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MARK J. SCHIEFSKY!

THEORY AND PRACTICE IN HERON’S MECHANICS

INTRODUCTION

In Greco-Roman antiquity, the art or science of mechanics (U XVIKT
TéXVN or €TILOTAUN) encompassed a wide range of manual and intel-
lectual activities, from the building of precision devices such as artillery
and automata to the sophisticated theoretical analysis of machines in
terms of concepts such as force and weight. As such, mechanics involved
many different kinds of knowledge. Two key categories of mechanical
knowledge may be distinguished: (1) theoretical knowledge, a set of relations
between abstract concepts such as force and weight, sometimes couched in
deductive form, and transmitted largely in written texts; and (2) practitioners’
knowledge, arising in connection with the productive use of technology
and acquired by practitioners in the course of their professional activity.
A paradigm example of theoretical mechanical knowledge is the law of the
lever, stated and proved by Archimedes as a precise quantitative relationship
between forces and weights. But any practitioner who had made use of a
lever would be familiar with the fact that it is easier to move a weight
if it is placed closer to the fulcrum; a rough generalization of this kind,
which can immediately be applied in practice, is a paradigm example
of practitioners’ knowledge. While it is crucial to distingnish between
theoretical mechanics and practitioners’ knowledge, there is substantial
evidence of a two-way interaction between them in Antiquity. On the
one hand, mechanical technology was sometimes developed by applying
theoretical knowledge. But this was by no means always the case: new
technologies often preceded any theory that could explain them. The growth
of technology produced a set of problematic phenomena that called for
explanation and thereby stimulated the growth of theoretical mechanics.?

! Department of the Classics, Harvard University. T wonld fike to express my thanks to all
those who discussed an earlier version of this paper with me at the Tenerife mecting, and
especially to Roy Laird and Sophie Roux for their very helpful writien comments. The paper
was largely written during a sabbatical stay at the Max Planck Institute for the History of
Science in Berlin, and T am deeply grateful to Tirgen Remn for his invitation to spend the
dcademic year 2003-2004 there.

? For a similarty wide conception of mechanics, see the introduction (o Pappus, Pappi Alexan-
drini collectionis quae supersunt, VIIL, vol. T, pp. 1022.13-1024.2. Pappus indicates that
“the mechanician Heron and his followers” (ot Trepl ToV "Hpwve pnxavikof) distin-
guished between the “rational” (Aoytkdv) part of mechanics (involving knowledge of
geometry, arithmetic, astronomy, and physics) and its “manual” (¥stpoupytkov) part
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W.R. Laird and S. Roux (eds.), Mechanics and Natural Philosophy before the Scientific
Revolution, 15-49.
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16 MARK J. SCHIEFSKY

The Mechanics of Heron of Alexandria, a work in three books that

survives in its complete form only in an Arabic translation of the 9th century
AD, is an especially fruitful source for studying the interaction between
ancient theoretical mechanics and practitioners’ knowledge. There is every
reason to think that Heron was well informed about the technology of
his time; his accounts of technological devices and procedures (mainly in
Books 1 and 3) have been confirmed by other lterary accounts, archae-
ological evidence, and modern attempts to put them into practice.’ While
the methods and devices that Heron describes are to some extent idealized,
it would be rash to deny that his text can yield substantial information
about the knowledge of ancient practitioners. As for theoretical mechanics,
Heron mentions Archimedes by name some ten times in the Mechanics;
he is cited as an authority for the proof of the law of the lever, which
Heron makes no attempt to demonstrate himself.* The second main source
on which Heron drew for mechanical theory was the pseudo-Aristotelian
Mechanica. Though it is not mentioned explicitly in the Mechanics, this
work provides an irportant precedent for the core of Heron’s theoretical
project: the attempt to “reduce” the five simple machines or mechanical
powers (the wheel and axle, lever, compound pulley, wedge, and screw) to
the circle and, ultimately, the balance (2.1-32).%

Heron’s account of the five mechanical powers in 2.1-32 provides an
excellent illustration of several aspects of the interaction between theoretical
mechanics and practitioners” knowledge. First, it illustrates the way in which

{involving mastery of crafts such as bronze-working, building, carpentry, and painting).
For the importance of distinguishing between theoretical knowledge and practitioners’
knowledge, sce Damerow and Lefevie, Wissenssysteme im geschichilichen Wandel. On
technology as applied theory see esp. Lewis, Surveying Instruments on surveying instruments
and other fine technology; Russo, The Forgotten Revolution, ch. 4 makes a powerful case
that the impact of theory on technology in Antiquity has been greatly underestimated.

3 Drachmann, The Mechanical Technology, p. 140, argues that the female screw cutter
discussed in Mechanics 3.2} was a recent invention at the time when Heron wrote; see his
account of a successful attempt to coustruct this device in id., “Heron’s Screwcutter”, See
also id., “A Note on Ancient Cranes”; id., Ancient Qil Mills and Presses, passim. Russo,
The Forgotten Revolution, pp. 130-137, argues that the technology described by Heron dates
from the early Hellenistic period, i.e., several centuries before the time at which he lived
(assuming this to be the first century AD). But even if this is right, it would not undermine
the value of Heron's text as providing evidence of practitioners’ knowledge (albeit of an
earlier period).

# Aside from a single reference to one Posidonius in 1.24 {Opera, vol. TI, p. 62.28), no
other figure is mentioned by name in the Mechanics. For Heron's references to lost works
of Archimedes see Drachmann, “Fragments from Archimedes™.

* This, along with other parallels to the Mechanica, was noted and emphasized by Carra de
Vaux in the introduction to his edition of Heron's Mechanics, pp. 22-24.
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THEORY AND PRACTICE IN HERON’S MECHANICS 17

technology posed a challenge to theoretical mechanics. Bach of the five
powers made it possible to lift a large weight with a much smaller force; each
therefore raised a challenge to the intuitive view, given support by Aristotle’s
patural philosophy, that a weight can only be moved by a force equal to
it. Second, Heron’s attempt to reduce the {ive powers to the balance brings
out the importance of models in mediating between theoretical mechanics
and practitioners’ knowledge. The crucial step in Heron's reduction of each
of the five powers is the identification of a similarity between the power in
question and the balance; the intellectual operation is that of “seeing” how
each of the powers really is a kind of balance. In this way, the balance serves
as a model that makes it possible to give an explanatory account of the five
powers that traces their operation back to natural principles. Hence, despite
the initially paradoxical or wondrous character of the effects they produce,
the five powers (like other mechanical phenomena} can be integrated into
the explanatory framework of natural philosophy: mechanics in Antiquity,
no less than in the Renaissance, was part of the science of nature. Finally,
Heron’s account of the five powers, along with other closely related passages
of the Mechanics, also reveals how the application of models could lead
to conclusions that were sharply at variance not only with practitioners’
knowledge but also with deeply held assumptions of nmuch of ancient natural
philosophy, such as the notion that the motion of a body implies the presence
of a force that moves it.

THE CHALLENGE OF THE FIVE MECHANICAL POWERS

Before turning to Heron's account of the five powers, it is worth noting
that the very notion of a mechanical “power™ or simple machine is attested
for the first time in Heron himself. Of the five powers discussed in
Mechanics 2.1-32, three—the wheel and axle, the lever, and the wedge—can
be documented from very early times.® All three are discussed in the
Mechanica, which probably dates from the early 3rd century- BC.” The
situation is somewhat different for the compound pulley and the screw. A
passage in the Mechanica may refer to the former, but the sense is disputed;
various sources ascribe its invention to Archimedes.® The screw is not

§ See Heron's remark in Mechanics, 2.2 that the lever was the first power to be developed,
and that it was discovered by trial and error (Opera, vol. I, p. 98.7-28).

7 The lever is discussed in problem 3 (850a30-b9), the wheel and axle in problem 13
(852a11-21), and the wedge in problem 17 (853a19-31).

¥ Pseudo-Adstotle, Mechanica, 853232-b13 {(prab. 18). See Drachmann, “Heron’s screw
cutter”, p. 658; Krafft, Dynamische und statische Betrachtungsweise, pp. 44-46.
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mentioned in the Aristotelian text at all, and seems to have been an invention

of the Hellenistic period; it may even have been developed as a specific
application of a mathematical construction.” However this may be, Heron
is the first author we know of to identify this particular set of machines as
making up a distinct group. The Hippocratic treatise On Fractures, which
probably dates from the late 5th century BC, mentions the winch, the lever,
and the wedge as the three devices that enable human beings to achieve the
greatest power.'’ In the Mechanica, while the lever is indeed treated as a
simple machine to which other devices can be reduced, the pulley, wedge,
and winch are not accorded any special status,'' Heron’s recognition of the
five powers as belonging to a special class is reflected in a terminological
innovation, the use of the term S0VapLg (“power”™) to refer to a simple
machine. The choice of this term obviously reflects a recognition that these
machines could bring about especially powerful effects.

