
Journal of Computer Graphics Techniques Vol. 11, No. 1, 2022 http://jcgt.org

SurfaceNets for Multi-Label Segmentations with
Preservation of Sharp Boundaries

Sarah F. Frisken
Brigham and Women’s Hospital

Figure 1. Surfacing a 3D label map with multiple materials. Top and bottom rows show
different views of the same model. a) initial model of three intersecting spheres inside a box.
b) a cuberille model generated after sampling the model in a volume of resolution 32 x 32
x 32. Surface meshes generated from the sampled volume using c) Marching Cubes (MC)
[Lorensen and Cline 1987], d) Flying Edges (FE) [Schroeder et al. 2015], and e) SurfaceNets
for multi-label segmentations. Surfaces are rendered with flat shading for comparison. Sur-
faceNets surfaces are smoother, and edges are sharper than in MC and FE surfaces and topol-
ogy is preserved where the three spheres meet (where a hole is created by MC and FE).

Abstract

We extend 3D SurfaceNets to generate surfaces of segmented 3D medical images composed
of multiple materials represented as indexed labels. Our extension generates smooth, high-
quality triangle meshes suitable for rendering and tetrahedralization, preserves topology and
sharp boundaries between materials, guarantees a user-specified accuracy, and is fast enough
that users can interactively explore the trade-off between accuracy and surface smoothness.
We provide open-source code in the form of an extendable C++ library with a simple API,
and a Qt and OpenGL-based application that allows users to import or randomly generate
multi-label volumes to experiment with surface fairing parameters. In this paper, we describe
the basic SurfaceNets algorithm, our extension to handle multiple materials, our method for
preserving sharp boundaries between materials, and implementation details used to achieve
efficient processing.

34 ISSN 2331-7418

http://jcgt.org


Journal of Computer Graphics Techniques
SurfaceNets for Multi-Label Segmentations with Pres. of Sharp Boundaries

Vol. 11, No. 1, 2022
http://jcgt.org

1. Introduction

Surfacing methods are used to generate triangle- or quadrilateral-meshes from sam-
pled data and implicit functions for rendering and finite element modeling. Sampled
data can be binary (representing a single object), indexed (with each index or ‘label’
representing a different material), or grey-scale (where values can be an image inten-
sity values, e.g., from a Computed Tomography scan, or a sampled implicit function
such as a distance field). Indexed volumes representing multiple materials are a stan-
dard output of medical image segmentation; surfacing such data is thus an important
component in medical applications such as surgical planning, surgical simulation, and
image-guided therapy. Marching Cubes, introduced by Lorensen and Cline [1987],
is by far the most commonly used method for surfacing sampled volumes and imple-
mentations of Marching Cubes are readily available [Schroeder et al. 2018]. However,
Marching Cubes suffers from some quality issues and speed is limited by smoothing
which is performed as a post-processing step. SurfaceNets was developed for both
binary data and sampled implicit functions to address these issues and was shown
to produce better surfaces and higher quality triangle meshes [de Bruin et al. 2000].
Many extensions and improvements have been made to both Marching Cubes and
SurfaceNets as described below. SurfaceNets was originally patented by Mitsubishi
Electric Research Labs [Gibson 2000], but this patent has recently expired. The goal
of this paper is to 1) extend the original SurfaceNets algorithm to generate high-
quality, non-overlapping surfaces from multi-label segmented volumes, and 2) pro-
vide an open-source implementation of this method in the form of a well-documented
C++ library to encourage others to test, extend and improve this implementation.

2. Related Work

We review volume surfacing methods in the three major categories of Marching
Cubes, Marching Tetrahedra, and Dual Contouring.

2.1. Marching Cubes

Marching Cubes was originally introduced to construct anatomical models from 3D
medical images such as Computed Tomography (CT) and Magnetic Resonance Imag-
ing (MRI), which are composed of grey-scale image values stored in a regular 3D grid.
The grid partitions space into hexahedral cells (Figure 2). The algorithm marches
through the sampled volume to identify cells that intersect a specified iso-surface in
the image data (i.e., to identify cells that have some corner values inside the iso-
surface and some outside the iso-surface). It then constructs surface patches in the
identified cells and stitches these patches together to form the surface mesh. Con-
sidering symmetries, 15 unique inside/outside patterns for the 8 cell corners can be
identified, with each pattern defining its own surface patch. When considering surface

35

http://jcgt.org


Journal of Computer Graphics Techniques
SurfaceNets for Multi-Label Segmentations with Pres. of Sharp Boundaries

Vol. 11, No. 1, 2022
http://jcgt.org

quality, the important detail is that surface patch vertices are constrained to lie on
cell edges; the location of a vertex on a particular edge is determined by the grey-scale
values of the two cell corners at each end of the edge. Surface fairing (i.e., to smooth
the surface and improve triangle shape) is done as a post process independent of the
original data. This negatively impacts speed, surface quality and surface accuracy.

Figure 2. Marching Cubes surface patches for two different cells. The surface intersects a
cell if at least one of the 8 corner values is different from the others (Here, light/dark cor-
ners are inside/outside respectively). For each cell intersecting the surface, a surface patch is
constructed which lies entirely inside the cell. Surface vertices are constrained to lie on cell

edges.

Since its introduction, there have been multiple extensions to Marching Cubes
(e.g., as reviewed by Newman and Yi [2006] and De Araéjo et al. [2015]), and a
similar, though less well known, approach was published by Wyvill et al. [1986]. Ex-
tensions include methods for data stored in octrees [Schaefer and Warren 2004; Paiva
et al. 2006], methods for multi-material data represented as indexed values [Wu and
Sullivan Jr 2003; Bischoff and Kobbelt 2006; Reitinger et al. 2005], as probabilities
[Hege et al. 1997] and as volume fractions [Anderson et al. 2010], methods preserv-
ing fine detail and sharp features [Kobbelt et al. 2001; Schaefer and Warren 2004;
Chica et al. 2008], methods that guarantee manifold surfaces [Nielson 2004] or better
quality triangles [Dietrich et al. 2009], and methods that optimize processing speed
[Schroeder et al. 2015; Vega et al. 2019].

2.2. Marching Tetrahedra

Marching Tetrahedra was first published by Bloomenthal [1994] to tesselate implicit
surfaces without requiring a grid sampling of the implicit function. Like Marching
Cubes, the algorithm locates cells (in this case tetrahedral cells) containing the sur-
face, determines vertices on edges of the tetrahedra that intersect the surface, con-
structs a surface patch within each tetrahedra to connect the vertices, and then stitches
the surface patches together to form the surface mesh. Marching Tetrahedra has been
extended to handle multi-material data represented as indexed values [Nielson and
Franke 1997; d’Otreppe et al. 2012] and volume fractions [Bonnell et al. 2000].

