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CHAPTER 1

Statistical aspects of ARCH and
stochastic volatility
Neil Shephard

1.1 Introduction

Research into time series models of changing variance and covariance,
which I will collectively call volatility models, has exploded in the last
ten years. This activity has been driven by two major factors. First, out of
the growing realization that much of modern theoretical finance is related

to volatility has emerged the need to develop empirically reasonable-

models to test, apply and deepen this theoretical work. Second, volatility
models provide an excellent testing ground for the development of new
nonlinear and non-Gaussian time series techniques.

There is a large literature on volatility models, so this chapter cannot
be exhaustive. I hope rather to discuss some of the most important
ideas, focusing on the simplest forms of the techniques and models
used in the literature, referring the reader elsewhere for generalizations
and regularity conditions. To start, I will consider two motivations for
volatility models: empirical stylized facts and the pricing of contingent
assets. In section 1.4 I will look at multivariate models, which play an
important role in analysing the returns on a portfolio.

1.1.1 Empirical stylized facts

In most of this chapter I will work with two sets of financial time series.
The first is a bivariate daily exchange rate series of the Japanese yen and
the German Deutsche Mark measured against the pound sterling, which
runs from 1 January 1986 to 12 April 1994, yielding 2160 observations.
The second consists of the bivariate daily FTSE 100 and Nikkei 500
indexes, which are market indexes for the London and Tokyo equity
markets. These series run from 2 April 1986 to 6 May 1994, yielding
2113 daily observations.
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Figure 1.1 Summaries of the daily returns on four financial assets. From top to
bottom: yen, DM, Nikkei 500, FTSE 100, Summaries are: nonparametric density
estimate and normal approximation, time series of returns and correlogram of
the corresponding squares.

Throughout I will work with the compounded return on the series
ye = 100log(z:/zs—1) where z; is the value of the underlying asset.
Figure 1.1 displays some summaries of these two series. It gives a
density estimate (using default S-Plus options) of the unconditional
distribution of y, together with the corresponding normal approximation.
This suggests that y, is heavy-tailed. This is confirmed by Table 1.1,
which reports an estimate of the standardized fourth moments, In all but
the Japanese case they are extremely large.

There is little evidence of any obvious forms of non-symmetry in
the unconditional density. A correlogram of y; shows little activity and
$0 is not given in this figure; Figure 1.1 graphs the raw time series of
y:. Informally this picture suggests that there are periods of volatility
clustering: days of large movements are followed by days with the same
characteristics. This is confirmed by the use of a correlo gram on y7, and
the corresponding Box-Ljung statistic reported in Table 1.1 , which shows
significant correlations which exist at quite extended lag lengths. This
suggests that y? may follow a process close to an ARMAC(1,1), for simple
AR processes cannot easily combine the persistence in shocks with the
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Table 1.1 Summary statistics for the daily returns in Figure 1.1. BL denotes the
Box~Ljung statistic, computed using the squares, with 30 lags. It should be around

[y

R T 30 if there is no serial dependence in the squares. K denotes the standardized
T — . fourth moment of the y:. K should be around 3 under conditions of normality
BL K
Japanese yen 563 5.29
_ll_nvx......vlm_;._.. pstitlie German Deutsche Mark 638  36.2
- i Nikkei 500 index 828 36.2
| FTSE 100 index 1375 28.1

|
: .| '|' : : low correlation. Finally, there is some evidence that the exchange rates
R and equity markets each share periods of high volatility, big movements
I in one currency being matched by large changes in another. This suggests
|l that multivariate models will be important.
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e & Reasons for changing volatility
n four financial assets. From top to It would be convenient to have an explanation for changing levels of
mmaries are: nonparametric density volatility. One approach would be to assume that price changes occur
eries of returns and correlogram of as the result of a random number of intra-daily price movements,

responding to information arrivals. Hence y; = ) .+, i, Where z;; are
independently and identically distributed (i.i.d.) and n; is some Poisson
process. This type of model has a long history, going back to the work
of Clark (1973). In this paper the n; is assumed to be independent over
time, which means y; would inherit this characteristic. It is a trivial
matter to allow n, to be time-dependent, which would lead to volatility
s options) of the unconditional clustering, althoung the resulting econometrics becomes rather involved
:sponding normal approximation. t (see Taucheq and P’fts’ 1.983)- . ) ) S
This is confirmed by Table 1.1, The more interesting literature in econometric terms is that which ties
this information arrival interpretation into a model which also explains.
volume. The joint models of volume (see also Engle and Russell, 1994)
and volatility are the focus of Gallant, Hsieh and Tauchen (1991), who
use a reduced-form model, and of Andersen (1995). This is an interesting,
but underdeveloped, area.
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or derivative. Good introductions to the literature on this topic are given
in Ingersoll (1987) and Hull (1993). A primary example of a contingent
asset is an option, which allows the option owner the ability, but not the
obligation, to trade the underlying asset at a given price in the future.
The best-known example of this is the European call option whose owner
can buy the underlying asset at the fixed price K, at the expiry date
T + v. An example of K is where it equals S(T), today’s price; where
the dependence of S on time is now shown explicitly. This special case
is called an at-the-money option. The value of the general European call
option at expiration will be

¢(T + v) = max {S(T +v) — K,0}. (1.1)

While equation (1.1) expresses the value of the option at time T + v,
the option will be purchased at time T, so its purchase value has yet to
be determined. A simple approach would be to compute the discounted
expected value of the option,

exp(—ft')E_g(T+u)|5{T) max {S(T" + ’U) - K, 0} .

where r is a riskless interest rate. However, this neglects the fact that
traders expect higher returns on risky assets than on riskless assets, a
point which will recur in section 1.4, Hence the market will not typically
value assets by their expected value. This suggests the introduction of
a utility function into the pricing of options, allowing dealers to trade
expected gain against risk.

It turns out that the added complexity of a utility function can
be avoided by using some properties of diffusions and by assuming
continuous and costless trading. This can be seen by constructing a
portfolio worth 7 made up of owning # of the underlying shares and by
borrowing a single contingent asset ¢. Then the value of the portfolio
evolves as

dr = 6dS —dc
= 0 (pSdt+ 0Sdz) — (cspS + ¢t + 5ces02S?)dt — c,0Sdz
(0 — cs)(uSdt + 0Sdz) — (e + 5¢550°5%)dt,

by using Itd’s lemma, where ¢; = d¢/dt and ¢; = de/dS. The investor,
by selecting 8 = ¢, at each time period, can ensure dm is instantaneously
riskless by eliminating any dependence on the random dz. This result,
of making dr a deterministic function of time, is due to Black and
Scholes (1973). As time passes, the portfolio will have continually to
adjust to maintain risklessness — hence the need for continuous costless
trading.

As this portfolio is riskless, its return must be the riskless interest rate
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r, for otherwise traders will take this arbitrage opportunity and make
instant riskless profits. The riskless interest rate can be taken as the return
on a very short-duration government bond. Consequently the riskless
portfolio follows

dr = rwdt =r(e.S — c)dt, as ™ = .S — c to achieve risklessness
= —(Cg + %6330252)dt,

implying that the contingent asset follows the stochastic differential
equation

1
¢+ §c336252 +rcgS =re, withend condition ¢ = max(S — K, 0).

This equation is remarkably simple. In particular, it does not depend
on p or the risk preference of the traders. Hence we can evaluate it
as if the world was risk-neutral, in which case we can assume that the
share price follows a new diffusion, with mean rS* and variance ¢S *2,
dS* = rS§* dt+05*dz. This is the risk-neutral process; see Hull (1993,
pp. 221-222). Using the log-normality of the diffusion we have

log S*(T + v)|log S(T') ~ N{log S(T) + (r — 02 /2)v,0%v}.

Straightforward log-normal results give us the Black—Scholes valuation
of the option v periods ahead, using an instantaneous variance of o2, of

bsy(0?) = exp(—rv) E [max {S*(T + v) — K, 0} |S(T)]
which is
bs,(0?) = S(T)®(d) — K exp(—rv)®(d — o/v), (1.2)

where

_ log{S(T)/K} + (r + o%/2)v
- s )
Note that v and K are given by institutional norms, S(T) and r are
observed, leaving only o2 as unknown. In a real sense, option prices are
valuing volatility. As with much of finance, it is the volatility which plays
the crucial role, rather than the mean effect.

Empirically there are two straightforward ways of using (1.2). The
first is to estimate o2 and then work out the resulting option price. The
second is to use the observed option prices to back out a value for o2,
This second method is called an implied volatility estimate; see Xu and
Taylor (1994) for a modern treatment of this.

A difficulty with all of this analysis is the basic underlying assumption
of the process, that stock returns follow a geometric diffusion. Figure 1.1
indicates that this is a poor assumption, in turn suggesting that (1.2)

d (13)

i
|
4
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may give a poor rule on which to base option pricing. This realization
has prompted theoretical work into option pricing theory under various
changing volatility regimes. The leading paper in this field is by Hull and
White (1987). I will return to this later,

1.1.3 Classifying models of changing volatility

There are numerous models of changing variance and covariance. A
useful conceptual division of the models, following Cox (1981), is into
observation-driven and parameter-driven models. For convenience I
will discuss these two approaches within the confines of a tightly defined
parametric framework which allows

Yi | g~ N(p;,af)‘

For co'inpactness of exposition y; will often be set to zero as I do not
intend to focus on that feature of the model. Observation-driven models
put z; as a function of lagged values of y,. The simplest example of
this was introduced by Engle (1982) in his paper on autoregressive
conditional heteroscedasticity (ARCH). This allows the variance to be a
linear function of the squares of past observations

2 2 2
g =ap+ary; ¢+ ...+ Qpli_ps

and so the model becomes one for the one-step-ahead forecast density:
Yt J }/E—l o N(U,O’?)?

where Y; _ is the set of observations up to time ¢ — 1. This allows today’s
variance to depend on the variability of recent observations.

Models built out of explicit one-step-ahead forecast densities are
compelling for at least three reasons. First, from a statistical viewpoint,
combining these densities delivers the likelihood via a prediction
decomposition. This means estimation and testing are straightforward,
at least in principle. Second, and more importantly from an economic
viewpoint, finance theory is often specified using one-step-ahead
moments, although it is defined with respect to the economic agents’
information set not the econometricians’. The third reason for using
observation-driven models is that they parallel the very successful
autoregressive and moving average models which are used so widely
for models of changing means. Consequently some of the techniques
which have been constructed for these models can be used for the new
models. ARCH type models have attracted a large amount of attention
in the econometrics literature. Surveys of this work are given in the
papers by Bollerslev, Chou and Kroner (1992), Bollerslev, Engle and
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Nelson (1995), Bera and Higgins (1995) and Diebold and Lopez (1995).
Finally, Engle (1995) is an extensive reprint collection of ARCH papers.

Parameter-driven or state-space models allow z; to be a function of
some unobserved or latent component. A simple exampie of this is the log-
normal stochastic variance or volatility (SV) model, due to Taylor (1986):

Yt | hy ~ N {0,exp(hs)}, hers =vo+mhe+ne, ne ~ NID(0,02),

where NID denotes normally and independently distributed. Here the
log-volatility h. is unobserved (at least by the econometrician) but can
be estimated using the observations. These models parallel the Gaussian
state-space models of means dealt with by Kalman (1960) and highlighted
by Harrison and Stevens (1976) and West and Harrison (1989). In
econometrics this type of models is-associated with the work of
Harvey (1989).

Unfortunately, unlike the models of the mean which fit into. the
Gaussian state-space form, almost all parameter-driven volatility models
lack analytic one-step-ahead forecast densities 3, | Y;—;. As a result,
in order to deal with these models, either approximations have to be
made or numerically intensive methods used. There seems to be only
one constrained exception to this: stochastic volatility models which
possess analytic filtering algorithms. Shephard (1994a) suggests setting
hey1 to be a random walk with exp(7m:) using a highly contrived
scaled beta distribution, following some earlier work on some different
non-Gaussian models by Smith and Miller (1986) and Harvey and
Fernandes (1989). This delivers a one-step-ahead prediction distribution
which has some similarities to the ARCH model. It has been generalized
to the multivariate case by Uhlig (1992), who uses it to allow the
covariance matrix of the innovations of a vector autoregression to change
in a highly parsimonious way. Unfortunately, it does not seem possible
to move away from h;4; being a random walk without losing conjugacy.
This inflexibility is worrisome and suggests this approach may be a dead
end.

