 2 hours (N = 4,382).

• Patients with ESI scores of 4 or 5 who were treated using an ED bed, but were

discharged home after their ED visit without being admitted to the hospital. Moreover,

we require for this population the provision that no intravenous medication or fluids

were administered during the hospital stay (N = 4,861).



Feizi et al.: Vertical Patient Streaming in Emergency Departments
25

Independent Variable Type Distribution Information % Missing

Demographic Information
Arrival Age Numeric 61.0 (43.0-74.0) 0.00%
Race White Binary 43672.0 (88.5%) 0.00%
Race Asian Binary 1407.0 (2.9%) 0.00%
Race Black or African American Binary 2037.0 (4.1%) 0.00%
Race Choose Not to Disclose Binary 518.0 (1.0%) 0.00%
Race Other Binary 1687.0 (3.4%) 0.00%
Gender Male Binary 22950.0 (46.5%) 0.00%

Acuity Score and Vitals at Triage
ESI Numeric 3.0 (2.0-3.0) 0.10%
SPO2 Numeric 98.0 (96.0-99.0) 0.30%
Diastolic Blood Pressure at Triage Numeric 80.0 (72.0-89.0) 0.60%
Pulse Rate at Triage Numeric 83.0 (72.0-96.0) 0.50%
Respiratory Rate at Triage Numeric 18.0 (16.0-20.0) 0.50%
Systolic Blood Pressure at Triage Numeric 136.0 (121.0-153.0) 0.60%
Temperature at Triage Numeric 36.7 (36.5-36.9) 2.40%

Chief Complaint Categories
Abdominal Complaints Binary 6456.0 (13.1%) 0.00%
Abnormal Test Results Binary 1829.0 (3.7%) 0.00%
Allergic Reaction Binary 262.0 (0.5%) 0.00%
Back or Flank Pain Binary 2642.0 (5.4%) 0.00%
Breast Complaints Binary 61.0 (0.1%) 0.00%
Cardiac Arrhythmias Binary 1055.0 (2.1%) 0.00%
Chest Pain Binary 3679.0 (7.5%) 0.00%
Dizziness/Lightheadedness/Syncope Binary 1969.0 (4.0%) 0.00%
Ear Complaints Binary 254.0 (0.5%) 0.00%
Epistaxis Binary 260.0 (0.5%) 0.00%
Exposures, Bites, and Envenomations Binary 261.0 (0.5%) 0.00%
Extremity Complaints Binary 5389.0 (10.9%) 0.00%
Eye Complaints Binary 730.0 (1.5%) 0.00%
Falls, Assaults, and Trauma Binary 2399.0 (4.9%) 0.00%
Fatigue and Weakness Binary 1548.0 (3.1%) 0.00%
Fevers, Sweats or Chills Binary 1908.0 (3.9%) 0.00%
Gastrointestinal Issues Binary 3359.0 (6.8%) 0.00%
Genital Complaints Binary 683.0 (1.4%) 0.00%
Medical Device or Treatment Issue Binary 481.0 (1.0%) 0.00%
Medication Request Binary 76.0 (0.2%) 0.00%
Neurological Issue Binary 3457.0 (7.0%) 0.00%
Other Binary 808.0 (1.6%) 0.00%
Other Pain Binary 794.0 (1.6%) 0.00%
Psychiatric Complaints Binary 206.0 (0.4%) 0.00%
Shortness of Breath Binary 3050.0 (6.2%) 0.00%
Skin Complaints Binary 2347.0 (4.8%) 0.00%
Upper Respiratory Symptoms Binary 1941.0 (3.9%) 0.00%
Urinary Complaints Binary 1446.0 (2.9%) 0.00%

Table 3 Summary statistics of all patient characteristics for the total sample. For continuous variables, we

report the average and the 95% confidence interval. In the case of binary variables, the table shows the count of

observations where the feature is present and in parentheses the percent over the entire population. The last

column includes the percent of missing values in the dataset for each independent variable.
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The above criteria have been developed and validated by the emergency physicians at

our partner hospital, and are based on clinical insights regarding patients who can be

served without being assigned an ED bed.

6.3. ML Models

Leveraging the data from our partner hospital, we train binary classification models to

predict whether a patient’s care will require the use of an ED bed. We compare a wide

range of well-established ML algorithms, including logistic regression with regularization

(to avoid overfitting), classification trees (CART), random forests, gradient boosted trees

(XGBoost), support vector machines (SVM), and multi-layer perceptron (MLP) (Hastie

et al. 2009, Breiman et al. 2017, Breiman 2001, Chen and Guestrin 2016, Cortes and Vapnik

1995, Rosenblatt 1958). To train these, we split the patient population into a training

(75%) and a testing cohort (25%) using the Sciki-learn library Pedregosa et al. (2011). We

ensure that the ratio of prevalence for the outcome does not vary between the two sets.

We tune seven model parameters by maximizing the K-fold cross-validation AUC using

a bayesian optimization framework Head et al. (2020). In Table 4, we report the average

value and standard deviation of the AUC on the testing set for five independent partitions

of the data.

Table 4 shows that overall all algorithms achieve an average AUC above 85%. Further-

more, we observe that the performance across the different algorithms is fairly stable.

Specifically, the best performing algorithm (XGBoost, AUC=88.7%) differs only by 2.4

percentage points in mean AUC compared to the algorithm with the worst performance

(CART, AUC=86.3%). We also observe that there is not much variability in terms of the

reported AUC across different splits of the data, as indicated by the standard deviation

metric.

Algorithm Mean AUC Std. of AUC

CART 0.86286 0.00951
Logistic Regression 0.86333 0.01033
Random Forests 0.87833 0.00983
XGBoost 0.88714 0.00756
MLP 0.88432 0.00781
SVM 0.86754 0.00432

Table 4 Mean and standard deviation of the AUC metric on the testing set across all ML algorithms

considered. The reported numbers correspond to the average performance on five independent splits of the data

for the binary outcome of interest.
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6.4. Clinical Insights

We employ the SHapley Additive exPlanations (SHAP) to identify the risk drivers asso-

ciated with our outcome of interest Lundberg and Lee (2017), Lundberg et al. (2020). In

Figure 9, we report the average SHAP value of the 20 most important feature predictors

in our best ML model—XGBoost. These values are ordered by decreasing significance.

