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The deductive organization of Euclid’s Elements serves as a model for mathematical and scientific texts in a variety of subjects
from antiquity through the early modern period, not only in the West but also in the Islamic world and beyond. The study of
this tradition demands formal methods that will explicitly and unambiguously represent the deductive structures of given texts.
This paper explores the creation of an ontology of proposition use within deductive texts and demonstrates graph theoretical
models for visualizing and interpreting the structure of this ontology. Since the approach is language-independent, it is broadly
applicable to any text in any language that makes use of the explicit deductive form exemplified by the Elements.

1 Introduction

The model of deductive reasoning set out in Euclid’s Elements
and other ancient Greek mathematical works has proven to be
a remarkably durable and influential mode of thought. Its ap-
plication yielded a set of results that won widespread agreement
across a range of disparate cultural traditions, from the me-
dieval Latin West to the Islamic world and, eventually, early
modern China. And it served as an important model for other
sciences until the Renaissance and beyond. We emphasize that
Euclidean-style reasoning is by no means the only kind of deduc-
tive argument in Greek mathematics, nor in Greek thought more
broadly considered. Yet, with the possible exception of Aris-
totelian syllogistic, it would be hard to point to any deductive
tradition that has exerted a comparable influence. Understand-
ing the reasons for its development and widespread acceptance
are therefore matters of primary importance for the history of
science.

In its original context, the ability of the Euclidean method
to command general assent rested on a number of factors: a
set of shared practices for diagrammatic reasoning, an exten-
sible lexicon of technical terms and formulaic phrases, shared
knowledge consisting of certain agreed starting points (the def-
initions, postulates, and axioms), standard forms of argument,
and a ‘toolbox’ of general results having wide applicability.1 The
remarkable ability of the Greek mathematical tradition to gen-
erate new results is a consequence of the creative combination
of these elements. Documenting and analyzing the development
of such elements and the relations between them is the primary
goal of a long-term history of deductivity as we conceive of it
here.

It is important to emphasize that we are concerned with texts
that possess a form rendering explicit their deductive structure.
These texts take the form of a chain of propositions (as well
as definitions, postulates, and axioms). This type of text orig-
inated in the Greek mathematical tradition. Although Indian
mathematics, for instance, is in many respects extremely so-
phisticated, formal deductive structures are not used to justify
mathematical statements [6, 12].

1The notion of the mathematical toolbox was introduced by
K. Saito and taken up by Netz [4]. The role of the diagrams in
Euclidean inferences is explored by Manders [2] (originally written in
1995).

The attempt to write a long-term history of deductivity
presents a number of daunting challenges: the need to iden-
tify, analyze, and coordinate technical terminology in multiple
languages; the analysis of images (especially mathematical dia-
grams) as well as text; and, in general, a volume of material that
far exceeds the capacity of a single scholar or group of schol-
ars. In this paper we argue that information technology offers
a promising approach to meeting these challenges. In particu-
lar, we show how such an approach can be used to analyze the
deductive organization of the Elements by representing it as an
ontology of propositions and relations, which can be analyzed
using graph-theoretical methods.

2 The visualization of deductive or-
ganization

The description and analysis of the complex networks of deduc-
tive relationships between different propositions in the Elements
is crucial for understanding the deductive organization of the
work [3]. Such networks can be treated as ontologies in which
the objects are propositions linked by a single relation, ‘is used
in’; they can also be treated and visualized as directed graphs, as
in figure 1. Here an arrow from A to B indicates that A is used in
B: thus proposition 1 is used in proposition 2, 2 is used in 3, and
3 and 4 are used in 5. The modes of reference to propositions in
the Elements vary from nearly word-for-word quotation to use
without any explicit reference in the text; the determination of
proposition use is thus often a matter of scholarly interpreta-
tion. This study is based on the analysis of Neuenschwander
[5], who provides an authoritative census of proposition use in
books 1–4.2

Once the relationships between propositions have been de-
termined, standard software can be used to visualize them as
directed graphs.3 Such visualizations can reveal a good deal
about deductive organization. Thus the important place of 1.45
in the deductive structure of book 1 is suggested by its placement

2Mueller [3, 52] accepts Neuenschwander’s analysis of proposition
usage in books 1–4 as definitive. Cf. [7, 1:513–517].

