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PREFACE

CHAPTER I

Statistical aspects of ARCH and
stochastic volatility

Neil Shephard
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1.1 Introduction

Research into time series models of changing variance and covariance,
which I will collectively call volatility models, has exploded in the last
ten years. This activity has been driven by two major factors. First, out of
the growing realization that much of modem theoretical finance is related
to volatility has emerged the need to develop empirically reasonable'
models to test, apply and deepen this theoretical work. Second, volatility
models provide an excellent testing ground for the development of new

nonlinear and non-Gaussian time series techniques.
There is a large literature on volatility models, so this chapter cannot

be exhaustive. I hope rather to discuss some of the most important
ideas, focusing on the simplest forms of the techniques and models
used in the literature, referring the reader elsewhere for generalizations
and regularity conditions. To start, I will consider two motivations for
volatility models: empirical stylized facts and the pricing of contingent
assets. In section 1.4 I will look at multivariate models, which play an
important role in analysing the returns on a portfolio.

1.1.1 Empirical stylizedfacts

In most of this chapter I will work with two sets of financial time series.
The first is a bivariate daily exchange rate series of the Japanese yen and
the German Deutsche Mark measured against the pound sterling, which
runs from I January 1986 to 12 April 1994, yielding 2160 observations.
The second consists of the bivariate daily FTSE 100 and Nikkei 500
indexes, which are market indexes for the London and Tokyo equity
markets. These series run from 2 April 1986 to 6 May 1994, yielding

2113 daily observations.
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INTRODUCfION 3

Table 1.1 Summary statistics for the daily returns in Figure 1.1. BL denotes the
Box-Ljung statistic, computed using the squares, with 30 lags. It should be around
30 if there is no serial dependence in the squares. K denotes the standardized
fourth moment of the Yt. K should be around 3 under conditions of normality

BL K
Japanese yen 563 5.29
Gennan Deutsche Mark 638 36.2
Nikkei 500 index 828 36.2
FfSE 100 index 1375 28.1

low correlation. Finally, there is some evidence that the exchange rates
and eqtuJy markets each share periods of high volatility, big movements
in one cuITency being matched by large changes in another. This suggests
that multivariate models will be important.

Reasons for changing volatility ,
f

,

It would be convenient to have an explanation for changing levels of
volatility. One approach would be to assume that price changes occur
as the result of a random number of intra-daily price movements,
responding to information arrivals. Hence Yt = 2:~';1 Xit, where Xit are
independently and identically distributed (ij.d.) and nt is some Poisson
process. This type of model has a long history, going back to the work
of Clark (1973). In this paper the nt is assumed to be independent over
time, which means Yt would inherit this characteristic. It is a trivial
matter to allow nt to be time-dependent, which would lead to volatility
clustering, although the resulting econometrics becomes rather involved
(see Tauchen and Pitts, 1983).

The more interesting literature in econometric terms is that which ties
this information arrival interpretation into a model which also explains.
volume. The joint models of volume (see also Engle and Russell,1994)
and volatility are the focus of Gallant, Hsieh and Tauchen (1991), who
use a reduced-form model, and of Andersen (1995). This is an interesting,
but underdeveloped, area.

1.1.2 Pricing contingent assets

Suppose the value of some underlying security, written S, follows
a geometric diffusion dS = p.Sdt + uSdz, so that dlog S =
(p. - tT22) dt+udz. It is possible to define an asset, C, which is a function

of the underlying share price S. Economists call such assets contingent
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or derivative. Good introductions to the literature on this topic are given
in Ingersoll (1987) and Hull (1993). A primary example of a contingent
asset is an option, which allows the option owner the ability, but not the
obligation, to trade the underlying asset at a given price in the future.
The best-known example of this is the European call option whose owner
can buy the underlying asset at the fixed price K, at the expiry date
T + v. An example of K is where it equals S(T), today's price; where
the dependence of S on time is now shown explicitly. This special case
is called an at-the-money option. The value of the general European call
option at expiration will be

c(T + v) = max{S(T + v) - K,D}. (1.1)

While equation (1.1) expresses the value of the option at time T +v,
the option will be purchased at time T, so its purchase value has yet to
be determined. A simple approach would be to compute the discounted
exoected value of the option.

exp( -rV)ES(T+lI)IS(T) max {S(T + v) - K,D} I

where r is a riskless interest rate. However, this neglects the fact that
traders expect higher returns on risky assets than on riskless assets, a
point which will recur in section 1.4. Hence the market will not typically
value assets by their expected value. This suggests the introduction of
a utility function into the pricing of options, allowing dealers to trade
expected gain against risk.

It turns out that the added complexity of a utility function can
be avoided by using some properties of diffusions and by assuming
continuous and costless trading. This can be seen by constructing a
portfolio worth 11' made up of owning () of the underlying shares and by
borrowing a single contingent asset c. Then the value of the portfolio
evolves as

d7r = OdS - dc
= 0 (Ji'sdt + uSdz) - (csJ.LS + Ct + !CssU2S2)dt - csuSdz
= (0 - cs)(J.LSdt + uSdz) - (Ct + tCssU2S2)dt,

by using !to's lemma, where Ct = 8c/8t and Cs = 8c/8S. The investor,
by selecting (J = Cs at each time period, can ensure d1r is instantaneously
riskless by eliminating any dependence on the random dz. This result,
of making d1r a deterministic function of time, is due to Black and
Scholes (1973). As time passes, the portfolio will have continually to
adjust to maintain risklessness - hence the need for continuous costless

trading.
As this portfolio is riskless, its return must be the riskless interest rate
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r, for otherwise traders will take this arbitrage opportunity and make
instant risIdess profits. The risIdess interest rate can be taken as the return
on a very short-duration government bond. Consequently the riskless
portfolio follows
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d1r = r1rdt = r(CaS - c)dt, as 1r = CaS - C to achieve risklessness
= -(Ct + !Cssu2S2)dt,

implying that the contingent asset follows the stochastic differential
equation

Ct + ~ess0"2 S2 + TesS = Te, with end condition e = max(S - K, 0).

This equation is remarkably simple. In particular, it does not depend
on J.1. or the\isk preference of the traders. Hence we can evaluate it
as if the world was risk-neutral, in which case we can assume that the
share price follows a new diffusion, with mean rS* and variance a2 S*2:
dS* = rS* dt+aS*dz. This is the risk-neutral process; see Hull (1993,
pp. 221-222). Using the log-normality of the diffusion we have

logS*(T + v)l1ogS(T) '" N {logS(T) + (r - (12/2)v,(12V}.

Straightforward log-nonnal results give us the Black-Scholes valuation
of the option v periods ahead, using an instantaneous variance of (12, of

bSll(U2) = exp(-rv)E [max{S*(T + v) - K,O} IS(T)]

which is

bsv(a2) = S(T)~(d) - K exp( -rv)~(d - aVV},

d - log{S(T)/K} + (r + a2/2)v- aVv .

(1.2)

where

(1.3)

Note that v and K are given by institutional norms, S(T) and r are
observed, leaving only a2 as unknown. In a real sense, option prices are
valuing volatility. As with much of finance, it is the volatility which plays
the crucial role, rather than the mean effect.

Empirically there are two straightforward ways of using (1.2). The
first is to estimate a2 and then work out the resulting option price. The
second is to use the observed option prices to back out a value for a2.
This second method is called an implied volatility estimate; see Xu and
Taylor (1994) for a modem treatment of this.

A difficulty with all of this analysis is the basic underlying assumption
of the process, that stock returns follow a geometric diffusion. Figure 1.1
indicates that this is a poor assumption, in turn suggesting that (1.2)
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Nelson (1995), Bera and Higgins (1995) and Diebold and Lopez (1995).
Finally, Engle (1995) is an extensive reprint collection of ARCH papers.

Parameter-driven or state-space models allow Zt to be a function of
some unobserved or latent component. A simple example of this is the log-
normal stochastic variance or volatility (SV) model, due to Taylor (1986):

... 2
Yt I ht ,..., N {a, exp(ht)}, htH = "Yo+"Ylht+1Jt, 1Jt"'" NID(O, u"l)'

where NID denotes nonnally and independently distributed. Here the
log-volatility ht is unobserved (at least by the econometrician) but can
be estimated using the observations. These models parallel the Gaussian
state-space models of means dealt with by Kalman (1960) and highlighted
by Harrison and Stevens (1976) and West and Harrison (1989). In
econometrics this type of models is. associated with the work of

Harvey d~89).
Unfortunately, unlike the models of the mean which fit into the

Gaussian state-space fonn, almost all parameter-driven volatility models
lack analytic one-step-ahead forecast densities 1Jt I rt-l. As a result,
in order to deal with these models, either approximations have to be
made or numerically intensive methods used. There seems to be only
one constrained exception to this: stochastic volatility models which

possess analytic filtering algorithms. Shephard (1994a) suggests setting
htH to be a random walk with exp(1Jt) using a highly contrived
scaled beta distribution, following some earlier work on some different
non-Gaussian models by Smith and Miller (1986) and Harvey and
Fernandes (1989). This delivers a one-step-ahead prediction distribution
which has some similarities to the ARCH model. It has been generalized
to the multivariate case by Uhlig (1992), who uses it to allow the
covariance matrix of the innovations of a vector autoregression to change
in a highly parsimonious way. Unfortunately, it does not seem possible
to move away from ht+1 being a random walk without losing conjugacy.
This inflexibility is worrisome and suggests this approach may be a dead
end.