Although SV models are harder to handle statistically than the
corresponding observation-driven models, there are some good reasons
for still investigating them. We will see that their properties are easier to
find, understand, manipulate and generalize to the multivariate case. They
also have simpler analogous continuous-time representations, which is
important given that much of modern finance employs diffusions. An
example of this is the work by Hull and White (1987) which uses a log-
normal SV model, replacing the discrete-time AR(1) for h;y; with an
Ornstein—Uhlenbeck process. A survey of some of the early work on SV
models is given in Taylor (1994).
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Basic statistical background

To understand the properties of volatility models it is important to have
careful definitions of some of the most basic time series concepts for,
unusually in time series modellin g, small differences in these definitions
can have substantial impact. The most commonly used will be:

e White noise (WN). This means E(y,) = p, var(y:) = o? and
cov(Ys, Yi4s) = 0, for all s # 0. Often 4 will be taken to be zero.
These unconditional moment conditions are sometimes strengthened
to include y; being independent, rather than uncorrelated, over time.
This will be called strong WN, a special case of which is i.i.d.

e Martingale difference (MD). A related concept, y; being MD stipulates
that Ely;| < oo and that E(y;|¥;_;) = 0. All MDs have zero means
and are uncorrelated over time. If the unconditional variance of the
MD is constant over time, then the series is also white noise,

e Covariance stationarity. This generalizes WN to allow autocovariance
of the form cov(y:, y:45) = v(s) for all £ : the degree of covariance
among the observations depends only on the time gap between

them. The notation corr(ys, yi45) = p(s) = v(s)/o?* denotes the
autocorrelation function.

e Strict stationarity. For some models moments will not exist,
even in cases where the corresponding unconditional distributions
are perfectly well behaved. As a result strict stationarity, where

F(Yethns Yerntts - s Yerntp) = F(Ye, Yo, ... s Ye+p) for all p and
h, will play a particularly prominent role.

1.2 ARCH
The simplest linear ARCH model, ARCH(1), puts:
Ve=eor, o =aot+anyl,, t=1,...,T, (14)

wheree; ~ NID(0,1). The parameter a; has to be non-negative to ensure
that o7 > 0 for all ¢. Crucially y; | Yie1 ~ N(0,0?), which means s is
a MD and under strict stationarity has a symmetric unconditional density.
To show it is zero-mean white noise, we need to find its variance. Clearly
the model can be written as a non-Gaussian autoregression:

v =07 + (y2 — 0?) = ag + oyl |+, (1.5)

where v, = o2(e? — 1) and the sign of Y: is randomized. As v, is a
martingale difference, then if a; € [0,1), E(y2) = ao/(1 — o). After
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some effort, it can be seen that

E@)/{EW)} =31 -a})/(1 - 34}),

if 3af < 1, which when it exists is greater than 3. Under this tight
condition, yt is covariance stationary, its autocorrelation function is
py2(s) = of, and y; has leptokurtosis (fat tails). Notice that py2(s) 20
for all s, aresult which is common to all linear ARCH models.

These are interesting results. If a3 < 1, y; is white noise while
y? follows an autoregressive process, yielding volatility clustering.
However, y? is not necessarily covariance stationary for its variance
will be finite only if 3a? < 1.

The conﬂxctmg conditions for covariance stationarity for y; and y?
prompt the mt.’erestmg question as to the condition needed on ag and
ay to ensure strict stationarity for y;. This can be found as a special
case of the results of Nelson (1990a), who proved that a; had to satisfy
E{log(an€?) < 0}, which in Gaussian models implies that o < 3.5622.

1.2.1 Estimation

At first sight it is tempting to use the autoregressive representation (1.5)
to estimate the parameters of the model (this was used by Poterba and
Summers, 1986). If v; is white noise this can be carried out by least
squares; in effect this estimate will be reported as the first spike of
the correlogram for yZ. Although a best linear unbiased estimator, this
estimate would be inefficient.

ARCH models, like all observation-driven models, are designed to
allow the likelihood to be found easily. Using a prediction decomposition
(and ignoring constants):

T
> log f(ye | Yee1;6)

t=1

1 I 1 T
2 2, 2
s ;:1 logo; — . ;:1 y; /o (1.6)

where 8 will denote the parameters which index the model, in this case
(050,(11 )f.

Notice that this likelihood conditions on some prior observations (or
in real problems, the first few observations). This is convenient since
the analytic form for the unconditional distribution of an ARCH model
is unknown. The consequence is that the likelihood does not impose
a; < 1.

log f(y1,..-,¥7 | ¥0;6)
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Table 1.2 Aspects of the distribution of the ML estimator of ARCH(1) and
GARCH(1,1). RMSE denotes root mean square error. ARCH true values of
ao = 0.2 and a1 = 0.9. GARCH true values of ap = a; = 0.2 and 5, = 0.7.
Based on 1000 replications. Top table — ARCH, bottom table - GARCH

ARCH
T E(6;) RMSE@) Pr(&; 1)
100 085221  0.25742 0.266
250 0.88386  0.16355 0.239
500 0.89266  0.10659 0.152
1000 0.89804  0.08143 0.100

GARCH
T E(&i+p1) RMSE@:;+p1) Pr@+5 >1)
100 0.87869 0.14673 0.206
250 0.88680 0.10246 0.143
500 0.89680 0.06581 0.060
1000 0.89913 0.04893 0.019

It is possible to find the scores for the model:

Blogf 3at
2Z a8 o} (at 1) ’ (4.7

where 8o /860 = (1,y?_,)'. Typically, even for such a simple model, the
likelihood tends to be rather flat unless T is quite large. This means that
the resulting maximum likelihood (ML) estimates of g and o, are quite
imprecise. Table 1.2 gives an example of this, reporting the mean and
root mean squared error for the ML estimate of o . Notice the substantial
probability that the estimated model is not covariance stationary, even
when T = 1000.

The asymptotic behaviour of the ML estimation of the ARCH
model has been studied by Weiss (1986) who showed normality if
y: has a bounded fourth moment. Unfortunately this rules out most
interesting ARCH models. More recently Lumsdaine (1991) and Lee
and Hansen (1994) have relaxed this condition substantially. Further, both
papers look at the consequences of the possible failure of the normality
assumption on &, (see Bollerslev and Wooldridge, 1992). By relaxing
this assumption they treat (1.6) as a quasi-likelihood, which still ensures
consistent estimation, but requires the use of the robust sandwich variance

ARC}

estin
1982

Le
cond
(1.6)

1. E
2. B

The {
mom
addit:

1.22

The (
explo
the e
financ
usefu
norm;
t, faw
used
detail:
to def
Fin
develt
Plil'iﬂT
adapti
non-n
areas
model
seems

1.2.3

Using
a scor
cluster
portm;
gener:
of the




» STOCHASTIC VOLATILITY

estimator of ARCH(I) and
rrror. ARCH true values of
=a; =02and /1 = 0.7.
tom table — GARCH

Pr(&; 21)
0.266
0.239
0.152
0.100

1) P+ 6121)

0.206
0.143
0.060
0.019
1:
52— - 1) : a.7n

)r such a simple model, the
aite large. This means that
ates of ag and o are quite
s, reporting the mean and
f a1 . Notice the substantial
ovariance stationary, even

:stimation of the ARCH
wvho showed normality if
ately this rules out most
umsdaine (1991) and Lee
substantially. Further, both
vle failure of the normality
ridge, 1992). By relaxing
1ihood, which still ensures
e robust sandwich variance

ARCH 11

estimator (for the calculation of the variance of the estimators, see White,
1982; 1994).

Lee and Hansen (1994) state the following two main sufficient
conditions for the consistency of the quasi-likelihood estimator using
(1.6):

L E(et ! i’t—l) = 0, E(E% l Yt—l) = 1’
2. E{log(ay€f) | Ye-1} <0

The first ensures that the ARCH model correctly specifies the first two
moments, the second that y, is strictly stationary. Asymptotic normality
additionally requires that E(e# | Y;—) is bounded and that ag, @y > 0.

»
*,

1.2.2 Non-nomidl conditional densities

The Gaussian assumption on ¢; is arbitrary, indicating that we should
explore other distributions. Although ARCH models can display fat tails,
the evidence of the very fat-tailed unconditional distributions found for
financial data (Mandelbrot, 1963; Fama, 1965) suggests that it may be
useful to use models based on distributions with fatter tails than the
normal distribution. Obvious candidate distributions include the Student
t, favoured by Bollerslev (1987), and the generalized error distribution,
used by Nelson (1991); see Evans, Hastings and Peacock (1993) for
details of this error distribution. Notice that in both cases it is important
to define the new &; so that it has unit variance.

Finally, there has recently been considerable interest in the
development of estimation procedures which either estimate semi-
parametrically the density of €; (Engle and Gonzalez-Rivera, 1991) or
adaptively estimate the parameters of ARCH models in the presence of a
non-normal &; (Steigerwald, 1991; Linton 1993). These seem promising
areas of research; however, given that parametric estimation of ARCH
models requires such large data sets, their effectiveness for real data sets
seems questionable.

1.2.3 Testing for ARCH

Using the score (1.7) and corresponding Hessian it is possible to construct
a score test uf the hypothesis that a3 = 0, i.e. there is no volatility
clustering in the series. It turns out to be the natural analogue of the
portmanteau score test for AR(1) or MA(1), but in the squares. A
generalization to more complicated ARCH models results in the analogue
of the Box—Pierce statistic, which uses serial correlation coefficients for
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the squares

- s -
=y (yf “‘y2) (yf_j = y”) > (yf = yz)

rather than for the levels. It is studied in Engle, Hendry and

Trumble (1985).

More recently, in the econometric literature, some concern has been
expressed about the fact that these types of test do not exploit the full
information about the model. In particular, 7 > 0 and s0 ag,@; > 0,
so that tests of the null hypothesis and more complicated variants of it
have to be one-sided. Papers which address this issue include Lee and
King (1993) and Demos and Sentana (1994).

1.2.4 Forecasting

One of the aims of building time series models is to be able to forecast.
In ARCH models attention focuses not on E(yr4s | Y1) as this is zero,
but rather on E(y3.,, | Y7) or more usefully, in my opinion, the whole
distribution of yr4, | Y.

In ARCH models it is easy to evaluate the forecast moments of
E(yr4+s | Y7) (see Engle and Bollerslev, 1986; Baillie and Bollerslev,
1992). In the ARCH(1) case

E(i,, | Y1) =a(l+ a1 +... +ai™) +ajy’.

In non-covariance stationary cases, such as when a; = 1, this forecast
continually trends upwards, going to infinity with s. This may be
somewhat unsatisfactory for some purposes, although if there is not
much persistence in the process a normal approximation based on
yr+s | Yr ~ N{0,E(y},, | Yr)} may not be too unsatisfactory.
That is the conclusion of Baillie and Bollerslev (1992).

In more complicated models it seems sensible to have simple methods
to estimate informatively and report the distribution of y74, | Y7. This is
studied, using simulation, by Geweke (1989), who repeatedly simulates
(1.4) into the future M times, and summarizes the results, A useful
graphical representation of the simulation results is the plot of various
estimated quantiles of the distribution against s. The results of Koenker,
Ng and Portnoy (1994) are useful in reducing the required amount of
simulation through smoothing quantile techniques.

1.2.5 Extensions of ARCH

The basic univariate ARCH model has been extended in a number
of directions, some dictated by economic insight, cthers by broadly
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statistical ideas. The most important of these is the extension to include
moving average parts, namely the generalized ARCH (GARCH) model.
Its simplest example is GARCH(1,1) which puts

— 2 __ 2 2
Yt =€t 0, 0O, =Qp + 1Y + ﬂla't_l.

This model is usually attributed to Bollerslev (1986), although it was
formulated simultaneously by Taylor (1986). It has been tremendously
successful in empirical work and is regarded as the benchmark model by
many econometricans.

GARCH

The GARCH model can be written as a non-Gaussian linear ARMA
model in the squares;

y7 = ao+onyi_y + P07y +vr = ao+ (1 + B )yl +ve — Brve_y,
. (1.8)

following (1.5). The original series y; is covariance stationary if a; +/3; <
1. In practice the fourth moment of y, will not usually exist (see the
conditions needed in Bollerslev, 1986), but y; will be strictly stationary
if Elog(f1 + cae?) < 1 and ap > 0. Nelson (1990a) graphs the
combinations of a; and $; that this allows: importantly, it does include
o+ <1

The case of a; + 8, = 1 hasitself received considerable attention. It is
called integrated GARCH (IGARCH) (see Bollerslev and Engle, 1993).
We will see later that for many empirical studies a; + 3; is estimated to
be close to one, indicating that volatility has quite persistent shocks.