Thus the notion of simple machine seems to have developed in the
period between the Mechanica and Heron, Why? The reason surely lies, in
part, in the great flourishing of technology during this period. The large-
scale building projects of the Hellenistic age stimulated the development of
new technology and provided extensive opportunities for its application.'
Moreover, many of the machines developed in this period involved the
creative combination of the five powers. This is apparent from Book 3 of
the Mechanics, for example, where the combination of the wheel and axle,
lever, screw, and pulley is characteristic of a number of cranes and presses.'
A further area of Hellenistic technology that demanded the combination
of different machine elements was the building of automata: here the goal
was to produce highly complex and varied motions from a single initial
movement.'* The complex nature of ancient mechanical technology required
practitioners to combine the wheel and axle, lever, pulley, wedge, and screw
in creative ways; this ability went hand in hand with the identification of

¥ Drachmann, The Mechanical Tecknology, p. 204.

10 “Of all the contrivances that have been devised {Hepn)x&vnTor) by human beings,
the strongest (107(0 POTOTA) are these three: the turning of the winch (6voc), leverage
(H6XA£V0LE), and wedging (C@AVWOLE). Without these, either some one or all of them,
human beings cannot accomplish anything that requires great strength” (Hippocrates, On
Fractures, 31, pp. 3.528.16-530.1 Literé).

1 See Krafft, Dynamische und statische Betrachtungsweise, p. 48,

"> On the importance of large-scale urban planning in the Hellenistic period see Russo, The
Forgotten Revolution, pp. 2032009,

'3 See Drachmann, “Heron’s Screwcutter”; id., Ancient Oil Mills; id., The Mechanical
Technology, pp. 94-140.

' See Heron’s own (reatise on the subject, the De automatis, in Opera, vol. 1, pp. 338453,
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these devices as belonging to a special class, and was quite independent of
any theoretical understanding of their operation.

Heron begins his account of the five powers with a description of their
construction and use (2.1-6) that reveals a close familiarity with practi-
tioners” knowledge.!> The construction of the wheel and axle (2.1), the
compound pulley (2.4), and the screw (2.5-6) is described in detail. Two
uses of the screw are described: with a wooden beam or TOAOG (Fig. 1),
and with a toothed wheel (Fig. 2).1 The account employs a good deal of
specialized terminology for the mechanical powers and their parts; a number
of these technical terms are explicitly flagged as such using the Greek word
KoAELTOmL, “to be called”.'” A striking feature of Heron’s account is the
statement of rough, non-quantitative correlations describing the behaviour
of the five powers. Thus instead of a precise formulation of the law of
the lever as a proportionality between forces and weights, Heron remarks
that “the nearer the fulcrum is to the load, the more easily the weight is
moved, as will be explained in the following” (2.2). Similarly for the wedge,
“the smaller the angle of the wedge becomes, the more easily it exerts its
effect” (2.4). In the case of the compound pulley Heron states that “the
more parts the rope is bent into, the easier it is to move the load” (2.3).
Generalizations such as these would have been familiar to any practitioner

13 Bince the Greek text of these chapters was excerpted by Pappus, Pappi Alexandrini
collectionis quae supersunt, VI, vol, T, pp. 1114-1130, we can be reasonably certain about
Heron’s original terminology here.

16 Note on figures: | agrec wholeheartedly with Drachmann’s eruphasis, in The Mechanical
Technology, p. 20, on the need to take account of the original manuseript figures, which
often deviate greatly from those of modem editions. I have therefore based my exegeses
as far as possible on his drawings, which were made on the basis of personal inspection
of both the British Museum (B) and Leiden (L) manuscripts, Nevertheless, the fignres in
the cdition of Nix and Schmidt (Opera, vol. Il) do not in my opinion seriously distort
Heron's meaning in the sections of the Mechanics with which T am concerned here, and they
may provide a helpful orientation for the modern reader unaccustomed to the rather limited
drawing techniques that are characteristic of the manuscripts, For these reasons, I include
them alongside Drachmann’s drawings in a number of cases.

Y These include: &Etwv, “axle” (2.1); [‘In‘o,uéx?uov, “fulcram”; and goxAdg, “lever”
(2.2); pbyyecvov, “crossbeam” to which puileys were attached (2.4); and ftovéaTpogag,
“single-turned”, TETP &YW VoG, “square”; and QPRKWTOG, “lentil shaped” (2.5; each of
these is a technical term for a type of screw).

¥ Opera, vol. II, pp. 98.25-28, 102.36-37, 102.1-3. For the Tast of these passages, a close
approximation to Heron's Greek text is given by Pappus, Pappi Alexandrini collectionis
quae supersunt, VI, vol. 1T, p. 1120.15-16; the Arabic translation of Heron garbles the
meaning here (Drachmann, The Mechanical Technology, p. 55).
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FIGURE 1. 'The screw used with a wooden beam or TOAOC
(Mechanics 2.5). On the left is Drachmann’s drawing (The
Mechanical Technology, p. 58) made from Ms B; on the right
is the figure from Heronis Alexandrini opera, vol. T, p. 106.

who had made use of the five powers, and do not presuppose a theoretical
understanding of their operation. The explanation of such generalizations,
as well as their restatement in exact quantitative terms, is one of the goals
of the theoretical account that follows in 2.7-20.
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FIGURE 2. The screw used with a toothed wheel
- (Mechanics 2.6). On the left is Drachmann’s drawing (The

Mechanical Technology, p. 61) from Ms B; on the right is the

figure from Heronis Alexandrini opera, vol. 1I, p. 110.
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The key feature of each of the five powers that called out for theoretical
explanation was their ability to move a large weight with a small force. In
Hercon’s text this is expressed in a lingnistically standardized fashion, with
dhvetc or Bix the normal term for “force” and B&po¢ the normal
term for “weight”.!® The notion that a weight can only be lifted by a force
that is equal to it was an assumption rooted in practical experience with
devices such as the equal-armed balance or the simple pulley; Heron himself
states in various passages of the Mechanics that to lift a weight without the
use of a machine, a force equal to the weight is required,®® Moreover he
consistently writes of forces as measured in units of weight, viz. the talent.
In a passage from the Dioptra, a work extant in Greek, Heron explaing
what the assumption of a moving force of 5 talents amounts to: “...that
is, the moving man or slave should be one who can (§0vaoOat) move
by himself without a machine 5 talents”.?! 1t was this intuitive relationship
between force and weight, grounded in practical experience, which the five
powers most dramatically called into question.

Seen from this perspective, Heron’s account of the five mechanical powers
stands in the same relationship to practitioners’ knowledge as the Mechanica.
That text discusses a wide range of mechanical devices and phenomena

¥ The somewhat complex terminological evidence may be summarized as follows: (1)
Pappus, in the sections of his Mathematical Collection that contain excerpts from Mechanics
2.1-7 (Pappi Alexandrini collectionis quae supersunt, VI, vol. 11, pp. 1114-1130), uses
both Bict and Sdvouts for the “small force” that can move a “large weight* (B&pog).
While S0vopits refers primarily to capacity or ability and B to physical strength, it
is evident that the capacity in question here is that of being able to lift a weight (see
Heron, Dioptra, ch. 37, in Opera, vol. I, p. 308.10-12; below, n. 21); there is no important
distinction of meaning between the two terms. (2) Heron’s Dioptra, ch. 37 (Opera, vol.
I, pp. 306-312), describes the baroulkos or “weight-hauler”, a device that uses toothed
wheels to move a “given weight” by a “given force” (below, Fig. 10). In this description,
which is closely parallel to both Mechanics 1.1 and 2.21, the “force” is always 0vauic;
the weight moved is normally Sé&pog, but sometimes @opTiov (“load”). (3} Pappus,
Pappi Alexundrini collectionis guae supersunt, VI, vol. III, pp. 1060--1068, gives a slighily
different description of the same device, which follows the same usage. '
0 See Heron, Mechanics, 1.22, in Heronis Alexandrini opera, vol, 1I, p. 58: “If we now
want to lift the weight (/qi) to a higher place, we need a force (quwwa) equal to the weight
(tigly’; ibid., 2.3, p. 98: “If we want to move any weight (#iqf) whatever, we tic a ope to
this weight (figf) and we want to pull the rope until we lift it, and for this is needed a force
(guwwa) equal to the weight {(tiqf) we want to 1ift”; and especially ibid., 2.34 (1), p. 180:
“For there is no difference between the moving of a weight (tigf} and the moving of a force
{quwwa) that is equal to that weight (£igl)”.

2 Heron, Dioptra, 37 (Opera, vol. T, p. 308.10-12). The same explanation is given in
Mechanics, 1.1 (Opera, vol. 1L, p. 44-5): “I mean that the man or youth who moves it is
someone who can lift five talents by himself without any machine”.
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drawn from the realm of technology; each is viewed as bringing about .

a “wondrous” (BXUUXOTHG) effect that goes “beyond nature” (rrexp &
QUOLY), in the sense that it deviates from the normal course of natural
events and therefore demands a theoretical explanation. What makes such
devices wondrous in particular is their ability to move a large weight with
a small force; the paradigm example of such a device is the lever:

For it seemns strange that a great weight (S & P0OG) can be moved
by a small force ({X06), and that, too, when a greater weight
{(B&poc) is involved. For the very same weight (B&pog),
which a man cannot move without a lever, he quickly moves
by applying the additional weight (8 &p0og) of the lever.