Although SV models are harder to handle statistically than the
corresponding observation-driven models, there are some good reasons
for still investigating them. We will see that their properties are easier to
find, understand, manipulate and generalize to the multivariate case. They
also have simpler analogous continuous-time representations, which is
important given that much of modern finance employs diffusions. An
example of this is the work by Hull and White (1987) which uses a log-
nonnal SV model, replacing the discrete-time AR(1) for htH with an
Ornstein-Uhlenbeck process. A survey of some. of the early work on SV
models is given in Taylor (1994).
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b . . . , Yt+p) for all p and

(1.4)

be non-negative to ensure
0, on, which means Yt is
tric unconditional density.
) find its variance. Clearly

toregression:
2lYt-l + Vt, (1.5)

s randomized. As Vt is a
,n = ao/(l - at). After

E(yt)j{E(y;)}2 = 3(1- a~)j(l - 3an,

if 3a~ < 1, which when it exists is greater than 3. Under this tight
condition, Y; is covariance stationary, its autocorrelation function is
Py;(s) = ai, and Yt has leptokurtosis (fat tails). Notice thatpy;(s) ~ 0
for all s, a result which is common to all linear ARCH models.

These are interesting results. If al < 1, Yt is white noise while
Y; follows an autoregressive process, yielding volatility clustering.
However, Y; is not necessarily covariance stationary for its variance
will be finite only if 3a~ < 1.

ri
~

~
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The conflicting conditions for covariance stationarity for Yt and Y~
prompt the interesting question as to the condition needed on ao and
al to ensure strict stationarity for Yt. This can be found as a special
case of the results of Nelson (1990a), who proved that al had to satisfy
E{log(alg~) < a}, whichinGaussianmodelsimpliesthatal < 3.5622. ,,!,.

Co

1.2.1Estimation

At first sight it is tempting to use the autoregressive representation (1.5)
to estimate the parameters of the model (this was used by Poterba and
Summers, 1986). If Vt is white noise this can be carried out by least
squares; in effect this estimate will be reported as the first spike of
the correlogram for y~. Although a best linear unbiased estimator, this
estimate would be inefficient.

ARCH models, like all observation-driven models, are designed to
allow the likelihood to be found easily. Using a prediction decomposition
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(and ignoring constants):

T

Llog!(Yt I Yt-lj8)
t=l

T T
1", 2 1", 2 2-2" L...logUt - 2" L...yt!Ut (1.6)

t=l t=l

log fCy!, .. . , YT I Yo; 0) =

~

=

where e will denote the parameters which index the model, in this case
(ao,ad.

Notice that this likelihood conditions on some prior observations (or
in real problems, the first few observations). This is convenient since
the analytic form for the unconditional distribution of an ARCH model
is unknown. The consequence is that the likelihood does not impose
al < 1.

fl

~



10 STATISTICAL ASPECI'S OF ARCH AND STOCHASTIC VOLATILITY ARC!

estirr
Table 1.2 Aspects of the distribution of the ML estimator of ARCH(1) and 1982
GARCH( 1,1). RMSE denotes root mean square error. ARCH true values of Le
ao = 0.2 and al = 0.9. GARCH true values of ao = al = 0.2 and {31 = 0.7. cond
Based on 1000 replications. Top table -ARCH, bottom table - GARCH (1.6)

ARCH '; 1. E
T E(&d RMSE(&I) Pr(&1 ~1)

100 0.85221 0.25742 0.266 2. E

250 0.88386 0.16355 0.239 The 1
500 0.89266 0.10659 0.152 mom

1000 0.89804 0.08143 0.100 addit

GARCH

T E(&1 + 131) RMSE(&1 + PI) Pr(&1 + 131 ~ 1)
100 0.87869 0.14673 0.206 I 1.2.2
""" "nn,nr. ----.-
250 0.88680 0.10246 0.143
500 0.89680 0.06581 0.060

1000 0.89913 0.04893 0.019

It is possible to find the scores for the model:

8 log f - ~ ~ 8(7~ 2.. (y~ - 1), (1.7) - 89 - 2 L..J 89 (72 (72

t=l t t
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~rror. ARCH true values of
= ell = 0.2 and (31 = 0.7.

tom table - GARCH

Pr(al ~ 1)
0.266
0.239
0.152
0.100

1) Pr(&1 + P1 2:: 1)
0.206
0.143
0.060
0.019
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(1.7)
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estimator (for the calculation of the variance of the estimators, see White,

1982; 1994).
Lee and Hansen (1994) state the following two main sufficient

conditions for the consistency of the quasi-likelihood estimator using

(1.6):

1. E(ct I Yt-d = 0, E(c; I Yt-l) = 1;

2. E{log(alc;) I Yt-d < O.

The first ensures that the ARCH model correctly specifies the first two
moments, the second that Yt is strictly stationary. Asymptotic normality
additionally requires that E(ct I Yt-t) is bounded and that aD, at > O.

",'.
1.2.2 Non-normal conditional densities

The Gaussian assumption on ct is arbitrary, indicating that we should
explore other distributions. Although ARCH models can display fat tails,
the evidence of the very fat-tailed unconditional distributions found for
financial data (Mandelbrot, 1963; Fama, 1965) suggests that it may be
useful to use models based on distributions with fatter tails than the
normal distribution. Obvious candidate distributions include the Student
t, favoured by Bollerslev (1987), and the generalized error distribution,
used by Nelson (1991); see Evans, Hastings and Peacock (1993) for
details of this error distribution. Notice that in both cases it is important
to define the new Ct so that it has unit variance.

Finally, there has recently been considerable interest in the
development of estimation procedures which either estimate semi-
parametrically the density of Ct (Engle and Gonzalez-Rivera, 1991) or
adaptively estimate the parameters of ARCH models in the presence of a
non-normal Ct (Steigerwald, 1991; Linton 1993). These seem promising
areas of research; however, given that parametric estimation of ARCH
models requires such large data sets, their effectiveness for real data sets
seems questionable.

1.2.3 Testing for ARCH

Using the score (1.7) and corresponding Hessian it is possible to construct
a score test uf the hypothesis that at = 0, i.e. there is no volatility
clustering in the series. It turns out to be the natural analogue of the
portmanteau score test for AR(1) or MA(1), butln the squares. A
generalization to more complicated ARCH models results in the analogue
nf th.. Box-Pierce statistic, which uses serial correlation coefficients for
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the squares

rj = I: (y~ _y2) (Y~-j _y2) II: (y~ -y2f

rather than for the levels. It is studied in Engle, Hendry and
Trumble (1985).

More recently, in the econometric literature, some concern has been
expressed about the fact that these types of test do not exploit the full
information about the model. In particular, (j~ ~ 0 and so 00, 01 ~ 0,
so that tests of the null hypothesis and more complicated variants of it
have to be one-sided. Papers which address this issue include Lee and
King (1993) and Demos and Sentana (1994).

1.2.4 Forecasting

One of the aims of building time series models is to be able to forecast.
In ARCH models attention focuses not on E(YT+s I YT) as this is zero,
but rather on E(Yf+s I YT) or more usefully, in my opinion, the whole
distribution of YT+s I YT.

In ARCH models it is easy to evaluate the forecast moments of
E(YT+s I YT) (see Engle and Bollerslev, 1986; Baillie and Bollerslev,
1992). In the ARCH(1) case

E(Yf+s I YT) = ao(l + al +... + a~-l) + afyf.

f(

1

cc

if
C(

a

In non-covariance stationary cases, such as when Ctl = 1, this forecast
continually trends upwards, going to infinity with s. This may be
somewhat unsatisfactory for some purposes, although if there is not
much persistence in the process a normal approximation based on
YT+s I YT '" N{O,E(Yf+s I YT)} may not be too unsatisfactory.
That is the conclusion of Baillie and Bollerslev (1992).

In more complicated models it seems sensible to have simple methods
to estimate informatively and report the distribution of YT+s I YT. This is

studied, using simulation, by Geweke (1989), who repeatedly simulates
(1.4) into the future M times, and summarizes the results. A useful
graphical representation of the simulation results is the plot of various
estimated quantiles of the distribution against s. The results of Koenker,
Ng and Portnoy (1994) are useful in reducing the required amount of
simulation through smoothing quantile techniques.
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1.2.5 Extensions of ARCH for
wit
al

The basic univariate ARCH model has been extended in a number
of directions, some dictated by economic insight, others by broadly
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statistical ideas. The most important of these is the extension to include
moving average parts, namely the generalized ARCH (GARCH) model.
Its simplest example is GARCH(l,l) which puts

_)2
y2

Yt = Ct Ut, ul = Qo + QIyl-l + {31Ul-lO:, Hendry and

This model is usually attributed to Bollerslev (1986), although it was
formulated simultaneously by Taylor (1986). It has been tremendously
successful in empirical work and is regarded as the benchmark model by
many econometricans.

Incem has been
exploit the full
so aO,al ~ 0,
~d variants of it
nclude Lee and

lble to forecast.
) as this is zero,
nion, the whole '\.

following (1.5). The original series Yt is covariance stationary if al +(31
1. In practice the fourth moment of Yt will not usually exist (see the
conditions needed in Bollerslev, 1986), but Yt will be strictly stationary
if Elog«(3l + alcn < 1 and ao > O. Nelson (1990a) graphs the
combinations of al and (31 that this allows: importantly, it does include
al + (31 ~ 1.

The case of al + (31 = 1 has itself received considerable attention. It is
called integrated GARCH (IGARCH) (see Bollerslev and Engle, 1993).
We will see later that for many empirical studies al + (31 is estimated to
be close to one, indicating that volatility has quite persistent shocks.

In ARCH models the likelihood can be constructed by conditioning on
initial observations. In the GARCH(I,I) model both (7~-1 and Y~-l are
required. A standard approach to this problem is to use an initial stretch
of 20 observations, say, to calculate (7~1 by using a simple global variance
estimate and computing log !(Y2l,..., YTI(7~l' Y~o; 8). This is somewhat
unsatisfactory, although for large n the initial conditions will not have
a substantial impact. Standard normal asymptotics have been proved so
long as Yt is, strictly stationary (see Lee and Hansen, 1994). Interestingly
asymptotic normality does hold for the unit root case, al + (31 = 1,
unlike for the corresponding Gaussian AR models studied in, for example,
Phillips and Durlauf (1986).