3The graphs in this paper were produced using GraphViz,
open source graph visualization software available at http://www.

graphviz.org. Graphs are specified in the DOT language.
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Figure 1: Deductive relationships between propositions 1–5 of
book 1.
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Figure 2: Deductive relationships in book 1. Proposition 1.45
is at the bottom center; starting points are colored in light blue
and end points in red.

at the bottom center of the graph of deductive relationships for
that book (fig. 2). Proposition 1.45 shows how to construct a
parallelogram ‘in’ a given angle (i. e. with a given angle between
two of its sides) and equal in area to a given rectilineal area. Its
importance lies in the fact that it enables any rectilineal area to
be represented as a rectangle; the further step of showing that
any rectilineal area can be represented as a square is taken in
2.14, for the proof of which 1.45 is essential. 1.45 is thus crucial
to showing that any rectilineal figure can be ‘squared’. From the
graph it is evident that 1.45 draws on seven earlier propositions
(14, 29, 30, 33, 34, 42, and 44), each of which itself depends
on a number of earlier propositions.4

Graphs of deductive relationships can also reveal the gen-
eral character of the deductive organization of particular books
or sequences of propositions. Thus the shape of the graph for
book 2 (fig. 3) is dramatically different from that for book 1
(fig. 2). This difference results in part from the different num-

4Mueller argues that the need to prove 1.45 is the most important
consideration in determining the content and order of propositions in
book 1, in the sense that the analysis of the conditions of solution of
the problem posed in 1.45 leads naturally back to the earlier propo-
sitions and theorems in the book [3, 16–27]. This is not to deny, of
course, the fundamental importance of other results proved in book
1, especially 1.47 (the Pythagorean theorem).
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Figure 3: Deductive relationships in book 2.

ber of starting points (propositions that make no use of any
earlier proposition).5 In the graphs, starting points are colored
light blue and end points (propositions from which nothing is
deduced in the book in question) are red. There are exactly two
starting points among the propositions of book 1, 1.1 and 1.4, in
relation to the 48 propositions of the book. In book 2, however,
there are 19 starting points (most drawn from book 1) for only
14 propositions proved. Books 3 and 4 have a similar ratio of
starting points to propositions proved; the data are summarized
in the following table:

Book Starting points Propositions
1 2 48

2 19 14

3 25 37

4 34 16
A further major difference evident from these graphs is the length
of the longest path from proposition to proposition; for book 2
the longest path is 2 (e. g. the path joining 1.30, 2.7, and 2.13),
whereas the graph for book 1 contains much longer paths (e. g.
the path of length 10 joining 1.1, 1.2, 1.3, 1.5, 1.7, 1.8, 1.23,
1.31, 1.43, 1.44, 1.45).

3 A graph-theoretical approach

These impressions, derived from inspection of the graphs, can be
made more precise by applying some graph theoretical methods.
In the terminology of graph theory, networks of deductive rela-
tionships are collections of vertices (i. e. propositions) and edges
(i. e. the lines connecting propositions) in which each edge ex-
presses a one-way or directed relationship (‘is used in’) between
vertices. With each graph is associated a unique adjacency ma-
trix (A). This is a square n×n matrix, where n is the number of
vertices, whose values are defined as follows: if vertex i is joined
to vertex j by an edge in the graph then A(i, j) = 1; otherwise
A(i, j) = 0. For example, the adjacency matrix for the graph
of deductive relationships between the first five propositions of
book 1 (fig. 1) is: 

0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0


For a given row i of the adjacency matrix, the row vector A(i, )
indicates which propositions proposition i is used in. Thus,
the vector corresponding to row 1 of the adjacency matrix
( 0 1 0 0 0 ) has value 1 only in position 2, because
proposition 1 is used only in proposition 2. Similarly, for a given
column j of the matrix, the column vector A(, j) indicates which

5By ‘starting point’ we mean simply a proposition that is not based
on a prior proposition; we do not consider the postulates, definitions,
or common notions in this study.
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propositions are used in proposition j. The adjacency matrix
thus gives a simple method for indexing the use of propositions
throughout the Elements.

It is also possible to use the adjacency matrix to compute
both the length of the longest path through the graph and the
number of paths connecting any two vertices.6 For book 1, this
calculation yields a length of 20 for the longest path (between
propositions 1 and 45); the maximum number of paths linking
any two propositions is a remarkably high 558, again between
propositions 1 and 45. As well as confirming the importance of
proposition 45 in the deductive structure of book 1, these figures
provide a quantitative measure of the distinctiveness of book 1
in comparison to other books. The following table sets out the
maximum path length and maximum number of paths between
any two propositions in the case of the first four books:

Book Longest path Max. no. of paths
1 20 558

2 2 2

3 6 9

4 5 5

4 The analysis of indirect proposi-
tion use

These graph theoretical methods provide a convenient approach
to studying the indirect use of propositions. By ‘indirect use’
we mean that in determining which propositions are used by
a given proposition, we should include not only those that are
directly used, but also those that are implied by the propositions
directly used. For example, in fig. 1, while propositions 3 and 4
of book 1 are both directly used in proposition 5, propositions
1 and 2 are indirectly used in 5 as well, since 2 is used in 3
and 1 in 2; thus the set of propositions directly and indirectly
used by proposition 5 is: 1, 2, 3, 4. In terms of the graphical
representation of deductive relationships, considering indirectly
as well as directly used propositions is equivalent to taking all
propositions lying on all paths through the graph that lead to
the given proposition.7

