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Abstract

In this work, we propose a new technique for
deriving the differential privacy parameters in the
context of federated learning when only the last
update is publicly released. In this approach, we
interpret each iteration as a Markov kernel and
quantify its impact on privacy parameters via the
contraction coefficient of a certain f-divergence
that underlies differential privacy. To do so, we
generalize the well-known Dobrushin’s ergodicity
coefficient, originally defined in terms of total
variation distance, to a family of f-divergences.

1. Introduction

Federated Learning (McMahan et al., 2016) refers to algo-
rithms for aggregating multiple noisy model local updates
from distributed users. In the prototypical setting, users com-
pute their local gradients on their local data and send them
to the central aggregator (uplinks). All these local updates
are then aggregated to a centralized update which is then
sent back to users (downlinks). This iterative distributed
algorithm has recently gained attention due to its natural
parallelization and storage efficiency. Although users hold
on to their local data during each iteration and only gradient
are transmitted, It is easy to compromise the privacy of users
(Fredrikson et al., 2015; Melis et al., 2018).

Following the de facto standard of differential privacy (DP)
in large-scale model fitting (Bassily et al., 2014; 2019;
Chaudhuri & Mishra, 2006; Chaudhuri & Monteleoni, 2009;
Chaudhuri et al., 2011; Duchi et al., 2013; Jain & Thakurta,
2014; Jain et al., 2012; Smith et al., 2017; Song et al., 2013;
Talwar et al., 2015; Thakurta & Smith, 2013; Wang et al.,
2017; Wu et al., 2017), we study the differentially private
federated learning under two assumptions. First, we as-
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sume that users communicate over encrypted channels with
a trusted aggregator. This assumption is justified by se-
cure multiparty computation (Bonawitz et al., 2017) at the
cost of higher communication and computation complexity.
Second, we assume that the aggregator releases the model
parameters only after a certain number of iterations and hide
all intermediate updates. Augenstein et al. (2020) recently
studied the same setting where, after 7 iterations, the last
model parameters are used to generate synthetic data for
data inspection purposes. This assumption is also in line
with the recent frameworks of “privacy amplification by
iteration” (Feldman et al., 2018) and privacy amplification
by post-processing” (Balle et al., 2019a). However, our
work differs in that we allow for subsampling and adopt the
approximate DP as the measure of privacy as opposed to
(Balle et al., 2019a; Feldman et al., 2018) where iteration (or
post-processing) was the only source of randomness (i.e., no
subsampling) and the privacy was given in terms of Rényi
differential privacy.! The main technical difference relies
on the fact that Rényi divergence D, (u||v) for distributions
pand v and a > 1 is not jointly convex in p and v; whereas
approximate DP is given in terms of a certain divergence (to
be defined in next section) that is jointly convex.

In Section 2, we revisit different information-theoretic def-
initions including strong data processing inequality, E.-
divergence, and contraction coefficient of Markov kernels
under f-divergences and also generalize Dobrushin’s er-
godicity’s coefficient. In Section 3, we turn to the privacy
analysis of federated learning algorithms.

2. Information Theory Preliminaries

In this section, we first provide some preliminaries from in-
formation theory, in particular, the contraction coefficient of
Markov kernels under general f-divergences. Then, we pro-
vide a closed-form expression for the contraction coefficient
of kernels under a certain f-divergence which underlies
differential privacy.

'Tt must be pointed out that Rényi differential privacy guar-
antee can be converted into (e, §)-DP, according to (Abadi et al.,
2016). However, as shown in (Asoodeh et al., 2020) our approach
yields tighter bounds for € and ¢ than what would be obtained by
converting the results in (Feldman et al., 2018) to (&, §)-DP.
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Given a convex function f : [0,00) — R with f(1) = 0, the
f-divergence (Ali & Silvey, 1966; Csiszar, 1967) between
two probability measures ¢ and v is defined as

Dy(ullv) = E, [f (j")} .

This includes several popular measures: KL-divergence,
x?-divergence, and total variation distance TV are f-
divergences for f(t) = tlog(t), f(t) = (t — 1)2, and
f(t) = 3|t — 1], respectively.

It was observed by Olmedo and Barthe (2013) that the defi-
nition of differential privacy can be expressed in terms of
a certain f-divergence. Let X" be the set of all possible
datasets of size n, where each entry takes values in X'. A
pair of datasets x € X™ and ' € X™ are neighboring
(denoted by x ~ z’) if they differ in exactly one entry. A
randomized mechanism M acts on each x € X and gener-
ates a random variable with distribution M. Mechanism
M is said to be (e, 0)-DP if we have

sup Ec(M||My) <6, (D

z~z!

where E.-divergence is the f-divergence associated with
f(t) = (t — e®)y max{0,t — e°}. The fact that (1) is
equivalent to the typical definition of DP becomes clear
once one observes the following equivalent forms of E.-
divergence: for any probability measures p and v on some
arbitrary set ), we have

E-(ullv) = /y (A — ) ()., @
= sup [1(4) — ()]
ACY
= %/|du —efdv| — %(eE -1 3)

_ 90y et (10e I
—,u(logdy >5) e V(log i >5). “)

The E.-divergence representation of DP was used in (Balle
& Wang, 2018; Balle et al., 2018; 2019b;c; Wang et al.,
2018) to prove new privacy results or simplify the proofs
of existing results. The following lemma gives the E.-
divergence between multivariate Gaussian distributions with
the same variance. It can be proved essentially similar to
Lemma 6 in (Balle & Wang, 2018).