To glean some idea of the sampling behaviour of the ML estimator
for this model, I repeat the ARCH(1) simulation experiment but now
with aD = al = 0.2 and (31 = 0.7. Table 1.2 reports the properties of

Ctl + iil, as this is the most meaningful parametrization. It inherits most
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of the properties we found for the ARCH(1) model. Again there is a
substantial probability of estimating this persistence parameter as being
greater than one.

This model can be generalized by allowing p lags of y; and q lags of 0";
to enter 0"; . This GARCH(p, q) is also strictly stationary in the integrated
case, an extension of the GARCH(1,I) case proved by Bougerol and
Picard (1992). This sl,lggests normal asymptotics for the ML estimator
can also be used in this more complicated situation.

Log GARCH

To statisticians ARCH models may appear somewhat odd. After all
Y; = e;a; is a scaled X~ or gamma variable. Usually when we model
the changing mean of a gamma distribution, a log link is used in the
generalized linear model (see, for example, McCullagh and NeIder, 1989,
Chapter 8). Consequently for many readers a natural alternative to this
model might be

y~= e:~ exp(ht) , ht = "Yo + "YllogY~-l.

This suggestion has been made by Geweke (1986) but has attracted little
support. A major reason for this is that Yt is often close to zero (or quite
often exactly zero). In a rather different context Zeger and Qaqish (1988)
have proposed a simple solution to this problem by replacing ht by

h. = 'Yn + 'Y, loe:fmax(v? . .en. e> O.

The constant c is a nuisance parameter which can be estimated from the
data.

Exponential GARCH

Although the log GARCH models have not had very much impact,
another log-based model has, but for rather different reasons.
Nelson (1991) introduced an exponential GARCH (EGARCH) model
for ht which in its simplest form is

ht = 'Yo + 'Ylht-l + g(et-d, where g(x) = wx + A(I x I -E I x D.

(1.9)

The g(.) function allows both the size and sign of its argument to influence
its value. Consequently when Ct-l > 0, 8ht/8ct-l = w + A, while the
derivative is w - A when Ct-l < O. As a result EGARCH responds

non-symmetrically to shocks.
The Nelson (1991) paper is the first which models the conditional

variance as a function of variables which are not solely squares of
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the observations. The asymmetry of infonnation is potentially useful
for it allows the variance to respond more rapidly to falls in a market
than to corresponding rises. This is an important stylized fact for many
assets (see Black, 1976; Schwert, 1989; Sentana, 1991; Campbell and
Hentschel, 1992). The EGARCH model is used on UK stocks by Poon
and Taylor (1992).

Although (1.9) looks somewhat complicated, its properties are quite
easy to find. As Ct-l ,..., Li.d., so g(ct-d ,..., i.i.d.. It also has zero mean
and a constant variance (ct is uncorrelated with I ct I -E I ct I due to
the symmetry of Ct). As a result, like (1.8), ht is an autoregression and
so is stationary if and only if I "(1 1< 1. Notice that this allows Py: (s) to
be negative, unlike linear ARCH models. Hence EGARCH models can
produce cycles in the autocorrelation function for the squares.

Like tht\ARCH model, EGARCH is built to allow the likelihood
function to be easily evaluated. At present the limit theory for this model
has not been rigorously examined, although it seems clear that asymptotic
nonnality will be obtained if I '/'1 1< 1.

Decomposing IGARCH

GARCH can be extended to allow arbitrary numbers oflags on y~ and a~
to enter the variance predictor. A difficulty with this approach is a lack
of parsimony, due to the absence of structure in the model. Recently
Engle and Lee (1992) have addressed this issue by parametrizing a
GARCH model into pennanent and transitory components, analogous
to the Beveridge and Nelson (1981) decomposition for means. A simple
example is

a~ = ILt + 0:1 (yl-l - ILt) + 131(a~-1 - ILt)
ILt = W + ILt-1 + f/J(Y~-1 - al-l).

Here the intercept of the GARCH process, J.Lt, changes over, time. As
D.ILt - W is an MD, f.Lt is a persistent process tracing the level of the

volatility process while al deals with the temporary fluctuations.
It is possible to rewrite this model into its reduced fonD

a~ = w(l - 0:1 - 131) + {0:1 + f/J(l- 0:1 - 131)}Y~-1 - 0:IY~-2
+ {I + 131 - f/J(l - 0:1 - 13d}a;-1 - 131a;-2'

which is a constrained IGARCH(2,2) model.

Fractionally integrated ARCH

Volatility tends to change quite slowly, with the effects of shocks taking
a considerable time to decay (see Ding, Granger and Engle, 1993). This

11-
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indicates that it might be useful to exploit a fractionally integrated model.
The nonlinear autoregressive representation of ARCH suggests starting
with:

(1 - L)dy; = ao + Vt, Vt = u;(e; -1), dE (-0.5,0.5),

as the simplest fractionally
Rewritten, this gives, say

integratedARCH (FIARCH) model.

U; = 00 + {i - (1- L)d}y; = 00 + O(L)yi-lO

Here a( L) is a polynomial in L which decays hyperbolically in lag length,
rather than geometrically. Generalizations of this model introduced by
Baillie, Bollerslev and Mikkelsen (1995), straightforwardly transform
the ARFIMA models developed by Granger and Joyeux (1980) and
Hosking (1981) into long-memory models of variance.

Although these models are observation-driven and so it is possible
to write down f(Yt I Yt-d, Yt-l now has to contain a large amount
of relevant data due to the slow rate of decay in the influence of old
observations. This is worrying, because the likelihood of ARCH models
usually conditions on some Yo, working with f(Yl, . . . , YT I Yo). I think
that for these models the construction of Yo may be important, although
Baillie, Bollerslev and Mikkelsen (1995) argue this is not the case.

Weak GARCH

In this chapter emphasis has been placed on parametric models, which
in the ARCH case means models of one-step-ahead prediction densities.
Recently there has been some interest in weakening these assumptions,
for a variety of reasons. One approach, from Drost and Nijman (1993), is
to introduce a class of 'weak' GARCH models which do not build u; out
of E(y; I Yt-d, but instead work with a best linear projection in terms
of 1, Yt-lo Yt-2... ., Y;-l' '" , Y;-p'

Weak GARCH has been a useful tool in the analysis of temporally
aggregated ARCH processes (see Drost and Nijman, 1993; Nijman and
Sentana, 1993) and the derivation of continuous-time ARCH models
(Drost and Werker, 1993). However, inference for these models is not
trivial for it relies upon equating sample autocorrelation functions with
their population analogues. This type of estimator can be ill behaved if
Y; is not covariance stationary (a tight condition).

Unobserved ARCH

A number of authors, principally Diebold and Nerlove (1989), Harvey,
Ruiz and Sentana (1992), Gourieroux. Monfort ami
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and King, Sentana and Wadhwani (1994) have studied ARCH models

observed with error:

Yt = ft + 'f/t, ft = ctO't, O'~ = 0:0 + 0:I!!-1, (1.10)

where ct and 'f/t are mutually independent and are normally and
independently distributed. Their variances are 1 and O'~ respectively.
Unlike the other ARCH-type models outlined above, (1.10) is not easy
to estimate for it is not possible to deduce i(Yt I Yt-d analytically. This
is because it-l is not known given Yt-l. Hence, it makes sense to think
of these models as parameter-driven and so classify them as stochastic

volatility models.
Approaches to tackling the problem of inference for this model are

spelt out bY'"f:Iarvey, Ruiz and Sentana (1992). They employ a Kalman
filtering approach based on the state space:

Yt = ft + 'f/t, 'f/t ~ NID(O, O'~),

it = It, it ~ N(O,o:o + 0:I!;-1).

It is possible to estimate ft and 'f/t, using the unconditional distribution of
it as the disturbance of the transition equation. The resulting filter gives
a best linear estimator. However, it is inefficient because it ignores the

dynamics.
An alternative approach is to use Yt ~to estimate It and then use

that estimate, it, to adapt the variance of ItH so that ItH I Yt ;..,
~2

N(D, +o:o+o:dt ). This is the approach of Diebold and Nerlove (1989).
The approximation can be improved by noting that

2 ~2 ~ 2 ~ ~
It = It + (It - It) + 21t(ft - It).

Taking expectations of this. given Yt. and using the approximation
it ~ E(ltIYt). yields ,

2 ~2 ~ 2

E(ft IYt)~!t +Pt, wherept~E{(Jt-!t) IYt}.
This delivers the improved approximation It+! I ¥t .:.., N {O, ao +

~2 ~
al(1t + Pt)}. As It and Pt are in ¥t, if this were the true model,
the resulting Kalman filter would be optimal; as it is, Harvey, Ruiz and
Sentana (1992) use the phrase 'quasi-optimal' to describe their result.
However, as it does not seem possible to prove any properties about this
'quasi-optimal' filter, perhaps a better name would be an 'approximate

filter' .
A likelihood-based approach to this model is available via a Markov

chain Monte Carlo (MCMC) method, since the model has a Markov

~
'\t
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. Threshold. Various TARCH models have been proposed which have
different parameters for Yt-l > 0 and Yt-l :::; o. Zakoian (1990)
works with the absolute residuals, while in an influential paper
Glosten, Jagannathan and Runkle (1993) work with a model of the

type
c u; = ao + at I(Yt > O)yi-l + at I(Yt-l S O)yi-l.

This is used by Engle and Lee (1992), who allow asymmetry to enter
the transitory component of volatility, but not the permanent part.