’I‘hough Heron’s terminology is slightly different, the idea is the samc.
The five powers bring about effects that at first sight seem wondrous or

paradoxical; the problem is to provide a theoretical explanation of how they
do so.

THE REDUCTION OF THE POWERS TO THE BALANCE

The core of Heron’s account of the five powers is an attempt to reduce each
power to a single principle, i.e., to explain by reference to a single principle
why each power can move a large weight with a small force (2.7-20). The
agenda for this section is set out in the opening sentence of Book 2:

Since the powers by which a given weight (tigf is moved by a
given force (guwwa) are five, we necessarily have to explain
their forms, their uses, and their names, because these powers
are all reduced (mansiiba) to the same nature (fabi*a), though
they are very different in form.2*

In 2.7 Heron explains how a small force can balance a large weight in the
case of weights placed on two concentric circles; he then goes on in the

# Pseudo-Aistotle, Mechanica, 84Tb11-15. Translations from the Greek are my own unless
otherwise indicated. Translations of Heron’s Mechanics are based on Drachmann, The
Mechanical Techmology, which provides English versions made directly from the Arabic of
most but not all the passages discussed in this paper. Translations of passages not in Drachmann
are based on the text of Heronis Alexandrini opera. In checking both Drachmann’s and Nix’s
versions against the original Arabic, I have made extensive nse of a set of tools for the computer-
assisted analysis of Arabic texts developed in the context of the Archimedes Pioject at Harvard
University (http://archimedes. fas harvard. edu).

B Mechanics, 2.1 (Opera, vol. Ti, p. 94.5-10); Engl. trans, Drachmann, The Mechanical
Technology, p. 50, modified.
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following chapters to argue that each of the five powers is analogous to
two circles tarning around the same centre. Thus the explanation for each
of the five powers is given indirectly, via the explanation for the concentric
circles; in this way all the powers are “reduced” or “referred” (mansaba) to
a single nature. This procedure has a close parallel in the Mechanica, and
was probably inspired by it. The introduction to the Mechanica identifies the
circle as the “primary cause” of all mechanical phenomena (T1)¢ ot Tio¢
THY &pXHV), then goes on to make the following claim:

The things that occur with the balance are reduced
(dv&yeTot) to the circle, and those that occur with the lever
to the balance, while practically everything else concerned
with mechanical motions is reduced to the lever,®

In the remainder of the text the author closely follows the program suggested
by this remark.

He first explains how the behaviour of the balance can be explained by
reference to the circle (problems 1-2), then shows that the lever can be
explained by reference to the balance (problem 3); the rest of the treatise
discusses a wide range of mechanical phenomena and instruments, most of
which are explained by reference to the lever. The key explanatory strategy
is the identification of similarities between mechanical phenomena and the
circle, whether directly or indirectly via analogies with the balance or lever.
In this way the circle, balance, and lever function as simple models that
enable an explanation to be given of all mechanical phenomena. The parallel
with Heron extends also to the level of terminology: the term &v &XysTa,
used by the author of the Mechanica in the sense of “reduce” or “refer”,
probably corresponds to mansaba in the passage from Mechanics 2.1 quoted
above.” Thus when Heron remarks in reference to the concentric circles
that “the ancient authors, who came before us, have also started from this
starting point” (2.8), he probably has the Mechanica itself in mind.?

¥ pgendo-Aristotle, Mechanica, 847b16, 848a11-14.

% This seems clear from a comparison with the parallel version in Pappus, Pappi Alexandrini
collectionis quae supersunt, VI, vol. IIT, p. 1116, which states that all five powers “are
reduced to a single nature” (Eig pioy oyovTat @UOTV); moreover the extant Arabic
translation of Pappus renders o/ovTet as mansiiba (for a preliminary version of the fext
see Jackson, The Arabic Version). The use of &Vﬂf}’ew to mean “reduce”, in the sense of
bringing a diversity of cases under a small number of general principles, is Aristotelian; see
Generation and Corruption 330a25, Physics 189027, Metaphysics 983a28, Prior Analytics
29b1.

% Opera, vol. 11, p. 114.20-22; Engl. trans. Drachmann, The Mechanical Technology, p. 63.
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FIGURE 3. Equilibrium on concentric circles (Mechanics
2.7). Drachmann’s drawing (The Mechanical Technology,
p. 62) is from the Leiden Ms L.

Heron’s account of the concentric circles is given in 2.7 (Fig. 3). We are
to imagine two circles free to rotate about the same centre. If two equal
weights Z and H are suspended at points B and 3, it is clear that the line BG
will remain parallel to the horizon, . ..because the two weights Z, H are
equal and the two distances BA, AG are equal, and BG is a balance beam
turning on a point of suspension, which is the point A”.* Now if weight H
is shifted inwards and suspended from the diameter of the smaller circle at
H so that it comes to be at T, the circles will turn in the direction of weight
Z. But if the weight at T is then increased so that its ratio to the weight Z is
as the ratio of BA to AH, the imaginary balance beam (now BH) will again
be in equilibrium and take up a position parallel to the horizon. To support
this claim Heron appeals to Archimedes’ proof of the law of the lever in
On the Equilibrium of Planes.®® Finally he draws the following conclusion:

From this it is evident that it is possible to move a great bulk
by a small force (quwwa). For when the two circles are on the

*? Opera, vol. II, p. 112.30-34; Engl. trans. Drachmann, The Mechanical Technology, pp.
61-62.

* At Opera, vol. 11, p. 114.5-7, Heron states that “Archimedes has proven this in his book on
the equalizing of inclination” (wa-dalika gad bayyanahu Ar&imidis f kitabini ff musawat
al-mayy; Drachmann, The Mechanical Technology, p. 62, plausibly takes the reference to
be to On the Equilibrium of Planes.
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same centre and the great weight (figf) is on an arc from the

small circle and the small force (quwwa) is on an arc from the

great circle, and the ratio of the line from the centre of the big

one to the line from the centre of the small one is greater than

the ratio of the great weight (£ig/) to the small force (quwwa)

that moves if, then the small force (quwwa) will overpower

(gawiya) the great weight (tigl). %
Several points about this procedure call for comment, First it is clear that
Heron makes no attempt (o prove the law of the lever; rather, he accepts

it as a result already demonstrated by Archimedes. Second, the analogy

with the balance plays a crucial role: both BG and BH are explicitly
identified with the beam of a balance suspended from point A. In fact, what
Heron describes is a kind of compensation procedure that would have been
familiar to any practitioner who had worked with a balance with unequal
arms. In such balances, the effect on equilibrium of moving a weight closer
to the suspension peint can be compensated by increasing the weight at that
point. This suggests a general equivalence between the addition of a weight
to the balance and the displacement of a weight along the beam.*® Third,
Heron describes equilibrium as a relationship between force and weight:
a small force (Arabic guwwa) balances a large weight (Arabic tigf). This
terminology recurs throughout Heron’s account of the five powers, which
are consistently described as able to move a large weight {tig) by means
of a small force (quwwa). Equilibrium is understood as an equivalence
between a small force and a large weight, rather than between composite
quantities (e.g., the product of weight and distance from the suspension
point).* Thus Heron remarks that in the baroulkos or “weight-hauler” (see
Fig. 10), a device that uses toothed wheels to 1ift a weight of 1000 talents
with a force of 5 talents, “just as on a balance, the force (§ O voutg, sc. 5

* Opera, vol. I, p. 114.7-16. Bngl. trans. Drachmann, The Mechanical Technology, p. 62,
slightly modified.

3 See the treatise On the Balance attributed to Euclid, which is extant only in an Arabic
version, published in Clagett, The Science of Mechanics, pp. 24-28. This text first demon-
strates the equivalence of (2) adding a certain amount to a weight on a balance and (b)
displacing that weight  certain distance along the beam; it then goes on to use this equiva-
lence to prove the law of the lever.

3 Cf, the Fuclidean text mentioned in the previous note, which coins a new term, “force
of weight” (quwwal al-tigl) to express the effect of (a) adding a weight to the balance at a
certain distance from the suspension point, or (b) displacing a weight by a certain amount
along the beam. Thus a weight suspended at a certain distance from the suspension point
can be said to be equivalent to a certain segment of the beam in “force of weight” (Clagett,
The Science of Mechanics, 27-29).
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talents) will be in equilibrivm with ({oopportioet) the weight (8 &poc,
sc. 1000 talents)”.?