In ARCH models the likelihood can be constructed by conditioning on
initial observations. In the GARCH(1,1) model both ¢7_, and y2_, are
required. A standard approach to this problem is to use an initial stretch
of 20 observations, say, to calculate 0%, by using a simple global variance
estimate and computing log f(y21, - .., y7|03,, y30; 8). This is somewhat
unsatisfactory, although for large n the initial conditions will not have
a substantial impact. Standard normal asymptotics have been proved so
long as y; is strictly stationary (see Lee and Hansen, 1994). Interestingly
asymptotic normality does hold for the unit root case, ay + 31 = 1,
unlike for the corresponding Gaussian AR models studied in, for example,
Phillips and Durlauf (1986).

To glean some idea of the sampling behaviour of the ML estimator
for this model, I repeat the ARCH(1) simulation experiment but now
with op = @1 = 0.2 and 8, = 0.7. Table 1.2 reports the properties of
ay + 31 , as this is the most meaningful parametrization. It inherits most
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of the properties we found for the ARCH(1) model. Again there is a
substantial probability of estimating this persistence parameter as being
greater than one.

This model can be generalized by allowing p lags of y; and ¢ lags of o2
to enter o7 . This GARCH(p, q) is also strictly stationary in the integrated
case, an extension of the GARCH(1,1) case proved by Bougerol and
Picard (1992). This suggests normal asymptotics for the ML estimator
can also be used in this more complicated situation.

Log GARCH

To statisticians ARCH models may appear somewhat odd. After all
y? = e2o? is a scaled x? or gamma variable. Usually when we model
the changing mean of a gamma distribution, a log link is used in the
generalized linear model (see, for example, McCullagh and Nelder, 1989,
Chapter 8). Consequently for many readers a natural alternative to this

model might be
y2 =c2exp(he), he="0 +m logy> ;.

This suggestion has been made by Geweke (1986) but has attracted little
support. A major reason for this is that y; is often close to zero (or quite
often exactly zero). In a rather different context Zeger and Qaqish (1988)
have proposed a simple solution to this problem by replacing /; by

he = o + 71 log{max(y;_,,¢)}, ¢>0.

The constant ¢ is a nuisance parameter which can be estimated from the
data.

Exponential GARCH

Although the log GARCH models have not had very much impact,
another log-based model has, but for rather different reasons.
Nelson (1991) introduced an exponential GARCH (EGARCH) model
for hy which in its simplest form is

he =y + Yihi—1 + g(et—1), whereg(z) =wz +A(|z|-E |z ).
(1.9)

The g(-) function allows both the size and sign of its argument to influence
its value. Consequently when ;1 > 0,8h/0e,_y = w + A, while the
derivative is w — A when g;_; < 0. As a result EGARCH responds
non-symmetrically to shocks.

The Nelson (1991) paper is the first which models the conditional
variance as a function of variables which are not solely squares of

ARCH

the observati
for it allows
than to corres
assets (see BJ
Hentschel, 16
and Taylor (1
Although (
easy to find. ¢
and a constan
the symmetry
so is stationar
be negative, u
produce cycle:
Like the A
function to be
has not beenri;
normality will

Decomposing .

GARCH can b.
to enter the va
of parsimony,
Engle and Let
GARCH mode
to the Beveridg
example is

of

2

Here the interc
Apy — w is an
volatility proce:
It is possible
0;_‘3 = W(l
+ {14

which is a consl

Fractionally int.

Volatility tends
a considerable t



AND STOCHASTIC VOLATILITY

[(1) model. Again there is a
srsistence parameter as being

1g p lags of y7 and g lags of o7
tly stationary in the integrated
ase proved by Bougerol and
iptotics for the ML estimator
situation.

sar somewhat odd. After all
ible. Usually when we model
ion, a log link is used in the
McCullagh and Nelder, 1989,
rs a natural alternative to this

)+ logyr_,-

: (1986) but has attracted little
is often close to zero (or quite
ntext Zeger and Qaqish (1988)
oblem by replacing h; by

18} €0,

iich can be estimated from the

: not had very much impact,
or rather different reasons.
1 GARCH (EGARCH) model

@) =wz+ M| z|-E|z]).
(1.9)
sign of its argument to influence

hy/der—1 = w + A, while the
s a result EGARCH responds

which models the conditional
ich are not solely squares of

ARCH 15

the observations. The asymmetry of information is potentially useful
for it allows the variance to respond more rapidly to falls in a market
than to corresponding rises. This is an important stylized fact for many
assets (see Black, 1976; Schwert, 1989; Sentana, 1991; Campbell and
Hentschel, 1992). The EGARCH model is used on UK stocks by Poon
and Taylor (1992).

Although (1.9) looks somewhat complicated, its properties are quite
easy to find. As g,y ~ i.i.d., so g(g¢—1) ~ i.i.d.. It also has zero mean
and a constant variance (g; is uncorrelated with | &; | —E | ; | due to
the symmetry of €;). As a result, like (1.8), h is an autoregression and
so is stationary if and only if | v; |< 1. Notice that this allows p,2(s) to
be negative, unlike linear ARCH models. Hence EGARCH models can
produce cycles in the autocorrelation function for the squares.

Like thé: ARCH model, EGARCH is built to allow the likelihood
function to be easily evaluated. At present the limit theory for this model
has not been rigorously examined, although it seems clear that asymptotic
normality will be obtained if | v, |< 1.

Decomposing IGARCH

GARCH can be extended to allow arbitrary numbers of lags on y2 and o2
to enter the variance predictor. A difficulty with this approach is a lack
of parsimony, due to the absence of structure in the model. Recently
Engle and Lee (1992) have addressed this issue by parametrizing a
GARCH model into permanent and transitory components, analogous
to the Beveridge and Nelson (1981) decomposition for means. A simple
example is

o7 = m+o(yi, _f") + Bio?_q — p)
pe = wtpe—y + oyl —oi ).

Here the intercept of the GARCH process, p., changes over, time. As
Apg — w is an MD, p; is a persistent process tracing the level of the
volatility process while o2 deals with the temporary fluctuations.

It is possible to rewrite this model into its reduced form

02 = w(l—a1=p1)+{ar+¢(l—a;—B1)}yi; — o1y,
+ {1+561—¢(1 -1 —B1)}oiy — Bioi_s,

which is a constrained IGARCH(2,2) model.

Fractionally integrated ARCH

Volatility tends to change quite slowly, with the effects of shocks taking
a considerable time to decay (see Ding, Granger and Engle, 1993). This

EELEEES

EECES

EEEEEE

PRLErEES

P I v

g oG

shediiin b A L S



16

STATISTICAL ASPECTS OF ARCH AND STOCHASTIC VOLATILITY

indicates that it might be useful to exploit a fractionally integrated model.
The nonlinear autoregressive representation of ARCH suggests startin g
with:

(1-LD*%?=ao+v, w=02(2-1), de(-05,05),

as the simplest fractionally integrated ARCH (FIARCH) model.
Rewritten, this gives, say

0f =ao+{1-(1- L)y} = a0 +a(L)y?,.

Here a(L) is a polynomial in L which decays hyperbolically in lag length,
rather than geometrically. Generalizations of this model introduced by
Baillie, Bollerslev and Mikkelsen (1995), straightforwardly transform
the ARFIMA models developed by Granger and Joyeux (1980) and
Hosking (1981) into long-memory models of variance.

Although these models are observation-driven and so it is possible
to write down f(y: | Yi—1), Y;_1 now has to contain a large amount
of relevant data due to the slow rate of decay in the influence of old
observations. This is worrying, because the likelihood of ARCH models
usually conditions on some Yy, working with f(y1,...,yr | ¥p). I think
that for these models the construction of ¥ may be important, although
Baillie, Bollerslev and Mikkelsen (1995) argue this is not the case.

Weak GARCH

In this chapter emphasis has been placed on parametric models, which
in the ARCH case means models of one-step-ahead prediction densities.
Recently there has been some interest in weakening these assumptions,
for a variety of reasons. One approach, from Drost and Nijman (1993), is
to introduce a class of ‘weak” GARCH models which do not build o out
of E(y7 | Y;-1), but instead work with a best linear projection in terms
of L ye—1, Ye-2,. - Yoy, -, Y2,

Weak GARCH has been a useful tool in the analysis of temporally
aggregated ARCH processes (see Drost and Nijman, 1993; Nijman and
Sentana, 1993) and the derivation of continuous-time ARCH models
(Drost and Werker, 1993). However, inference for these models is not
trivial for it relies upon equating sample autocorrelation functions with
their population analogues. This type of estimator can be ill behaved if
Y7 is not covariance stationary (a tight condition).

Unobserved ARCH

A number of authors, principally Diebold and Nerlove (1989), Harvey,
Ruiz and Sentana (1992), Gourieroux, Monfort and Renault (1993)
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and King, Sentana and Wadhwani (1994) have studied ARCH models
observed with error:

w=fi+m, fi=e0r, of=ac+orfl, (1.10)

where €; and 7; are mutually independent and are normally and
independently distributed. Their variances are 1 and 0,2, respectively.
Unlike the other ARCH-type models outlined above, (1.10) is not easy
to estimate for it is not possible to deduce f(y; | Y:—1) analytically. This
is because f;— is not known given Y;_;. Hence, it makes sense to think
of these models as parameter-driven and so classify them as stochastic
volatility models.

Approaches to tackling the problem of inference for this model are
spelt out by-Harvey, Ruiz and Sentana (1992). They employ a Kalman
filtering approach based on the state space:

ye = fe+m, m ~ NID(O’O'?,),
o = fo ft ~ N(0,00+a1f2 )

It is possible to estimate f; and 7z, using the unconditional distribution of
¢ as the disturbance of the transition equation. The resulting filter gives
a best linear estimator. However, it is inefficient because it ignores the
dynamics.

An alternative approach is to use Y; to estimate f; and then use

that estimate, ﬁ, to adapt the variance of fiy1 so that fiy; | ¥z ~

N0, +agtoa };2) This is the approach of Diebold and Nerlove (1989).
The approximation can be improved by noting that

~2 ~ ~ ~

fB=f +(f— f)?+2f(fi - fo)
Taking expectations of this, given Y;, and using the approximation
ft =~ E(f:|Y2), yields ,

E(f2|Y) = F. +pi, where pp ~ E{(f — f;)* | ¥a).

This delivers the improved approximation fi11 | ¥; ~ N{0,a0 +

a; (ﬁz + pi)}- As %, and p; are in Y;, if this were the true model,
the resulting Kalman filter would be optimal; as it is, Harvey, Ruiz and
Sentana (1992) use the phrase ‘quasi-optimal’ to describe their result.
However, as it does not seem possible to prove any properties about this
‘quasi-optimal’ filter, perhaps a better name would be an ‘approximate
filter’.

A likelihood-based approach to this model is available via a Markov
chain Monte Carlo (MCMC) method, since the model has a Markov

PR
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random fields structure and so

f(ftlf\tay) o< f(fel fo=1) F (Fexa| fe) F(wel f2),

the notation f\; meaning all elements of fy,..., f, except f;. By
continually simulating from felfiesy, for t = 1,...,n, a Gibbs or
Metropolis sampler can be constructed which converges to a sample

from fi,..., faly. These techniques will be spelt out in more detail in
the next section.

Other ARCH specifications

There have been numerous alternative specifications for ARCH models.
Some of the more influential include those based on:

¢ Absolute residuals. Suggested by Taylor (1986) and Schwert (1989),
this puts:
. agzao+al|yt_1|.
¢ Nonlinear. The NARCH model of Engle and Bollerslev (1986) and

Higgins and Bera (1992) has the flavour of a Box—Cox generalization.
It allows:

2 _
Oy =g +m | -1 |’T}
Or a non-symmetric version:

af:ag+al|y¢_1—k|".

e Partially nonparametric model. Early works by Pagan and
Schwert (1990) and Gourieroux and Monfort (1992) have tried to
let the functional form of o7, as a response to Yt—1, be determined
empirically. A simple approach is given in En gle and Ng (1993) who
use a linear spline for o2:

m+
oi=a0 + Y o I(ye1—7; > 0)(yees — 1)
=0

i
* Z o I(ye-1 = 75 < 0)(ye—1 — 7_;),
=0

where I(-) are indicator functions and (1_,, ..., Tm) 18 an ordered
set of knots typically set as 7; = j/var(y;) with 1y = 0.