. ARCH in mean. A theoretically important characteristic of excess
returns is the relationship between expected returns of a risky asset
and the level of volatility. Engle, Lilien and Robins (1987) proposed
the ARCH-M model,.

Yt = g(u;, 0) + E:tUt, u; = Qo + Ql {Yt-l - g(ULl' 0)}2.

A commonly used parametrization is the linear one: g((j~, 0) =
J1.o + J1.1(j~. Its statistical properties are studied by Hong (1991).
Likelihood inference is again straightforward.

1.2.6 Simple empirical illustrations

The simple ARCH-based models are quite easy to fit to data. To illustrate
this we will briefly analyze the four series introduced in section 1.1
using GARCH and EGARCH models. Throughout we will work with
the compounded return on the series Yt = 100 log xd Xt-l. The models
will be based on Gaussian and Student t distributions where the degrees
of freedom are estimated by ML techniques. When the t distribution is
used the innovations from the series will be mapped into normality by
using the inverse Student t distribution function followed by computing
the corresponding normal deviates. These will be used as inputs into the
Box-Ljung statistics (Harvey, 1993b, p. 45) for the squares using 30 lags
and the standardized fourth moment, or kurtosis, statistic. The first of
these statistics should be centred around 30, the second around 3.

Table 1.3 gives the results for GARCH models. To benchmark each
of the results I have presented two non-ARCH models: an NlD model,
whose diagnostics indicate failure because of large degrees of serial
correlation in the squares and fat-tails; and an independently distributed
(ill) Student t model, which eliminates most of the fat tails problems,
but does not deal with the correlation in the squares.

The GARCH models do improve upon these benchmarks. They have
two broad effects. First, they successfully deal with the serial correlation

j
1
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Table 1.3 Each column represents the empirical fit of a specific GARCH model
to the denoted series. When the parameter estimates ch and [31 are missing,
this means they are constrained to being zero. When V, the degrees of freedom
parameter, is missing, it is set to 00 - giving a normal distribution. BL denotes

the Box-Ljung statistic with 30 lags. K denotes the standardized fourth moment
of the transformed innovations. K should be around 3

Nikkei 500 index

IiI 0.834 0.851
V 3 4

logL -3577 -3035 -2836 -3012
BL 828 828 51.5 40.6

. K 36.2 3.28 3.14 13.0
FfSE 100 index

&1 0.116 0.100
P1 0.879 0.820
v 5 9

logL -2933 -2681 -2595 -2697
BL 1375 1375 6.72 9.01
K 28.1 3.20 3.57 21.1

Gennan Deutsche Mark

CA)

A
v

0.8960.902
4

-945.3
15.8

V 3 4
logL -1351 -1121 -945.3 -1105
BL 638 638 15.8 20.4
K 10.1 2.90 3.20 9.00

Japanese yen
al 0.086 0.045

logL
BL
K

0.939
6

-1879
30.0
3.30

/31
V

logL
BL
K

0.945

-1937
31.2
4.77

4
-1983

563
2.91

logL -2084 -1983 -1879 -1937
BL 563 563 30.0 31.2
K 5.29 2.91 3.30 4.77

The res!
EGARCH
where (h (
suggest thf
improve th
for both CI
latter. AId

in the squares. Second, they reduce the fitted value of K in the nonnal-
based model and increase the value of v in the Student t case. Both of
these facts indicate that the GARCH model has explained a part of the fat
tails in the distribution by a changing variance. However, I am impressed
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not by this result, but rather by the transpose of it. In the Nikkei 500
case, v still has to be under 4 for this model successfully to match up
with the data. The other cases are nearly as extreme. Consequently, in
tenDs of likelihood reduction, the use of the fat-tailed distribution is as
important as the use of GARCH processes in modelling the data. I think
this is disappointing, suggesting that GARCH models cannot deal with
the extremely large movements in financial markets, even though they
are good models of changing variance.

Table 1.4 Each column represents the empirical fit of a specific EGARCH model
to the denoted series. When the parameter estimate w is missing, this means
it is constrained to being zero. When V. the degrees of freedom parameter, is
missing, it is set to 00 - giving a normal distribution. BL denotes the Box-

Ljung stan:ric with 30 lags. K denotes the standardized fourth moment of the
transformed innovations. K should be around 3, even in the t-distribution case

I

I

The results of the GARCH models can be contrasted to the fit of the
EGARCH models for these data sets. The results given in Table lA,
where 01 denotes a moving average parameter added to equation (1.9),
suggest that the use of the signs of the observations can very significantly
improve the fit of the models. In this empirical work this seems to hold
for both currencies and equities, although the effect is stronger in the
latter. Although this is a standard result for equities (Nelson, 1991;

~
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Brock, Lakonishok and LeBaron, 1992; Poon and Taylor, 1992), it is
non-standard for currencies where the asymmetry effects are usually not

significant.

--
1.3 Stochastic volatility

Ine DaslC aJtemauve to AKcti-type moaellmg IS to allow a; to aepena
not on past observations, but on some unobserved components or latent
structure. The most popular of these parameter-driven stochastic volatility
models, from Taylor (1986), puts

and sc

Py; (s)
Yt = Ct exp(ht/2), ht+1 = 'Yo + 'Ylht + 17t,

Notice
This is
SVmo

The
logs. C

although the alternative parametrization Yt = E:t!3 exp(ht/2) and htH ==

,1 ht + TJt also has attractions. One interpretation for the latent ht is to
represent the "~andom and uneven flow of new information. which is very
difficult to model directly, into financial markets; this follows the work
of Clark (1973) and Tauchen and Pitts (1983).

For the moment E:t and TJt will be assumed independent of one another.
Gaussian white noise. Their variances will be I and CT~, respectively. Due
to the Gaussianity ofTJt, this model is called a log-normal SV model. Its
major properties are discussed in Taylor (1986; 1994). Broadly speaking
these properties are easy to derive, but estimation is substantially harder
than for the corresponding ARCH models.

a linear
log y~ '
and var
logs of
The aut.

1.3.1 Basic properties

As TIt is Gaussian, ht is a standard Gaussian autoregression. It will be
(strictly and covariance) stationary if 171 1< 1 with:

1.3.2 EJ

Themail
it is not ij
of Yt I
non-Gall
to perrot
likelihool

As ct is always stationary, Yt will be stationary if and only if ht is
stationary, for Yt is the product of two stationary processes. Using the
properties of the log-nonnal distribution, if r is even, all the moments
exist if ht is stationary and are given by:

E(yD = E(eDE {exp (iht) } (1.12)

= r!exp(~f.'h+r2(jV8)/(2"/2(r/2)!). (1.13)
Generali;

In econOI
seem to bt
that speci
sometime

All the odd moments are zero. Of some interest is the kurtosis:
E(yt)f(a;,)2 = 3exp(a~) ~ 3. This shows that the SV model has
fatter tails than the corresponding normal distribution.
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The dynamic properties of Yt are easy to find. First, ast is iid, Yt is
an MD and is WN if I ')'1 1< 1. The squares have the product moments
E(Y;YLs} = E{exp(ht + ht-s)}. As ht is a Gaussian AR(I),

( 22 ) -COY Yt , Yt-s - exp{2JLh + (1~ (1 + 'Yn} - {E(yl)}2

exp(2JLh + (1~){exp((1bi) -I}

and so (Taylor. 1986. pp. 74-75)

Py'f(s) = cov(y;yLs)fvar(y;) = exp(C1~"(n -1 '" exp(C1~) -1 s
3 exp( C1~) - 1 - 3 exp( C1~) - 1 "(1'

(1.14)

Notice thaN['Yl < 0, Py~(s) can be negative, unlike the ARCH models.
This is the autocorrelation function of an ARMA(1,l) process. Thus the
SV model behaves in a manner similar to the GARCH(l,l) model.

The dynamic properties of the SV model can also be revealed by using

logs. Clearly

logy~ = ht + logE~, ht+1 = 'Yo + 'Ylht + 1/t, (1.15)

a linear process, which adds the iid logc~ to the AR(I) ht. As a result
log y; "" ARMA(1,l). If Ct is normal then logc~ has a mean of -1.27

and variance 4.93. It has a very long left-hand tail, caused by taking the
logs of very small numbers (see Davidian and Carroll, 1987, p. 1088).
The autocorrelation function for log y; is

7: (1.16)Piog!l~(s) = (1 + 4.93/a~)'

1.3.2 Estimation

The main difficulty of using SV models is that, unlike with ARCH models,
it is not immediately clear how to evaluate the likelihood: the distribution
of Yt I Yi-I is specified implicitly rather than explicitly. Like most
non-Gaussian parameter-driven models, there are many different ways
to perform estimation. Some involve estimating or approximating the
likelihood, others use method-of-moments procedures.

Generalized method-oj-moments (GMM)

In econometrics method-of-moments procedures are very popular. There
seem to be two main explanations for this: economic theory often specifies
that specific variables are uncorrelated and some econometricans are
sometimes reluctant to make distributional assumptions. In the SV case
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expect GMM to work poorly.
. Parameter estimates are not invariant. By this I mean that if the

model is reparametrized as T = j(O), then T ¥- j(9). This seems
important as the direct parameters in the model, 1'0, 1'1 and a~, are not
fundamentally more interesting than other possible parametrizations.

~

. The squares y'f behave like an ARMA(l,I) model. Equation (1.14)
indicates that if O'~ is small (as we will find in practice), Py~(s) will
be small but positive for many s. Even if 71 is close to unitY. this will-
hold. This implies that for many series, S will have to be very high to
capture the low correlation/persistence in the volatility process.

. GMM does not deliver an estimate (filtered or smoothed) of ht.
Consequently a second form of estimation will be required to carry
out that tisk.

. Conventional tests of the time series model, based on one-step-ahead
prediction densities, are not available after the fitting of the model.