In the case of two of the five powers, the reduction to the circle is

immediate. When the Iever is used to lift a weight completely off the ground,
as illustrated in Fig. 4 (2.8), the moving force {al-quwwat al-muharrikaf)
applied at its end (B) is identified with the force applied to the circumference
of the larger circle, the weight (tigf) to be lifted (G) with the weight on the

arm of the smaller circle, and the fulcrum (D) with the centre of the two

circles. Since the ends of the lever trace out arcs on concentric circles as
the weight is lifted, the analysis of 2.7 can be applied directly: if the ratio
of the length of the longer arm BD to that of the shorter arm DA is equal
to the ratio of the weight G to the moving force applied at B, the lever is
in equilibrium; if it is greater than the ratio of (3 to B, the force will lift
the weight.** The reduction of the wheel and axle to the concentric circles
is just as direct (2.10; Fig. 5). The wheel corresponds to the larger circle
and the axle to the smaller; the weight (tig/) is hung from the axle and the
moving force (af-quwwat al-muharrikat) applied at the circumference of the
wheel

[
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D

FIGURE 4. Thelever,firstuse(Mechanics2.8). Drachmann’s
drawing (The Mechanical Technology, p. 63) is from
Ms L.

* Digptra, ch. 37 (Opera, vol. TII, p. 310.26-7); see below, pp. 34-35. Pappus, Pappi
Alexandrini collectionis quae supersuny, VI, vol. 1T, p. 1066, makes the same point in the
same Janguage.

33 On the second use of the lever, discussed in Mechanics 2.9, see below, pp. 43-45.

* Heron himself remarks in 2.10 (Opera, vol. T0, p. 120.21-23) that he has included the
wheel and axle only for the sake of completeness: “And this js what those before us have
already told; we have explained it here, however, just to make our book complete and to
give it an orderly composition”. Engl. trans. Drachmann, The Mechanical Technology, p. 67;
see Psendo-Aristotle, Mechanica, 852b11-21.
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FIGURE 5. The wheel and axle (Mechanics 2.1, 2.10). On
the left is Drachmann’s drawing (The Mechanical Technology,
p. 51) made from Ms L; on the right is the figure from Heronis
Alexandrini opera, vol, II, p. 96.

The analysis of the compound pulley, though more complex, nonetheless
begins from a direct application of the reasoning of 2.7. The first step is
to imagine a weight suspended from two ends of a rope wound around a
simple pulley (2.11; Fig. 6). Both segments stretching from the pulley to

0

FIGURE 6. The simple pulley (Mechanics 2.11). Recon-
struction by Drachmann (The Mechanical Technology, p. 69)
on the basis of drawings in Ms L.
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the weight will be equally taut, and each will carry half the weight. If the
weight is divided into two equal parts, each one will balance the other, just
like the two weights suspended on the circumference of the larger circles
in 2.7. This result is then generalized to cover multiple pulleys and ropes,
yielding a precise quantitative relationship:

the ratio of the known weight (t/q/) to the force (quwwa) that
moves it is as the ratio of the taut ropes that carry the weight
to the ropes that the moving force (al-quwwat al-muharrikat)
moves.*

For example, in Fig. 7, each of the four lengihs of rope stretched between
the weight Z and the two pulleys on A carries ¥ the total weight. If we
imagine detaching the rightmost section of the weight Z from the sections
GBT, it will hold those sections in equilibrium. Thus a force equal to % the
total weight of Z, applied at K, balances % the total weight (GBT), and a
slightly larger force will move it,3¢

In the case of the wedge and screw the similarity to the concentric circles
is much less clear. Since Heron claims that the screw is simply a twisted
wedge (2.17), T shall concentrate here on the analysis of the wedge in 2.15
(see Fig. 8).* The argument is in two stages: (1) First Heron claims that
any blow, even if it is slight, will move any wedge. The idea is to divide
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FIGURE 7. The compound pulley (Mechanics 2.12).
Drachmann’s drawing from Ms L is on the left (The
Mechanical Technology, p. 70); the figure from Heronis
Alexandrini opera, vol. 1, p. 124, is on the right.

3 Mechanics, 2.12 (Opera, vol. IT, p. 126.1-5); Engl. trans. Drachmann, The Mechanical
Technology, p. 70, modified.

* In general, letting F represent the moving force, W the weight, and # the total number of
segments of rope that bear the weight, we have F:W :: I:n.

*7 Note however that the analysis of the screw as a twisted wedge is supported by explicit
reference to a practical procedure for making a screw, viz. by winding a rght-angled triangle
around a cylinder (2.16-17).
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FIGURE 8. The wedge (Mechanics 2.15). Drachmann’s
drawing (The Mechanical Technology, p. 72) is from Ms L,

the contribution of a single blow (tepresented by BG) to the movement
of the wedge into the contributions of a number of arbitrarily small sub-
blows (BH, HII, IIT, TG). The total movement produced by the entire blow
is simply the sum of the movements produced by each of the sub-blows.
Hence any blow, however small, will move the wedge a certain distance.
(2) Second, Heron imagines dividing the wedge into as many sub-wedges
(MF, FQ, QR, RD) as the sub-blows (BH, HH, HT, TG). He argues that
each sub-wedge, struck by a sub-blow, covers the same lateral distance AD
in the same time as the whole wedge, struck by the whole blow BG. The
argument is as follows. If the whole wedge is struck by the whole blow BG,
it will be driven into the load over the lateral distance AD in a given time.
But if it is struck by a smaller force, the sub-blow BH, it will be driven into
the load over the distance AK, where AK : AD :: BH : BG. Now if this
same sub-blow is exerted on the sub-wedge RD, it will be driven in over
the entire distance AD. The reason is that the displacement of the load (i.c.,
KO, the distance it is moved along the vertical axis) is the same whether
the whole wedge is driven in over the distance AK or the sub-wedge over
the distance AD: the same force (BH), acting for the same time, produces
the same displacement of the load (KO) in both cases.®® The upshot is that

¥ Another way of putting the point is as follows. Since the displacement of the load caused
by the whole wedge MD when struck by the whole blow B is the sum of the displacements
caused by the sub-wedges when struck by the sub-blows, each sub-wedge, driven in by a
sub-blow, must displace the load (along the vertical axis) by an amount that stands in the
same relation to the total displacement as the sub-blow stands to the whole blow. In order
for this to kappen, each sub-blow must drive in the sub-wedge over the same lateral distance
(AD) as is covered by the whole wedge when struck by the whole blow.
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the sub-wedge RD will be able to split the load just as much as the whole
wedge MD by means of a smaller force; this force, however, will have to
act for a proportionally longer time:

And if that which is driven in is one of the small wedges, if it
is hit by many blows and is driven in, then it is driven in as far
as the whole wedge is driven in by one whole blow, and this
is by a movement corresponding to the blows, I mean by the
measure of the blows BH, HH, HT, I‘G‘, and in the same way
the ratio of time to time is like the ratio of blow to blow and
that of the whole wedge head to the head of one of the small
wedges. The smaller now the angle of the wedge becomes,
the further will the wedge penetrate by a smaller force than
the force that drives in the whole wedge.®

Although Heron states that “the ratio of time to time is like the ratio of
blow to blow”, the meaning must be that the ratio of the times taken by two
wedges to displace a load by a certain distance is the inverse of the ratio of
the forces: a smaller force must act over a longer time to produce the same
effect. If we halve the force of the blow and use a wedge which is twice
as acute, we will need two blows instead of one, and these blows will take
twice as long to split the Ioad by the same amount. Moreover, this more
acute wedge will have to penetrate twice as far into the load in order to split
it by the same amount; thus the smaller force acts over a longer distance as
well as a longer time.*

Although Heron does not set out equilibrium conditions for the wedge,
this inverse proportionality between forces and times does supply an analogy
to the equilibrium between force and weight in the concentric circles. In
the wedge, a small force acting for a longer time (i.e., over a longer lateral
distance) produces the same effect as a large force acting for a shorter
time (distance). Thus just as in the concentric circles, the effect of a small
force can equal that of a large one; the differcnce is that in the circles the
effectiveness of a force depends on its distance from the cenfre, while in
the wedge it depends on the distance over which the foree acts. Similarly,
in the case of the screw Heron notes that a screw with tighter threads will
be able to move a larger load by means of the same force, but it will

¥ Mechanics, 2.15 (Opera, vol. T, P 134.21-31); Engl. trans. Drachmann, The Mechanical
Technology, p. 73, modified,

0 Aliernatively, in Fig. 8, if the force BG is applied to the whole wedge MD, the load will
be displaced by MD in a given time t. Bat if the force BH, equal to ¥ BG, is applied to the
sub-wedge RD, then the load will be moved by % MT in time t and by MD in 4t.
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require a greater time to do $0.*' The key idea in the analyses of both the
wedge and the screw is thus that of compensation between forces and the
times (and distances) over which they act: if we reduce the force, we must
increase the time (see further below, pp. 35-41, on this phenomenon of
“slowing up™).

After completing the reduction of all the powers to the circle, Heron
makes what might seem a surprising remark:

That the five powers that move the weight are like the circles
around a single centre, this is clear from the figures that we
have drawn in the preceding chapters. But I think that their
shape is nearer to that of the balance than to the shape of the
circle, because in the beginning the first explanation of the
circles came from the balance. For here it was shown that the
ratio of the weight hung from the smaller arm to that hung
from the greater arm is like the ratio of the larger part of the
balance to the smaller.?