Higher feature values are indicated in red and lower feature values are in blue. For binary

features, a discrete scale is used, whereas for non-categorical features there is continuity

on the color scale. The overall patient risk corresponds to the sum of the SHAP values

of all the features. Positive SHAP values are positively correlated with higher chance of

needing an ED bed and negative SHAP values indicate decreases in the probability of

needing a bed. For example, in Figure 9, lower values of ESI (blue) yield higher SHAP

values, suggesting that more acute cases are more likely to need an ED bed. In contrast,

the SHAP value increases with higher values (red) of age, suggesting that higher values of

age are associated with higher probability of requiring an ED bed.

It can be seen from Figure 9 that ESI is the most significant variable followed by age.

Our analysis also indicates that patients that had a chief complaint involving abdominal

pain, chest pain, shortness of breath, neurological issues, fatigue, weakness, fever, or falls

and traumas are more likely to need an ED bed. In contrast, patients with skin, urinary,

abnormal test results, eye, and extremity issues as their chief complaints are less likely

to require an ED bed. In terms of other triage information, low diastolic, systolic blood

pressure values and oxygen saturation increase the chance of needing an ED bed. The

opposite trend applies to the cases of low triage pulse rate, respiratory rate, and body

temperature.

Our findings are in line with other studies who focused on identifying critically ill patients

that require significant care using triage information at the ED. Specifically, Hong et al.

(2018), Sun et al. (2011) also highlight ESI score and age as two of the most predictive

factors. Sun et al. (2011) also relates irregularities in blood pressure values and history

of hypertension to patients at higher risk. Similar findings are uncovered by Zhang et al.

(2017) with the use of natural language processing and neural networks. Raita et al. (2019)

showcase the significance of vitals measurements, identifying a high association between

oxygen saturation, respiratory rate, pulse rate, and systolic blood pressure and patient

outcomes at the ED. Our models differ from the aforementioned studies in that they mainly
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Figure 9 SHAP Plot for XGBoost models summarizing the contribution to risk prediction of the 20 most

important features.

focus on predicting hospital admissions post-ED service while our focus is on predicting

the need for an ED bed. In addition, contrary to some of these studies, our analysis did not

involve any natural language processing, since chief complaints were clustered in broader,

clinically relevant categories by the medical team.

7. Simulation of the ED Flow

To test the validity of the findings obtained from our simplified model (Section 5) and also

to gain deeper insights, we developed a simulation model of the ED flow and calibrated it

with hospital data. Section 7.1 describes the simulation model and steps taken in validating

it. Section 7.2 showcases how to map the analytical model for the VPP presented in

Sections 4-5 to a real-world ED and identify the resulting optimal routing policy. Section

7.3 highlights the differences between three distinct routing rules for the VPP. In Section

8, we then extend our simulation environment to (a) compare the VPP design with other

ED flow approaches introduced in the Introduction (e.g., LOS and PIT), and (b) generate

insights into when, and for which hospitals, the VPP design is advantageous.

7.1. Data-Driven Simulation Model: Development and Validation

We develop a simulation model of the Mayo Clinic ED based on the operational constraints

of the system and the clinical characteristics of the population it serves. Our aim is to
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design a realistic virtual test bed of the ED, where we can test the impact of different

routing and prioritization protocols on patients’ average LOS and waiting time.

Arrival Process. We assume that the arrivals to the ED follow a non-stationary Poisson

process with a dynamically changing rate during the day, following the empirical arrival

rates of the ED presented in Figure 2. The arrival rate in our simulations is specified for

each ESI class, ranging from one to five, and for each hour of the day.

Patient Population. Each simulated arrival is sampled from a synthetic pool of patients

based on the ED records, using the synthetic data vault (SDV) framework (Patki et al.

2016). The SDV process involves three consecutive parts: (1) data extraction and pro-

cessing (DataNavigator); (2) generative model development (Modeler); (3) synthetic data

creation (Sampler). SDV first estimates the distribution of each individual feature and the

covariance between all independent variables in the dataset. Subsequently, the algorithm

selects between a set of common distributions, including the truncated Gaussian, the uni-

form, or the beta distribution, the one that best matches the real data according to the

p-values of the Kolmogorov-Smirnov test. Thus, the shape of the chosen cumulative dis-

tribution function for each feature is determined by the significance level of the statistical

test. Finally, a Gaussian Copula function is applied to characterize the joint distribution

of all derived random variables, ensuring that the shape of different distributions does not

influence the covariance estimates. The SDV approach allows us to generate a realistic

synthetic patient population that approximates the patient volume and mix that is served

for each hour of the day at our partner hospital.

Simulating Assignments to VPP and ED (Current Practice). In the current prac-

tice, all arriving patients are assigned to a physician using a randomized round-robin

algorithm. Patients are also triaged and then sent to the waiting area. By default, patients

waiting will be taken to an ED bed and served by their assigned physician. However, when

a physician becomes available, she considers the pool of patients assigned to her who are

still in the waiting area and assesses whether they can be served in the VPP unit. If the

physician decides that a patient can be served in the VPP, the physician requests that the

patient be moved to the VPP unit. We model this ad-hoc selection as a Bernoulli process,

where the probability of success (i.e., selection to the VPP) is a function of each patient’s

ESI level and hour of the day. We observe that this Bernoulli process matches our data

relatively well (see Table EC.2). It also ensures that patients are served in the VPP (in the
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simulated environment) only during the hours in which the VPP is open. Upon completion

of the VPP visit, depending on the value of the test results, patients may either (a) be sent

to the main ED queue for additional ED care, or (b) get discharged to go home directly

from the VPP unit. The overall patient flow is based on Figure 1c.

Our simulation analyses extend the analytical framework presented earlier to consider a

system that involves multiple physicians. We leverage the overall patient arrival rate to the

ED and the average number of physicians working at any given hour from our data. Our

approach considers the “competition” among physicians for utilizing the VPP, rendering

it a shared resource in the ED.

Service Process. Once a patient has been seen in the VPP unit, tests are ordered. We

assume that VPP patients will have to wait for their tests to be completed to determine

whether they need to be served in the main ED. We extract disposition times and test

times from our data and observe that for about half of the ED visits (49.5% for Main ED

patients and 53.7% for VPP patients), a test has been ordered prior to the physician’s first

contact (see Fig. EC.1). Hence, we assume that a patient’s service time begins from the

earlier of first physician contact and first ordered test, and ends when a patient is either

admitted to the hospital or discharged to go home. Also, we observe that for about 10%

of patient visits, a test result becomes ready after the disposition decision is made. Since

these have a low percentage of occurrence, we exclude them from the service duration and

do not assume they cause further delays once the disposition decision has been made. Since

ED service includes both treatment and testing, we also incorporate, as system parameters,

the average testing and treatment durations separately for each ESI level and hour of the

day. We assume that these durations follow time-varying exponential distributions, with

means extracted from our data.