Quasi-likelihood estimation

A rather simpler approach can be based on (1.15). As logc~ '"

i.i.d., log y~ can be written as a non-Gaussian but linear state space.
Consequently the Kalman filter, given in the Appendix, can be used
to provide the best linear unbiased estimator of ht given Y/':l' where
y;2 = (Iogyr,... ,logy~)'. Further, the smoother gives the best linear
estimator given y,p .
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Figure 1.2 QML and Bayes estimate of Sf model. QML on top, Bayes in bottom
row. Uses T = 500, T = 1000, T = 2000. T goes from left to right. The Y-axis
is fT" and on X-axis 1'1. The crossing lines drawn on the graphs indicate the true
parameter values.

of the quasi-maximum likelihood (QML) method to simulations from
the SV model with O"~ = 0.1, 'Yo = 0.0, 'Yl = 0.9 for T = 500,1000
and 2000, focusing on 0"" and 'Yl. Notice the strong negative correlation
between the two estimators. Later we will compare the properties of this
estimator with two other likelihood suggestions. Recently, following a
suggestion of Fuller (1996, Example 9.3.2), Breidt and Carriquiry (1995)
have investigated modifying the log yl transformation, to reduce the
sensitivity of the estimation procedure to small values of Yt. Their work
improves the small-sample performance of the QML estimator.
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suggested by Durbin (1992). The approach is based on some recent
work by Whittle (1991), Fahrmeir (1992) and particularly Durbin and
Koopman (1992) and Durbin (1996).

The mode of h I YT is the mode of the joint density of h, YT. The log
of this density, setting 1'0 = o and hI = o for simplicity, is:

T
1"" 2 ( ) 2 21= -2" L {Yt exp -ht + ht + (htH - I'lht) /er,.,}. (1.18)

t=l

Then 81/ 8ht is nonlinear in h and so we have to resort to solving
8l/8h = o iteratively. The standard way of carrying this out (ignoring
the Gaussian part due to the transition equation) is to start off the kth
. . h(k) h (k) d .IteratIOn at I ,..., T an WrIte

",
810gf(Ytlht) - 810gf(Ytlht) 8exp(-ht)8ht - 8exp( -ht) 8ht

= {y~ - exp(ht)} exp( -ht)/2

~ {Y~ - exp (hik»)

- (ht - hik») exp (hik»)} exp (-hik») /2.

This linearized derivative has the same fonn as a Gaussian measurement
model, with

Y~ - exp (hik») - hik) exp (hik») = exp (hik») ht + Ct,Ct

'" N [O,2exp (hik»)].

.

f

Hence the Kalman filter and analytic smoother (see the Appendix for
details), applied to this model, solves the linearized version of the
approximation to alj8ht = O. Repeated uses of this approximation
will converge to the joint mode as (1.18) is concave in ht.

Importance sampling

A more direct way of performing inference is to compute the likelihood.
integrating out the latent ht process:

f(Yl,".,YT) = J f(Yl,...,YT I h)f(h)dh. (1.19)

As this integral has no closed form it has to be computed numerically,
integrating over T x dim(ht) dimensional space, which is a difficult
task. One approach to this problem is to use Monte Carlo integration,
say by drawing from the unconditional distribution of h, with the
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(1.20) ,

there eJ

Jth repl1catIon beIng wntten as hJ, and computIng the estImate
(11M) E~l !(Yl,. .., YT I hi). This is likely to be a very poor estimate,
even with very large M. Consequently it will be vital to use an importance
sampling device (see Ripley, 1987, p. 122) to improve its accuracy. This
rewrites (1.19) as we cou

. probabi
Jacql

a valid
as we c;
approxiJ
h; with

f(y) = J f(y I h)f(h) g(h I y)dh,
g(h I y)

where it is easy to draw from some convenient g(h I y). Replications
from this density will be written as hi, giving a new estimate,

M .. .
(1/M) l:i=l f(y I h')f(h')/g(h' I y). In some very impressive work,
Danielsson and Richard (1993) and Danielsson (1994) have designed 9
functions which recursively improve (or accelerate) their performance,
converging towards the optimal g.. The details wilI not be dealt with here
as they are quite involved even for the simplest model.

mil

Note thf

(1.20) is

governs
be close

Jacquier,
distributi
and a VaT

In my
the Jacqu

simpler VI

algorithm
then log J

13~ Mnr/mv rhnin Mnnt.. rnrln

Although importance sampling shows promise, it is likely to become
less useful as T becomes large or dim(ht) increases beyond 1. For such
difficult problems a natural approach is one based on Markov chain Monte
Carlo (MCMC). MCMC will be used to produce draws from f(h I y)
and sometimes, if a Bayesian viewpoint is taken, the posterior on the
parameters () I y. For the moment we will focus on the first of these two

targets.
Early work on using MCMC for SV models focused on single-

move algorithms, drawing ht individually, ideally from its conditional
distribution ht I h\t, y, where the notation h\t means all elements of h
except ht. However, a difficulty with this is that although

log

f(ht I h\t, y) = f(ht I ht-l,ht+l> Yt)

oc f(Yt I ht)f(htH I ht)f(ht I ht-d, (1.20)

has an apparently simple form, the constant of proportionality is
unknown. As a result it seemed difficult to sample directly from (1.20).
Shephard (1993) used a random walk Metropolis algorithm to overcome
this problem. A much better approach is suggested in Jacquier, Polson and
Rossi (1994), building on the work of Carlin, Polson and Stoffer (1992).

is a bound
an accept!
version of

Reiertinn Metmnnli.f ILt=h

Jacquier, Polson and Rossi (1994) suggest using a Metropolis algorithm
built around an accept/reject kernel, which uses an approximation to

Hence we

N(J.Li,an
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!
mputing the estimate (1.20) which is easy to simulate from, written as g(ht I h\t, y). Then if Ibe a very poor estimate, there exists a c such that .

taltouseanimportance f( h I h ) < (h Ih ) U h (121). Th. t \t, Y - cg t \t, Y, v t, .Jrove its accuracy. is
. we could sample from f by drawing from 9 and accepting this with

probability f(ht I h\t,Y) /{g(ht I h\t,Y)c}.
y)dh, Jacquier, Polson and Rossi (1994) argued that it was difficult to find

a valid 9 satisfying (1.21) for all ht, but that this is not so important
g(h I y). Replications as we can use a 9 inside a Metropolis algorithm which overcomes this
ving a new estimate, approximation. Their proposal takes on the form of moving from ht to . '
: very impressive work, h; with probability , ~.

(1994) ~ave designed 9 . [ f({1.; I h\t, y) rnin{f(ht I h\t, y), cg(ht I h\t, y)} ] ii, -ate) their performance, mm 1,. . * * .
ill not be dealt with here f(ht I h\t,Y) mm{f(ht I h\t,y),cg(ht I h\t,Y)} I
node!. Note that our lack of knowledge of the constant of proportionality in Ii

(1.20) is now irrelevant as it cancels in this expression. The choice of 9 i
governs how successful this algorithm will be. If it is close to f, c can I

be close to 1 and the algorithm will almost always accept the moves.
, it is likely to become J~cq~ier: Polson and. Rossi (19~4). su~gest using an inverse gamma . I

. i
.ases beyond 1. For such distributIon to approximate the distrIbutIon of exp(ht) I ht-i, htH,Yt ; ~

Ion Markov chain Monte and a variety of ad hoc rules for selecting c. .1. I:

ce draws from f(h I y) In my discussion of single-move MCMC I am going to avoid using !,H
en, the posterior on the the Jacquier, Polson and Rossi (1994) method as I think there are now::ron the first of these two simpler ways of proceeding. One approach is to devise an accept/reject ! . t

algorithm based around the prior. We write htlht-l, htH '" N(h;, on, . i.! Ii
leIs focused on single- then log f(htIYt, ht-l, htH) = const + log f* where I'i

illy from its conditional * 1 1 * 2 1 21. !.means all elements of h log f = -"2ht - 2a2 (ht - ht) -"2 {Yt exp( -ht)} (1.22) " :

t .
. although 1 1 2 I~ --ht - -,;(ht - h;) (1.23) I
It) 2 2at !

ht)f(ht I ht-.d, ~1.2~) - (Y!) {exp(-h;)(1 + h;) - htexp(-h;)} (1.24) i:

1t of proportIonalIty is *
lple directly from (1.20). = logy (1.25)

is algorithm to overcome is a bounding function. Hence it is a trivial matter to draw from fusing
ed in Jacquier, Polson and an accept/reject algorithm. The proposal, drawn from the normalized
olson and Stoffer (1992). version of g*, a normal distribution, has mean and variance

2
J.Lt = h; + a; [y~ exp( -h;) -1] and a~ = a~/ (1 + 'Y?) .

g a Metropolis algorithm Hence we can sample from ht I ht-l, htH, Yt by proposing ht '"

ses an approximation to N (J.L; , a;) and accepting with probability f* / g*. This idea, suggested
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Figure 1.3 Signal extraction of SV model using single-move Gibbs. Indicates
rate of convergence. Left picture is 11 = 0.9 case. Middle gives 11 = 0.99.
Correlograms: Top has 11 = 0.9, bottom has 11 = 0.99. In the first two graphs
the X-axis is t, and the Y-axis is an estimate of E( ht IYT).

A common solution in the MCMC literature to the problem of elements
of h I y being highly correlated is to avoid sampling single elements of
ht I h\t, y, by working with blocks (see Smith and Roberts, 1993, p. 8;
Liu, Wong and Kong, 1994). In the context of time series models, early
work on designing methods to sample blocks includes that by Carter and
Kolm (1994) and Fruhwirth-Schnatter(1994) which has now been refined
by de Jong and Shephard (1995). This work can be used to analyse the
SV model by using the linear state-space representation:

logy; = ht + loge;, et '" NID(O, 1). (1.26)

The idea, suggested in Shephard (1994b) and later used by Carter and
Kohn (1994) and Mahieu and SchObnan (1994), is to approximate the
log 10; distribution by a mixture of normals so that:

1_,-_21_.. 1\TI.. _2\ 1 ..