As we have seen, the analogy with the circle is clear in the cases of the wheel
and axle and the lever; the discussion of the compound pulley, too, begins
with an explicit reference to the concentric circles (2.11). It is hardly the case
that Heron adopts the concentric circles as a starting point only as a nod to
tradition.*® But in fact it is the balance that in one way or another underlies
the entire analysis. The balance model is implicit in Heron’s attempt to
set out equilibrium conditions for the wheel and axle, the lever, and the
pulley, and it plays a crucial role in the analysis of the lever in its second
use (2.9; see pp. 43-45). In generalizing the analysis of the simple pulley
to the compound case (2.12) Heron leaves behind any direct resemblance
to the concentric circles. In the case of the wedge and the screw there is no
obvious resemblance to the concentric circles at all; the analogy is limited
to the point that a small force can overcome a large weight, by making
the angle of the wedge smaller or the screw threads tighter, But of course

L *And just as it has been explained about the wedge that the one that has a smaller angle
moves the weight by less force than the force that moves the weight by a wedge with a greater
angle, so we have to say about this that the screw in which the distances between the screw
lines are less will move the weight with greater ease than the screw whose distances between
the screw lines are greater will move it, becanse the lesser distance gives a smaller angle”
(Mechanics, 2.17, Opera, vol. 1, p. 138.21-29; Engl, trans. Drachmann, The Mechanical
Technology, p. 76, slightly modified).

2 Mechanics, 2.20 (Opera, vol. IL, p. 144.24-33). Engl. trans. Drachmann, The Meckanical
Technology, p. 81, slightly modified.

1 Pace De Gandt, “Force et science des machines”, p. 114,

[P
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the ability of a small force to overcome a large weight is precisely the feature
of the concentric circles that Heron himself explains by reference to the
balance.

In making the balance rather than the circle fundamental to his explanation
of machines, Heron reverses the explanatory relationship between the circle
and the balance from the Mechanica; there, as noted above (p. 23), it is
the circle that explains the balance. Yet from another point of view the
similarities between the two texts are larger than their differences. In the
Mechanica, as in Heron, the balance is fundamental to the explanation of
all other machines. The balance explains the Jever, and the lever in turn
explaing the working of most of the other machines discussed in the 35
problems. For both Heron and the author of the Mechanica, the balance
is a paradigmatic technological instrument that provides a concrete model
for analyzing the relationship between force and weight, and in particular
for understanding how a small force can balance or even overpower a
large weight. The differences between Heron and the Aristotelian text are
due, first, to Heron’s recognition of the five powers as a distinct group of
simple machines, and secondly to the impact on theoretical mechanics of
Archimedes’ proof of the law of the lever in On the Equilibrium of Planes.
Neither of these points concerns the cenfral importance of the balance as a
starting point for theoretical reflection.*

THE POWERS IN COMBINATION AND THE PHENOMENON
OF SLOWING UP

After completing the reduction of the five powers to the balance, Heron turns
in 2.20 to the problem of how they can be combined to move a given (large)
weight with a given (small) force. The problems involved are different for
different powers. The lever and the wheel and axle have to be increased in
size in order to achieve greater mechanical advantage; in the case of the

* It must be kept in mind that Archimedes’ own preof of the law of the lever in On the
Equilibrium of Planes begins from a set of preliminary assumptions that in part describe the
behaviour of weights on the balance; see Renn et al., “Aristotle, Archimedes, Euclid”. In any
case the differences between the Aristotelian text and Heron are not helpfully characterized in
terms of a distinction between a “dynamical” and a “statical” approach (Krafft, Dynamische
und statische Betrachtungsweise). Teue, Heron does not appeal to considerations of force
and movement in discussing the concentric ciicles, as does the Mechanical Problems. But
then Heron makes no attempt to prove the law of the lever at all; he simply accepts it as
a given from Archimedes. As we have seen, Heron’s analyses of the wedge and screw are
based on “dynamic™ considerations of the relationship between forces, times, and distances,
and he seems to hold that such relationships reflect a basic similarity to the balance.
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compound pulley it is the number of pulleys that must be increased. The
wedge and the screw, on the other hand, become more powerful with a
decrease in size: the angle of the wedge must be made more acute, and the
screw threads more tightly wound. Chapters 21-26 of Book 2 discuss the
combination of individual wheel and axles, levers, and compound pulleys,
gach of which is of manageable dimensions, to achieve a large mechanical
advantage.

As an example we may consider the use of a combination of wheel and
axles to move a load of 1000 talents with a force of 5 talents (2.21; Fig. 9).
Given the results established in the reduction, this would require a wheel
with a radius 200 times that of its axle. But Heron shows that the same
mechanical advantage can be achieved by a combination of three wheel and
axles with ratios of 5:1, 5:1, and 8:1, respectively. He first describes the
construction of a device in which the force exactly balances the weight to
be moved, then states that the same force can be made to set the weight in
motion by increasing one of the wheel-axle ratios slightly. The same pattern
is followed for the compound pulley and the lever; first a description of
what is required to keep the given weight in equilibrium, then an indication
of how to make the given force “overpower” (Arabic gawiya) the weight,
The procedure and the language reflect the continuing importance of the

FIGURE 9. Combination of toothed wheels to move a
force of 1000 talents with a force of 5 talents (Mechanics
2.21). Drachmann’s rendering of the figure (The Mechanical
Technology, p. 82) in Ms L is on the left; the figure from
Heronis Alexandrini opera, vol. II, p. 148, is on the right.
Neither is exactly faithful to the text, which states that the
wheel-axle ratios B:A, D:G, and Z:H are 5:1, 5:1, and 8:1,
respectively.
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balance model in Heron's account. This becomes quite explicit in the Greek

version of the description of the baroulkos or “weight-hauler” (Fig. 10), a
device very similar to the one described in 2.21:

These things having been done, if we imagine the chest
ABTA placed on high, and we tie the weight to the axle
EZ, and the pulling force to the wheel X, neither side
will go downwards, even if the axles are turning easily and
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FIGURE 10. The baroulkos (Heron Dioptra 37; Mechanics
1.1; Pappus, pp. 1060-1068). Above, Drachmann’s drawing
made from the Mynas Codex, a Greek manuscript of the
Dioptra (The Mechanical Technology, p. 25); below, the figure
from Heronis Alexandrini opera, vol. 11, p. 309.
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the engagement of the wheels is fitted nicely, but the force
W:ill balance ([ooppoTTAoel) the weight as in a balance
(domep Cuyod Tivog). But if we add a little more weight
to one of them, the side where the weight is added will
sink (kxToxpp&et) and go downwards, so that, if just the
weight of one mina is added to the force of five talents, it will
overpower (KXTOUKPXTHOEL) the weight and pull it.*S

As a final tour de force Heron describes how all the powers except for the
wedge can be combined to achieve the same mechanical advantage of 200:1
(2.29; Fig. 11).

The discussion of the powers in combination prompts Heron to remark
on a further important aspect of their operation, the phenomenon of delay

%,
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FIGURE 11. Combination of four powers to move a weight
of 1000 talents with a force of 5 talents (Mechanics 2.29).
Drawing of a figure in Ms L (Drachmann, The Mechanical
Technology, p. 90).

*“ Heron, Dioptra, 37 (Opera, vol. I, pp. 310.20-312.2); Engl. trans. Drachmann, The
Mfzcham'cal Technology, p. 26, slightly modified, Throughout the passage “force” translates
d0voytic and “weight” B&poc. Pappus, Pappi Alexandrini collectionis quae SHPersunt,
VIO, vol. I, p. 1066.19-31, expresses the same idea in the same language. See also
Heron, Mechanics, 1.1, On the relationship between these descriptions see Drachmann, The
Mechanical Technology, pp. 22-32. '
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or “slowing up”, The fullest description of this phenomenon comes in 2.22,

in reference to the combination of wheel and axles described in 2.21:

In these tools and those like them with great force (quwwa)
there will come a delay, because in proportion of the weakness
of the moving force (al-quwwat al-muharrikat) to the great size
of the weight moved (al-tigl al-mutaharrik), in this proportion
we need time, and the ratio of force (quwwa) to force (quwwa)
and time to time is the same.*®

The same relationship between forces and times is asserted in similar
language for the compound pulley {ch. 24), the lever (ch. 26), the wedge, and
the screw (both in ch. 28). Although Heron’s formulation is not as clear as it
might be, it is evident from the passage quoted that he is asserting an inverse
proportionality between forces and times: the smaller the force, the more
time is needed (“in proportion of the weakness of the moving force ... in this
proportion we need time”), The undertying idea is a comparison between the
amount of time it takes for two machines of different mechanical advantage
to peiform a given task. Thus, letting F, and F, be the forces applied to
machines 1 and 2, and T, and T, the times they require for performing a
given task (e.g., lifting a weight a given distance), the following relation
holds:

(R) F:F,=T,:T,

This interpretation is clearly supported by Heron’s remarks about the wedge
and screw in ch. 28:

But that the delay is also found to take place in those two,
that is evident, since many blows take more time than a single
blow, and the turning of the screw many times takes more
time than a single turn. And we have proven that the ratio of
the angle to the angle of the wedge is like the ratio of the
moving blow to the moving blow; and so the ratio of the time
to the time will be like the ratio of the force (guwwa) to the
force (quwwa),*’

Heron refers back to his proof in 2.15 that a more acute wedge will produce
the same effect as one that is less acute by means of less powerful blows.