36

http://jcgt.org


Journal of Computer Graphics Techniques
SurfaceNets for Multi-Label Segmentations with Pres. of Sharp Boundaries

Vol. 11, No. 1, 2022
http://jcgt.org

2.3. Dual Contouring

Dual Contouring methods are so-called because they are applied to the dual of the
Marching Cubes hexahedral grid. As in Marching Cubes, cells and cell edges inter-
sected by the iso-surface are identified. However, rather than placing vertices on cell
edges and constructing surfaces patches within cells, vertices are placed inside cells
intersected by the iso-surface. Quadrilateral surface patches are generated about each
edge that intersects the iso-surface by connecting vertices of the 4 hexahedral cells
that touch the edge (Figure 3). The advantages over methods that place surface ver-
tices on cell edges are 1) vertices are not constrained to lie on cell edges, i.e., they
can move about inside the cell; 2) surface fairing is performed in the context of the
image data and 3) we can specify a maximum distance between the faired surface and
the iso-surface by constraining how far vertices can move from the cell center.

Figure 3. Dual contouring methods place surface vertices inside cells. Surface quadrilaterals
are constructed by connecting vertices in neighboring cells that share an edge intersected
by the iso-surface (e.g., here a surface quadrilateral is constructed for the top-right edge by
connecting the vertex in this cell to the vertices of its right, top, and top-right neighbor cells).
Surface vertices can be moved around inside the cell to improve surface quality.

SurfaceNets, which we introduced to generate smooth surfaces from binary seg-
mentations of medical image data [Gibson 1998], was possibly the first Dual Con-
touring method. We subsequently extended SurfaceNets to handle grey-scale data
[de Bruin et al. 2000; Frisken et al. 2000], showed that it provides smother surfaces
with better quality triangles than Marching Cubes [de Bruin et al. 2000] and extended
it for data stored in octrees [Perry and Frisken 2001]. SurfaceNets has also been
extended to handle multiple materials [Bertram et al. 2005; Baxter et al. 2011]. Ly-
senko [2012] published source code for a version of SurfaceNets suitable for GPU
implementation. However, his method uses a simplified smoothing operator, does not
handle multiple materials, and does not ensure sharp boundaries between materials.

Ju et al. [2002] (who coined the term ‘Dual Contouring’) presented a Dual Con-
touring method that preserves sharp edges and corners. This method requires Her-
mite data, (i.e., data in the form of an implicit function where both the function and
its derivatives are available at specified locations). In Ju’s method, the Hermite data,
i.e., the edge-surface intersection position and the surface normal at that position, are
determined for each edge intersecting the surface. Cell vertices are located using the
Hermite data by minimizing an energy function that preserves sharp features. Vari-

37

http://jcgt.org


Journal of Computer Graphics Techniques
SurfaceNets for Multi-Label Segmentations with Pres. of Sharp Boundaries

Vol. 11, No. 1, 2022
http://jcgt.org

ations of Ju’s method can generate multiple vertices per cell to handle thin features
and fine detail [Varadhan et al. 2003; Zhang et al. 2004], handle multiple materials
[Schaefer and Warren 2004; Zhang et al. 2008; Zhang et al. 2010], and generate sur-
face meshes from data in octrees [Ju et al. 2002; Varadhan et al. 2003; Zhang et al.
2004; Schaefer et al. 2007]. Recent work has extended Dual Contouring methods to
generate volumetric tetrahedral meshes (e.g., for finite element methods) [Zhang et al.
2010; Liang and Zhang 2014]. A GPU implementation was presented by Schmitz et
al. [2009; 2010].

While SurfaceNets is technically a Dual Contouring method, the above methods
require Hermite data so they cannot be applied to indexed segmentation data. In
addition, positioning vertices using energy minimization limits how vertices can be
moved within cells, thus constraining surface fairing. The approach we present be-
low preserves sharp boundaries and edges between multiple materials without these
constraints.

3. SurfaceNets for Binary Data

We first provide a description of the basic SurfaceNets algorithm and then show how
it is enhanced to handle multiple materials and to preserve boundaries between mate-
rials.

3.1. Surface Generation

A regularly sampled binary volume with dimensions Nx × Ny × Nz consists of
Nx Ny Nz binary samples (where 1 typically represents points inside the shape and 0
typically represents points outside the shape), and (Nx − 1)(Ny − 1)(Nz − 1) cells,
each cell having 8 corner samples as illustrated in Figures. 2 and 3. A cell is inside
or outside the shape if its corner values are all 1 or all 0, respectively. If at least one
of the cell’s corner values is different from the others, the surface crosses the cell, so
we place a vertex inside the cell. If the surface crosses the cell, there will be at least
one edge with different corner values which we call a surface edge. For each surface
edge, we construct a quadrilateral of the surface mesh from the cell vertex and the
vertices of neighboring cells that share the edge.

By processing cells in left-to-right, bottom-to-top, back-to-front order we can gen-
erate the mesh in a single pass. For each cell intersecting the surface, we create a ver-
tex for the cell and consider generating quadrilaterals for the cell’s left-bottom, left-
back, bottom-back edges, knowing that the neighbors required for generating these
quadrilaterals have already been processed and that the cell’s remaining 9 edges will
be processed as the traversal continues. For the sake of simplicity, ensuring closed
surfaces, and removing expensive bounds checking, we make sure the surface does
not cross outside faces of the volume. This can easily be done by padding each out-

38

http://jcgt.org


Journal of Computer Graphics Techniques
SurfaceNets for Multi-Label Segmentations with Pres. of Sharp Boundaries

Vol. 11, No. 1, 2022
http://jcgt.org

side face with zeros. This condition can be dropped, (e.g., to stitch together multiple
volumes), at the cost of added complexity at volume boundaries.

We use two additional data structures. First, we define a 12-bit bitflag to encode
edge crossings for each cell, with each bit representing one of the cell’s 12 edges
and each bit set to one if the corresponding edge is a surface edge and zero other-
wise. Second, we use a vertex data structure that stores the 3D (i, j, k) index of the
cell containing the vertex (for fast access during surface fairing and for determining
vertex positions), the vertex’s 3D floating point offset from the cell’s center (which
changes during surface fairing), and the cell’s 12-bit bitflag. Pseudocode for the basic
SurfaceNets algorithm for binary data is given in Listing 1.