Multimove samplers

" "",..,- .

.~j
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Here the Wt '" I.I.d., wIth Pr(Wt = j) = 'Trj. Kim and Shephard (1994)
selected /.Lj, a} , 'Tr j for j = 1,..., 7 to match up the moments of this

approximation to the truth (and various other features of the log X~

distribution).
The advantage of this representation of the model is that, conditionally

on w, the state space (1.26) is now Gaussian. !tis possible to draw hi YT,
W directly using the Gaussian simulation smoother given in the Appendix.
Likewise, using (1.27) it is easy to draw W I YT, h using uniform random
numbers. This offers the possible multimove Gibbs sampler:

1. Initialize w.

2. Draw h* from f(h I YT,W).

3. Draw w* from f(w fYT, h*)".

4. Write,w=w*;goto2.

This sampler avoids the correlation in the h process. We might expect
h I YT and w I YT to be less correlated, allowing rapid convergence.
Figure 1.4 shows that this hope is justified, for it repeats the experiment
of Figure 1.3 but now uses a multimove sampler. Convergence to the
equilibrium distribution appears more rapid, while there is substantially
less correlation in the sampler once equilibrium is obtained.

Although the multimoving can be carried out by transforming the
model and using a mixture representation, it could be argued that this
is only an approximation. It is a challenging problem to come up with
multimove algorithms without transforming the model since a fast and,
more importantly, reliable sampler will improve the usefulness of these
MCMC techniques.

Bayesian estimation

The ability to sample from h I YT means parameter estimation
is reasonably straightforward. The simplest approach to state is the
Bayesian one: it assumes a known prior, f (B), for B = (T~, -rd. Then the
multimove sample, for example, becomes, when we write g(h I YT, B)
to denote a MCMC update using either a Gibbs sampler or multimove

sampler:

1. Initialize (}.

Draw h* from g(h I YT,O).

Draw 0* from f(O I h*),

Write 0 = O*j go to 2.

2.

3.

4.
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Figure 1.4 Signal extraction of SV model using multimove Gibbs. Indicates rate
of convergence. Left picture is ')'1 = 0.9 case. Middle gives ')'1 = 0.99. The right
hand picture indicates serial correlation in the sampler. The correloRram on the
top corresponds to the low-persistence case, the one on the bottom represents the
high-persistence case. In the first two graphs the X-axis is t, and the Y-axis is an
estimate of EhtlYTo Truth denotes the actual value of Eht!yT.

I'

As the likelihood f (h * I 0) is Gaussian it is tempting to use the standard

normal-inverse gamma conjugate prior for 0, as do Jacquier, Polson
and Rossi (1994). However, I think there are advantages in enforcing
the stationarity conditions on 'Yl, and hence on the h process, which a
Gaussian prior on 'Yl will not achieve. It can be carried out by dividing
step 3 into two parts:

parameter estimation
Iproach to state is the
,() = (O"~,'Yd. Then the
I we write g(h I Yr, ())
sampler or multimove

The likelihood f(h I 0) suggests a simple non-infonnative conjugate
prior for (7~ I h, /1 yielding the posterior

t
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where x-;< denotes an inverse chi-squared distribution. The prior for
11 I h, u~ is harder due to the non-standard likelihood. However, as
f(h I (J) is concave, when f(,1) is log-concave the Wild and Gilks (1993)
method can be used to draw from 11 I h, u~. A simple example of such a
prior is the resealed beta distribution, with E( 11) = {2a/(a + .B)} - 1.
In the analysis I give below, I will set a = 20, .0 = 3/2 so that the prior

mean is 0.86 and the standard deviation 0.11.
One way of thinking of this approach is to regard it as an empirical

Bayes procedure, reporting the mean of the posterior distributions as an
estimator of (J. This is the approach followed by Jacquier, Polson and
Rossi (1994) who show empirical Bayes outperforms QML and GMM
in the SV case. Here we confirm those results by repeating the QML
experiments reported in section 1.3.2. Again the results are given in
Figure 1.2. The gains are very substantial, even for quite large samples.

Simulated EM algorithm

Although the Bayesian approach is simple to state and computationally
attractive, it requires the elicitation of a prior. This can be avoided, at
some cost, by using MCMC techniques inside a simulated EM algorithm.
This was suggested for the SV model by Kim and Shephard (1994). An
excellent introduction to the statistical background for this procedure is
given in Qian and Titterington (1991); see also the more recent work
by Chan and Ledolter (1995). Earlier work on this subject includes
Bresnahan (1981), Wei and Tanner (1990) and Ruud (1991).

The EM algorithm works with the mixture-of-normals representation
..i"..n ",h"".. mh..r..." i~ th.. Tnivtnr.. nn h..r Th..n-

Ina FfV~. R\ = Ina FfV~ I "'. R\ ~ Ina P..f",\ - Ina P..f", I V~. R\
~.,£., ~.,£,., ~" -~,.£"

As YT I w is a Gaussian state space, its log-density can be evaluated
using the Kalman filter

As f(w) is parameter-free, the next step of the EM algorithm is found
as:

O(i+1) = argm;xL: logf(YT I wjO)Pr(w I YTjO(i».
w

As Pr(w I YTi O(i») is unknown, it is not possible to solve this
maximization directly. It is replaced by an estimate, using simulations
from Pr(w I YTi O(i») drawn using MCMC techniques. Consequently,

'~.:?~;i'
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Figure 1.5 Simulating EM estimate of SV model. Uses T = 500, T = 1000,
T = 2000 and M = 1, M = 3, M = 10. T goes from right to left. M = 1 in
the top row. The Y-axis is iJ" and the X-axis 'yI. The crossing lines drawn on the
graphs indicate the true parameter values.
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f-normals representation
ten

-logPr(w I YT;O).

the function which is numerically maximized is (1/ M) E~llog !(YT I
Wi; 8). As M -t 00 so this algorithm converges to the EM algorithm.
It may be possible to construct an asymptotic theory for the resulting
iterated estimator even if M is finite, using the simulated scores argument
of Hajivassiliou and McFadden (1990). .

There is some hope that this EM algorithm will converge very quickly
to the ML estimator since the 'missing' data w is not very informative
about 8. The results, using M = 1,3,10 and employing 10 steps of the
EM algorithm, are reported in Figure 1.5. Kim and Shephard (1994) have
found little gain in taking M much bigger than 10, although for more
complicated models the situation may be different.

ten

~

tensity can be evaluated

: EM algorithm is found

I
Pr(w I YTi e(i»).

Diagnostic checking

possible to solve this
mate, using simulations

chniques. Consequently,

Although there is now a vast literature on fitting SV models, there is
barely a word on checking them formally; a notable exception to this is
the paper by Gallant, Hsieh and Tauchen (1994). This is an important
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aenclency. lne l.JiVlL approacn oIlers some pOlenuiU to ClOse WIS nolt:,

for the Kalman filter delivers quasi-innovations Vt, which should be
uncorrelated (not independent) and have mean squared error Ft. This
allows a correlogram, and consequently a Box-Ljung statistic, to be
constructed out of vtI VF't. However, the distribution of the quasi-
innovations is unknowable.

It seems natural to want to work with the true innovations, based on
the one-step-ahead forecast's distribution. At first sight MCMC should
be able to deliver this distribution, just.as it gave us ht I YT. However,
although MCMC methods are good at smoothing, finding the filtering
density ht I Yt-l is a more difficult task. The following multimove
samoler will work:

1. Initialize w(t). ~,

2. Sample h*(t+l) from !(h(t+1) I Yt, w(t»)
3. Sample w*(t) from !(w(t) I Yt, h*(t»)
" """:.- ...It) - ...*It). -~ .~ .," ,.u._~ -~ 'c '

Here r(t) generically denotes (rit . . . , rt). This MCMC will allow us to
sample from htH I Yt and so estimate:

These distribution functions or probabilities are vital for they provide
the natural analogue of the Gaussian innovations from a time series
model. The first reference I know to them is Smith (1985) who noted
that it is possible to map them into any convenient distribution to allow
easy diagnostic checking. Examples of their use will be given later in
section 1.3.5.

A significant difficulty with the MCMC apgroach is that if T is large it
will be computationally expensive. The diagnostic simulation is O(T2),
which is unsatisfactory. Some work on avoiding this has been carried out
by Berzuini et at. (1994) and Geweke (1994). More work needs to be
carried out on this important topic.

1.3.4 Extensions of SV

The basic log-normal SV model can be generalized in a number of
directions. A natural framework might be based on adapting the Gaussian
state space so that

Yt = E:t exp{z~ht/2}, ht+1 = Ttht + 1]t, 1]t N N(O, Ht).

~~

".,~",-:,""~:::;'. '"..'..",~' T'." .:; \
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A straightforward generalization might allow htH to follow a more
complicated ARMA process. Perhaps more usefully, inspiration for new
components can be found in the linear models of Harrison, West and
Harvey. A simple example would be

Zt = ( ~ ), htH = (~ ~) ht + ~t,

where

~t - N { 0, (~~ ~)}.