In addition, we model the probability that a patient is admitted to an inpatient unit

after ED service based on ESI levels, and calibrate it using our data. Patients admitted

to an inpatient unit after ED service often experience a “boarding time,” which involves

waiting in the ED until an inpatient bed becomes available. We model this using a log-

normal distribution (see, e.g., Saghafian et al. (2023)) with means and standard deviations

as functions of ESI and the hour of the day (obtained from our data).

Validation. To validate our simulation model and ensure that it provides a realistic bench-

mark to the baseline (i.e., observed values from the current practice) at the Mayo Clinic,
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LOS Wait

Group Baseline Simulation p-value Baseline Simulation p-value

All 238 238 0.583 36 36 0.748
ESI=1 192 183 0.139 11 12 0.16
ESI=2 276 274 0.221 24 25 0.155
ESI=3 237 239 0.161 42 41 0.254
ESI=4 153 153 0.748 42 42 0.788
ESI=5 87 85 0.759 37 37 0.888

Table 5 Comparison of average LOS and waiting time (minutes) between the simulated and baseline values.

we perform a series of comparisons by making use of two well-defined metrics of opera-

tional performance. Specifically, we focus on average waiting time and LOS and calculate

them both for the overall population and for each ESI level. We run the simulation for

10 years and discard the first 3 years as a transient period. We compute the hypothesis

test statistic for the two metrics of interest, comparing whether the baseline observed from

our data has a different distribution compared to what we obtain from our simulation.

As shown in Table 5, all p-values for the differences are large (> 0.5), indicating that the

simulated system accurately approximates the current practice of the Mayo Clinic. This

can also be seen by noting that the difference between the baseline and simulation in terms

of both the overall average LOS and waiting time metrics is less than a minute. Hence, our

simulation environment provides a realistic test bed to evaluate the impact of our proposed

VPP design compared to both the current VPP design and alternative ED patient flow

approaches (e.g., FT and PIT) discussed earlier.

7.2. Mapping the Analytical Model to Real-World Healthcare Systems

To identify the optimal VPP design for our partner hospital using our analytical model

(Section 4), we need to specify the values of α,k1, µV , λ (see Table EC.1). To compute α,

we use the dependent variable of the proposed ML model (Section 6.2). Specifically, we

note that the care of the 10,144 patients out of the 49,350 did require an ED bed, and thus,

we set our baseline α to 20.55%. Using this value, we next leverage Equation (6), which

indicates that k1 = 0.175. We next determine µV , which reflects the relative speed of the

VPP unit compared to the main ED. By design, physicians who serve patients in the VPP

unit strive to complete the consultation within 20 minutes. Assuming this time constraint

on average, we can focus only on the average service rate of the main ED per hour of the

day and make use of it to obtain the ratio between µV and µE. Our analysis shows that, at

our partner hospital, the service rate of the VPP unit is six to eight times that of the main
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ED. Thus, on average, the service duration in the main ED is between 120 minutes and

160 minutes, depending on the hour of the day (see Figure EC.2a). From Proposition 2, we

next compute the values of µ2 and µ4, verifying that µ2 <µV <µ4. Following Table 1, we

observe that our partner hospital falls in the policy regime where τ ∗ = α for all 0<λ<λ3

(Figure EC.2b). Figure EC.2 illustrates the sensitivity analysis on the system parameters

to ensure that the proposed policy is robust to data perturbations and hourly changes

during the day. We also repeat our analysis for another hospital, Boston Medical Center

(BMC), using their data to create yet another benchmark and show how the optimal VPP

routing policy depends on the hospital characteristics (see Section EC.2 for analysis related

to BMC).

7.3. Combined Routing and Patient Prioritization

Our analyses in the previous section shed light on the best policies that should be followed

in practice for routing patients to the VPP unit. However, among patients that are routed

to the VPP unit, an ED can follow various prioritization mechanisms. Augmenting patient

routing policies with prioritization rules might yield significant benefits in practice. To gain

insights into suitable rules that allow for both routing and prioritization, we consider three

implementable policies and compare them with the current practice at the Mayo Clinic.

Specifically, we consider the following policies:

• Baseline: This scenario simulates the current practice at the Mayo Clinic. The imple-

mentation of the VPP operation is guided by the empirical data as described in

Section 7.1.

• τ ∗(ESI): Following the design presented in Figure 4, under this policy, all patients with

γ̂ < τ ∗ are routed to the VPP, where γ̂ is obtained from the ML model. Furthermore,

among patients with γ̂ < τ ∗, priority is given to patients with a lower ESI level. That

is, patients are (a) routed to the VPP unit based on the ML model’s score and (b)

prioritized there based on their ESI level.

• τ ∗(γ̂): Similar to the previous policy, patients with γ̂ < τ ∗ are routed to the VPP.

However, instead of ESI, prioritization is done based on the predicted score, γ̂. That

is, both routing and priority decisions for utilizing the VPP unit are based on the ML

model’s output.

• ESI: Under this policy, both routing and priority decisions are based on the ESI level.

In particular, all patients with ESI> 3 (i.e., low acuity patients) are routed to the
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Figure 10 Average LOS of all patients, patients served in the main ED, and patients served in the VPP unit at

the Mayo Clinic ED (% reduction over the baseline is indicated in parentheses).

VPP unit. Under this policy, we assume that the ML model is not implemented, and

instead, a strict rule based on ESI is used (similar to how EDs make use of their FT

units).

Figure 10 shows that all of the three policies considered (τ ∗(ESI), τ ∗(γ̂), ESI) lead to

substantial improvements in the overall system’s performance compared to current prac-

tice. This is to some extent expected, given that in the current practice at our partner

hospital VPP routing and priority decisions are made in an ad-hoc manner by individual

physicians. Furthermore, we observe that the τ ∗(γ̂) policy results in an average LOS of

202.9 minutes, which corresponds to a 8.0% reduction compared to the current practice.
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We observe small differences between τ ∗(γ̂) and τ ∗(ESI). This is mainly because ESI is

the primary driver of risk for γ̂ (see the SHAP graph in Figure 9). Hence, there are only

minor differences between these two prioritization policies. However, we observe that both

of these lead to significant benefits compared to the ESI policy, highlighting that using

the ML model and following a data-driven VPP design is superior to an ESI-based rule

that blindly sends the low acuity (ESI> 3) patients to the VPP unit. Similar findings are

uncovered when we focus on the average waiting time in the system. The τ ∗(γ̂) policy, for

example, improves the average patient waiting time by 48.0%.