¢ Quadratic. A related QARCH model of Sentana (199 1) has

o} =ap+ a1yl + Qi Ye—1. (1.11)

Clearly there are constraints on the parameters to ensure o2 > 0.
Again (1.11) is used to capture asymmetry.
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e Threshold. Various TARCH models have been proposed which have
different parameters for y;—1 > 0 and y;—; < 0. Zakoian (1990)
works with the absolute residuals, while in an influential paper
Glosten, Jagannathan and Runkle (1993) work with a model of the

type
2 _ + 2 - 2
o =ap+aifI(y: > 0)yi | + oy I(ye—1 < O)y; -

This is used by Engle and Lee (1992), who allow asymmetry to enter
the transitory component of volatility, but not the permanent part.

e ARCH in mean. A theoretically important characteristic of excess
returns is the relationship between expected returns of a risky asset
and the level of volatility. Engle, Lilien and Robins (1987) proposed
the ARCH-M model

= 9(022,9) + €0y, Utz =ag+ al{yt_l - 9(0?_1,9)}2-

A commonly used parametrization is the linear one: g(0Z,0) =
po + pio?. Its statistical properties are studied by Hong (1991).
Likelihood inference is again straightforward.

1.2.6 Simple empirical illustrations

The simple ARCH-based models are quite easy to fit to data. To illustrate
this we will briefly analyze the four series introduced in section 1.1
using GARCH and EGARCH models. Throughout we will work with
the compounded return on the series y; = 100log z;/z:—1. The models
will be based on Gaussian and Student ¢ distributions where the degrees
of freedom are estimated by ML techniques. When the ¢ distribution is
used the innovations from the series will be mapped into normality by
using the inverse Student ¢ distribution function followed by computing
the corresponding normal deviates. These will be used as inputs into the
Box-Ljung statistics (Harvey, 1993b, p. 45) for the squares using 30 lags
and the standardized fourth moment, or kurtosis, statistic. The first of
these statistics should be centred around 30, the second around 3.

Table 1.3 gives the results for GARCH models. To benchmark each
of the results I have presented two non-ARCH models: an NID model,
whose diagnostics indicate failure because of large degrees of serial
correlation in the squares and fat-tails; and an independently distributed
(ID) Student ¢ model, which eliminates most of the fat tails problems,
but does not deal with the correlation in the squares.

The GARCH models do improve upon these benchmarks. They have
two broad effects. First, they successfully deal with the serial correlation
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not by this result, but rather by the transpose of it. In the Nikkei 500
case, v still has to be under 4 for this model successfully to match up
with the data. The other cases are nearly as extreme. Consequently, in
terms of likelihood reduction, the use of the fat-tailed distribution is as
important as the use of GARCH processes in modelling the data. I think
this is disappointing, suggesting that GARCH models cannot deal with
the extremely large movements in financial markets, even though they
are good models of changing variance.

Table 1.4 Each column represents the empirical fit of a specific EGARCH model
to the denoted series. When the parameter estimate @ is missing, this means
it is constrained to being zero. When v, the degrees of freedom parameter, is
missing, it is set to oo — giving a normal distribution. BL denotes the Box-
Ljung statistic with 30 lags. K denotes the standardized fourth moment of the
transformed innovations. K should be around 3, even in the t-distribution case

Nikkei 500 FTSE 100
T 0.988 0.985 0970 | 0911 0.907 0.960
01 —0.574 0478 -0.292 | 0.368 0.495 0.254

w -0.161 —0.158 —-0.059 -0.031

A 0.482 0.361 0217 | 0.211 0.170 0.168

v 5 9

log L | —3017 —2978 —2795 | —2694 —2681 —2593

BL 130 46.2 38.6 19.2 21.3 12.9

K- 10.9 18.7 3.67 17.8 13.4 3.44
DM Yen

" 0.955 0.969 0.983 | 0985 0.981 0.986
61 0.433 —0.139 -0.146 | 0.231 0.239 -0.170

w -0.079 -0.051 -0.027 -0.049

A 0.154 0.176 0.232 | 0.089 0.080 0.141
v 4 5
logL | —1119 —1104 —942 | —1945 —1940 —1879
BL 19.1 22.1 153 33.6 322 30.0
K 9.75 927 3.61 4.78 4.76 3.20

The results of the GARCH models can be contrasted to the fit of the
EGARCH models for these data sets. The results given in Table 1.4,
where #; denotes a moving average parameter added to equation (1.9),
suggest that the use of the signs of the observations can very significantly
improve the fit of the models. In this empirical work this seems to hold
for both currencies and equities, although the effect is stronger in the
latter. Although this is a standard result for equities (Nelson, 1991;
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Brock, Lakonishok and LeBaron, 1992; Poon and Taylor, 1992), it is
non-standard for currencies where the asymmetry effects are usually not
significant.

1.3 Stochastic volatility

The basic alternative to ARCH-type modelling is to allow o} to depend
not on past observations, but on some unobserved components or latent
structure. The most popular of these parameter-driven stochastic volatility
models, from Taylor (1986), puts

yr = €rexp(he/2),  hey1 =7 +1he + e,

although the alternative parametrization y; = &3 exp(h:/2) and heyy =
~v1ht + n: also has attractions. One interpretation for the latent h, is to
represent the random and uneven flow of new information, which is very
difficult to model directly, into financial markets; this follows the work
of Clark (1973) and Tauchen and Pitts (1983).

For the moment &; and 7, will be assumed independent of one another,
Gaussian white noise. Their variances will be [ and Jg, respectively, Due
to the Gaussianity of 7;, this model is called a log-normal SV model. Its
major properties are discussed in Taylor (1986; 1994). Broadly speaking
these properties are easy to derive, but estimation is substantially harder
than for the corresponding ARCH models.

1.3.1 Basic properties

As 1 is Gaussian, h; is a standard Gaussian autoregression. It will be
(strictly and covariance) stationary if | v; |< 1 with:

7o 2
= E h. = . Ty = h — i
i Bl = g2 wh b =5
As g, is always stationary, y, will be stationary if and only if h; is
stationary, for y; is the product of two stationary processes. Using the
properties of the log-normal distribution, if r is even, all the moments
exist if hy is stationary and are given by:

E(y;) E(e})E {exp (‘;'ht)} (1.12)

= rlexp (2;.&;, + r2cr§/8) / (2”':{?/2)1) - (1.13)

All the odd moments are zero. Of some interest is the kurtosis:
E(y})/(024)* = 3exp(di) > 3. This shows that the SV model has
fatter tails than the corresponding normal distribution.
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The dynamic properties of y, are easy to find. First, as ¢, is iid, y; is
an MD and is WN if | 4 |< 1. The squares have the product moments
E(y?y?_,) = E{exp(ht + hi—s)}. As hy is a Gaussian AR(1),

cov(y?,v7_,) = exp{2ua+02(1+1])} - {E@)}?
exp(2un + o7 ){exp(oiys) — 1}

[l

and so (Taylor, 1986, pp. 74-75)

_exp(ogyi) -1  exp(of) -1 ,
" 3exp(o?) -1 ~ 3exp(o?) — 1
(1.14)
Notice thatif 1 < 0, p,2(s) can be negative, unlike the ARCH models.
This is the autocorrelation function of an ARMA(1,1) process. Thus the
SV model behaves in a manner similar to the GARCH(1,1) model.
The dynamic properties of the SV model can also be revealed by using
logs. Clearly

pyz(s) = cov(y?y?_,) [var(y?)

logy? = hy +loges, hey1 =70 +mbhe + 1, (1.15)

a linear process, which adds the iid loge? to the AR(1) h;. As a result
log y2 ~ ARMA(1,1). If ¢; is normal then loge? has a mean of —1.27
and variance 4.93. It has a very long left-hand tail, caused by taking the
logs of very small numbers (see Davidian and Carroll, 1987, p. 1088).
The autocorrelation function for log y? is

_ 05
Progy? (8) = (1+4.93/0%) (1.16)

1.3.2 Estimation

The main difficulty of using SV models is that, unlike with ARCH models,
it is not immediately clear how to evaluate the likelihood: the distribution
of y: | Y;:—; is specified implicitly rather than explicitly. Like most
non-Gaussian parameter-driven models, there are many different ways
to perform estimation. Some involve estimating or approximating the
likelihood, others use method-of-moments procedures.

Generalized method-of-moments (GMM)

In econometrics method-of-moments procedures are very popular. There
seem to be two main explanations for this: economic theory often specifies
that specific variables are uncorrelated and some econometricans are
sometimes reluctant to make distributional assumptions. In the SV case
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neither of these explanations seems very persuasive, for the SV process
is a fully specified parametric model.

In the SV case there are many possible moments to use in estimating the
parameters of the model. This is because y? behaves like an ARMA(1,1)
model and moving average models do not allow sufficient statistics which
are of a smaller dimension than 7. This suggests that the use of a finite
number of moment restrictions is likely to lose information. Examples
include those based on yZ, v, {v2y2_,,s = 1,...,S}, although there
are many other possibilities. As a result, we may well want to use
more moments than there are parameters to estimate, implying that they
will have to be pooled. A reasonably sensible way of doing this is via
generalized method of moments (GMM).

We will write, for example:

T (AT - BG?) f
(S vi} - By}

Il

ar

{+ X vivi} - E(yiyi,)
{+ Zvivi s} - E(vivis)

as the moment constraints. By varying 6, the (S + 2) x 1 vector gr
will be made small. The GMM approach of Hansen (1982) suggests
measuring smallness by using the quadratic form ¢ = ¢4Wrgr.The
weighting matrix Wz should reflect the relative importance given to
matching each of the moments. A good discussion of GMM properties is
given in Hamilton (1994, Chapter 14). Earlier versions of GMM include
Cramér (1946, p. 425) and Rothenberg (1973).

Applications of this method to SV include Chesney and Scott (1989),
Duffie and Singleton (1993), Melino and Turnbull (1990), Jacquier,
Polson and Rossi (1994), Andersen (1995) and Andersen and
Sorensen (1995). These papers use a variety of moments and
weighting matrices Wr. In a rather different vein, Gallant, Hsieh and
Tauchen (1994) use a semi-nonparametric ARCH model to provide scores
to allow the fitting by ‘efficient method of moments’.

It seems to me that there are a number of obvious drawbacks to the
GMM approach to the estimation of the SV model:

e GMM can only be used if h; is stationary. When =, is close to unity,
as we will find for many high-frequency financial data sets, we can
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expect GMM to work poorly.

o Parameter estimates are not invariant. By this I mean that if the
model is reparametrized as r = f(0), then 7 # f(8). This seems
important as the direct parameters in the model, v, 71 and ar , are not
fundamentally more interesting than other possible paramemzanons

e The squares y} behave like an ARMA(1,1) model. Equation (1.14)
indicates that if or,, is small (as we will find in practice), pyz2(s) will
be small but positive for many s. Even if 7; is close to unity, this will
hold. This implies that for many series, S will have to be very high to
capture the low correlation/persistence in the volatility process.

¢ GMM does not deliver an estimate (filtered or smoothed) of h,.
Cunsequent]y a second form of estimation will be required to carry
out that task.

¢ Conventional tests of the time series model, based on one-step-ahead
prediction densities, are not available after the fittin g of the model.