3.2. Surface Fairing

The goal of surface fairing is to adjust mesh vertex positions to make the surface
smoother and to improve the shape of surface elements by making the spacing be-
tween vertices more consistent. This makes it less likely to have small triangles and
triangles with small angles, both of which can be problematic for rendering and finite
element methods. In the basic SurfaceNets algorithm, this is done by iteratively mov-
ing each vertex in the SurfaceNet towards the average position of the vertices of cells
that are face-neighbors of the vertex’s cell, while constraining each vertex to lie within
a specified range of the cell center. Pseudocode for the surface fairing algorithm is
given in Listing 2.

StepSize is a value between 0 and 1. Values closer to 1 provide faster smoothing
while values closer to zero have better convergence properties. AllowedRange could
be a specified distance from the cell center (e.g., 1 mm) or a requirement that the
vertex remain inside the cell. AllowedRange provides a means for limiting shrinkage
of the surface and ensuring a maximim deviation of the smoothed surface from the
data. Optimal smoothing is a subjective tradeoff between smoothness and fidelity
to the initial surface. One of the advantages of SurfaceNets is that it is fast enough
for iterative adjustment of smoothing parameters, i.e., the number of iterations of the
surface fairing algorithm, StepSize and AllowedRange. This is demonstrated in the
application described in Section 5.

4. SurfaceNets for Multi-Label Segmentations

4.1. Surface Generation

Similar to SurfaceNets for binary data, we place a vertex in a cell if at least one
of the cell’s 8 corner material indices is different from the other corner indices. A

39

http://jcgt.org


Journal of Computer Graphics Techniques
SurfaceNets for Multi-Label Segmentations with Pres. of Sharp Boundaries

Vol. 11, No. 1, 2022
http://jcgt.org

vertex list ← empty

mesh quads ← empty

// Traverse volume left-to-right, bottom-to-top, back-to-front

for (k = 0 to Nz − 2) {

for (j = 0 to Ny − 2) {

for (i = 0 to Nx − 2) {

// Set bitflag from the cell′s corner values

bitflag ← 0

if (any of cell′s 12 edges have a zero crossing) {

(corresponding bits in bitflag) ← 1

}

if (bitflag is 0) { // surface does not intersect this cell

continue to next cell

}

// Create a vertex for this cell

vertex ← cell index (i, j, k), offset (0, 0, 0), bitflag

vertex list ← add vertex

// Construct mesh quadrilaterals for back, bottom, left edges

if (bitflag indicates a left-bottom edge crossing) {

quad ← vertex of cell and vertices of its left, bottom,

and left-bottom neighbors

quad list ← add quad

}

if (bitflag indicates a left-back edge crossing) {

quad ← vertex of this cell and vertices of its left, back,

and left-back neighbors

quad list ← add quad

}

if (bitflag indicates a bottom-back edge crossing) {

quad ← vertex of cell and vertices of its bottom, back

and bottom-back neighbors

quad list ← add quad

}

}

}

}

Listing 1. Basic SurfaceNets Algorithm

40

http://jcgt.org


Journal of Computer Graphics Techniques
SurfaceNets for Multi-Label Segmentations with Pres. of Sharp Boundaries

Vol. 11, No. 1, 2022
http://jcgt.org

iterate until an optimal smoothing is reached {

for each vertex in vertex list {

cell ← indexed from vertex (i, j, k)

vertexPosition ← derived from vertex (i, j, k) and vertex offset

localAverage ← avg. pos. of cell′s face neighbor

vertices (if present)

vertexPosition ← vertexPosition + stepSize * (localAverage)

vertex offset ← update using vertex (i, j, k) and vertexPosition

vertex offset ← constrain vertex offset to lie inside

AllowedRange

}

}

Listing 2. SurfaceNets surface fairing algorithm

surface edge is defined to be a cell edge that connects a pair of cell corners with
different material indices. We construct a quadrilateral for each surface edge the cell’s
vertex and the vertex of the three neighboring cells that share the surface edge. Each
quadrilateral separates exactly two materials (the materials of the surface edge’s two
corners); the top and bottom faces of the quadrilateral are labeled with the appropriate
material (e.g., for setting color or texture during rendering). While quadrilaterals are
associated with two materials, cell vertices can be associated with up to 8 materials
(one for each unique corner material). This has advantages and disadvantages that are
beyond the scope of this paper, but we note that others have extended SurfaceNets and
Dual Contouring methods to place more than one vertex in a cell that contains more
than two materials.

We traverse the cells in left-to-right, bottom-to-top, back-to-front order and gen-
erate cell vertices the same way as for binary data but with a modification to help
generate sharp edges and boundaries. Specifically, we add a vertex type and 6 face
types to the vertex bitflag. The face type of each of the cell’s 6 faces is determined by
the number of materials crossing the face, which is determined by the face’s 4 corner
material indices. The face types specify either no surface crossing (SolidFace), a sin-
gle surface crossing (SurfaceFace), or two or more surfaces crossing (JunctionFace).
These face types are illustrated in Figure 4. The vertex type is determined from the
cell’s 6 face crossings. If all faces have no surface crossings or a single surface cross-
ing the face, the vertex is a surface vertex (SurfaceVertex). If 1 or more of the faces
has more than one surface crossing the face, the vertex is an edge vertex (EdgeVertex).
Surface fairing handles these two vertex types differently.

4.2. Surface Fairing with Sharp Boundaries

The multi-material SurfaceNet is treated as a single structure composed of a union of
two-sided surface patches each of which separate two materials. A surface enclosing a

41

http://jcgt.org


Journal of Computer Graphics Techniques
SurfaceNets for Multi-Label Segmentations with Pres. of Sharp Boundaries

Vol. 11, No. 1, 2022
http://jcgt.org

Figure 4. Face types from left-to-right: SolidFace, SurfaceFace, JunctionFace (2 Junction-
Face examples shown). JunctionFace includes faces intersected by more than two materials
and faces intersected by two materials where vertices of the same material are located on
diagonally opposite corners (far right).

single material may be composed of multiple surface patches. Treating the SurfaceNet
as a single structure rather than as a set of closed surfaces surface, makes surface
fairing faster and preserves topology (i.e., by preventing the surfaces of two materials
that touch each other from pulling apart or intersecting each other during smoothing).