Put together, these results indicate that our partner hospital should change the current

practice of routing patients to the VPP unit. In particular, we find that making use of the

ML model to obtain predicted risk scores and following the τ ∗(γ̂) policy can go a long

way. Our analysis for the BMC ED also leads to a similar conclusion, suggesting that the

τ ∗(γ̂) policy yields the greatest overall reduction of LOS in the system (see Figure EC.3).

8. VPP or Other Flow Designs: What Hospitals Should Introduce a
VPP Unit?

In the previous section, we answered the first two research questions we raised in Section

1. Specifically, we found that an ML model can be developed to reliably identify patients

who do not need an ED bed, and that the best way of utilizing the VPP unit is to follow

the τ ∗(γ̂) policy, in which both routing and prioritization decisions are made using the

ML model’s output as well as the main ED characteristics. In this section, we turn to our

third research question: for what hospitals the best VPP design outperforms other ED

flow designs such as FT and PIT? To address this question, we simulate counterfactual

non-VPP designs, including FT-based and PIT-based streaming approaches introduced in

Section 1 (see Section EC.3 for more details about the assumptions we make to simulate

performance under these counterfactual designs). Furthermore, since the population of

patients served by an ED differs from one hospital to another, we also conduct a sensitivity

analysis on the main characteristics of the patient population served by the ED, which in

turn enables us to answer our third research question.

We evaluate the impact of FT, PIT, and VPP (under the best policy, τ ∗(γ̂)) on the

resulting LOS across all patients served, patients served only in the FT/VPP, and patients

served in the main ED. In addition, to generalize our insights beyond the context of our
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Population Mean ESI FT PIT VPP

All

2.39 274.7 (273.6, 275.8) Not Stable 258.8∗ (257.7, 259.8)
2.76 233.6 (232.7, 234.4) 1277.0 (1253.5, 1300.5) 203.7∗ (202.8, 204.6)
3.03 Not Stable 260.9 (259.8, 261.9) 208.0∗ (206.6, 209.4)
3.37 Not Stable 174.0∗ (173.5, 174.5) Not Stable

Mayo ED 232.9 (232.1, 233.8) 785.1 (773.8, 796.4) 202.9∗ (202.0, 203.7)

Main ED

2.39 288.6 (287.5, 289.7) Not Stable 272.7∗ (271.6, 273.7)
2.76 249.2 (248.2, 250.1) 1419.1 (1392.9, 1445.4) 232.4∗ (231.4, 233.4)
3.03 Not Stable 297.2 (296.0, 298.4) 219.9∗ (218.5, 221.3)
3.37 Not Stable 198.8∗ (198.2, 199.3) Not Stable

Mayo ED 245.6 (244.7, 246.6) 861.4 (848.8, 873.9) 228.3∗ (227.3, 229.2)

FT/VPP

2.39 96.6∗ (95.2, 98.1) Not Stable 109.9 (107.3, 112.6)
2.76 164.6 (163.1, 166.2) 114.9 (113.6, 116.3) 103.7∗ (102.4, 104.9)
3.03 Not Stable 104.8∗ (103.9, 105.7) 199.4 (197.3, 201.5)
3.37 Not Stable 99.1∗ (98.4, 99.7) Not Stable

Mayo ED 173.5 (171.9, 175.2) 124.2 (122.8, 125.7) 108.5∗ (107.2, 109.9)

Table 6 Average LOS and 95% confidence intervals (indicated in parentheses) per patient subgroup across

different ED flow designs. Four synthetic patient populations with varying mean ESI scores are considered in

addition to the Mayo Clinic baseline sample. We indicate with an asterisk the best performing system for each

population subgroup.

partner institution, we generate synthetic populations of ED patients by altering the dis-

tributions of ESI levels and patient’s age. We focus on these two factors, mainly because

they constitute the two most predictive patient characteristics, as shown in Figure 9, that

are associated with the likelihood of requiring an ED bed. Specifically, we split the syn-

thetically generated patient population into distinct groups based on their ESI level (1 to

5) and age ([0,40), [40,50), [50,60), [60,70), [70,100)). Subsequently, guided by other ED

environments described in the literature, we uniformly sample without replacement from

each of the subgroups to generate patient populations of varying severity and care needs

that approximate different community profiles that can be served by an ED (Wong et al.

2021, Xu et al. 2009, Araz et al. 2019). In terms of ESI, we let the mean ESI range from

2.39 and 3.37 (see Table 6). In terms of age, we alter the age distribution such that the

average patient age lies in the set {40,50,60,70} (see Table 7).

Tables 6 and 7 summarize our results. Overall, our analysis shows that given a fixed

amount of ED resources, the optimal VPP design outperforms the FT and PIT designs for

EDs that serve a patient population with low to medium-high mean ESI scores. However,

when the patient body served in the ED has a low prevalence of acute and critical condi-

tions (i.e., involves a low fraction of high ESI level patients), our results suggest that the

PIT system is the most suitable design. This is because the flow of patients to the VPP
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Population Mean Age FT PIT VPP

All

40 263.3 (262.2, 264.4) 456.7 (453.1, 460.3) 186.9∗ (186.0, 187.7)
50 253.1 (252.1, 254.1) 536.9 (532.0, 541.9) 190.3∗ (189.4, 191.1)
60 247.4 (246.5, 248.3) 616.8 (610.4, 623.2) 192.9∗ (192.0, 193.8)
70 243.1 (242.2, 244.0) 1092.7 (1072.5, 1112.8) 195.6∗ (194.7, 196.4)

Mayo ED 232.9 (232.1, 233.8) 785.1 (773.8, 796.4) 202.9∗ (202.0, 203.7)

Main ED

40 239.4 (238.4, 240.3) 509.2 (505.1, 513.2) 223.6∗ (222.5, 224.6)
50 241.1 (240.1, 242.0) 599.4 (593.8, 605.1) 227.1∗ (226.1, 228.1)
60 243.1 (242.2, 244.1) 687.2 (680.0, 694.4) 227.7∗ (226.7, 228.8)
70 244.2 (243.3, 245.2) 1223.9 (1201.1, 1246.7) 229.3∗ (228.2, 230.3)

Mayo ED 245.6 (244.7, 246.6) 861.4 (848.8, 873.9) 228.3∗ (227.3, 229.2)