* Opera, vol. 11, p. 152.25-30; Engl. trans, Drachmann, The Mechanical Technology, p. 85,

modified.

*? Heron, Mechanics, 2.28 (Opera, vol. 10, p. 162.4-11); Engl. trans. Drachmann, The

Mechanical Technology, p. 89, modified.
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But it will take more time to do so, since the many blows take more time
than a single strong blow; as the force decreases the time increases, in exact
(but inverse) ratio. In order to split a load by the same amount as an obtuse
wedge, the tip of an acute wedge must travel over proportionally more
distance, which takes a correspondingly longer time (see above, pp. 29-30).
It is important to note that this analysis presupposes that each blow takes the
same amount of time to move the wedge a certain distance (.., the tip of
the wedge moves at the same speed whether the blows are weak or strong:
“many blows take more time than a single blow”). A similar point follows
for the screw, since it is just a twisted wedge; again, it is a crucial assumption
that the pumber of turns of the screw in a given time remains the same
(in the text above: “the turning of the screw many times takes more time
than a single turn”). In the case of both wedge and screw, then, it is clear
that Heron’s understanding of the phenomenon of slowing up involves a
comparison between machines of different mechanical advantage; moreover,
this comparison assumes that the moving forces in the two machines travel
at the same speed.

Such a comparison between moving forces also underlies Heron’s account
of slowing up in the case of the compound pulley (Mechanics 2.24, rig. 12;
since the Ms figure is not very clear, the following refers to the figure in
Heronis Alexandrini opera). Specifically, Heron notes that in order to lift
a weight of 1000 talents at B over the distance By, a force of 200 talents
exerted at & must be pulled through 5 times the distance Sy (since each rope
in the 5-pulley system By must be pulled over a distance By). Similarly, a
force of 40 talents exerted at i) must be pulled through 5 times the distance
of the force at § (since in order to move the rope at & by a certain distance,
the rope at i must be pulled through 5 times that distance). Having noted
this, Heron again remarks that “the ratio of time to time is like the ratio of the
moving force {al-quwwat al-muharrikat) to the moving force {al-quwwat al-
muharrikaty’ * Thus, the analysis again presupposes a comparison between
two moving forces travelling at the same speed. In order to lift the weight
a given distance, the moving force at 17 will have to tavel farther than
the moving force at 6, and so will take a longer time. This indeed would
immediately be evident in practice, since the length of rope that would have
to be pulled through the machine to raise a weight a given distance would be
much greater in a machine with more pulleys (as would the amount of time
needed for the operation). Viewed in this way, Heron’s explanation of the
phenomenon of slowing up may be expressed as an inverse proportionality

*® Heron, Mechanics, 2.24 {Opera, vol, T, p. 158.11-12); Engl. tans. Drachmann, The
Mechanical Technology, p. 88, modified.
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FIGURE 12. Combination of compound pulleys to move a
weight of 1000 talents with a force of 5 talents. Drachmann’s
drawing above (The Mechanical Technology, p. 87) is from
Ms B; the figure below is from Heronis Alexandrini opera,
vol. I, p. 156.
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between the moving forces and the distances they must traverse in order to
move the weight a given distance, i.e.,

R F:E,:D,:D,

where Dy and D, are the distances covered by the moving forces, travelling
at a constant speed, in different times.*

Now the operation of the compound pulley can also be analyzed in a way
that leads to a different understanding of the phenomenon of slowing up.
On this view, the comparison is between the moving force and the weight
moved, rather than between two different moving forces, If the moving force
is smaller than the weight, it will cover more distance than the weight in any
given time (e.g., in Fig. 12 during the time in which the force at 6 moves
a certain distance, the weight at § will move 1/5 of that distance). Thus
the moving force travels more quickly than the weight; in this sense, the
“slowing up” that occurs in the machine is the result of the weight moving
more slowly than the force that moves it. At any given time the ratio of the
distance covered by the moving force to that covered by the weight will be
the inverse of the ratio of the force to the weight, i.e.,

(R"Y F,:F,:D,:D,

where F, equals the weight. Put another way, R” asserts that the product
of force and distance traversed is the same for the weight and the moving
force; it thus expresses the general principle that the work (understood as
the product of force times distance) is the same on both the “input” and
“output” sides of the machine: the work in equals the work out.

Some commentators have taken R” to be the basic principle underlying
Heron’s analysis of the phenomenon of slowing up. Thus Clagett writes:
“A careful study of the examples shows that what is really involved is
distance, i.e., that the ratio of force to force is inversely as the distances
through which the forces act”. e goes on to argue that R” amounts to
a recognition of the concept of “virtual work”, according to which the
equilibrivm between the moving force and the weight is explained as
due to the equivalence of the work that would be done on both sides
of the machine if the force were to lift the weight by a certain amount

* We may also compare the distances over which the weight is moved by the two moving
forces in the same time, In this case, however, we have a direct proportionality between the
forces and the distances over which the weight is moved, Le., a smaller force moves the
weight over a smaller distance in the same time as a larger force moves it over a greater
distance, and the ratio of the forces is equal to the ratio of the distances.
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(i.e., the product of force times distance traversed is the same for the weight

and the moving force).™® But care is needed here. Although Heron was
presumably well aware from practical experience that the moving force
travels faster than the weight moved in a machine of high mechanical
advantage, he nowhere states R” explicitly; instead, his explanations of
the phenomenon of slowing up consistently refer to a comparison between
different moving forces.® In this respect, Heron’s account is closely tied
to the use of machines in practical situations, where a key issue is the
amount of time taken by different machines to complete a given task.”> Any
practitioner with experience using compound pulleys or other such machines

3 Clagett, The Science of Mechanics, pp. 17-18; Vailati, “Tl principio delle velocitd virtuali”,
5! The only prima facie exception is the passage from 2,22 quoted sbove (p. 36), which
seems to assert that the ratio of the times is the inverse of the ratio between the force
and the weight moved. Yet a reference to time would be puzzling if Heron had meant to
state or imply R”, since that relationship presupposes that the times of motion are equal
for the moving force and the weight (see the next note), And in fact the discussion of the
combination of wheel and axles that follows in 2.22 is precisely similar to the discussion
of the compound pulley in ch. 24; the comparison is between the times taken by different
moving forces applied at the circumference of different wheels fo move the weight a given
distance (alternatively, it is between the distances they travel in the different times they take
to move the weight, asseming they move at the same speed). For example, in Fig. 9 a force of
40 talents applied at the circumference of wheel D must cover 3 times the distance as a force
of 200 talents applied at the circomference of wheel B in order to raise the weight by the same
distance (the wheel D must turn five times for the wheel B to turn once, and the two wheels
have the same circumference). Heron concludes by stating the usual relationship between
moving forces: “the ratio of the moving force {alquwwat al-muharrikaf) to the moving
force {al-quwwat al-muharrikal) is inverse <of the ratio of time to time>" (Opera, vol.
I0, p. 154.9-10). Drachmann, The Mechanical Technology, p. 86, translates “the proportion
between the moving power and the power moved is inverse”, but there is no basis in Nix’s
Arabic text for the variation and Drachntann does not indicate any alternafive manuscript
readings. Nevertheless, a supplement such as the one he proposes (“of the ratio of time
to time”) seems necessary. As for the lever (ch. 26), Heron simply appeals to the analogy
between the lever and the wheel and axle: “and just as we have proved for these axles that
the ratio of the force to the force is like the ratio of the time to the time, so we prove it alse
here” (Opera, vol. I, p. 160.25-28; Engl. trans. Drachmann, The Mechanical Technology,
p. 89, modified).