Lemma 1. For mi,ms € R% and o > 0, let N7 and N>
denote N'(my,o*1) and N (ma,0?1), respectively. Then,
we have

E-(MIN2) = Q(5 - 7) —eQ(= + ),

where k = ”mz%‘ml”, and Q(t) = \/% ftoo e /2,

This example demonstrates that E_-divergence is symmetric
for Gaussian distributions with the same variance, i.e., it
depends on the their means only through their /5 distance.
Define

95(7“) = EE(N(T’ I)HN(O’I)

“aG-p-ce(iep) @

With this definition in our disposal, we can write
mip —m
E.(M1[|N2) = E-(N2| M) = ee(w).

The prominent properties of E.-divergence are as follows:

e 0 < E.(u]|v) < TV(u,v) for any ¢ > 0. The upper
bound is equality if and only if € = 0,

e ¢ — E.(u|lv) is continuous and strictly decreasing on
(0, TV(p, v)],

e E.(u|lv) decreases
processing inequality),

by post-processing (data-

o (u,v) — E.(u]|v) is convex.

The last two properties are shared by all f-divergences. In
particular, any f-divergence satisfies the data processing
inequality, i.e., Ds(uK]||[vK) < Dy(u|lv) for any convex
function f and any Markov kernel® K, where pK denotes
the push-forward of 11 by K, i.e., uK = [ pu(dy)K(y). This
inequality is typically strict for non-trivial kernels and many
interesting f-divergences. To account for this, Ahlswede
and Gécs (1976) studied the strong data processing inequal-
ity and defined the notion of contraction coefficient 1y (K)
of K under f-divergence as

Dy (uK[lvK)

. 6
D (ullv) ©

ny(K) = sup

o
Dy ()0

It is worth noting that for total variation distance the con-
traction coefficient 71y (K) appears to be introduced twenty
years earlier by Dobrushin (1956) under the name of ergod-
icity coefficient. Interestingly, Dobrushin proved that the
supremum in the definition of 71y (K) can be restricted to
point masses:

nrv(K) = sup TV(K(y1), K(y2))- @)

Y1,Y2€Y

This two-point characterization has been instrumental in
studying strong ergodicity of Markov processes (Dobrushin,

Here, by Markov kernel K we simply mean a family of proba-
bility distribution K(y) for each y € ). We ignore the measurabil-
ity issues in the formal definition of Markov kernel for simplicity.
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1956; Kontorovich & Raginsky, 2017), the uniqueness of
Gibbs measures (Georgii, 2011), contraction of mutual in-
formation (and generalized mutual information) in a Markov
chain (Polyanskiy & Wu, 2016; Xu & Raginsky, 2015), and
distributed estimation (Xu & Raginsky, 2015).

Since E.-divergence generalizes total variation distance,
Dobrushin’s ergodicity coefficient can be generalized by
contraction coefficient of E_-divergence:

E.(uK|lvK
ne(K) = sup E(“(:y)) (8)
N

The following theorem establishes a two-point characteri-
zation for 7). similar to the Dobrushin’s characterization in

).

Theorem 1. For any € > 0, we have

ne(K) = sup Ec(K(y1)[[K(y2)). 9)
y1,Y2€Y

Proof. Given two probability measures p and v defined on

Y define ¢(y) = (u(y) —ev(y))+ and ¢'(y) = (—p(y) +
efv(y))+ for any y € ). Note that since 1 2 |l —esv|ls =

E-(ullv) + 3(ef — 1) and ||¢]|1 = E<(u||v), it follows that
|¢'|l1 = Ee (u|| )+ ef — 1. Letting E. denote Ec(u||lv) for
brevity, we can write

10K — 50Ky = | (1u(dy) — ev(dy)Kl
- [[| [ wtan - cviamiman
= [ | etanr - | oy
= [ et [ gk -1 [ G5

AL (/5r) (ﬁfiy)“y)

. ’ dey ¢ /
4 ( Tell ) /. ||¢/||

max K — &' ||IK(y'
< max | [191K@) - 191K()
:rg}clg?( ( ) (E +ef — 1)K(y’)

IN

4 (e —1)(1 —E.).