FT/VPP

40 332.6 (329.6, 335.7) 115.6 (114.5, 116.8) 106.8∗ (105.8, 107.9)
50 290.1 (287.4, 292.8) 115.8 (114.6, 117.0) 105.0∗ (103.9, 106.0)
60 261.5 (259.2, 263.9) 115.8 (114.6, 117.1) 105.7∗ (104.6, 106.8)
70 239.1 (237.0, 241.2) 117.6 (116.4, 118.9) 106.4∗ (105.2, 107.5)

Mayo ED 173.5 (171.9, 175.2) 124.2 (122.8, 125.7) 108.5∗ (107.2, 109.9)

Table 7 Average LOS and 95% confidence intervals (indicated in parentheses) per patient subgroup across

different ED flow designs. Four synthetic patient populations with a varying mean age at admission are considered

in addition to the Mayo Clinic baseline sample. We indicate with an asterisk the best performing system for each

population subgroup.

unit significantly increases as the patient population shifts toward lower acuity patients,

rendering the VPP design unstable. This suggest that the VPP design is more suitable for

trauma centers or regular teaching hospital EDs, but the PIT system might be the pre-

ferred design in community hospitals where a higher fraction of patients are of low acuity.

Finally, as shown in Table 6, we find that the FT approach faces the same problem as the

VPP design in EDs with a high fraction of low acuity patients. The simulation outcomes

also validate the findings from our analytical model: in cases of very high arrival rates to

the ED, all patients should be first routed to the VPP unit, making the VPP and PIT

designs similar in their functioning and performance.

Table 7 illustrates that, given a certain set of resources, the age distribution does not

impact the ranking of the three design approaches considered. Of note, the average LOS

of all patients in the system increases (decreases) when the distribution shifts to older

populations in the case of the VPP and PIT (FT). The opposite trend in the FT is driven by

the system behavior outside of the main ED. The average LOS of patients served in the FT

significantly decreases for older populations, contrary to the case of PIT and VPP where

the performance does not significantly change due to age variations. When focusing on the

main ED patients, we observe that the LOS measure under PIT significantly increases for

older populations. In the case of FT and VPP, we still observe an increase in the average
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LOS but with a smaller variation. For example, when the mean age is equal to 40, the

average LOS in the main ED for the VPP system is 223.6 minutes, for the FT is 239.4

minutes, and for the PIT approach is 509 minutes. When the average age is as high as

70 years, the LOS under PIT increases by 714 minutes while the LOS under VPP and

FT increases by only about five minutes. These results highlight that the adaptability of

the optimal VPP design leads to lower variations in the system’s LOS as the population

characteristics change. Specifically, between the 40 and the 70 age groups, the difference

in the average performance of the VPP was nine minutes, while in the case of FT and PIT

it was 20 minutes and 636 minutes, respectively. Our findings highlight the robustness of

the VPP patient flow design (and the potential of a data-driven implementation) that is

flexible to changes in various system characteristics, such as population complexity, service

rate, and arrival intensity.

9. Discussion and Conclusion

Vertical processing has been popularised as a streaming approach by the Mayo Clinic, even

though it has only been implemented in practice in an ad-hoc fashion. To this day, there

is a lack of conclusive evidence on the benefit that vertical processing can bring to ED

operations. Our investigation proposes, for the first time, a roadmap on how to design,

optimize, and implement a VPP-based patient flow in EDs in a data-driven fashion. Our

results also shed light on the conditions and hospitals for which implementing a VPP

design outperforms other forms of patient streaming.

Since the benefit of using a VPP unit largely depends on accurate up-front predictions

of patients that can be served vertically (as opposed to horizontally), we introduced an

ML-guided VPP design that makes use of both patient triage information as well as the

ED system characteristics to personalize the routing decision for each patient. However,

we recognize that the validation of an accurate ML model to determine routing eligibility

might not be sufficient for a successful implementation in practice. For this reason, we

propose a novel and generalizable analytical queuing model that characterizes the system’s

optimal policy as a function of ML performance, the patient population characteristics,

and the ED’s operational load. Our approach considers the patient streaming design in

a holistic way, proposing a solution that is not founded on distributional information

but rather on individual patient records. Thus, even though the proposed system is fully
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data-driven, its implementation is guided by a rigorous analytical approach that aims to

minimize the operational load of the ED. An important aspect of this analytical approach is

that it allows for optimizing ED performance based on three elements: an ED’s operational

characteristics, the patient population the ED serves, and the predictive power of the ML

model the ED wishes to implement.

Our analytical approach shows that there exists a classification threshold based on the

patient’s predicted complexity below which patients should be routed to the VPP. The

value of the threshold determines the volume of cases and, thus, the load in the queue of

the main ED vis-a-vis the VPP unit. Our analysis shows that the optimal classification

threshold τ ∗ increases as the overall arrival rate to the ED or the speed of service at the

VPP unit increase. Under low to moderate service and arrival rates in the ED, our analysis

reveals that the threshold should be set equal to the baseline, namely the overall proportion

of the patient population that can be served without an ED bed. This region expands to

even busier or faster systems as the discrimination performance of the ML improves, which

in turn sheds light on the interplay between operations and the quality of the implemented

ML model. Of note, when the ED system lies in scenarios of very high arrival rates and

the VPP is significantly faster compared to the ED, our policy suggests a “risk-seeking”

behavior in which τ ∗ = 1. Under this setting, all patients become VPP eligible, and the

VPP streaming adapts to a PIT streaming approach. Moreover, our sensitivity analysis

across different system parameters reveals that the policy regions under the VPP design

are fairly robust to time-dependent variations of the arrivals to the ED. Thus, even though

the queueing model is time-invariant the identified optimal policy can be implemented

without concerns related to time-dependent spikes in arrivals.

Finally, by developing a data-driven realistic simulation model, we demonstrate that

vertical processing can lead to substantial improvements in ED efficiency compared to

an FT and PIT approach, reducing the average patient waiting time and LOS in the

system. However, our sensitivity analysis suggests that this finding is not universal. Vertical

streaming is most beneficial for EDs with a high proportion of patients of high acuity

(low ESI scores). In settings where the majority of patients can be treated with a limited

amount of tests and resources, the FT has an edge over the VPP approach.

Future research can extend our work by performing a prospective follow-up study of the

proposed VPP flow design. In particular, our models need to be externally validated by a
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different institution prior to implementation using retrospective electronic health records.

A potential follow-up study could also aim at prospectively curating a larger and more

detailed dataset for establishing VPP eligibility of ED patients.