To preserve sharp boundaries between objects, we modify the surface fairing
method outlined in Section 3.2 to consider the vertex type. Recall that SurfaceVertices
lie in cells whose 6 faces separate at most two materials. For these vertices, we use
the surface fairing method for binary data of Section 3.2. In contrast, EdgeVertices lie
in cells with at least one JunctionFace (Figure 4). A JunctionFace is a face intersected
by more than two materials or a face intersected by two materials where vertices of
the same material are located on diagonally opposite corners. Note that one of those
materials could be the background or ‘empty’ material. This indicates that the cell
contains an edge where three (or more) materials meet. To preserve such edges, dur-
ing surface fairing we encourage the cell vertex to move along the edge and discourage
it from moving perpendicular to the edge. To do so, we compute LocalAverage (Sec-
tion 3.2) using only vertices from JunctionFace neighbors and ignore vertex positions
from SurfaceFace neighbors. Figure 5 shows how this method improves edge quality.

Figure 5. Edges between materials (left) without and (right) with sharp boundary preserva-
tion.

42

http://jcgt.org


Journal of Computer Graphics Techniques
SurfaceNets for Multi-Label Segmentations with Pres. of Sharp Boundaries

Vol. 11, No. 1, 2022
http://jcgt.org

4.3. Exporting Surfaces for Rendering

A SurfaceNet consists of a mesh of quadrilaterals, with each quadrilateral separat-
ing two materials. We provide two example methods for exporting SurfaceNets to
conventional formats for rendering and further processing (e.g., tetrahedral meshing
for finite element modeling). These two methods are provided for visualization and
validation, and as templates for custom export methods. The first example method ex-
ports the SurfaceNet as C-style arrays of vertices and triangle indices for rendering via
OpenGL. We generate two triangles for each quadrilateral. Each triangle consists of
three vertices so that mesh vertices are duplicated where triangles meet). Each vertex
consists of 8 floats: 3 positions (x, y, z), 3 surface normal components (nx, ny, nz),
and two texture coordinates (s, t), where (nx, ny, nz) is the face normal of the trian-
gle (to provide flat shading which is best for validating surface quality). The texture
coordinates encode material indices of the top and bottom faces of the triangle. To
ensure that texture coordinates lie in [0, 1], we compute s and t by dividing the mate-
rial index by the number of materials, NI . For rendering using OpenGL, we generate
a 1D texture map with NI components. The texture map stores an RGBA color for
each material; the s and t values associated with vertices of a particular triangle thus
provide the color of the top and bottom face of the triangle. Changing the color for
a material or making its surface or the boundary between two materials transparent
simply requires modifying this texture map.

The second method exports a SurfaceNet as a set of surfaces, with each surface
enclosing a single material. Vertices are consistently ordered in counterclockwise
order to distinguish between inside and outside faces for rendering. Each surface is
stored in a C++ std::vector of floating point vertex positions and a C++ std::vector of
integer triangle indices, where each index references a vertex in the vertex vector. In
the sample application provided with this library (Section 6), we export this geometry
as OBJ files (a standard representation used for rendering and geometry processing).

4.4. Reducing Surface Self-Intersections

Each quadrilateral can be partitioned into two triangles as illustrated in Figure 6. Be-
cause SurfaceNets quadrilaterals are generally non-planar, the choice of the partition-
ing can affect the local surface shape. When a quadrilateral is highly non-planar (e.g.,
near an edge), the choice of partitioning for neighboring quadrilaterals can cause tri-
angles to intersect each other. To avoid local self-intersections, we can consider both
patterns and chose the partitioning that minimizes local surface area. This is slightly
slower, but may be critical for some applications (e.g., tetrahedralization and 3D print-
ing). We apply this technique for the export method used to generate OBJ files.

43

http://jcgt.org


Journal of Computer Graphics Techniques
SurfaceNets for Multi-Label Segmentations with Pres. of Sharp Boundaries

Vol. 11, No. 1, 2022
http://jcgt.org

Figure 6. Quadrilaterals (a, d) can be partitioned into two different triangle patterns (b, c and
e, f). When the quadrilateral is non-planar (d), the choice of partitioning can impact local
shape.

5. A Simple Application

To test and demonstrate the proposed extensions of SurfaceNets, we also provide a
sample C++ application using Qt for input, output and controlling parameters, and
OpenGL for rendering and view control. A screenshot of this application is shown
in Figure 7. All examples in this manuscript were generated using this application.
Geometry can either be generated or input from a file. To input from a file, the user
specifies the name of a file in binary format composed of 8-bit or 16-bit indices stored
in left-to-right, bottom-to-top, back-to-front order, the image dimensions, and voxel
size. To generate geometry, the user specifies the image dimensions, voxel sizes, and
a desired number of spheres. The spheres are generated with random sizes and radii
within the specified volume. Figure 7 shows the SurfaceNet for 100 spheres randomly
placed in a 256 × 256 × 256 volume of 1 mm × 1 mm × 1 mm voxels. Qt sliders
allow the user to experiment with different surface fairing parameters and to edit the
color and visibility of each material. The system creates OpenGL data internally for
rendering. OBJ files can be exported using the Qt interface.

6. Results

Figures 1, 7, and 8 show the high-quality surfaces that can be generated from multi-
label data using SurfaceNets. All models in this paper are rendered using flat shading
to better evaluate surface quality.

Figure 9 shows the effect on surface fairing of the maximum distance a vertex
can move from cell center and the number of smoothing iterations. Because there
are trade-offs between how accurately the surface fits the original data, speed, and
smoothness, it is useful to be able to fine tune these parameters. The speed of the
proposed method makes interactive tuning possible.

Figure 10 shows that this method handles volumes with non-cubic voxels well.

44

http://jcgt.org


Journal of Computer Graphics Techniques
SurfaceNets for Multi-Label Segmentations with Pres. of Sharp Boundaries

Vol. 11, No. 1, 2022
http://jcgt.org

Figure 7. A screen shot of a simple application for testing and demonstrating the proposed
method. The model here was generated from 100 spheres with random center positions and
radii inside a 256 × 256 × 256 volume. Sliders on the right control panel are used to adjust
surface fairing parameters. The SurfaceNet is rendered using flat shading for better evaluation
of surface smoothness.

Medical data often consists of non-cubic voxels, e.g., 3D volumes composed of a
stack of 2D images, where the spacing between image pixels is smaller than the spac-
ing between image planes. In Figure 10, voxel (x, y, z) sizes are 1 mm × 1 mm ×
4 mm. SurfaceNets does not exhibit the terracing artifacts present for this kind of
data in other surfacing methods where smoothing is performed as a post-processing
step.