Now h2tH is a random walk, allowing the permanent level of the
volatility to change slowly. This is analogous to the Engle and Lee (1992)
decomposition "Of shocks into permanent and transitory. A model along
the same lines has been suggested by Harvey and Shephard (1993a)
and Carter and Kohn (1993), who allow (ignoring the cyclical AR{I)

component):

Zt = ( ~ ), Tt = (~ ~), Ht = (~ ~;).
This uses the Kitagawa and Gersch (1984) 'smooth trend' model in the
SV context, which in turn is close to putting a cubic spline through the
data. This may provide a good summary of historical levels of volatility,
but it could be poor as a vehicle for forecasting as confidence intervals
for forecasted hT+s may grow very quickly with s. Another suggestion
is to allow ht to be a fractional process, giving the SV model long
memory. This has been discussed by Harvey (1993a) and Breidt, Crato
and de Lima (1993).
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Asymmetric response

One motivation for the EGARCH model introduced by Nelson (1991)
was to capture the non-symmetric response of the condition to shocks. A
similar feature can be modelled using an SV model by allowing ct and
TIt to be correlated. Notice Ct is correlated with TIt, not TIt-I. The former
model is an MD, the latter is not. If Ct and TIt are negatively correlated,
and if Ct > 0, then Yt > 0 and htH is likely to fall. Hence, a large y'f's
effect on the estimated ht+l will be accentuated by a negative sign on Yt,
while its effect will be partially ameliorated by a positive sign.

This correlation between Ct and TIt was suggested by Hull and
White (1987) and estimated using GMM by Melino and Turnbull (1990)
and Scott (1991). Asimple quasi-likelihood method has been proposed
recently by Harvey and Shephard (1993b). Jacquier, Polson and
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Table 1.5 Empirical fits of SV models. BL denotes the Box-Ljung statistic
with 30 lags. K denotes the standardized fourth moment. ARCH denotes the
likelihood of the best normal ARCH models. The ARCH model is initialized
using u3 = 01.0/(1 - 01.1 - f3d. The SV model is initialized by the unconditional
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..Table 1.6 Empirical fits of SV models. BL denotes the Box-Ljung statistic
with 30 lags. K denotes the standardized fourth moment. ARCH denotes the
likelihood of the best normal ARCH models. The ARCH model is initialized
using 0"5 = 0.0/(1 - 0.1 - {31). The SV model is initialized by the unconditional
distribution of ho. CI denotes a 95% Bayesian confidence interval

SV Nikkei
SIEM Bayes CI

1'1 0.93~ 0.936 [0.915,0.968]
u., 0.424 0.426 [0.167,0.261]
/3 -0.363 -0.359 [ -0.631, -0.260]

log L -2902
BL 88.3
"K 5.51

ARCH
al + /31 0.989 0.978

v 4
log L -3036 -2853
BL 48.4 34.3
K 13.5 3.00
SV DM

SIEM Bayes CI
1'1 0.951 0.947 [0.924,0.967]
u., 0.314 0.333 [0.276,0.390]
/3 -2.08 -2.09 [-2.36,-1.81]

log L -1007
BL 28.1
K 4.08

ARCH
al + /31 0.986 0.998

v 4
log L -1127 -968
BL 19.2 31
K 9.07 2.96

.

.I
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915,0.968]
167,0.261]
631,-0.260]

Figure 1.6 Estimated posterior densities for /1, U'I'j and /3 using the multimove
Gibbs sampler. Top picture corresponds to the FTSE 100 case, then Nikkei 500,
DM and yen.

.924, 0.967]

.276,0.390]
2.36,-1.81]

of a fat-tailed distribution on either Et or, the way I would prefer, on TIt
would improve the fit of the SV model. Finally, fitting more complicated
SV models, such as ones based on an ARMA( I , I) ht process, could be
empirically more successful for some assets.

An interesting stylized fact to emerge from this table is that the
estimated '/'1 parameter is typically lower for SV models than the
corresponding Ct1 + {J1 for GARCH. This fact has yet to be explained.

1.4 Multivariate models

Most of macro-economics and finance is about how variables interact,
which, for multivariate volatility models, means it is important to capture
changing cross-covariance patterns. Multivariate modelling of means is
difficult and rather new: constructing multivariate models of covariance
is much harder, dogged by extreme problems of lack of parsimony.

1.4.1 Multivariate ARCH

Multivariate ARCH models have existed nearly as long as the ARCH
model itself. Kraft and Engle (1982) introduced the basic model which

~~

. .

41

IX].. ~ u

IDJ

IX].. ~ ..,

flu

'i,:iWi

':';:J
"""'

",:::;~;;,,', ,::;;,

, ',~.

", :~

,~

i
;j



I

1

I

~~>' [

j

i

1

42 STATISTICAL ASPECTS OF ARCH AND STOCHASTIC VOLATILITY

(here translated into a GARCH model) has for an N x 1 series

Yt I ¥t-l '" N(O, flt),

where

vech(flt) = ao + al vech(Yt-lY~-I) + /31 vech(flt-l),

MULTIV,

asset ab

compon
structurl

Here h
Then

where

where vech(.) denotes the column stacking operator of the lower portion
of a symmetric matrix. Deceptively complicated, based on the expansion
of the unique elements of nt, this model has {N(N + 1)/2} + 2{ N(N +
1)/2J2 unknown parameters (N = 5 delivers 465 parameters). It is
difficult to state the conditions needed for this model to ensure that Ot
stays positive definite (see Engle and Kroner, 1995).

The multivariate model is virtually useless due to its lack of parsimony.
The problem has encouraged a cottage industry of researchers who
search for plausible constraints to place on this cumbersome model.
An important example is Bollerslev, Engle and Wooldridge (1988), who
constrain a1 and /31 to be diagonal.

The 1JI t

The N x
This j

assets in
from Ro
jth elem
f;to Hen
risk pren

Unfol'1
risk pre)

premium
in a fom

consump
Ng and B
returns

Constant correlation matrix

One of the more empirically successful multivariate ARCH models is the
constant correlation model of Bollerslev (1990), who allows the (i,j)th
element of nt, ntij, to be

l1tij = Pijh~{/h~f;, where hiit = O:Oi + O:liY~t-l + f31ihiit-l.

This highly constrained model implies that corr(Yit,Yjt I Yt-l) is
constant over time. This is often found to be empirically reasonable
(see Baillie and Bollerslev, 1990), but it does lack the flexibility required
to address some interesting theoretical finance issues which relate to the
importance of changing correlation. where r

delivers 1
sections.

From 1
model, a
observati
ARCH a

1.4.2 Multivariate asset returns

The above multivariate models are either extremely unparsimonious or
quite tightly constrained. It seems useful to see if we can look to economic
theory to guide us in constructing some more useful models. To start with,
I will follow King, Sentana and Wadhwani (1994) and work with an N x 1
series of excess returns (over a riskless interest rate),

will tend

1.4.3 Fa(

The basis

Yt =

Yt = /.Lt + 1Jt.

Here, given some common information set Zt (perhaps lagged
observations or some latent process), ILt is the expected return of the
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asset above a safe interest rate, and TIt is the corresponding unexpected
component. The covariance of returns will be modelled using a factor
structure (see Bartholomew, 1987, pp. 8-9) for TIt. with

K
TIt = L bj!;t + Vt = Bft + Vt.

j=1

Here ftt,..., iKt and Vt will be assumed independent of one another.
Then

var(Tlt I Zt) = BAtB' + Ilft,

where
var(fjt I Zt) = o-]t and At = diag(CT~t,..., CTkt).

..
The Ilft will'be assumed to be diagonal and sometimes time-invariant.
The N x (N - K) matrix of weights, B, will be called the factor loadings.

This framework can reveal that the covariance structure of the N
assets influences the returns I-tt by using the arbitrage pricing theory
from Ross (1976). It states that I-tt = B1I"t, where 1I"t is a vector whose

jth element is the risk premium of a portfolio made up entirely of factor
!;t. Hence the risk premium of an asset is a linear combination of the
risk premiums on the factors.

Unfortunately the Ross (1976) theory does not tell us how to measure
risk premiums, although most finance theorists would put the risk
premiums 1I"t as linear combinations of At. This has been justified
in a formal setting by Hansen and Singleton (1983) in their work on
consumption-based asset pricing theory; see also the Appendix of Engle,
Ng and Rothschild (1990). In either case this delivers the model for asset
returns

Yt = BAtT + Bit + Vt, (1.28)

where T is a K x 1 vector of constants. In the univariate model this
delivers the ARCH-M and SV-M models outlined in the previous two
sections.

From the econometrician's viewpoint (1.28) is a rather incomplete
model, as Zt is unspecified. However, it can be completed by using
observation-driven or parameter-driven processes, leading to factor
ARCH and SV models. In this section the risk premium term BAtT
will tend to be dropped for expositional reasons.

Yt=Bft+E:t, andJit IYt-1"'N(0,CT~t), i=l,...,K,
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MULTIVARIATE MODELS

1.4.5 Multivariate SV models

Some multivariate SV models are easy to state. Harvey, Ruiz and
Shephard (1994) used quasi-likelihood Kalman filtering techniques on

Yit = Cit exp(hit/2), i = 1, .. . , N,

where
Ct = (Clt"",cNT)' "'NID(O,Ee),

in which Ee is a correlation'matrix (this model can be viewed as a
generalization of the discounted dynamic models of Quintana and West,
1987). They allow ht = (hit,..., hNT)' to follow a multivariate random
walk, although more complicated linear dynamics could be handled
(Harvey, 1989"fhapter 8). The approach again relies on linearizing (this
time with loss of information) by writing 10gY;t = hit + logc;t. The
components of the vector of logc;t are lid, all with means -1.2704, and
a covariance matrix which is a known function of Ee (Harvey, Ruiz and

Shephard, 1994, p. 251). Consequently Ee and the parameters indexing
the dynamics of ht can be estimated.

There are two basic points about this model. First, it allows common
trends and cycles in volatility by placing reduced rank constraints on ht,
paralleling the work of Harvey and Stock (1988) on the levels of income
and consumption. Second, the model is one of changing variances,
rather than changing correlation, similar to the Bollerslev (1990) model
of constant conditional correlation. Consequently, this model can be

empirically successful, but it is of limited interest since it cannot model
some theoretically important features of the data. Other work on this
model includes Mahieu and Schotman (1994), while Jacquier, Polson
and Rossi (1995) look at using an MCMC sampler on this model.