Despite these limitations, by combining features of the ED, the patient population,

and the ML model into one analytical framework, we provide a holistic design for VPP

units along with evidence for its superior performance across multiple ED settings. Our

results show that the VPP design should be viewed by various EDs as an effective and yet

inexpensive solution for enhancing performance. Importantly, VPP implementation only

involves the use of a dedicated room with limited physical space and no additional expensive

resources (e.g., ED bed or added physician), posing minimal constraints compared to the

other forms of patient streaming, As such, we hope to see a broader set of experimentation

and potential adoption across various EDs in the near future.
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Electronic Companion

EC.1. Proofs

All proofs for equations, theorems and lemmas, where applicable, are given below.

Proof of Theorem 1

If u= 0, the LOS of the main ED, LOSE, then becomes the sojourn time of an M/M/1

queue since its arrival follows an exponential distribution with rate λE, and can be calcu-

lated as follows:

LOSE =
1

1−λE

.

In addition, note that in reality, µV >> 1 because the average time spent in the VPP is

in the order of ∼ 10 minutes, while that of the ED is ∼ 200 minutes. Therefore, although

the VPP is an M/M/1 queue (with no vacation), we can further simplify the VPP by

assuming that it is an M/M/∞ queue with a service rate of µV . This is essentially the

equivalency of an M/M/1 queue with an M/M/∞ queue when the rate at which customers

arrive is much less than the service rate, and therefore, practically, a queue rarely forms.

In this case, the LOS of the VPP, LOSV , is:

LOSV =
1

µV

.

Hence, the overuse and underuse costs defined in Equations 9 and 10, can be reduced to

Equations EC.1 and EC.2, respectively.

CO(τ | k1, λ,µ) =
1

µV

. (EC.1)

CU(τ | k1, λ,µ) =
1

1− (1− τ + p(τ)τ)λ
− 1

µV

(EC.2)

Substituting Equations EC.1, EC.2, 7 and 8 in Equation 11 yields the total cost function

to be minimized, CT :

CT (τ | α,k1, λ,µV ) =
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−αλ+µV

λµV

+
τ

µV

+
1− (1−α)λ

λ
(
1−λ+(1− k1)λτ

) , if τ ≤ α

A+Bτ +Cτ 2

µV

(
− 1+α+λ+αλ(−2+α+ k1− k1τ)

) , if τ > α

(EC.3)

where:

A=−α
(
− 1+α+λ+α(−2+α+ k1)λ+ k1µV

)
B =

(
− 1+α+λ+α(−2+α+ k1+αk1)λ+αk1µV

)
C =−αk1λ

The τ that minimizes Equation EC.3 is the optimal fraction of patients that must be

routed to the VPP.

We begin by ensuring that CT is convex for all combinations of (α,k1, λ,µV ) in their

allowable range. We verify that:

• CT is continuous at τ = α;

• ∂2CT/∂τ
2 ≥ 0 in both τ ≤ α and τ > α (i.e., second-order condition).

Thus, the function is continuous and convex for all parameters. Next, we find the first-

order condition (FOC) that minimizes CT . We do this separately for τ ≤ α and τ > α. For

notational convenience, we define:

C1(τ | α,k1, λ,µV ) =−αλ+µV

λµV

+
τ

µV

+
1− (1−α)λ

λ
(
1−λ+(1− k1)λτ

) , τ ≤ α

C2(τ | α,k1, λ,µV ) =
A+Bτ +Cτ 2

µV

(
− 1+α+λ+αλ(−2+α+ k1− k1τ)

) , τ > α

Case 1: τ ≤α

Setting ∂C1/∂τ = 0, we obtain a unique solution for that minimizes C1:

τ ∗
1 =

1−λ

(−1+ k1)λ
+

√
(−1+λ−αλ)µV

(−1+ k1)λ2
, (EC.4)
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where τ ∗
1 exists when the following conditions hold:

0<α<
1

2
(for all α’s)

1

2
<k1 < 1−α

2<µV <µ1

λ1 <λ<λ2,

where µ1 and λ1 are defined in Proposition 3 and λ2 is defined as:

λ2(α,k1, µV ) =

2−α(−1+ k1)(−2+µV )+ (−1+ k1)µV

2
(
1−α(1− k1)

)2 −

−
√

(−1+ k1)µV

(
4αk1(−1+α−αk1)+ (1−α)2(−1+ k1)µV

)
2
(
1−α(1− k1)

)2
Outside of the range where the FOC has a unique solution, τ ∗

1 is either 0 or α, which

we determine based on whether ∂C1/∂τ is positive or negative. This algebra yields the

following boundary solutions when 0≤ τ ≤ α:

τ ∗
1 =



α, if 0<k1 <
1

2
, since ∂C1/∂τ ≤ 0

α, if µV >µ1, since ∂C1/∂τ ≤ 0

0, if 0<λ<λ1, since ∂C1/∂τ ≥ 0

α, if λ2 <λ< 1, since ∂C1/∂τ ≤ 0

(EC.5)

Case 2: τ ≥α

Setting ∂C2/∂τ = 0, we obtain

τ ∗
2 =

−1+α+λ+αλ(−2+α+ k1+ k1

√
− (−1+α)(1+(−1+α)λ)µV

αk1λ2 )

αk1λ
, (EC.6)

where τ ∗
2 exists when the following conditions hold:

0<α<
1

2
,
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0<k1 < 1−α,

max{2, µ2}<µV <µ4,

λ3 <λ<λ4;

where, λ3, λ4, µ2, µ4, kA are defined as:

λ3(k1, α,µV ) =
1

2

(
2−α(2+ k1(−2+µV ))

(1+α(−1+ k1))2
−

√
−α2k2

1µV (4+α(−4+4k1−µV )+µV )

(−1+α)(1+α(−1+ k1))4

)
,

λ4(α,k1, µV ) =
1−α−αk1µV

(−1+α)2
,

µ2(α,k1) =
1−α

k1
,

µ4(α,k1) =
1−α

αk1

kA(α) =
(2−α)−

√
3− 2α

1−α

Outside of the range where the FOC has a unique solution, τ ∗
2 is either 1 or α, which

we determine based on whether ∂C2/∂τ is positive or negative. This algebra yields the

following boundary solutions when α≤ τ ≤ 1:

τ ∗
2 =


α, if λ< λ3 since ∂C2/∂τ ≥ 0

α, if k1 <kA and µV <µ2, since ∂C2/∂τ ≥ 0

1, if max{2, µ3}<µV and max{0, λ4}<λ< 1 since ∂C2/∂τ ≤ 0

(EC.7)

where, µ3 and kA are defined as:

µ3(α,k1) =
1−α

k1

kA(α) =−

√
3− 2α

(−1+α)2
+

−2+α

−1+α
.