32 To be sure, one can compare the amount of time taken by a given moving power to move
a given weight over a given distance to the amount of time it would take for a force equal to
the weight itself to do so. That is, we can set F, equal to the weight in R” above and thereby
obtain an inverse propertionality between forces and distances (F, : F, :: D, : D). But here
the distances D, and D, are those covered by the forces in different times: given two moving
forces travelling at the same speed, one of which is equal to the weight, the force equal to
the wejght will lift it much more quickly than a force much smaller than the weight. Though
this is saperficially similar to R” it is in fact quite different, and does not imply a recognition
of a general principle (work in equals work out) such as is implicit in R”.
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for lifting weights must have known that it would save time to increase
the moving force (i.e., add another slave or an ox) rather than to employ
a machine with greater mechanical advantage. The practical context also
explains the assumption that the moving forces in the different machines
travel at the same speed. The picture to keep in mind is of a workman
pulling on the end of a rope that runs through a compound pulley system:
gven though he always walks at the same speed, it will take him less time
to raise a given weight over a given distance if he uses a machine with
fewer pulleys.®® It is therefore wrong to suppose that R” is the fundamental
principle underlying Heron’s explanation of the phenomenon of slowing up,
or that he views it as the explanation of the equilibrium between a small
force and a large weight. Rather, R” is a kind of spin-off result, one which is
implicit in Heron’s analysis but plays no important role in his reasoning.*

As we have seen, Heron’s analysis of the five powers both takes its
start from practitioners’ knowledge and attempts to explain that knowledge.
Nevertheless, Heron concludes his account with an acknowledgment that
the relationships between force and weight that he has set out may not hold
in practice:

Since we have now explained for each of these powers that
it is possible by a known force to move a known weight, it
is necessary also to explain that if it were possible that all
the parts made were turned accurately, of equal weight, with
paris of the same smoothness, then it would be possible with
each of these engines fo perform the work we have described
in the given proportion. But since it is not possible for human
beings to make them perfect in smoothness and uniformity,
it is necessary to increase the force on account of what may
occur of roughness in the engines, and we must make them
greater, and so we increase their size above the proportion we
have first given, so that no hindrance occurs herein, and what
we find by the use of the engines shall not make out wrong
what was correct in our theoretical proof.*

Heron acknowledges that he has been discussing machines in their ideal
form; to this extent his account is a theoretical one. Yet it should be noted,

% Strictly speaking, it is not necessary that the worker walks at a constant speed, only that
the speeds vary in the same proportions in the two machines. (I owe this point to Sophie
Roux.)

* See De Gandt, “Force et science des machines”, pp. 114-115; p. 127,

% Mechanics, 2.32 (Opera, vol. I, p. 170.6-21); Engl. trans. Drachmann, The Mechanical
Technology, p. 93, slightly modified.
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first, that the contrast expressed here is a contrast between ideal and actual

physical machines, rather than between a mathematical idealization and its -

physical realization. And however wide the discrepancy between theoretical
analysis and actual practice, Heron’s purpose is to explain that discrepancy
so that a practitioner will not be led to doubt the correctness of the theoretical
analysis,

MECHANICS, PHYSICS, AND THE SEARCH FOR PRINCIPLES

The behaviour of the five mechanical powers, in particular their ability
to move a large weight with a small force, challenged the basic physical
assumption that a weight can be lifted only by a force equal to it. The five
powers brought about effects that at first seemed wondrous or paradoxical,
and which therefore might be thought to lie outside the scope of physics
understood as the knowledge of natural regularities. But Heron’s account
shows how the balance could be used as a model to provide a theoretical
explanation of the behaviour of the five powers. Once the causes of
mechanical phenomena were understood, they became a part of physics
rather than a challenge to it. This at any rate is suggested by the opening of
Mechanics 2.33:

It is now absolutely necessary for those who occupy
themselves with the science of mechanics to know the causes
that are in effect in the use of each motion, as we have
explained for the lifting of heavy objects with natural [ie.,
physical] proofs (al-barahin al-tabr*iyyat), and set out everything
that occurs with each one of the powers mentioned. ... Now
we want to talk of things that the ancients already stated,
because of the usefulness they have in this chapter, and we
ate going to wonder at the things that, when we have proven
them, will be contrary to what we had knowledge of before.
The beginning (ibtida’, presumably cipx 1) for the things that
we are going to research, we derive from what is clear to us.
The things of whose causes we can only talk after the most
clear things will, however, even increase our amazement when
we see that the things that we apply are contrary to what we
have gotten used to and what was certain for us. It is now clear
that anyone who wants to find the causes thoroughly, neces-
sarily has to apply natural [i.e., physical] principles (ibtida'at
fabl“iyyaf), either one or more, and has to link everything that
he researches with them, and that the solution of every single
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question is given fundamentally If its cause has been found
and this is something that we have already understood.’

The mention of “wonder” and “amazement” recalls the opening of the
Mechanica, a text that emphasizes the wondrous (XU U0 THC) character
of mechanical phenomena as taking place in a way that is “beyond
pature” (TTXP X QO TiV). But the references to “natural proofs”, “natural
principles”, and the idea that the search for such principles begins from
something that is “clear to us” are unmistakable allusions to the opening of
Aristotle’s Physics (184al--b14). Heron is in fact arguing that mechanical
phenomena, despite the fact that they initially seem to violate natural regular-
ities, can be integrated mto the study of nature (ie., physics). Since this
passage comes immediately after Heron’s account of the five powers and
makes direct reference to it, it seems that Heron views his explanations of
the five powers as based on such “natural principles”.’’

Yet the application of the balance model also led Heron to conclusions
that were in tension with both practitioners’ knowledge and deeply held
assumptions of much ancient physical thought. One of these assumptions
is the idea that a body in motion requires a force to keep it moving,
a notion that may be dubbed “motion implies force”. That some effort
must be exerted to keep a body in motion is manifestly the case in many
practical situations because of friction. In Aristotle’s natural philosophy,
all forced motion requires a mover to sustain it; though this view corre-
sponds to many every-day experiences, it leads to notorious difficulties in
the case of phenomena such as projectile motion (e.g., Aristotle, Physics
8.10, 266b25ff.). The enduring plausibility of the idea that motion implies
force is reflected in the fact that it corresponds to the intuitive under-
standing of many physics students even today.”® Its rejection marked an
important step towards the development of the concept of inertia in classical
mechanics.

As a first example of the way in which the application of the balance model
challenged the idea that motion implies force we may consider Heron’s
discussion of the lever in its second use, viz. where the load rests partly on
the ground and turns around a fixed point as it is lifted (2.9, Fig. 13). As in

* Opera, vol. 11, pp. 170.22-172.18; translation based on the German of Nix.

57 See Mechanics, 2.1 (Opera, vol. II, p. 94.8-9), where Heron claims that all the powers
can be reduced to a single natare (@O 0LS, fabi*a), and Mechanics, 1.34 {(Opera, vol. 11,
p. 92.12-15): “In the following we are going to deal with the five powers by means of
which weights are moved, explain what they are based on and how the natural effect (al-fi*l
al-fabi*f) in them occurs”, :

* See Clement, “A Conceptual Maodel”.
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FIGURE 13. The lever, second use (Mechanics 2.9).
Drachmann’s reconstruction (The Mechanical Technology,
p. 65), made from the figure in Ms L.

the simple case analyzed in 2.8, the moving force applied at the end of the
lever corresponds to the force on the larger circle and the load to the weight
on the smaller circle. But because the load rests partly on the ground, it
requires less force to move it than in the other case. We imagine a vertical
line HZ drawn through the corner of the load that remains on the ground.
The portion of the load to the left of this line (ITTZ) is in equilibrium with
the portion HZH to the right of it; then if one imagines the entire portion
HTH separated from the load, it will not incline to either side, and it will
not take any force (quwwa) at all to move it. Thus the lever needs to balance
only portion HHKL of the load, which diminishes as the load is turned
around the point H. Eventually the load will reach a position where the line
HZ divides it exactly in two; at that point it will take no force (quwwa) at all
to move it: “and it is placed in a position that does not need any force, if the
imagined surface going through the point I at right angles to the horizon
divides the load into two halves”.” The key step in the argument is a mental
operation of dividing the load into different parts, which hold one another
in equilibrium like two weighis on a balance.%® Thus, the application of the

* Opera, vol. 11, p. 120.6-9; Engl. trans. Drachmann, The Mechanical Technology, p. 63,
modified. There are some textual problems in the chapter, but the basic character of Heron’s
analysis is not in doubt; see Drachmann, The Mechanical Technology, pp. 65-67.

Tt is perhaps because this analysis so clearly appeals to the balance that Heron ends the
chapter with a remark that might otherwise seem out of place: “And this effect of the lever
can be referred to (mansiba) the circle, but it is not the same as the first effect. And that
the balance also can be referred to (mansiiba) the circle is evident, because the circle is
a sort of balance” (Opera, vol. 10, p. 120.10-13; Engl. trans. Drachmann, The Mechanical
Technology, p. 65). In the final analysis, of course, Heron holds that it is the balance that
explains the circle rather than vice versa (2.20; above, pp. 31-32).
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palance model leads Heron to the conclusion that no force at all is required
to move a body that is perfectly balanced on a point,

To a certain extent, of course, this analysis corresponds to a basic fact
of practical experience, viz. that the amount of force required to move a
body with a lever used in the way shown in Fig. 13 decreases as the body
is lifted. In chapters 20-24 of Book 1, however, Heron goes substantially
further than this and directly attacks the notion that a weight (tigf) can only
be moved by a force (quwwa) equal to it:

There are those who think that weights lying on the ground
can be moved only by a force equal to them, wherein they
hold wrong opinions. So let us prove that weights lying in the
way described are moved by a force smaller than any known
force, and we shall explain the reason why this is not evident
in practice.!