Perhaps a more attractive multivariate SV model can be built out of
factors. The simplest one-factor model puts

Yt = 13ft + Wt, Wt '" NID(O, Ew)
ft = Ct exp(ht/2), where htH = 'Ylht + 17t, 17t '" NID(o, a~).

Here Wt obscures the scaled univariate SV model it. Typically Ew will
be assnmp.rI rli..ann..] n..rh"n~ rI";"A~ J :-..:1 '--. "'" - - ~ -, T.'
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Although this is an approximation, based on the expectation of a function
being approximately the function of the expectation, Noh, Engle and
Kane (1994) provide some evidence that this is a sufficiently good
improvement over existing technology to provide a trading profit on
at-the-money (where K = YT) Standard and Poor's 500 index European

options. Further, from a theoretical viewpoint Cox and Rubinstein (1985,
p. 218) show that the Black-Scholes pricing equation is essentially a
linear function of the standard deviation around at-the-money prices.
Hence the plug-in approximation is likely to be good for at-the-money
options, although at other prices it could be poor.

1.5.3 Applying volatility models

Even though it is not possible to predict the way the market is going to
move, it may be possible to use the volatility models to trade profitably
in the options market. Suppose we believe that in the next v periods the
market will be more volatile than do other traders. We should buy both
call and put options: if the market goes down we would exercise the put
option, if it goes up the call option would be used. Thus this straddle is

-

~~~
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of value in volatile times. If the opposite is true, we can sell a straddle.
This strategy of using straddles potentially allows us economically to

value the use of the various volatility models: implied volatility, ARCH
and stochastic volatility. The first two of these are compared in Noh,
Engle and Kane (1994). I have not seen any work on using straddles to
value SV models. Of course in practice this type of trading, particularly
the selling of straddles, can be very risky; see the report in the Financial
TImes on the collapse ofBari~gs Bank by Martin (1995).

1.6 Continuous-time models

Continuous-time models playa crucial role in finance and some economic
theory, often providing very simple and powerful solutions to difficult
problems. An example of this is the Hull and White (1987) generalization
of the Black-Scholes option pricing formula to allow the instantaneous
variance of returns to change over time. Two obvious questions are:

~

. Should we use continuous-time (tick-by-tick) data to estimate
continuous- and discrete-time models?

. How do we use daily or weekly data to estimate continuous-time
models?

I think the answer to the first of these is probably no. The reason for this
is that, as with continuous-time models in other fields, continuous-time
models are grossly untrue over short periods of time due to institutional
factors. An example of this is the large seasonal patterns of volatility
which occur during the day (see Foster and Viswanathan, 1990), due to
the opening, lunch hour and closing of various markets around the world.
These types of feature introduce high-dimensional unstable nuisance
features into the modelling process. As they are of little interest, it seems
sensible to abstract from them.

This criticism of the use of continuous-time data suggests that
the highly impressive work of Nelson (1992; 1995) and Nelson and
Foster (1994), who have used the continuous record asymptotics, may
not be a particularly fruitful approach to the direct estimation of
models (although the asymptotics are useful at indicating the link
between different models). This is because that work relies on building
ARCH-type models by studying approximations (for example in Nelson,
1990b; 1995) of continuous-time SV models as the time gap between
observations falls in a particular way. Thus, at least in theory, there is a
belief that the continuous-time data could be used to perform filtering
and smoothing.
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The second question is the subject of considerable research attention
at the moment which we will briefly discuss here.

1.6.1 Direct estimation

There is little work on the direct estimation of continuous-time models
using discrete-time data. The reason for this is the nonlinear nature of the
volatility models which make the tools developed for linear models (see
Bergstrom, 1983; Harvey and Stock, 1985) not directly useful.

Recently there has been an upswing' of interest in using generalized
method of moments criteria to estimate continuous-time SV models.
Leading work on this topic includes that by Duffie and Singleton (1993)
and Ho, Perraudin and Sorensen (1993). Given the gross inefficiency
of GMM in discrete tirqe, it is doubtful that these approaches will be
particularly effective at d~aling with continuous-time models.

1.6.2 Indirect inference

A promising approach to using a discrete-time model to perform
inference on continuous models has been suggested by Smith (1993)
and elaborated by Gourieroux, Monfort and Renault (1993) and Gallant
and Tauchen (1995). Gourieroux, Monfort and Renault (1993) call this
procedure indirect inference.

The idea is to use an approximate model's objective function, Q(yj {3),
such as a likelihood or quasi-likelihood from a discrete-time model, as the
basis of inference for a fully parametric continuous-time model, indexed
by parameters (J, where the likelihood is difficult to calculate. We write

jJ = arg max Q(yj {3) and jJh(O) = arg max Q(Y"(O); {3)
~ ~

where yh(O) is the hth simulation using the continuous-time model with
the parameter O. Then we solve

0' = arg m:-x { /J - ~ t jjh(O) r 0-1 { /J - ~ t jjh(O) } ,

for some choice of r2. The asymptotic properties of 8 are studied in
Gourieroux, Monfort and Renault (1993).

A slight variant of this approach can be found in Gallant and
T"",...h.." (100,\ mhn mnrlr m;th

{ H } ' { H }~ 1 8Q -h ~ -1 1 8Q -h ~
9 = argm;x H ~ 8{3'(Y (9)j{3) E H ~ 8{3(Y (9)j{3) .

~
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.
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In the case wh~re the dimension of /3 equals that of (), this is equivalent
to solving for () the equation

1 H J::\
-,",vQ ~~ ~
H ~ 8{3 (y (8)j{3) = O.

Note that the data only playa role through 7J.

To illustrate this procedure we will first work with a toy example.
Suppose Yi '" N (fJ., 1), and that we use a correctly specified model. Then,
setting xf '" NID(O, 1) and writing () as the mean underestimation, the
indirect inference estimator becomes

jf = arg max {y - «() + x)} 2 ,
8

yielding (j = fl + x. The Gallant and Tauchen (1995) apPJ:oach yields the
same estimatot;- via .

8Q HT HTa = LL(Y~-Y) = TH(9-y)+ LLx~, wherey~ = 9+x~.
~ h=li=l h=li=l

This implies (f '" N (9, ~(1 + -if »). For more complicated problems (j
remains consistent for finite HasT -+ 00.

The indirect inference method can be used to estimate SV models using
an ARCH likelihood. One approach to estimating the continuous-time
SV models is to use a discrete-time GARCH(I,I) model as a template.
This is convenient as the GARCH model has an analytic likelihood. It is
also straightforward to simulate from the continuous-time SV model by
taking a very fine discrete-time approximation (e.g. split each day into
ten parts). This would give consistent estimation of the continuous-time
models. This agenda has recently been followed by Engle and Lee (1994).
The efficiency of these types of procedure compared to some likelihood-
based methods is still open to question.

Ii

1.7 Concluding remarks

I have tried to develop a balanced introduction to the current literature on
ARCH and SV models. The work on ARCH models is somewhat more
mature than the corresponding SV analysis, but both areas of research
are vibrant.

I think it is clear from my survey that the development of univariate
discrete-time ARCH is a thoroughly mined area. It would be surprising
if there were any really major contributions which could be made to
this subject. However, multivariate models are still in their infancy and
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atlt-l = Eo:tlYt-l andPtlt-l = MSE(O:tIYt-l), then the Kalman filter
computes these quantities recursively for t = 1,. . ., T,

atHlt = Ttatlt-l + KtVt, PtHlt = TtPtlt-lL~ + E'1t,
Vt = Yt - Zt~lt-l' Ft = ZtPtlt-lZ; + Eet,
Kt = TtPtlt-lZ;Ft-l, Lt = Tt - KtZt.

( 1.30)

A by-product of the filter are th~ innovations Vt, which are the one-step-
ahead forecast errors, and their corresponding mean squared errors, Ft.
Together they deliver the likelihood, such as (1.17).

1.8.3 Simulatioll smoother

Traditionally the posterior density of 0: given YT is called the smoothing
density. In the Gaussian case there are algorithms which compute the
mean and covariance terms of this highly multivariate distribution. I
call these algorithms analytic smoothers. More recently a number of
algorithms, labelled simulation smoothers, have been proposed for
drawing random numbers from o:IYT. This is useful in Gibbs sampling
problems. The first algorithms were proposed by Carter and Kohn (1994)
and Fruhwirth-Schnatter (1994). We exploit the approach of de Jong and
Shephard (1995), which is computationally simpler, more efficient and
avoids singularities. This requires that Ft-l , Vt and Kt be stored from the
run of the Kalman filter.

Setting rT = 0 and NT = 0, we run for t = T, . . . , 1
Ct = MtM£ - MtH£NtHtM£,
Tt-l = Z;~-lVt + L~Tt - L~NtHtM£C;l Kt,
Kt '" N(O, at),
Nt-l = Z~Ft-l Zt + L~NtLt + L~NtHtM~C;l MtH~NtLt,

(1.31)
st~ring the simulated MtUt as M:ut = MtH£rt + Kt. It will then be- the corresponding zero rows so that we

to be written. The key
1 of economic and time

;tion to continuous-time
appropriate econometric
Fast MCMC algorithms
good empirical model

.nivariate models. There

:tical finance provides a
t how to make inferences
going to be an extremely

issues of filtering and
~CH or SV models.

. NID(O, I),

~~~

",f'

~~

The end condition ifo is calculated by

Co =
ifo =

N(O, Co),PliO - PlIONoP1IO, 11:0

PilaTO + 11:0.

at+! = Ttat + fit, t = 0, .. . , T - 1. (1.32)
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