Quasi-likelihood estimation

A rather sn‘npler approach can be based on (1.15). As loge? ~
iid, logy? can be written as a non-Gaussian but linear state space.
Consequently the Kalman filter, given in the Appendix, can be used
to provide thc best linear unbiased estimator of h, given ¥;'2,, where
Y2 = (logy?,...,logy?)". Further, the smoother gives the best linear
estimator given YT

This way of estimating A, is used by Melino and Turnbull (1990),
after estimating # by GMM. The parameters # can also be estimated,
following the suggestion of Harvey, Ruiz and Shephard (1994), using the
quasi-likelihood (ignoring constants)

Iq(6;y) = -—ZlogFg- —ZU:/Fg, (1.17)
t=1

where v; is the one-step-ahead prediction error and F, is the
corresponding mean squared error from the Kalman filter. If (1.15) had
been a Gaussian state space then (1.17) would be the exact likelihood.
As this is not true, (1.17) is called a quasi-likelihood and can be used to
provide a consistent estimator § and asymptotically normal inference.
The asymptotic distribution of 8 is discussed in Harvey, Ruiz and
Shephard (1994), who use the results of Dunsmuir (1979), and relies

on the usual sandwich estimator of quasi-likelihood methods.
To gain some impression of the precision of this method we report, in
the first row of Figure 1.2, 500 estimates resulting from the application
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Figure 1.2 QML and Bayes estimate of SV model. QML on top, Bayes in bottom ;
row. Uses T = 500, T = 1000, T = 2000. T goes from left to right. The Y-axis TI
is &y and on X-axis 1. The crossing lines drawn on the graphs indicate the true i
parameter values.
of the quasi-maximum likelihood (QML) method to simulations from
the SV model with o2 = 0.1, v = 0.0, 1, = 0.9 for ' = 500, 1000
and 2000, focusing on o, and ~y;. Notice the strong negative correlation He
between the two estimators. Later we will compare the properties of this de
estimator with two other likelihood suggestions. Recently, following a ap
suggestion of Fuller (1996, Example 9.3.2), Breidt and Carriquiry (1995) wi
have investigated modifying the logy? transformation, to reduce the
sensitivity of the estimation procedure to small values of 1,. Their work Im
improves the small-sample performance of the QML estimator. A
int
The mode
A satisfactory way of representing our knowledge of h, is via its posterior
distributions f(h¢ | Y:—1) and f(h¢ | Y7). Unfortunately itis not possible As
| to manipulate these densities into useful forms in order straightforwardly inti
to learn their shapes. One approach to overcoming this is to report tas
the mode of the ‘smoothing density’ f(hy,...,hr | v1,...,y7), say
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suggested by Durbin (1992). The approach is based on some recent
work by Whittle (1991), Fahrmeir (1992) and particularly Durbin and
Koopman (1992) and Durbin (1996).
The mode of h | Y7 is the mode of the joint density of h, Y7. The log
of this density, setting o = 0 and h; = 0 for simplicity, is:
T

I = = {v? exp(—he) + by + (heyy — ’]’1}1:)2/5’3}- (1.18) -

t=1
Then 81/h, is nonlinear in h and so we have to resort to solving
0l/8h = 0 iteratively. The standard way of carrying this out (ignoring
the Gaussian part due to the transition equation) is to start off the kth

iteration at hik), — hgf'} and write
Olog f(yslhe) _  Olog f(ys|he) dexp(—he)
Ah: dexp(—hy) dhy

= {vf — exp(h:)} exp(—h;)/2
B

- (e ) () () .

This linearized derivative has the same form as a Gaussian measurement
model, with

yf — exp (hik}) - hgk) exp (hgk)) = exp (hgk)) hy + &1,
~ N [0,2exp (hgk})] y

Hence the Kalman filter and analytic smoother (see the Appendix for
details), applied to this model, solves the linearized version of the
approximation to 8{/0h; = 0. Repeated uses of this approximation
will converge to the joint mode as (1.18) is concave in hy.

Importance sampling

A more direct way of performing inference is to compute the likelihood,
integrating out the latent h, process:

ﬂqum0=/ﬂqumWMHM%- (1.19)

As this integral has no closed form it has to be computed numerically,
integrating over T' x dim(h,) dimensional space, which is a difficult
task. One approach to this problem is to use Monte Carlo integration,
say by drawing from the unconditional distribution of h, with the
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Jth rephcauon being written as A’, and computing the estimate
(1/M) Z;—I f(y1,...,yr | ). Thisislikely to be a very poor estimate,
even with very large M. Consequently it will be vital to use an importance
sampling device (see Ripley, 1987, p. 122) to improve its accuracy. This

rewrites (1.19) as
0= f(y(lhhl)f(h) (h | 5)dh,

where it is easy to draw from some convenient g(h | y). Replications
from this density will be written as h', giving a new estimate,
/MM f(y | B)f(h*)/g(h* | y). In some very impressive work,
Danielsson and Richard (1993) and Danielsson (1994) have designed g
functions which recursively improve (or accelerate) their performance,
converging towards the optimal g,. The details will not be dealt with here
as they are quite involved even for the simplest model.

1.3.3 Markov chain Monte Carlo

Although importance sampling shows promise, it is likely to become
less useful as T' becomes large or dim(h,) increases beyond 1. For such
difficult problems a natural approach is one based on Markov chain Monte
Carlo (MCMC). MCMC will be used to produce draws from f(h | y)
and sometimes, if a Bayesian viewpoint is taken, the posterior on the
parameters 6 | y. For the moment we will focus on the first of these two
targets.

Early work on using MCMC for SV models focused on single-
move algorithms, drawing h, individually, ideally from its conditional
distribution h; | hy¢,y, where the notation hy, means all elements of h
except hy. However, a difficulty with this is that although

f(ht | h\:,y) = f(he | he—1,hesr,y1)
o< flye | he) f(heta | he) f(he | he—r), (1.20)
has an apparently simple form, the constant of proportionality is
unknown. As a result it seemed difficult to sample directly from (1.20).
Shephard (1993) used a random walk Metropolis algorithm to overcome

this problem. A much better approach is suggested in Jacquier, Polson and
Rossi (1994), building on the work of Carlin, Polson and Stoffer (1992).

Rejection Metropolis

Jacquier, Polson and Rossi (1994) suggest using a Metropolis algorithm
built around an accept/reject kernel, which uses an approximation to
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(1.20) which is easy to simulate from, written as g(h; | h\¢,y). Then if
there exists a ¢ such that

f(ht I h\tay) < Cg(ht I h\t’y)7 Vht; (1.21)

we could sample from f by drawing from g and accepting this with
probability (e | he,) /{g(he | b w)e}.

Jacquier, Polson and Rossi (1994) argued that it was difficult to find
a valid g satisfying (1.21) for all h,, but that this is not so important
as we can use a g inside a Metropolis algorithm which overcomes this
approximation. Their proposal takes on the form of moving from h; to
h; with probability

f(,hz [ h\tr y) min{f(ht | h\t,y),Cg(ht | h\t,y)}

’ f(ht I h’\t’ y) mln{f(h: I h\tay),cy(h: l h‘\t’y)} '
Note that our lack of knowledge of the constant of proportionality in
(1.20) is now irrelevant as it cancels in this expression. The choice of g
governs how successful this algorithm will be. If it is close to f, ¢ can
be close to 1 and the algorithm will almost always accept the moves.
Jacquier, Polson and Rossi (1994) suggest using an inverse gamma
distribution to approximate the distribution of exp(ht) | ht~1, Res1, Yt
and a variety of ad hoc rules for selecting c.

In my discussion of single-move MCMC I am going to avoid using
the Jacquier, Polson and Rossi (1994) method as I think there are now
simpler ways of proceeding. One approach is to devise an accept/reject
algorithm based around the prior. We write hs|h¢—1, bty ~ N(h},02),
then log f(h:|y:, he—1, he+1) = const + log f* where

min [1

. 1 1 . 1

log f* = —ghe = gog(h —hi)* — 5 {vf exp(~he)} (1:22)
1 1 .

< —ghe= b= hi)? (1.23)

2
(%) fexpl=hi)(a-+ b2) — hoexp(-hi)} 120
= logg* (1.25)

is a bounding function. Hence it is a trivial matter to draw from f using
an accept/reject algorithm. The proposal, drawn from the normalized
version of g*, a normal distribution, has mean and variance

2
po=hi+ 2 [exp(-h}) = 1] and o =03/ (1+13).

Hence we can sample from h; | hi—1, hes1,y: by proposing hy ~
N(u;,0?) and accepting with probability f*/g*. This idea, suggested
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and extended in Pittand Shephard (1995), gave 299.5% acwptance rate in
a Monte Carlo study using the true values y; = 0.9, cr =0.05,7% =0,

while it executed about 10 times faster than the code supphed by Jacqu;er
Polson and Rossi. It is possible also to include the second-order term in
the Taylor expansion of exp(—h;). This naturally leads to a Metropolis
sampler (as it no longer bounds) with a very small rejection probability.
Finally, the second-order expansion can be extended to allow a multimove
algorithm,

An alternative to this algorithm is to note that f*(h; | hy_1, hesy,ys)
is log-concave, which means that the adaptive routines of Gilks and
Wild (1992) and Wild and Gilks (1993) can be used.

Whichever of these two algorithms is used, we can now use the Gibbs
sampler:

1. Initialize h.
2. Draw hy from f(he | hj_;, hey1,y:), t=1
3. Write h = h*; goto 2.

y il

This sampler will converge to drawings from h | y so long as ar > 0.
However, the speed of convergence may be slow, in the sense of takmv a
large number of loops. To illustrate these features, Figure 1.3 reports two
sets of cxperlments each computed usmg two sets of parameter values:
¥1 = 0.9, ar = 0.1 and v, = 0.99, oq = 0.01. The first experiment
reports the runs of 500 independent Gibbs samplers, each initialized at
hy = Oforall t, as they iterated. The lines are the average of the samplers
after given numbers of iterations. This experiment is designed to show
how long the initial conditions last in the sampler and so reflect the
memory or correlation in the sampler. The second experiment runs a
single Gibbs sampler for 100000 iterations, discarding the first 10000
results, for the above two sets of parameter values. The resulting 90 000
drawings from hsg| Y100 were inputted into a correlogram and are reported
in Figure 1.3. The idea is to represent the correlation in the sampler once
it has reached equilibrium.

The results of Figure 1.3 are very revealing for they show that as ~;
increases (and similarly as cr —+ 0), so the sampler slows up, reflecting
the increased correlation among the h | y. This unfortunate characteristic
of the single-move Gibbs sampler is common to all parameter-driven
models (see Carter and Kohn, 1994; Shephard, 1994b). If a component,
such as hy, changes slowly and persistently, the single-move sampler
will be slow. In the limit, when h; = h;_, the sampler will not converge
at all. Given that volatility tends to move slowly, this suggests that this
algorithm may be unreliable for real finance problems.
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Figure 1.3 Signal extraction of SV model using single-move Gibbs. Indicates
rate of convergence. Left picture is y1 = 0.9 case. Middle gives v; = 0.99.
Correlograms: Top has v1 = 0.9, bottom has v, = 0.99. In the first two graphs
the X-axis is t, and the Y-axis is an estimate of E{h:|YT).

Multimove samplers

A common solution in the MCMC literature to the problem of elements
of h | y being highly correlated is to avoid sampling single elements of
ht | hy¢,y, by working with blocks (see Smith and Roberts, 1993, p. 8;
Liu, Wong and Kong, 1994). In the context of time series models, early
work on designing methods to sample blocks includes that by Carter and
Kohn (1994) and Fruhwirth-Schnatter (1994) which has now been refined
by de Jong and Shephard (1995). This work can be used to analyse the
SV model by using the linear state-space representation;

logy? = hs +loge?, & ~ NID(0,1). (1.26)

The idea, suggested in Shephard (1994b) and later used by Carter and
Kohn (1994) and Mahieu and Schotman (1994), is to approximate the
log £} distribution by a mixture of normals so that:

lOgEf |wt=jNN(“jsg?): 3:1!!‘}. (127)
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Here the wy ~ iid., with Pr(w; = j) = ;. Kim and Shephard (1994)
selected 1,07, m; for j = 1,...,7 to match up the moments of this
approximation to the truth (and various other features of the log x?
distribution).

The advantage of this representation of the model is that, conditionally
on w, the state space (1.26) is now Gaussian. It is possible to draw h | Y7,
w directly using the Gaussian simulation smoother given in the Appendix.
Likewise, using (1.27) it is easy to draw w | Y7, h using uniform random
numbers. This offers the possible multimove Gibbs sampler:

1. Initialize w.

2. Draw h* from f(h | Y7, w).
3. Draw w* from f(w | Y1, h*).
4. Write, w = w*; goto 2.

This sampler avoids the correlation in the h process. We might expect
h | Yr and w | Y7 to be less correlated, allowing rapid convergence.
Figure 1.4 shows that this hope is justified, for it repeats the experiment
of Figure 1.3 but now uses a multimove sampler. Convergence to the
equilibrium distribution appears more rapid, while there is substantially
less correlation in the sampler once equilibrium is obtained.

Although the multimoving can be carried out by transforming the
model and using a mixture representation, it could be argued that this
is only an approximation. It is a challenging problem to come up with
multimove algorithms without transforming the model since a fast and,

more importantly, reliable sampler will improve the usefulness of these
MCMC techniques.