Figures 11 and 12 compare surfaces generated with SurfaceNets and Flying Edges
from a multi-label segmentation of a brain (using the Flying Edges implementation in
the Segmentations module of 3D Slicer 4.11 [Kikinis and Pieper 2011]). SurfaceNets
constructs a single mesh, ensures a maximum relaxation error, and maintains sharp
edges and corners between materials; while Flying Edges generates and relaxes each
surface independently, does not guarantee a maximum error, and does not attempt
to maintain sharp edges and corners between materials. These differences are high-

45

http://jcgt.org


Journal of Computer Graphics Techniques
SurfaceNets for Multi-Label Segmentations with Pres. of Sharp Boundaries

Vol. 11, No. 1, 2022
http://jcgt.org

Figure 8. A SurfaceNet generated from a manually and semi-automatically segmented brain
partitioned into more than 100 different anatomical structures. Top row shows 3 views of the
binary segmented volume. Bottom row shows corresponding views of the SurfaceNet surface.
Volume size is 256× 256× 159 voxels and voxel sizes are 0.95 mm× 0.95 mm× 1.5 mm.

Figure 9. The effect of surface fairing parameters on smoothness and accuracy. Vertices are
constrained to lie within 0.5 mm and 1 mm of the center of the 1 mm × 1 mm × 1 mm

voxels for the top and bottom rows, respectively. From left to right: no smoothing, too few
smoothing iterations, optimal iterations, too many iterations for the given accuracy.

lighted in Figure 11 and 12. In Figure 11, areas where brain sulci are labeled accord-
ing to function (as opposed to geometry) are correctly partitioned by color only by
SurfaceNets but are incorrectly separated by Flying Edges (white circles), resulting

46

http://jcgt.org


Journal of Computer Graphics Techniques
SurfaceNets for Multi-Label Segmentations with Pres. of Sharp Boundaries

Vol. 11, No. 1, 2022
http://jcgt.org

Figure 10. SurfaceNets handles smoothing of non-cubic voxels well. Left: a cuberille surface
of an ellipsoid with voxel size 1 mm × 1 mm × 4 mm. Right the SurfaceNet generated for
this model.

in inaccurate brain anatomy. In Figure 12, while SurfaceNets preserves anatomical
structure, Flying Edges incorrectly separates structures of the optic chiasm (white
circles) and degrades the small mammillary bodies (yellow circles).

Figure 13 shows total CPU time required for generating, fairing, and exporting an
OpenGL model for rendering with SurfaceNets for a variety of models of randomly
generated intersecting spheres. Surface generation time is roughly proportional to
volume size, while surface fairing and surface export for rendering (and hence the to-
tal time) are roughly proportional to the number of quadrilaterals in the surface mesh.
Total times range from sub-second for hundreds of quads to 3.5 seconds for 800K
quads. These tests were performed on a Dell XPS 8940 desktop with a i7-11700 In-
tel processor @ 2.50 GHz with 16 logical processors. These times are fast enough
to interactively optimize surface fairing parameters and compare very favorably with
Marching Cubes and Flying Edges surfacing. While a detailed timing comparison
against these methods is outside the goals of this paper, we note that our SurfaceNets
implementation running on a single processor required approximately 4 seconds to
generate, fair and export a surface from a multi-material volume (256 × 256 × 256

with 100 randomly generated spheres). As a rough comparison, the highly optimized
parallel implementation of Flying Edges in 3D Slicer’s [Kikinis and Pieper 2011]
Segmentations module also required approximately 4 seconds for the same model, but
the method was running on all 16 processors (with an even load balancing between
processors observed in the Windows Task Manager). The Marching Cubes imple-
mentation in 3D Slicer’s Greyscale Model Maker module required multiple minutes
to generate, smooth and render the same model.

7. Discussion

In this paper, we have reviewed the basic SurfaceNets algorithm and presented an
extension that allows it to handle 3D segmented medical images, where segmented
regions are represented as material indices. We have presented a method that pre-

47

http://jcgt.org


Journal of Computer Graphics Techniques
SurfaceNets for Multi-Label Segmentations with Pres. of Sharp Boundaries

Vol. 11, No. 1, 2022
http://jcgt.org

Figure 11. Superior view of the brain model of Figure 8 with low to high levels of smoothing
(left to right). Top row: Flying Edges. Bottom row: SurfaceNets. Flying Edges surfaces were
generated using the Segmentations module in 3D Slicer 4.11, with smoothing set to 25%, 50%
and 100% (left to right). SurfaceNets surfaces were generated with parameters: {maximum
distance from cell center in voxels, # relaxations, and relaxation factor} of {0.6, 10, 0.4},
{1.0, 18, 0.4} and {1.4, 26, 0.4} (left to right). Parameters were manually chosen to achieve
comparable smoothing for the two methods in regions of low curvature. White circles show
where Flying Edges generates inaccurate anatomy (see text).

serves sharp edges where multiple materials meet, described methods for exporting
a multi-material SurfaceNet to two different standard representations (OpenGL and
OBJ files), and describe a simple application to demonstrate and test this method with
data input from a file or randomly generated by the application.

Given the large body of prior work on surfacing methods and the ubiquity of
Marching Cubes and its extensions, it is somewhat daunting to write a paper on sur-
face meshing. However, we believe that SurfaceNets offers a viable alternative that
1) reduces terracing artifacts in indexed data to provide smoother, better-quality sur-
faces, which we believe is sorely needed in the medical field, 2) preserves topology,
3) handles non-cubic voxels well, and 4) is fast enough for interactive setting of sur-
face fairing parameters. We hope that by providing an open-source implementation
of SurfaceNets we will encourage others to build upon and improve this work, per-
haps by incorporating some of the many improvements and extensions described in
Section 2 that have been proposed for Marching Cubes, SurfaceNets and Dual Con-
toring (e.g., handling implicit data, octree data structures, parallel processing, GPU

48

http://jcgt.org


Journal of Computer Graphics Techniques
SurfaceNets for Multi-Label Segmentations with Pres. of Sharp Boundaries

Vol. 11, No. 1, 2022
http://jcgt.org

Figure 12. Inferior view of the surfaces of Figure 11. Top row: Flying Edges; bottom
row: SurfaceNets. Left images show surfaces with medium levels of smoothing. Middle and
right rows show close ups of the indicated region for surfaces with medium and high levels
of smoothing respectively. During smoothing, Flying Edges does not preserve connections
between structures (white circles) and can degrade small structures (yellow circles) while
SurfaceNets preserves the anatomy.

implementations, etc.).