Note that the region µ2 <µV <µ3 and λ > λ4 does not exist. Therefore, for the sake of

simplicity we do not further break down the state space in the remainder of the proof.

With the optimal τ obtained when 0< τ < α or α< τ < 1, we finally merge the regions

to find τ ∗ for each combination of parameters.

We realize the following relationship:

0<kA <
1

2
< 1−α.
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Note that when k1 <
1
2
, τ ∗

1 = α and C1 is decreasing. Therefore, τ ∗ = τ ∗
2 from Case 2.

When k1 ≥ 1
2
, we observe:

2<µ2 <µ1 <µ4.

Note from Equation EC.5 that when k1 ≥ 1
2
and µV > µ1, τ

∗
1 = α and C1 is decreasing.

Therefore, again, τ ∗ = τ ∗
2 from Case 2.

However, when k1 ≥ 1
2
and µV <µ1, the solutions from Case 1 can be the overall solution

to τ ∗. Observe that the following relationship holds when µV <µ1:

0<λ1 <λ2 <λ3 <λ4

Further, note that when λ2 < λ, τ ∗
1 = α and C1 is decreasing. Therefore, again, τ ∗ = τ ∗

2

from Case 2. Also, note that when λ < λ3, τ
∗
2 = α and C2 is increasing; therefore, τ ∗ = τ ∗

1

in this case. Hence, overall, when λ< λ2, τ
∗ = τ ∗

1 .

Table ?? summarizes the optimal threshold τ ∗ for all parameter combinations.

□

EC.1.1. Proof of Proposition 1

To prove Proposition 1 we must show that the area for which τ ∗ = α is decreasing with k1.

For this, it suffices to show that the µV and λ ranges in which τ ∗ = α are both decreasing

with k1. Referring to Table ??, these ranges can be readily found. The following statement

is true, and thus proves Proposition 1.

For all 0<α< 1
2
, 0<λ< 1, 0<k1 < 1−α, µV > 2:



∂

(
µ4(k1,α)−µ2(k1,α)

)
∂k1

< 0

∂

(
µ4(k1,α)−µ1(k1,α)

)
∂k1

< 0

∂λ3(k1,α,µV )
∂k1

< 0

∂

(
λ3(k1,α,µV )−λ2(k1,α,µV )

)
∂k1

< 0

(EC.8)

□
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k1 µV λ τ ∗

k1 <kA

2<µV <µ2 0<λ< 1 α

µ2 <µV <µ4

0<λ<λ3 α

λ3 <λ<λ4 τ2

λ4 <λ< 1 1

µ4 <µV 0<λ< 1 1

kA <k1 < 1/2
2<µV <µ4

0<λ<λ3 α

λ3 <λ<λ4 τ2

λ4 <λ< 1 1

µ4 <µV 0<λ< 1 1

1/2<k1 < 1−α

2<µV <µ1

0<λ<λ1 0

λ1 <λ<λ2 τ1

λ2 <λ<λ3 α

λ3 <λ<λ4 τ2

λ4 <λ< 1 1

µ1 <µV <µ4

0<λ<λ3 α

λ3 <λ<λ4 τ2

λ4 <λ< 1 1

µ4 <µV 0<λ< 1 1

Table EC.1 Optimal threshold τ∗ for all parameter combinations.

Proof of Lemma 3

For each region in Table ??, note that when τ∗ = 0 or τ∗ = α or τ∗ = 1,
∂τ ∗

∂µV

= 0 and

∂τ ∗

∂λ
= 0. For regions where τ∗= τ1 or τ∗= τ2, it can also easily be shown that:

∂τ2
∂µV

> 0

∂τ2
∂λ

> 0

∂τ1
∂µV

> 0

∂τ1
∂λ

> 0
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Also recall that when k1 < 1/2: 0<λ3 < lambda4 and 2≤ µ2 <µ4; and when 1/2< k1 <

1−α: 0< λ1 < λ2 < λ3 < lambda4 and 2≤ µ1 < µ4 so the regions where τ ∗ = 0< τ1 <α<

τ2 < 1 are also increasing in µV and λ.

□

Proof of Proposition 2

Proposition 2 can be readily inferred from Table ??. □

Proof of Proposition 3

Proposition 3 can be readily inferred from Table ??. □

Proof of Lemma 1

Denote the cumulative distribution function (CDF) of departures from the VPP and direct

arrivals to the ED (i.e., after triage) by Fa(t) by Fb(t), respectively. The probability of an

arrival at time T ≤ t can be written as:

Fa∪b(t) = Pr{T ≤ t}=Pr{departure from VPP< t}∪Pr{direct arrival≤ t}= Fa(t)+Fb(t)−Fa(t)Fb(t)

The direct arrival interarrival time distribution is an exponential distribution with rate

(1− τ)λ. Hence,

Fb(t) = 1− e−(1−τ)λt

To find Fa(t), we leverage the results from Tang (1994). Denote λv = p(τ)τλ. We have:

Vacation length CDF= V (t) = 1− e−t/u

v(λv) =

∫ ∞

0

e−λvxdV (x) =
1

1+λvu

Ṽ (t) =

∫∞
0

V (t+x)λve
−λvxdx− v(λv)

1− v(λv)
= 1− e−t/u

p0 =
(1−λ/µV )

(
1− v(λv)

)
λvu

F (t) = 1− e−λvt

G(t) = 1− e−µV t
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Finally, Equation 21 from Tang (1994) shows the interdeparture time CDF of the VPP

in steady state:

Fa(t) = (1− p0)G(t)+ p0

∫ t

0

dF (x) ∗ dG(x) ∗ dṼ (t)

Finally, fa(t) = dFa∪b(t)/dt

□

Proof of Lemma 2

It can be shown that the functional form of the receiver operating characteristic (ROC)

curve of Equation 4 is as follows:

TPR(FPR | k1, α) =


(1−α−αk1)

(1−α)k1
FPR, if 0≤ FPR< k1

(1−α− k1)+αk1FPR

(1−α)(1− k1)
, Otherwise.

(EC.9)

where, TPR and FPR are the true positive rate and false positive rate, respectively.

The AUC is calculated by integrating the ROC curve, which results in the following:

AUC =

∫ 1

0

TPR(FPR | k1, α)dFPR= 1− k1
2(1−α)

(EC.10)

□
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EC.2. Mapping the Analytical Model to the Boston Medical Center

In this section, we illustrate how to apply the analytical model to the BMC ED, showcasing

the policy variations in a system that serves a higher volume of patients on a daily basis.