Bayesian estimation

The ability to sample from h | Y7 means parameter estimation
is reasonably straightforward. The simplest approach to state is the
Bayesian one: it assumes a known prior, f(8), for§ = (62,71). Then the
multimove sample, for example, becomes, when we write g(h | Y7, 0)
to denote a MCMC update using either a Gibbs sampler or multimove
sampler:

1. Initialize .

2. Draw h* from g(h | Y7,6).
3. Draw 6* from f(6 | h*),

4. Write 8 = 6*; goto 2.
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Asthelikelihood f(h* | 8) is Gaussian itis tempting to use the standard
normal-inverse gamma conjugate prior for ¢, as do Jacquier, Polson
and Rossi (1994). However, I think there are advantages in enforcing
the stationarity conditions on +y;, and hence on the h process, which a
Gaussian prior on y; will not achieve. It can be carried out by dividing
step 3 into two parts:

3a. Draw o2* from f(o2 | h*, ).
3b. Draw 4f from f(v1 | h*,02*).

The likelihood f(h | 8) suggests a simple non-informative conjugate
prior for o7 | h, yielding the posterior

i o
X7’ {E(hf —nhe1)? + R3(1 - Tf)} ;

t=2
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where x~? denotes an inverse chi-squared distribution. The prior for
7 | A, oﬁ is harder due to the non-standard likelihood. However, as
f(h | ) isconcave, when f (7, ) is log-concave the Wild and Gilks (1993)
method can be used to draw from v, | h, af?. A simple example of such a
prior is the rescaled beta distribution, with E(v,) = {2a/(a+ ()} — 1.
In the analysis I give below, I will set @ = 20, 8 = 3/2 so that the prior
mean is 0.86 and the standard deviation 0.11.

One way of thinking of this approach is to regard it as an empirical
Bayes procedure, reporting the mean of the posterior distributions as an
estimator of #. This is the approach followed by Jacquier, Polson and
Rossi (1994) who show empirical Bayes outperforms QML and GMM
in the SV case. Here we confirm those results by repeating the QML
experiments reported in section 1.3.2. Again the results are given in
Figure 1.2. The gains are very substantial, even for quite large samples.

Simulated EM algorithm

Although the Bayesian approach is simple to state and computationally
attractive, it requires the elicitation of a prior. This can be avoided, at
some cost, by using MCMC techniques inside a simulated EM algorithm.
This was suggested for the SV model by Kim and Shephard (1994). An
excellent introduction to the statistical background for this procedure is
given in Qian and Titterington (1991); see also the more recent work
by Chan and Ledolter (1995). Earlier work on this subject includes
Bresnahan (1981), Wei and Tanner (1990) and Ruud (1991).

The EM algorithm works with the mixture-of-normals representation
given above, where w is the mixture number. Then

log f(Yr;0) = log f(Yr | w;8) + log Pr(w) — log Pr(w | Y7;8).

As Y7 | w is a Gaussian state space, its log-density can be evaluated
using the Kalman filter

T T
. 1 1 2
log f(Yr | w; @) = const — 3 Zl: log Fy — 3 gut /Fy.
As f(w) is parameter-free, the next step of the EM algorit]'l_m is found
as:

gi+1) = arg mgxxz log f(Yr | w; 8) Pr(w | Yr;6).

As Pr(w | Yr;6) is unknown, it is not possible to solve this
maximization direct}y. It is replaced by an estimate, using simulations
from Pr(w | Yr;0(")) drawn using MCMC techniques. Consequently,
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the top row. The Y-axis is 6, and the X-axis %1. The crossing lines drawn on the
graphs indicate the true parameter values.

the function which is numerically maximized is (1/M) Zﬁl log f(Yr |
w*;6). As M — oo so this algorithm converges to the EM algorithm.
It may be possible to construct an asymptotic theory for the resulting
iterated estimator even if M is finite, using the simulated scores argument
of Hajivassiliou and McFadden (1990). i

There is some hope that this EM algorithm will converge very quickly
to the ML estimator since the ‘missing’ data w is not very informative
about §. The results, using M = 1,3, 10 and employing 10 steps of the
EM algorithm, are reported in Figure 1.5. Kim and Shephard (1994) have
found little gain in taking M much bigger than 10, although for more
complicated models the situation may be different.

Diagnostic checking

Although there is now a vast literature on fitting SV models, there is
barely a word on checking them formally; a notable exception to this is
the paper by Gallant, Hsieh and Tauchen (1994). This is an important

S Hdk oy PN F S
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deficiency. The QML approach offers some potential to close this hole,
for the Kalman filter delivers quasi-innovations v, which should be
uncorrelated (not independent) and have mean squared error F;. This
allows a correlogram, and consequently a Box-Ljung statistic, to be
constructed out of v/ V'F:. However, the distribution of the quasi-
innovations is unknowable.

It seems natural to want to work with the true innovations, based on
the one-step-ahead forecast’s distribution. At first sight MCMC should
be able to deliver this distribution, just.as it gave us h; | Y7. However,
although MCMC methods are good at smoothing, finding the filtering
density h, | Y;—, is a more difficult task. The following multimove
sampler will work:

1. Initialize w(®. _

2. Sample A*®*) from f(A(HD) | ¥z, w®)
3. Sample w*® from f(w® | ¥;, h*®)

4. Write w® = w*®); goto 2.

Here (! generically denotes (ry,...,7¢). This MCMC will allow us to
sample from h:y; | ¥; and so estimate:

M

Pr(yess <21 %) = Fypu@) = 37 3 Pr(usa < 5| A3,

i=1

These distribution functions or probabilities are vital for they provide
the natural analogue of the Gaussian innovations from a time series
model. The first reference I know to them is Smith (1985) who noted
that it is possible to map them into any convenient distribution to allow
easy diagnostic checking. Examples of their use will be given later in
section 1.3.5.

A significant difficulty with the MCMC approach is thatif T' is large it
will be computationally expensive. The diagnostic simulation is O(T?),
which is unsatisfactory. Some work on avoiding this has been carried out
by Berzuini er al. (1994) and Geweke (1994). More work needs to be
carried out on this important topic.

1.3.4 Extensions of SV

The basic log-normal SV model can be generalized in a number of
directions. A natural framework might be based on adapting the Gaussian
state space so that

Yt = Et exp{z{h;/Z}. hiyr = Tohe +me,  me ~ N(0O, Hy).
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A straightforward generalization might allow A4, to follow a more
complicated ARMA process. Perhaps more usefully, inspiration for new
components can be found in the linear models of Harrison, West and
Harvey. A simple example would be

zt:(i): ht+1=('{]1 ?)hz+??u
7?:~N{ (D; f)}
P

Now haey1 is a random walk, allowing the permanent level of the
volatility to change slowly. This is analogous to the Engle and Lee ( 1992)
decomposition*of shocks into permanent and transitory. A model along
the same lines has been suggested by Harvey and Shephard (1993a)
and Carter and Kohn (1993), who allow (ignoring the cyclical AR(1)
component):

1 11 0 0
z;:(o), Tt:(” 1)' H£=(0 02)'
P

This uses the Kitagawa and Gersch (1984) ‘smooth trend’ model in the
SV context, which in turn is close to putting a cubic spline through the
data. This may provide a good summary of historical levels of volatility,
but it could be poor as a vehicle for forecasting as confidence intervals
for forecasted A s may grow very quickly with s. Another su ggestion
is to allow h; to be a fractional process, giving the SV model long
memory. This has been discussed by Harvey {1993a) and Breidt, Crato
and de Lima (1993).

where

Asymmetric response

One motivation for the EGARCH model introduced by Nelson (1991)
was to capture the non-symmetric response of the condition to shocks. A
similar feature can be modelled using an SV model by allowing &, and
7t to be correlated. Notice ¢, is correlated with 7,, not 1., The former
model is an MD, the latter is not. If €; and 7, are negatively correlaled
and if e, > 0, then y; > 0 and h;4, is likely to fall. Hence, a large y?’s
effect on the estimated h,, will be accentuated by a negative sign on Yi,
while its effect will be partially ameliorated by a positive sign.

This correlation between ¢, and 7; was suggested by Hull and
White (1987) and estimated using GMM by Melino and Turnbull (1990)
and Scott (1991). A simple quasi-likelihood method has been proposed
recently by Harvey and Shephard (1993b). Jacquier, Polson and
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Rossi (1995) have extended their single-move MCMC sampler to
estimate this effect.

Finally, the Engle, Lilien and Robins (1987) ARCH-M model can be
extended to the SV framework, by specifying y, = o + 1 exp(he) +
€+ exp(hy /2). This model allows y; to be moderately serially correlated.
It is analysed in some depth by Pitt and Shephard (1995).

1.3.5 Simple empirical applications

To provide a simple illustration of the use of SV models we will repeat the
analysis of ARCH-type models presented in the previous section. The SV
models used will be the simple AR(1) log-normal-based process, with
Gaussian measurement error. We will use a simulated EM algorithm
and an empirical Bafés procedure to perform the estimation and use the
diagnostic simulator to produce diagnostic checks,

Note that there is a problem with computing the ARCH likelihood.
Usually the likelihood for ARCH is found by conditioning on some initial
observations. In the previous section the ARCH likelihood was formed
by conditioning on 20 initial observations to find 039, and computing a
prediction decomposition using the observations from time index 21 to 7.
In Tables 1.5 and 1.6 we used the unconditional variance to initialize a5
This technique was used to make the computed likelihood comparable
with that for the SV model. The SV model has a properly defined
density f(yi1,...,y7), as hg has a proper unconditional distribution.
This accounts for the difference in the ARCH likelihoods reported in
Tables 1.3, 1.5 and 1.6.

The fitted models are reported in Tables 1.5 and 1.6 and posterior
distributions for the parameters are given in Figure 1.6. The approximate
symmetry of the posteriors for 4; and 3 means that the empirical
Bayes and simulated EM algorithms give very similar results for those
parameters. The variance parameter, o,, has a noticeable right-hand tail
and so the result of the empirical Bayes solution having a higher value
than the simulated EM algorithm is not surprising.

The results, given in Tables 1.5 and 1.6, suggest that the SV models
are empirically more successful than the normal-based GARCH models.
This should provide some assurance for option pricing theorists who price
assets using this very simple SV model. However, the success of the SV
model is accounted for by its better explanation of the fat-tailed behaviour

of returns: SV is not a better model of volatility, it is a better model of

the distribution of returns. The use of a ¢-distribution GARCH model
overturns this SV outperformance, but not dramatically. The diagnostics
of these two models seem similar. There is some evidence that the use
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Table 1.6 Empirical fits of SV meodels. BL denotes the Box-Ljung statistic
with 30 lags. K denotes the standardized fourth moment. ARCH denotes the
likelihood of the best normal ARCH models. The ARCH model is initialized
using 0§ = ao/(1 — ay — B1). The SV model is initialized by the unconditional
distribution of ho. CI denotes a 95% Bayesian confidence interval

SV Nikkei
SIEM Bayes CI
T 0.936 0.936 [0.915, 0.968]
On 0.424 0.426 [0.167,0.261]
yel -0.363 -0.359 [-0.631,—0.260]
log L =2902
BL 88.3
K 551
ARCH
ay + 0.989 0.978
v 4
log L -3036 —-2853
BL 48.4 343
K 13.5 3.00
SV DM
SIEM  Bayes CI
" 0.951 0.947 [0.924,0.967]
O 0314 0.333 [0.276,0.390]
B -2.08 -2.09 [-2.36,—1.81]
logL —1007
BL 28.1
K 4.08
ARCH
a1 + 6 0.986 0.998
v 4
log L -1127 —-968
BL 19.2 3
K 9.07 2.96
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Figure 1.6 Estimated posterior densities for v1, o, and § using the multimove
Gibbs sampler. Top picture corresponds to the FTSE 100 case, then Nikkei 500,
DM and yen.

of a fat-tailed distribution on either ¢ or, the way I would prefer, on 7;
would improve the fit of the SV model. Finally, fitting more complicated
SV models, such as ones hased on an ARMA(1,1) h; process, could be
empirically more successful for some assets.

An interesting stylized fact to emerge from this table is that the
estimated <, parameter is typically lower for SV models than the
corresponding ay + 3 for GARCH. This fact has yet to be explained.

1.4 Multivariate models

Most of macro-economics and finance is about how variables interact,
which, for multivariate volatility models, means it is important to capture
changing cross-covariance patterns. Multivariate modelling of means is
difficult and rather new: constructing multivariate models of covariance
is much harder, dogged by extreme problems of lack of parsimony.