When indirect as well as direct use is considered, it turns
out that of all the propositions in book 1, 1.45 makes use of
the largest number of propositions (34), a further indication of
its centrality in the deductive structure of the book. Plotting
the number of directly and indirectly used propositions against
the proposition number gives a sense of the degree to which
each new proposition builds on what has already been estab-
lished. Figure 4 shows such a plot for book 1. The progression

6These calculations are based on the following properties of an
adjacency matrix A [1, 217–222]. (1) The i, jth element of the matrix
An gives the number of paths of length n between vertices i and j.
(2) Let I be the n×n identity matrix (i. e. the n×n matrix in which
all elements on the diagonal are 1 and all other elements are 0). Then
the i, jth element of the matrix (I −A)−1 gives the total number of
paths between i and j. The matrix computations in this paper were
performed using the R statistical language, freely available online at
http://www.r-project.org.

7Let A be an adjacency matrix of direct proposition usage and I
the corresponding adjacency matrix of direct and indirect proposition
usage. Let I(, n) denote the nth column vector of I, and similarly for
A. Then for any n, I(, n) = union of A(, n) and I(, m) for all m such
that A(m, n) = 1.
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Figure 4: Direct and indirect usage of propositions in book 1.
The vertical line marks proposition 1.27.

is very close to linear up to 1.25, then drops off abruptly and
is much less regular through the remainder of the book. This
pattern reflects the fact that the deductive organization of 1.1–
25 is very tight: with each new proposition, there is roughly the
same increase in the number of propositions used, indicating
that each new proposition makes use of most of the results pre-
viously established. Proposition 1.26, which is the final result
on triangle congruence, makes use only of 1.3, 1.4, and 1.16;
proposition 1.27 marks a new start in the book, the beginning
of the theory of parallels. Figure 5 shows the result when books
2–4 are added to the picture; it is clear that while there are
some stretches where the plot is approximately linear, there is
no sequence comparable to 1.1–25 in length. Here is a further
indication of the distinctive character of book 1, and especially
the first part of the book, in comparison to other books. Still,
within each book, there is an overall tendency for the number
of propositions used to increase with the proposition number.
Moreover the last proposition of book 4, 4.16, makes use of
the largest number of propositions (72) of any proposition in
books 1–4. Whatever variation there may be in the organiza-
tion of particular sequences of propositions, overall the trend in
the first four books is towards the use of increasing numbers of
previously established results.

5 Further perspectives

In conclusion we note that this method could easily be applied
to the large number of texts in the Western mathematical and
scientific tradition that present their results in Euclidean form,
down to and including works such as Newton’s Principia. Such
a study would allow for a precise characterization of the develop-
ment of deductive methods over the long term; it would no doubt
reveal significant variation as well as general trends. Moreover,
since there is nothing language-specific about an ontology of
propositions, the same method could be used to characterize the
differences between the various Greek, Latin, Arabic, and even
Chinese versions of the Elements. The ontologies with which
we are concerned could readily be expressed in standard ontol-
ogy languages such as OWL (Web Ontology Language) or CL
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Figure 5: Direct and indirect usage of propositions in books 1–4.
Vertical lines mark the beginning of books 2, 3, and 4.

(Common Logic), allowing the application of a wide variety of
reasoning and visualization tools. Our case study demonstrates
that an ontology-based approach can productively be applied to
the analysis of the structure of knowledge in particular formal
domains, the study of its development over time, and the com-
parison of knowledge across cultural and linguistic boundaries.
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[7] Bernard Vitrac. Les Éléments. Traduction et commentaires par
Bernard Vitrac. Presses Universitaires de France, Paris, 1990–
2001. 4 vols.

Contact

Prof. Dr. Mark J. Schiefsky
Harvard University, Department of the Classics
204 Boylston Hall, Cambridge, MA 02138 USA
Tel.: +1 617-495-9301
Fax.: +1 617-496-6720
Email: mjschief@fas.harvard.edu

Dr. Malcolm D. Hyman
Max-Planck-Institut für Wissenschaftsgeschichte
Boltzmannstr. 22, 14195 Berlin
Tel.: +49 (0)30-22667-129
Fax: +49 (0)30-22667-299
Email: hyman@mpiwg-berlin.mpg.de

Bild Mark J. Schiefsky is Professor in the De-
partment of the Classics at Harvard Univer-
sity. His research centers on the history of
medicine, mathematics, and related sciences
in Greco-Roman antiquity, and on the use
of information technology for the analysis of
sources in the history of science.

Bild Malcolm D. Hyman is a Research Scientist
at the Max Planck Institute for the History of
Science in Berlin. His research interests cen-
ter on the application of computer technol-
ogy and models derived from cognitive sci-
ence to the history of knowledge.

Page 4