As often in Heron, the argument is put in the form of a thought experiment.
We are to imagine a smooth, solid body lying on a plane surface. If this
surface is tilted to the left, however slightly, the body will slide downwards
because of its natural inclination; similarly, it will slide downwards to the
right if the surface is tilted to the right. The situation in which the surface
is horizontal thus represents a state of equilibrium, in which the body is
equally disposed to move to the left and to the right. The conclusion is that
the body can be set in motion by a force that is as small as one likes;

And the weight that is ready to go to every side, how can it
fail to require a very small force to move it, of the size of the
force that will incline it? And so the weight is moved by any
small force.®

The idea seems to be that the effect of a force on such a weight is simply
to cause it to incline in one direction; it will then continue to move on
its own as if it were on an inclined surface. It takes a force to set a body
in motion, but not to keep it moving. Heron goes on to suggest that the
behaviour of water is analogous because of its fluidity and mobility (1.21).
Conversely, the coherence and resistance of solid bodies explains why they
do not behave in the same way, and why rollers and other means were
invented for transporting loads over the ground.

8 Mechanics, 1.20 (Opera, vol. I, p. 54.10-16); Engl. trans. Drachmann, The Mechanical
Technology, p. 46, modified.
2 Mechanics, 1.20 (Opera, vol. 1L, p. 56.9-13); Engl. trans. Drachmann, The Mechanical
Technology, p. 46, modified.
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In 1.22 Heron turns to the topic of lifting weights, and makes the familiar

claim that the force needed to lift 2 weight without the use of a machine is -

equal to that weight.® If we imagine two equal weights suspended from the
ends of a rope wound around a pulley, they will balance one another; if some
weight is added to one side, it will overpower the weight on the other side
and draw it upwards, “unless there arises friction in the turning of the block:
or stiffness in the ropes”.® This leads immediately to a discussion of the
force needed to draw an object up an inclined plane (1.23; Fig. 14). Heron
approaches the problem by asking how much force is needed to balance a
weight lying on an inclined plane. He considers the special case of a cylinder
and imagines a vertical line (AB) cutting the cylinder at the point at which
it touches the plane. The weight of the portion of the cylinder to the right
of this Jine (ABC) balances the weight of an equal portion to its left (ABD).
Heron concludes that no force at all is needed to move these two portions of
the cylinder up the inclined plane; the force necessary to keep the cylinder
in equilibrium will be equal to the weight of the other portion of the cylinder
(ADBEA), and a slight increase will lift the cylinder, Heron does not attempt

FIGURE 14. Heron’s analysis of the inclined plane (modern
reconstruction based on the text of Mechanics 1.23; there is
no figure in manuscripts B or L).

5 See above, 1. 20.
8 Opera, vol. 11, p- 60.5-8; English trans. Drachmann, The Mechanical Technology, p. 47.
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aprecise calculation of the weight of the portion of the cylinder that must be
beld in equilibrium by the force. But his analysis implies that as the plane
approaches vertical the portion ADBCA shrinks to zero, so that a force equal
to the weight of the cylinder is required to lift it in a vertical direction.
As the plane becomes more level the portion ADBCA grows larger, and
when the plane is completely level the portion ADBCA is equal to the entire
cylinder. The implication {as in 1.20) is that no force at ail is needed to
keep the cylinder rolling along a level surface, once it has been set in motion.

In these chapters of Book | the gap between theoretical results and
practical experience is wider than anywhere else in Heron’s Mechanics, the
remarks on friction in 1.21 and 1.22 indicate that Heron was well aware
of this fact. But he does not draw out the implications of his analysis
of the inclined plane, much less generalize them and introduce a new
theory of physics based on the rejection of “motion implies force”. While
Heron’s application of the balance model leads to results that are at variance
with basic assumptions of every-day experience as well as practitioners’
knowledge, this tension did not lead to a transformation of the conceptual
foundations of mechanical knowledge.

CONCLUSION: TRANSMISSION AND IMPACT

The first stage in transmission of Heron’s Mechanics is marked by the
inclusion of extensive excerpts in Book 8 of Pappus of Alexandria’s Mathe-
matical Collection (pp. 1114-1135 Hultsch). In introducing these excerpts,
Pappus draws attention to the difficulty of consulting Heron’s original text
at the time when he was writing (the late 3rd or early 4th century AD):

As for the aforementioned five powers, we shall set out
a selection from the works of Heron as an aide-memoire
((‘J’lTé;.lvr]G'Lg) for lovers of learning. In addition we wish
to mention the essential things that have been said about the
devices with one part, with two parts, with three parts, and
with four parts [i.e., the lifting devices discussed in Mechanics
3.1-12], lest a person may seek in vain for the books in which
these things have been written. For we have come across
books that were corrupt in many parts, with their beginnings
and ends missing.®

Notably, Pappus’ excerpts are drawn from the sections of Heron’s text that
are closest to practitioners’ knowledge: the account of the construction and

5 Pappus, Pappi Alexandrini collectionis guae supersunt, VIIL, vol. I1I, pp. 1114.22-1116.7.
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use of the five powers in 2.1-6, and the descriptions of lifting devices in

3.1-12.% Book 8 of Pappus’ Collection seems to have circulated as an -

independent manual of mechanics in late antiquity; that it did so in the Arab
world is proved by the existence of a self-standing Arabic translation.t”
Although Heron's Mechanics also circulated in the Arab world in various
versions, none of these seems to have reached the West until the 17th
century %

Against this background, the close parallels between Heron’s Mechanics
and a number of early modemn texts are especially remarkable. I shall
confine myself to three examples. (1) In his Mechanicorum liber of 1581,
Guidobaldo dal Monte attempts to reduce each of the five mechanical
powers or potentiae (the lever, pulley, wheel and axle, wedge, and screw)
to the balance. (2) In a discussion of the inclined plane in his early De
motu antiguiora (ca. 1590), Galileo asserts that a body lying on a smooth
horizontal surface can be moved by “the smallest of all possible forces™;
his reasoning is closely similar to that employed by Heron in 1.20.% {3) In
his 1597 work De gli elementi mechanici, Colantonio Stigliola offers an
analysis of the inclined plane that makes use of the balance model in a way
very similar to Heron’s procedure in 1.23 (Fig. 15).”° What are we to make
of such parallels?

% The Greek text of Pappus ends with the section corresponding to Mechanics 3.2, but
excerpts of 3.3-12 survive in the Arabic version edited by Jackson, The Arabic Version.

57 For a preliminary edition with translation of the Arabic version, see Jackson, The
Arabic Version. Eutocius refers to Pappus VI as the “Introduction to Mechanics”
(unxovikod eio*oeycuyrxf) at Comm. in libros Archimedis de sphaera et cylindro 70.6;
see also the introduction to Jackson, The Arabic Version.

 Tor an introduction to the Arabic transmission see the introduction to Heronis Alexandrini
opera, vol. I, pp. xv—xtv, The preat Dutch Arabist Jacob Golius translated the Mechanics

in the 17th century, but his work seems to have had no impact in scientific circles; sce

the intreduction by Carra de Vaux to Les mécanigues, pp- 8-9, and Brugmans, “Specimen
mechanicae veternm”, tepr. in Sezgin, Hero of Alexandria.

® “A body subject to no external resistance on a plane sloping no matter how little below
the horizon will move down [the plane] in natural motion, without the application of any
external force, This can be seen in the case of water. And the same body on a plane sloping
upward, no matter how little, above the horizon, does not move up [the plane] except by
force. And so the conclusion remains that on the horizontal plane itself the motion of the
body is neither natural nor forced. But if its motion is not forced motion, then it can be made
to move by the smallest of all possible forces” (Galilei, On Motion, p. 66),

7 Stigliola, De gli elementi mechanici, pp. 41-42. Specifically, Stighola’s claim is cxpressed
in terms of the concept of “moment” (momento): “Il momento della rota appoggiata al piane,
al momento della rota sospesa, la ha ragione, che I'eccesso delle portioni del cireolo [sc. the
area DHFGD, al circolo tutto”, The key step, as in Heron, is to recognize that DFE balances
DFH; thus it makes no contribution to the momento of the circle lying on the inclined plane.

i
)
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FIGURE 15. Stigiola’s analysis of the inclined plane (De gli
elementi mechanici, p. 41),

1t is certainly possible that Heron’s Mechanics was better known in the
early modern period than has generally been recognized; further research
may bring to light new avenues by which the transmission of Heron’s text
facilitated the transmission of ideas.” But in fact the parallels we have
noted take on even more significance if the Mechanics was completely
unknown in the Renaissance. Like Heron, the Renaissance suthors had both
the Mechanica and Archimedes at their disposal; they too attempted to
analyze the operation of complex machines by reducing them to simpler ones
such as the balance or lever. From this point of view, Heron’s Mechanics
provides an independent test case of what can be achieved by building on
the conceptual foundations laid down by Archimedes and the author of
the Mechanica. That different authors working from the same conceptual
foundations offer similar analyses of phenomena such as the inclined plane
is not in itself surprising. But recognition of this fact is an important step
towards understanding the long-term stability of mechanical thinking and
the reasons that led to its eventnal transformation.

L See Russo, The Forgotten Revolution, pp. 352-353.