1.4.1 Multivariate ARCH

Multivariate ARCH models have existed nearly as long as the ARCH
model itself, Kraft and Engle (1982) introduced the basic model which
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(here translated into a GARCH model) has for an N x 1 series
U | Yiog ~ N(0, Qt),

where
vech(Q:) = ag + ayvech(y:—1yi_;) + Bivech(_1),

where vech(-) denotes the column stacking operator of the lower portion
of a symmetric matrix. Deceptively complicated, based on the expansion
of the unique elements of 2, this model has { N (N +1)/2} +2{ N(N +
1)/2}? unknown parameters (N = 5 delivers 465 parameters). It is
difficult to state the conditions needed for this model to ensure that 0,
stays positive definite (see Engle and Kroner, 1995).

The multivariate model is virtually useless due to its lack of parsimony.
The problem has encouraged a cottage industry of researchers who
search for plausible constraints to place on this cumbersome model.
An important example is Bollerslev, Engle and Wooldridge (1988), who
constrain a; and 5 to be diagonal,

Constant correlation matrix

One of the more empirically successful multivariate ARCH models is the
constant correlation model of Bollerslev (1990), who allows the (i, j)th
element of (), {1y, to be

1/2,1/2

- _ 2
Quij = pijhify hjly, where hisy = ag; + ariy?_; + Brihii—1.

This highly constrained model implies that corr(y, y;e | Yi—1) is
constant over time. This is often found to be empirically reasonable
(see Baillie and Bollerslev, 1990), but it does lack the flexibility required
to address some interesting theoretical finance issues which relate to the
importance of changing correlation.

1.4.2 Multivariate asset returns

The above multivariate models are either extremely unparsimonious or
quite tightly constrained. It seems useful to see if we can look to economic
theory to guide us in constructing some more useful models. To start with,
I'will follow King, Sentana and Wadhwani (1994) and work withan N x 1
series of excess returns (over a riskless interest rate),

Yt = [t + 7.

Here, given some common information set z (perhaps lagged
observations or some latent process), i is the expected return of the
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asset above a safe interest rate, and 7, is the corresponding unexpected
component. The covariance of returns will be modelled using a factor
structure (see Bartholomew, 1987, pp. 8-9) for n;, with

K
™= Z bj-fjt + v = Bf; + v:.
=1

Here fit,..., fk: and vy will be assumed independent of one another.
Then '
Val'(nt ] Zg) = ‘BA;Br + lpg,
where
var(fis | z:) = U?: and A; = diag(o?,,...,0%,).
The ¥, will be assumed to be diagonal and sometimes time-invariant.
The N x (N — K') matrix of weights, B, will be called the factor loadings.

This framework can reveal that the covariance structure of the N
assets influences the returns p; by using the arbitrage pricing theory
from Ross (1976). It states that g, = B, where 7; is a vector whose
Jth element is the risk premium of a portfolio made up entirely of factor
fj¢. Hence the risk premium of an asset is a linear combination of the
risk premiums on the factors.

Unfortunately the Ross (1976) theory does not tell us how to measure
risk premiums, although most finance theorists would put the risk
premiums 7, as linear combinations of A;. This has been justified
in a formal setting by Hansen and Singleton (1983) in their work on
consumption-based asset pricing theory; see also the Appendix of Engle,
Ng and Rothschild (1990). In either case this delivers the model for asset
returns

Yt IBA.gT—l‘Bf: + v, (1.28)

where 7 is a K x 1 vector of constants. In the univariate model this
delivers the ARCH-M and SV-M models outlined in the previous two
sections.

From the econometrician’s viewpoint (1.28) is a rather incomplete
model, as 2; is unspecified. However, it can be completed by using
observation-driven or parameter-driven processes, leading to factor
ARCH and SV models. In this section the risk premium term BA;r
will tend to be dropped for expositional reasons.

1.4.3 Factor ARCH models
The basis of the factor ARCH model will be
e = Bfi+&, and fir | Yooy ~ N(0,02), i=1,...,K,
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where €; ~ NID(0, ¥). The important feature of the model is that
ft = (fity---, fxt)' is observation-driven, i.e. conditionally on Y;_;
its distribution is specified for this delivers the likelihood.

This model, introduced by Engle, Ng and Rothschild (1990),
potentially improves the parsimony problem if a good mechanism for o2,
can be found, for now the complexity of the model is really only of the
dimension of f;. To understand the way Engle, Ng and Rothschild (1990)
suggest driving 0%, it is useful to study briefly some of the features of
this model. Then

Q: = BL:B'+ ¥, where ; = diag(02,...,0%,).

As BY, B’ is deficient of rank by N — K there exits an N x N
matrix 3 such that 3B = (0 : Ij). Consequently, if we write § =
(Bis--.,By), this model allows N — K portfolios By to be formed
which are homoscedastic. The other portfolios do not have time-varying
covariances, just varying variances o7,.

This elegant result suggests forcing o2, to vary as a GARCH model
shocked by past portfolio values (}y;. Consequently the K factor
GARCH(1,1) model becomes:

K K
Q=T+ o (brBrye—1yi_18kb}) + > e (br B Q-1 BibL).
k=1 k=1

Here aj and v are N x IV matrices. In this model the b and B
are constrained so that b, 3; = I(k = j) and f}. = 1,where ¢ is the
unit vector. Estimation of this type of model is discussed at length by
Lin (1992).

1.4.4 Unobserved ARCH

The use of the factor structure seems a real step forward, but the
mechanism for driving the o7, in the factor ARCH model seems quite
involved. A simple structure could be obtained by allowing o2, to be an
ARCH process in the unobserved factors f;;. This is the suggestion of
Diebold and Nerlove (1989) and has been refined by King, Sentana and
Wadhwani (1994). The econometrics of this model is a straightforward
generalization of the univariate case outlined in section 1.2.
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1.4.5 Multivariate SV models

Some multivariate SV models are casy to state. Harvey, Ruiz and
Shephard (1994) used quasi-likelihood Kalman filtering techniques on

Yie =ciexp(hit/2), i=1,...,N,
where
&t = (€12, -.,enT)' ~ NID(0, ,),

in which X, is a correlation’ matrix (this model can be viewed as a
generalization of the discounted dynamic models of Quintana and West,
1987). They allow h; = (hy,..., A ~T)’ to follow a multivariate random
walk, although more complicated linear dynamics could be handled
(Harvey, 1989, Chapter 8). The approach again relies on linearizing (this
time with loss of information) by writing logy? = hi + loge?. The
components of the vector of log 2, are iid, all with means -1.2704, and
a covariance matrix which is-a known function of Y. (Harvey, Ruiz and
Shephard, 1994, p. 251). Consequently X, and the parameters indexing
the dynamics of h; can be estimated.

There are two basic points about this model. First, it allows common
trends and cycles in volatility by placing reduced rank constraints on h,
paralleling the work of Harvey and Stock (1988) on the levels of income
and consumption. Second, the model is one of changing variances,
rather than changing correlation, similar to the Bollerslev (1990) model
of constant conditional correlation. Consequently, this model can be
empirically successful, but it is of limited interest since it cannot model
some theoretically important features of the data. Other work on this
model includes Mahieu and Schotman (1994), while Jacquier, Polson
and Rossi (1995) look at using an MCMC sampler on this model.

1.4.6 Multivariate factor SV model

Pérhaps a more attractive multivariate SV model can be built out of
factors. The simplest one-factor model puts

¥¢ = Bfi+ws, w;~NID(O,,)
ft = eiexp(he/2), where heyry = ke + 1, 1 ~ NID(o, o2).

Here w; obscures the scaled univariate SV model fe. Typically £, will
be assumed diagonal, perhaps driven by independent SV models. Tt is
similar in spirit to the Diebold and Nerlove (1989) model.

Direct Kalman filtering methods do not seem effective on these models
as there is no obvious linearizing transformation. MCMC methods do not
suffer this drawback and are explored in Jacquier, Polson and Rossi (1995)
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and Pitt and Shephard (1995).

1.5 Option pricing with changing volatility

There is now a considerable literature on computing option prices
on assets with variances which change over time. Most — for
example Taylor (1986, Ch. 9), Hull and White (1987), Scott (1987),
Wiggins (1987), Melino and Turnbull (1990), Stein and Stein (1991) and
Heston (1993) — use an SV framework (all but Taylor in continuous-
time). Recently there has been some work on option pricing based on
ARCH-driven models; see Engle and Mustafa (1992), Engle, Hong, Kane
and Noh (1993), Engle, Kane and Noh (1993), Heynen, Kemna and
Vorst (1994), Noh, Engle and Kane (1994) and Duan (1995). In both
cases it is not possible to use the risk-elimination methods discussed
earlier for the Black—Scholes constant variance solution, for there is no
direct market which trades volatility. However, under the assumption
that volatility is uncorrelated with aggregate consumption, progress can
be made (Hull and White, 1987, p. 283). In this discussion we will
also assume that volatility is uncorrelated with the stock price itself, a
less satisfactory assumption except for currencies, although this can be
removed.

1.5.1 Stochastic volatility

Hull and White (1987) set up a risk-neutral world and exploit the
standard diffusion for dS = rSdt + ¢Sdz, the stock price, and add
dV = AVdt + 8V dw, allowing X to depend on V = log o®. Then they
show a fair European call option price would be

hw, = e ™ /max{S(T +v) — K,0}
FAS(T +v) | S(T),0*(T)}dS(T +v),

assuming o (T') is observable.

This integral has been solved analytically, using characteristic function
inversions, in a number of recent papers (Stein and Stein, 1991; Heston
1993). There are, however, substantial benefits from simplification which
can be used if simple simulation techniques are to be used to approximate
it. If we write o as the sample path of the volatility, then

log{S(T + v)/8(T)|o*} ~ N(rv — va? [2,v5°),

OPTION PRICING W

where

is the average leve

hw, =e ™ ff

The inner of th¢

replacing o2 by g
form,

which is much ea;

In practice, th|
models discusseq
o%(T) is unobsef

A simple appr{
from f(h | y)
hl.,. .., hi2. The
can initialize a di
Each sequence di

to provide an esty
As Hull and |
variables produg
in the autoregres
of . This me}
the resulting 7
Theorem 5.2, p.
An obvious exan
h%"—:—t+1 =1

- i+
starting off h7,




FTOCHASTIC VOLATILITY

mputing option prices
sr time. Most — for
- (1987), Scott (1987),
in and Stein (1991) and
Taylor in continuous-
ption pricing based on
92),Engle, Hong, Kane
), Heynen, Kemna and
| Duan (1995). In both
ion methods discussed
solution, for there is no

under the assumption
sumption, progress can
his discussion we will
the stock price itself, a
:s, although this can be

world and exploit the
ie stock price, and add
V = logo?. Then they

K,0}
1}dS(T + v),

g characteristic function
and Stein, 1991; Heston
om simplification which
1 be used to approximate
ility, then

V32 [2,057),

OPTION PRICING WITH CHANGING VOLATILITY 47

where

1 T+v
= - / a?(t)dt,

vJr
is the average level of volatility during the option. This implies

hwy = =™ f max{S(r +v) - K,0} f{S(T +v) | S(T),5%}
 dS(T +0)f{7? | 0*(T)}ds?

The inner of these integrals is the Black—Scholes pricing formula (1.2)
replacing o? by 7 a Th.ls leaves the integral in its ‘Rao—Blackwellized’
form,

By = / bs. (325 | o(T)}do?, (1.29)

which is much easier to solve by simulation.

In practice, the diffusions will be discretized, perhaps into the SV
models discussed earlier. Then we will need to take into account that
0?(T) is unobserved.

A simple approach to this problem is to draw m MCMC replications
from f(h | y) to construct a fixed population of initial conditions
h%, ..., R Then, sampling with replacement from this population, we
can Imuahze a draw from a whole sequence of future hT i 1
Each sequence draws a mean

T4uv-

= —Zexp hT+:

to provide an estimate of (1.29) (1/R) 3% jm1 bs,(@%7).

As Hull and White (1987) noted, it is possible to use antithetic
variables productively (Ripley, 1987, pp. 129-132) for the shocks ]
in the autoregression, since h{ appear monotonically in the replications
of . This means that if 11’ are negatively correlated across j then
the resulting >/ will also be negatively correlated (see Ripley, 1987,
Theorem 5.2, p. 129), reducing the variance of the Monte Carlo estimate.
An obvious example is to draw double replications based on

J+ - Jj+ 3= s g
hT+;+1 =M hT+g + 774t and h’T+;+1 = 13 hT+t — NI+t

starting off A2 = h% at the same point.
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1.5.2 ARCH modelling

It is not so straightforward to carry out option pricing based on ARCH
models of the form

log St41 =7 +log St +y:, where y; ~ GARCH.