Acknowledgements

The author would like to acknowledge Michael Halle for helpful discussions that
helped inspire this work. This work was supported in part by the U.S. National Insti-
tute of Health under grants R01 EB027134-01 and P41 EB028741-01

References

ANDERSON, J. C., GARTH, C., DUCHAINEAU, M. A., AND JOY, K. I. 2010. Smooth,
volume-accurate material interface reconstruction. IEEE Transactions on Visualization
and Computer Graphics 16, 5, 802–814. URL: https://ieeexplore.ieee.org/
abstract/document/5383354/. 36

BAXTER, J. S., PETERS, T. M., AND CHEN, E. C. 2011. A unified framework for voxel
classification and triangulation. In Medical Imaging 2011: Visualization, Image-Guided
Procedures, and Modeling, vol. 7964, SPIE, 933–940. URL: https://doi.org/10.
1117/12.877715. 37

49

http://jcgt.org
https://ieeexplore.ieee.org/abstract/document/5383354/
https://ieeexplore.ieee.org/abstract/document/5383354/
https://doi.org/10.1117/12.877715
https://doi.org/10.1117/12.877715


Journal of Computer Graphics Techniques
SurfaceNets for Multi-Label Segmentations with Pres. of Sharp Boundaries

Vol. 11, No. 1, 2022
http://jcgt.org

Figure 13. The total time required to generate the SurfaceNet, fair the surface, and export
geometry for rendering varies approximately linearly with the number of quadrilaterals in
the surface mesh, which depends on the dimensions of the 3D volume containing the multi-
label data and the complexity of the surface in the data. In this test, the complexity of the
surface was controlled by the number of randomly generated spheres composed to generate
the labeled data.

BERTRAM, M., REIS, G., VAN LENGEN, R. H., KÖHN, S., AND HAGEN, H. 2005. Non-
manifold mesh extraction from time-varying segmented volumes used for modeling a hu-
man heart. In Proceedings of EuroVis 2005: The Eurographics/IEEE VGTC Conference
on Visualization, Eurographics, 199–206. URL: http://dx.doi.org/10.2312/
VisSym/EuroVis05/199-206. 37

BISCHOFF, S., AND KOBBELT, L. 2006. Extracting consistent and manifold inter-
faces from multi-valued volume data sets. In Bildverarbeitung für die Medizin 2006.
Springer, 281–285. URL: https://link.springer.com/chapter/10.1007/
3-540-32137-3_57. 36

BLOOMENTHAL, J. 1994. An implicit surface polygonizer. Graphics Gems 4,
324–350. URL: https://people.eecs.berkeley.edu/˜jrs/meshpapers/
Bloomenthal.pdf. 36

BONNELL, K. S., SCHIKORE, D. R., JOY, K. I., DUCHAINEAU, M., AND HAMANN, B.
2000. Constructing material interfaces from data sets with volume-fraction information. In
Proceedings of Visualization 2000, IEEE. URL: https://ieeexplore.ieee.org/
abstract/document/885717/. 36

CHICA, A., WILLIAMS, J., ANDÚJAR, C., BRUNET, P., NAVAZO, I., ROSSIGNAC, J.,
AND VINACUA, À. 2008. Pressing: Smooth isosurfaces with flats from binary grids.
Computer Graphics Forum 27, 1, 36–46. URL: https://onlinelibrary.wiley.
com/doi/abs/10.1111/j.1467-8659.2007.01039.x. 36

50

http://jcgt.org
http://dx.doi.org/10.2312/VisSym/EuroVis05/199-206
http://dx.doi.org/10.2312/VisSym/EuroVis05/199-206
https://link.springer.com/chapter/10.1007/3-540-32137-3_57
https://link.springer.com/chapter/10.1007/3-540-32137-3_57
https://people.eecs.berkeley.edu/~jrs/meshpapers/Bloomenthal.pdf
https://people.eecs.berkeley.edu/~jrs/meshpapers/Bloomenthal.pdf
https://ieeexplore.ieee.org/abstract/document/885717/
https://ieeexplore.ieee.org/abstract/document/885717/
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2007.01039.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2007.01039.x


Journal of Computer Graphics Techniques
SurfaceNets for Multi-Label Segmentations with Pres. of Sharp Boundaries

Vol. 11, No. 1, 2022
http://jcgt.org

DE ARAÚJO, B. R., LOPES, D. S., JEPP, P., JORGE, J. A., AND WYVILL, B. 2015. A
survey on implicit surface polygonization. ACM Computing Surveys (CSUR) 47, 4, 1–39.
URL: https://dl.acm.org/doi/abs/10.1145/2732197. 36

DE BRUIN, P. W., VOS, F., POST, F. H., FRISKEN-GIBSON, S., AND VOSSEPOEL,
A. M. 2000. Improving triangle mesh quality with SurfaceNets. In Interna-
tional Conference on Medical Image Computing and Computer-Assisted Intervention,
Springer, 804–813. URL: https://link.springer.com/chapter/10.1007/
978-3-540-40899-4_83. 35, 37

DIETRICH, C. A., SCHEIDEGGER, C. E., COMBA, J. L., NEDEL, L. P., AND SILVA, C. T.
2009. Marching cubes without skinny triangles. Computing in Science & Engineering
11, 2, 82–87. URL: https://ieeexplore.ieee.org/abstract/document/
4784402/. 36

D’OTREPPE, V., BOMAN, R., AND PONTHOT, J.-P. 2012. Generating smooth surface
meshes from multi-region medical images. International Journal for Numerical Meth-
ods in Biomedical Engineering 28, 6-7, 642–660. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1002/cnm.1471. 36

FRISKEN, S. F., PERRY, R. N., ROCKWOOD, A. P., AND JONES, T. R. 2000. Adaptively
sampled distance fields: A general representation of shape for computer graphics. In Pro-
ceedings of SIGGRAPH 2000, the 27th Annual Conference on Computer Graphics and
Interactive Techniques, ACM, 249–254. URL: https://dl.acm.org/doi/abs/
10.1145/344779.344899. 37

GIBSON, S. F. 1998. Constrained elastic surface nets: Generating smooth surfaces from
binary segmented data. In International Conference on Medical Image Computing and
Computer-Assisted Intervention, Springer, 888–898. 37