BMC primarily serves a higher portion of underprivileged population compared to the

Mayo ED with greater racial diversity (Bertsimas et al. 2020b). In addition, the proportion

of patients that require an ED bed is low due to the high prevalence of low acuity cases.

Leveraging the findings of Feizi et al. (2022), we approximate BMC’s α by scaling Mayo’s

α by the ratio of ESI-4 and ESI-5 patients served in BMC to that of Mayo clinic. We also

approximate the hourly arrival rates by scaling up Mayo’s hourly arrival rate by the ratio

of annual patient volume at BMC to that of Mayo (Mackenzie Bean 2023). We further

assume that the trained ML model achieves the same performance as the one presented

in Section 6.3. As shown in Figure EC.2c, we are in the regime where kA > k1 (similar to

the Mayo ED). Moreover, if we hypothesize that BMC was able to provide an equivalent

amount of resources (rooms and physicians) to achieve the same µV as the Mayo ED,

then µ2 <µV <µ4 would still apply. However, the average arrival rate λBMC , changes the

optimal regime throughout the day. Specifically, as illustrated in Figure EC.2b, 0<λ<λ3

between 4.00 pm and 8.00 am (τ ∗ = α); λ3 <λ< λ4 between 8.00 am and 9.00 am as well

as between 3.00 pm and 4.00 pm. (τ ∗ = τ2); λ4 <λ during the hours of 9.00am and 4.00pm

(τ ∗ = 1). This setting highlights the potential variability of the optimal policy throughout

the day. In practice, the ED administrators of the BMC, could approximate the optimal

design by implementing τ ∗ = α during the hours of low demand and increasing it to τ ∗ = 1

throughout the morning and afternoon hours, leveraging the VPP as a screening tool for

any patient in the ED.
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EC.3. Simulated Design for the FT and PIT Systems

We design the FT and PIT based on Feizi et al. (2022) and Franklin et al. (2021), respec-

tively, which employ these policies in their study settings. Below we provide details on the

implementation of the FT and PIT policies:

• Fast-Track (FT): All patients with ESI> 3 are routed to dedicated beds in the FT

section of the department while only patients with ESI≤ 3 use the resources available

in the main ED. We assume that at any hour, the FT is staffed with half as many

physicians in the main ED and that one patient at a time can be served by an FT

worker.

• Physician-In-Triage (PIT): All patients are first seen by a physician during the

triage stage, and only patients who require ED care will be sent to the queue. Triage

physicians may also initiate the tests. In implementing the PIT policy, we assume that

there are always two physicians at the triage stage and that the examination time of

a physician is similar to that of an VPP. However, the main ED will operate with

two fewer physicians during the hours in which it was originally staffed with over two

physicians.

Our analysis attempts to match all three patient streaming systems in terms of the number

of resources (i.e., the total number of beds and physicians) throughout a simulated day.

Thus, it is possible, under specific conditions, to study scenarios under which at least one

of the approaches leads to an unstable system (see Table 6). Note that inevitably we must

have two beds working simultaneously and additional physicians in simulating the FT

since, by design, it must operate with two separate sections (FT and main ED).

To perform a realistic comparison across the VPP, FT, and PIT approaches, we leverage

the synthetically generated data from the Mayo Clinic.
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EC.4. Additional Figures and Tables

200 100 0 100 200
0

2000

4000

6000

8000

10000

Portion of positives: 0.54Portion of negatives: 0.46

First test time - first contact time (min)

Figure EC.1 Time from first contact to first test. Negative values indicate that test was ordered prior to

contact with physician.
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Hour of

the Day
ESI=1 ESI=2 ESI=3 ESI=4 ESI=5

0 0.00% 0.00% 0.00% 0.78% 0.00%

1 0.00% 0.50% 0.00% 0.00% 0.00%

2 0.00% 0.00% 0.00% 0.00% 0.00%

3 0.00% 0.00% 0.00% 0.00% 0.00%

4 0.00% 0.00% 0.00% 0.00%

5 0.00% 0.00% 0.00% 0.00% 0.00%

6 0.00% 0.00% 0.00% 0.00% 0.00%

7 0.00% 0.00% 0.00% 0.00% 0.00%

8 0.00% 0.00% 0.31% 0.97% 0.00%

9 0.00% 0.11% 1.01% 2.40% 13.33%

10 0.00% 2.09% 4.95% 10.41% 15.79%

11 0.00% 4.46% 12.14% 21.05% 26.09%

12 0.00% 5.16% 17.20% 24.59% 68.75%

13 0.00% 5.00% 16.17% 28.57% 33.33%

14 0.00% 5.83% 15.05% 24.07% 31.25%

15 0.00% 3.86% 13.82% 20.06% 30.00%

16 0.00% 5.70% 11.92% 17.88% 40.00%

17 0.00% 3.98% 11.00% 13.83% 10.53%

18 0.00% 1.68% 6.64% 9.60% 18.18%

19 0.00% 1.54% 2.07% 6.19% 16.67%

20 0.00% 0.94% 1.05% 1.48% 4.55%

21 0.00% 0.20% 0.69% 1.15% 6.25%

22 0.00% 0.00% 0.39% 0.51% 0.00%

23 0.00% 0.33% 0.00% 0.00% 0.00%

Table EC.2 Proportion of patients served in the VPP of the Mayo ED during the study period for each ESI

level.
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Figure EC.2 Sensitivity analysis of the Mayo Clinic ED system parameters.
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Figure EC.3 Average LOS of all patients, patients served in the main ED and patients served in the VPP at

the BMC ED (the % reduction over the baseline is indicated in parentheses).


	Introduction
	Introducing the FT, VPP, and PIT Flow Designs
	Organization and Summary of Contributions
	The VPP Unit at the Mayo Clinic
	The Emergency Department
	Current Implementation of the VPP Unit


	Related Literature
	An Analytical Model of the ED
	Model Description
	A Decision Support Tool
	Cost Function

	Model Results
	Predicting VPP Eligibility Using Machine Learning
	Data Description
	Outcome of Interest
	ML Models
	Clinical Insights

	Simulation of the ED Flow
	Data-Driven Simulation Model: Development and Validation
	Mapping the Analytical Model to Real-World Healthcare Systems
	Combined Routing and Patient Prioritization

	VPP or Other Flow Designs: What Hospitals Should Introduce a VPP Unit?
	Discussion and Conclusion
	Proofs
	Proof of Proposition 1
	Mapping the Analytical Model to the Boston Medical Center
	Simulated Design for the FT and PIT Systems
	Additional Figures and Tables