The main reason for this is that log{ St /St|0?} is no longer normally
distributed. The implication of this is that the ARCH option pricing
formula has to be estimated by the path-dependent summation

R
arch, =e™ "™ Zmax{S{,-H — K,0},
i=1

where S}, aré GARCH simulations into the future starting off using
Y7. This is much less satisfactory, implying R will have to be much
higher for this model than for the corresponding SV model as it depends
on the sample path of the observations rather than the volatility.

To overcome this difficulty, Noh, Engle and Kane (1994) use a ‘plug-
in’ estimate of future average volatility to deliver

v v 1<
arch, =~ bs“'(at(+)1|t) where a§+)1|t = Z Ey}, .|Yr.
=1

Although this is an approximation, based on the expectation of a function
being approximately the function of the expectation, Noh, Engle and
Kane (1994) provide some evidence that this is a sufficiently good
improvement over existing technology to provide a trading profit on
at-the-money (where K = yr) Standard and Poor’s 500 index European
options, Further, from a theoretical viewpoint Cox and Rubinstein (1985,
p. 218) show that the Black—Scholes pricing equation is essentially a
linear function of the standard deviation around at-the-money prices.
Hence the plug-in approximation is likely to be good for at-the-money
options, although at other prices it could be poor.

1.5.3 Applying volatility models

Even though it is not possible to predict the way the market is going to
move, it may be possible to use the volatility models to trade profitably
in the options market. Suppose we believe that in the next v periods the
market will be more volatile than do other traders. We should buy both
call and put options: if the market goes down we would exercise the put
option, if it goes up the call option would be used. Thus this straddle is
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of value in volatile times. If the opposite is true, we can sell a straddle.

This strategy of using straddles potentially allows us economically to
value the use of the various volatility models: implied volatility, ARCH
and stochastic volatility. The first two of these are compared in Noh,
Engle and Kane (1994). I have not seen any work on using straddles to
value SV models. Of course in practice this type of trading, particularly
the selling of straddles, can be very risky; see the report in the Financial
Times on the collapse of Barings Bank by Martin (1995).

1.6 Continuous-time models

Continuous-time models play a crucial role in finance and some economic
theory, often fj’l-?oviding very simple and powerful solutions to difficult
problems. An example of this is the Hull and White (1987) generalization
of the Black-Scholes option pricing formula to allow the instantaneous
variance of returns to change over time. Two obvious questions are:

e Should we use continuous-time (tick-by-tick) data to estimate
continuous- and discrete-time models?

e How do we use daily or weekly data to estimate continuous-time
models?

I think the answer to the first of these is probably no. The reason for this
is that, as with continuous-time models in other fields, continuous-time
models are grossly untrue over short periods of time due to institutional
factors. An example of this is the large seasonal patterns of volatility
which occur during the day (see Foster and Viswanathan, 1990), due to
the opening, lunch hour and closing of various markets around the world.
These types of feature introduce high-dimensional unstable nuisance
features into the modelling process. As they are of little interest, it seems

sensible to abstract from them.

~ This criticism of the use of continuous-time data suggests that
the highly impressive work of Nelson (1992; 1995) and Nelson and
Foster (1994), who have used the continuous record asymptotics, may
not be a particularly fruitful approach to the direct estimation of
models (although the asymptotics are useful at indicating the link
between different models). This is because that work relies on building
ARCH-type models by studying approximations (for example in Nelson,
1990b; 1995) of continuous-time SV models as the time gap between
observations falls in a particular way. Thus, at least in theory, there is a
belief that the continuous-time data could be used to perform filtering
and smoothing.

U R O T
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The second question is the subject of considerable research attention
at the moment which we will briefly discuss here.

1.6.1 Direct estimation

There is little work on the direct estimation of continuous-time models
using discrete-time data. The reason for this is the nonlinear nature of the
volatility models which make the tools developed for linear models (see
Bergstrom, 1983; Harvey and Stock, 1985) not directly useful.
Recently there has been an upswing of interest in using generalized
method of moments criteria to estimate continuous-time SV models.
Leading work on this topic includes that by Duffie and Singleton (1993)
and Ho, Perraudin and Sorensen (1993). Given the gross inefficiency
of GMM in discrete time, it is doubtful that these approaches will be
particularly effective at dealing with continuous-time models.

1.6.2 Indirect inference

A promising approach to using a discrete-time model to perform
inference on continuous models has been suggested by Smith (1993)
and elaborated by Gourieroux, Monfort and Renault (1993) and Gallant
and Tauchen (1995). Gourieroux, Monfort and Renault (1993) call this
procedure indirect inference.

The idea is to use an approximate model’s objective function, Q(y; ),
such as a likelihood or quasi-likelihood from a discrete-time model, as the
basis of inference for a fully parametric continuous-time model, indexed
by parameters 6, where the likelihood is difficult to calculate. We write

B=arg max Q(y; f)  and B"(6) = arg max Q7" (6); 8)

where " (8) is the hth simulation using the continuous-time model with
the parameter #. Then we solve

N W - ’ -
0=a.rgm§.x {ﬁ_}}'Zﬁh(ﬂ)} 01 {ﬁ_gz,@h(ﬁ)}:
h=1 h=1

for some choice of §1. The asymptotic properties of g are studied in
Gourieroux, Monfort and Renault (1993).

A slight variant of this approach can be found in Gallant and
Tauchen (1995), who work with

¢ H
b= argmax{szﬁrh )“)} {;; (""(9){3)}
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In the case where the dimension of 3 equals that of 8, this is equivalent
to solving for 8 the cquanon

HZ @@y

Note that the data only play a role through 3.

To illustrate this procedure we will first work with a toy example.
Suppose y; ~ N (g, 1), and that we use a correctly specified model. Then,
setting z# ~ NID(0, 1) and writing 6 as the mean under estimation, the
indirect inference estimator becomes

6= arg max W-(0+73))3

yielding g = y + . The Gallant and Tauchen (1995) approach yields the
same esnmator, via
H T

ZZ i (9—§)+Zzz£‘, where y* = 0+zP.

h=1i=1 h=1 i=1

This implies § ~ N (6, 4(1 + L)) For more complicated problems 8
remains consistent for finite H as T' — co.

The indirect inference method can be used to estimate SV models using
an ARCH likelihood. One approach to estimating the continuous-time
SV models is to use a discrete-time GARCH(1,1) model as a template.
This is convenient as the GARCH model has an analytic likelihood. It is
also straightforward to simulate from the continuous-time SV model by
taking a very fine discrete-time approximation (e.g. split each day into
ten parts). This would give consistent estimation of the continuous-time
models. This agendahas recently been followed by Engle and Lee (1994).
The efficiency of these types of procedure compared to some likelihood-
based methods is still open to question.

1.7 Concluding remarks

T have tried to develop a balanced introduction to the current literature on
ARCH and SV models. The work on ARCH models is somewhat more
mature than the corresponding SV analysis, but both areas of research
are vibrant.

I think it is clear from my survey that the development of univariate
discrete-time ARCH is a thoroughly mined area. It would be surprising
if there were any really major contributions which could be made to
this subject. However, multivariate models are still in their infancy and

KL
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I believe the best work on this subject has yet to be written. The key
to achieving parsimony must be the combination of economic and time
series insight.

SV models are much newer. Their close connection to continuous-time
models provides a strong motivation: buildin g an appropriate econometric
toolbox to treat them is still an ongoing project. Fast MCMC algorithms
need to be developed, while the interplay of good empirical model
checking and building has only just started for univariate models. There
is much to be done.

The use of continuous-time models in theoretical finance provides a
large incentive for econometricians to think about how to make inferences
on these models using discrete-time data. This is going to be an extremely
active area of research in the next decade.,

1.8 Appendix

This Appendix focuses.on the computational issues of filtering and
smoothing. It provides no direct insight into ARCH or SV models,

1.8.1 Gaussian state-space form

The state-space form

Yt = Zias + Gpuy, uy ~ NID(0,1),
1 = Tiow + Hyouy,
alYo ~ N(agp, Py),

has a prominent role in modern time series (see Hannan and Deistler,
1988; Harvey, 1993b). It provides, by appropriate selection of Zy, Gy, T,
and H;, a unified representation of all linear Gaussian time series models.
For simplicity we assume that G;Hs = 0 and we write the non-zero rows
of H; as M;, G,G) = ., and HH] = %,;. An example of this is an
AR(2) with measurement error. Using an obvious notation,

Zi=(10),G = (o 0),T¢=($z é)
0 o

th(o 0’?),%:(0 o ).

1.8.2 Kalman filter

The Kalman filter (Harvey, 1989) plays a crucial computational role in
the analysis of models in state-space form. In particular, if we write
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atjt—1 = Eoy|Y;—1 and Py, _; = MSE(ax|Y;—1), then the Kalman filter

computes these quantities recursively fort = 1,...,T,
Gip1)e = Tiagey +Kivy, Py = LiPye L + Zo,
Ut = Y Ztaqt—h F = Z:ng_lZ; + e,
K = Ttpt|t—1Z;Fg_1; L, = T\ - K:Z;.

(1.30)

A by-product of the filter are the innovations v;, which are the one-step-
ahead forecast errors, and their corresponding mean squared errors, F;.
Together they deliver the likelihood, such as (1.17),

1.8.3 Simulation smoother

Traditionally the posterior density of a: given Y7 is called the smoothing
density. In the Gaussian case there are algorithms which compute the
mean and covariance terms of this highly multivariate distribution. I
call these algorithms analytic smoothers. More recently a number of
algorithms, labelled simulation smoothers, have been proposed for
drawing random numbers from a|Y7. This is useful in Gibbs sampling
problems. The first algorithms were proposed by Carter and Kohn (1994)
and Fruhwirth-Schnatter (1994). We exploit the approach of de Jong and
Shephard (1995), which is computationally simpler, more efficient and
avoids singularities. This requires that F,~, v, and K be stored from the
run of the Kalman filter.

Settingrr = 0and Np =0, werunfort =1T,...,1

C M M{ — M,H{N.H: M|,

Ti—1 Z;Ft_l’b‘g =+ L;T; e L;NtH,:M{Ct_lm,

Kt ~ N(0,C),

Niy ZIF Z + LN, Ly + LN H,M!C;* M, H!N, L,,

_ (1.31)
storing the simulated M;u, as ﬁ:ﬁt = MHr: + k¢ It will then be
convenient to add to Mu; the corresponding zero rows so that we
simulate from the whole H;u; vector (recall H; is M, plus some rows of
zeros). We will write this as 7.

The end condition 7 is calculated by
Co = P]_Ig = P1|0N0P1|01 Kg -~ N(O, Ca),
o = Pijoro+ Ko-

Il

The a vector to be simulated via the forward recursion, starting with
ag =0, is given by

at-i-]_:T!at"-ﬁi‘:: t=0,...,T—1. (1‘32)
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1.8.4 Analytic smoothing

Analytic smoothing is useful in estimating the unobserved log-volatility
in the SV models. In particular, the analytic smoother, due to
de Jong (1989), computes a;r = Ea,|Yr and Pyr = MSE(ax|Y7). It
requires that oy 7, Py IT Ft_l, v and K be stored from the Kalman
filter. Then, setting rr = O and NV, = 0, it computes backwards:

Te1 = ZiF e+ Liry, Neoy = ZUF7 2,4+ LN, Loyt =T, .. 1.
Then it records '

Q+1)T = Ctje—1 + Pje—17:—1 and Pyp = Py — P,y Ny, Pye—1.

1.9 Computing and data sources

There is very little publicly available software to fit ARCH and SV
models. The most developed set of programs are those available in TSP
and SAS which perform GARCH-M estimation using a normal target.
EVIEWS allows some analysis of multivariate GARCH models. The
unobserved components time series software STAMP allows a quasi-
likelihood analysis of SV models (see Koopman et al., 1995).

All the calculations reported in this paper were performed using my
own FORTRAN code compiled using WATCOM 9.5. Throughout I used
NAG subroutines to generate random numbers and EO4JAF to do standard
numerical optimization. I thank Wally Gilks and Peter Rossi for sending
me their code to perform random number generation and MCMC analysis
of SV models, respectively.

All series reported in this paper are taken from the UK’s
DATASTREAM. DATASTREAM does not record the exchange rates
at weekends (even though there is some very thin trading), and so gives
roughly 261 observations a year. The series records the previous day’s
value if the market is closed during a weekday. Examples of this are
Christmas day and bank holidays. These have not been taken out in the
analysis presented in this paper.
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