GIBSON, S. F., 2000. Surface net smoothing for surface representation from binary sampled
data, July. US Patent 6,084,593. 35

HEGE, H.-C., SEEBASS, M., STALLING, D., AND ZÖCKLER, M., 1997. A generalized
marching cubes algorithm based on non-binary classifications. ZIB-Report SC-97-05.
URL: https://nbn-resolving.org/urn:nbn:de:0297-zib-2741. 36

JU, T., LOSASSO, F., SCHAEFER, S., AND WARREN, J. 2002. Dual contouring of her-
mite data. In Proceedings of SIGGRAPH 2002, the 29th Annual Conference on Computer
Graphics and Interactive Techniques, ACM, 339–346. URL: https://dl.acm.org/
doi/abs/10.1145/566570.566586. 37, 38

KIKINIS, R., AND PIEPER, S. 2011. 3D Slicer as a tool for interactive brain tumor seg-
mentation. In 2011 Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, IEEE, 6982–6984. URL: https://ieeexplore.ieee.org/
abstract/document/6091765/. 45, 47

KOBBELT, L. P., BOTSCH, M., SCHWANECKE, U., AND SEIDEL, H.-P. 2001. Feature
sensitive surface extraction from volume data. In Proceedings of SIGGRAPH 2001, the
28th Annual Conference on Computer Graphics and Interactive Techniques, ACM, 57–66.
URL: https://dl.acm.org/doi/abs/10.1145/383259.383265. 36

51

http://jcgt.org
https://dl.acm.org/doi/abs/10.1145/2732197
https://link.springer.com/chapter/10.1007/978-3-540-40899-4_83
https://link.springer.com/chapter/10.1007/978-3-540-40899-4_83
https://ieeexplore.ieee.org/abstract/document/4784402/
https://ieeexplore.ieee.org/abstract/document/4784402/
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.1471
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.1471
https://dl.acm.org/doi/abs/10.1145/344779.344899
https://dl.acm.org/doi/abs/10.1145/344779.344899
https://nbn-resolving.org/urn:nbn:de:0297-zib-2741
https://dl.acm.org/doi/abs/10.1145/566570.566586
https://dl.acm.org/doi/abs/10.1145/566570.566586
https://ieeexplore.ieee.org/abstract/document/6091765/
https://ieeexplore.ieee.org/abstract/document/6091765/
https://dl.acm.org/doi/abs/10.1145/383259.383265


Journal of Computer Graphics Techniques
SurfaceNets for Multi-Label Segmentations with Pres. of Sharp Boundaries

Vol. 11, No. 1, 2022
http://jcgt.org

LIANG, X., AND ZHANG, Y. 2014. An octree-based dual contouring method for triangular
and tetrahedral mesh generation with guaranteed angle range. Engineering with Comput-
ers 30, 2, 211–222. URL: https://link.springer.com/article/10.1007/
s00366-013-0328-8. 38

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching cubes: A high resolution 3D surface
construction algorithm. In Proceedings of SIGGRAPH ’87, the 14th Annual Conference on
Computer Graphics and Interactive Techniques, Association for Computing Machinery,
163–169. URL: https://doi.org/10.1145/37401.37422. 34, 35

LYSENKO, M., 2012. Smooth voxel terrain (part 2). URL: https://0fps.net/2012/
07/12/smooth-voxel-terrain-part-2/. 37

NEWMAN, T. S., AND YI, H. 2006. A survey of the marching cubes algorithm. Computers &
Graphics 30, 5, 854–879. URL: https://www.sciencedirect.com/science/
article/pii/S0097849306001336. 36

NIELSON, G. M., AND FRANKE, R. 1997. Computing the separating surface for seg-
mented data. In Proceedings of Visualization’97, IEEE, 229–233. URL: https:
//ieeexplore.ieee.org/abstract/document/663887/. 36

NIELSON, G. M. 2004. Dual marching cubes. In Proceedings of Visualization
2004, IEEE, 489–496. URL: https://ieeexplore.ieee.org/abstract/

document/1372234/. 36

PAIVA, A., LOPES, H., LEWINER, T., AND DE FIGUEIREDO, L. H. 2006. Robust adaptive
meshes for implicit surfaces. In Proceedings of the 19th Brazilian symposium on com-
puter graphics and image processing, IEEE, 205–212. URL: https://ieeexplore.
ieee.org/abstract/document/4027069/. 36

PERRY, R. N., AND FRISKEN, S. F. 2001. Kizamu: A system for sculpting digital characters.
In Proceedings of SIGGRAPH 2001, the 28th Annual Conference on Computer Graphics
and Interactive Techniques, ACM, 47–56. URL: https://dl.acm.org/doi/abs/
10.1145/383259.383264. 37

REITINGER, B., BORNIK, A., AND BEICHEL, R. 2005. Constructing smooth non-manifold
meshes of multi-labeled volumetric datasets. In Proceedings of WSCG 2005, Eurograpics.
URL: https://otik.uk.zcu.cz/handle/11025/10972. 36

SCHAEFER, S., AND WARREN, J. 2004. Dual marching cubes: Primal contouring of
dual grids. In Proceedings of the 12th Pacific Conference on Computer Graphics and
Applications, IEEE, 70–76. URL: https://ieeexplore.ieee.org/abstract/
document/1348336/. 36, 38

SCHAEFER, S., JU, T., AND WARREN, J. 2007. Manifold dual contouring. IEEE
Transactions on Visualization and Computer Graphics 13, 3, 610–619. URL: https:
//ieeexplore.ieee.org/abstract/document/4297690/. 38

SCHMITZ, L. A., DIETRICH, C. A., AND COMBA, J. L. 2009. Efficient and high quality
contouring of isosurfaces on uniform grids. In 2009 XXII Brazilian Symposium on Com-
puter Graphics and Image Processing, IEEE, 64–71. URL: https://ieeexplore.
ieee.org/abstract/document/5395251/. 38

52

http://jcgt.org
https://link.springer.com/article/10.1007/s00366-013-0328-8
https://link.springer.com/article/10.1007/s00366-013-0328-8
https://doi.org/10.1145/37401.37422
https://0fps.net/2012/07/12/smooth-voxel-terrain-part-2/
https://0fps.net/2012/07/12/smooth-voxel-terrain-part-2/
https://www.sciencedirect.com/science/article/pii/S0097849306001336
https://www.sciencedirect.com/science/article/pii/S0097849306001336
https://ieeexplore.ieee.org/abstract/document/663887/
https://ieeexplore.ieee.org/abstract/document/663887/
https://ieeexplore.ieee.org/abstract/document/1372234/
https://ieeexplore.ieee.org/abstract/document/1372234/
https://ieeexplore.ieee.org/abstract/document/4027069/
https://ieeexplore.ieee.org/abstract/document/4027069/
https://dl.acm.org/doi/abs/10.1145/383259.383264
https://dl.acm.org/doi/abs/10.1145/383259.383264
https://otik.uk.zcu.cz/handle/11025/10972
https://ieeexplore.ieee.org/abstract/document/1348336/
https://ieeexplore.ieee.org/abstract/document/1348336/
https://ieeexplore.ieee.org/abstract/document/4297690/
https://ieeexplore.ieee.org/abstract/document/4297690/
https://ieeexplore.ieee.org/abstract/document/5395251/
https://ieeexplore.ieee.org/abstract/document/5395251/


Journal of Computer Graphics Techniques
SurfaceNets for Multi-Label Segmentations with Pres. of Sharp Boundaries

Vol. 11, No. 1, 2022
http://jcgt.org

SCHMITZ, L., SCHEIDEGGER, L. F., OSMARI, D. K., DIETRICH, C. A., AND COMBA, J.
L. D. 2010. Efficient and quality contouring algorithms on the gpu. Computer Graph-
ics Forum 29, 8, 2569–2578. URL: https://onlinelibrary.wiley.com/doi/
abs/10.1111/j.1467-8659.2010.01825.x. 38

SCHROEDER, W., MAYNARD, R., AND GEVECI, B. 2015. Flying edges: A high-
performance scalable isocontouring algorithm. In Proceedings of the 2015 IEEE 5th Sym-
posium on Large Data Analysis and Visualization (LDAV), LDAV ’15, IEEE Computer
Society, 33–40. URL: https://doi.org/10.1109/LDAV.2015.7348069. 34,
36

SCHROEDER, W., MARTIN, K. M., AND LORENSEN, W. E. 2018. The visualiza-
tion toolkit: an object-oriented approach to 3D graphics. Prentice-Hall, Inc. URL:
https://gitlab.kitware.com/vtk/textbook. 35

VARADHAN, G., KRISHNAN, S., KIM, Y. J., AND MANOCHA, D. 2003. Feature-
sensitive subdivision and isosurface reconstruction. In Proceedings of Visualiza-
tion 2003, IEEE, 99–106. URL: https://ieeexplore.ieee.org/abstract/
document/1250360/. 38

VEGA, D., ABACHE, J., AND COLL, D. 2019. A fast and memory-saving marching cubes
33 implementation with the correct interior test. Journal of Computer Graphics Techniques
8, 3. URL: https://www.jcgt.org/published/0008/03/01/. 36

WU, Z., AND SULLIVAN JR, J. M. 2003. Multiple material marching cubes algorithm.
International Journal for Numerical Methods in Engineering 58, 2, 189–207. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.775. 36

WYVILL, G., MCPHEETERS, C., AND WYVILL, B. 1986. Data structure for soft ob-
jects. The Visual Computer 2, 227–234. URL: https://link.springer.com/
article/10.1007/BF01900346. 36

ZHANG, N., HONG, W., AND KAUFMAN, A. 2004. Dual contouring with topology-
preserving simplification using enhanced cell representation. In Proceedings of Visualiza-
tion 2004, IEEE, 505–512. URL: https://ieeexplore.ieee.org/document/
1372236. 38

ZHANG, Y., HUGHES, T. J., AND BAJAJ, C. L. 2008. Automatic 3D mesh generation
for a domain with multiple materials. In Proceedings of the 16th international meshing
roundtable, Springer, 367–386. URL: https://link.springer.com/chapter/
10.1007/978-3-540-75103-8_21. 38

ZHANG, Y., HUGHES, T. J., AND BAJAJ, C. L. 2010. An automatic 3D mesh generation
method for domains with multiple materials. Computer methods in applied mechanics
and engineering 199, 5-8, 405–415. URL: https://www.sciencedirect.com/
science/article/pii/S004578250900214X. 38

Index of Supplemental Materials

jcgt.org/published/0011/01/03/SurfaceNets.zip
Contains a zip file with source code, a README document, and a description of the open-
source MIT license in place for the source code. The source code includes a C++ library

53

http://jcgt.org
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2010.01825.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2010.01825.x
https://doi.org/10.1109/LDAV.2015.7348069
https://gitlab.kitware.com/vtk/textbook
https://ieeexplore.ieee.org/abstract/document/1250360/
https://ieeexplore.ieee.org/abstract/document/1250360/
https://www.jcgt.org/published/0008/03/01/
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.775
https://link.springer.com/article/10.1007/BF01900346
https://link.springer.com/article/10.1007/BF01900346
https://ieeexplore.ieee.org/document/1372236
https://ieeexplore.ieee.org/document/1372236
https://link.springer.com/chapter/10.1007/978-3-540-75103-8_21
https://link.springer.com/chapter/10.1007/978-3-540-75103-8_21
https://www.sciencedirect.com/science/article/pii/S004578250900214X
https://www.sciencedirect.com/science/article/pii/S004578250900214X
https://jcgt.org/published/0011/01/03/SurfaceNets.zip


Journal of Computer Graphics Techniques
SurfaceNets for Multi-Label Segmentations with Pres. of Sharp Boundaries

Vol. 11, No. 1, 2022
http://jcgt.org

for Multi-Material SurfaceNets and the application of Section 5. These are provided with a
Visual Studio solution for convenience.

Author Contact Information
Sarah F. Frisken
Brigham and Women’s Hospital
75 Francis St., Boston, MA, 02115
sfrisken@bwh.harvard.edu

Sarah F. Frisken, SurfaceNets for Multi-Label Segmentations with Preservation of Sharp
Boundaries, Journal of Computer Graphics Techniques (JCGT), vol. 11, no. 1, 34–54, 2022
http://jcgt.org/published/0011/01/03/

Received: 2021-07-10
Recommended: 2021-12-27 Corresponding Editor: Alexander Wilkie
Published: 2022-02-28 Editor-in-Chief: Marc Olano

c© 2022 Sarah F. Frisken (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission for reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

54

http://jcgt.org
mailto:sfrisken@bwh.harvard.edu
http://jcgt.org/published/0011/01/03/
http://creativecommons.org/licenses/by-nd/3.0/