E. e 08X / ‘K —e*K(y)
In light of (3), the above implies

Ec(uK|[vK) < Ec(ullv) max E(K(y)[K(y")),

and hence 7.(K) < max, , E.(K(y)||K(y')). Now we

show that this inequality is indeed an equality. Fix y; #
y2 € Yand § € (0,1). Define us = 5H{y0} + 5H{y1} and

(567 )]I{yo}+(1 de ¢ )]I{y2} where § := 1— 4, Yo ¢
{yl, Yo} and I} is the indicator function. Itis easy to verify
that E. (115 /vs) = 0. We also have usK = K (yo) +0K (y1)
and vsK = (0/e°)K(yo) + (1 — 5 /e?)K(y2). Hence, by (2),
E- (15K [vK) = 6 / [d(K (1) — K (2)) ()],
= 0Ez(K(y1)IK(y2)),

log(1 + <51). Therefore, we obtain that

E (1sK]vsK)
Ee(usllvs)

where ¢ =

ne(K) > = Ec(K(y1)[|K(y2))-

By continuity of € — E.(u||v), we obtain from above
1:(K) 2 lim Ex(K(y1)[|K(y2)) = E<(K(y1)[IK(y2))-
Since y; and y, are arbitrary, the desired result follows. [J

This theorem has an important implication: Gaussian ker-
nels defined as K(y) = N (y, o%I) for y € R? and some
o > 0 has a trivial contraction coefficient, i.e., n-(K) = 1.
However, if y is restricted to a bounded subset of R, then
7:(K) < 1, as indicated by the following lemma.

Lemma 2. Let Y C R? be a bounded set. For the Markov
kernel specified by K(y) = N (y,021) fory € Y and o > 0,

we have
) =, (121,

where || Y| = maxy, y,ey [ly1 =yl

The proof is a rather straightforward application of Theo-
rem 1 and Lemma 1 and is hence omitted. The constraint
that the input of Gaussian kernels must be bounded is not
restrictive in machine learning and is satisfied in many prac-
tical algorithms. For instance, each iteration of the projected
noisy stochastic gradient descent with Gaussian noise (see
e.g., (Balle et al., 2019b; Bassily et al., 2014; 2019; Chaud-
huri et al., 2011; Song et al., 2013; Wu et al., 2017)) can be
viewed as a Gaussian kernel whose input (and output) are
values from a compact set. Such kernels are called projected
Gaussian kernels. We focus on this particular kernel in the
next section.

3. Federated Learning

In our federated learning model, n distributed users send
their updates of a shared model to a trusted aggregator. At
each iteration, m number of users are chosen uniformly
without replacement. Then, each of users selected computes
a local update, randomizes it via a Gaussian kernel, and
then sends it to the aggregator. The aggregator aggregates
all these local updates, projects it onto ¢2-ball of fixed ra-
dius p and then sends the global update back to users. For
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notational simplicity, we assume m = g¢n and since the
subsampling is performed without replacement, the total
number of iteration is 7' = = = L This procedure is
described in Algorithm 1. The model we investigate differs
from the typical settings studied in literature in that here the
aggregator is expected to publicly display the model param-
eters only after the T'th iteration. This model is conceptually
similar to the recent work of Augenstein et al. (2020) where
the final model parameters were used to generate the syn-
thetic data for the purpose of data inspection under privacy
constraint.

3.1. Warm-Up: Batches of Size 1

Suppose n users, each with local data z;, i € [n] =
{1,...,n}, are to communicate over an encrypted com-
munication channel to a trusted party and send their local
update to shared model one at a time, i.e., m = 1. Although
this setting may not be practical, it illuminates the proof
technique employed for the general setting (i.e., m > 1).

Let m € S, be a random permutation map and S, is the
symmetric group on [n]. The federated learning algorithm
iterates as follows:

e The aggregator samples the initial parameter Wy in
ball(p), the £, ball of radius p in R%, according to a
distribution 1y and sends it to user m(1).

e User m(1) uses Wy and her local data Tr(1) to compute
the update W, = NV Wo, z 1)) + noZy, where
Z1 ~ N(0,1). This update is then sent back to the
aggregator.

e Upon receipt of W1, the aggregator computes W, =
proj,(Wo—W1), where proj ,(-) denotes the projection
operator onto ball(p). Then W1 is sent to user 7(2).

e Continue the above procedure until all n users send the
aggregator their updates (i.e., T = n is the number of
iterations). The aggregator releases Wr.

To obtain the privacy guarantee of this algorithm, we model
each iteration as a projected Gaussian Markov kernel. Let
K be the Markov kernel associated with the map w —
proj, (V¢ (w) — noZ,;) for t € [T], where

Vi (w) = w — nVE(w, Tr)), (10)

and Z; is the standard Gaussian random variable. More
precisely, Ki(w) = proj,(N(¥;(w),n*cT)). It is clear
from Lemma 2 that 7. (K;) < 1 foralle > 0 and p < cc.
Notice that the tth iteration can be equivalently expressed
by K; whose input is W;_; and output is W; (See Fig 1).
Letting 1141 denote the distribution of W;_;, we therefore
have Wy ~ 1Ky,

Figure 1. Iteration ¢ can be viewed as a Markov kernel that is
composed ¥, defined in (10), Gaussian noise addition and then
projection operator onto ball(p).

Now consider a pair of neighboring datasets x and 2’ that
differ in the ith entry (i.e., z; # 2} and x; = z’; for j €
[n]\{¢}) and let y; and p;} be the distributions of the W,
when algorithm runs on z and z’, respectively. Let ¢ =
7~1(i) (or equivalently 7 (t) = 4). Clearly, yu; = s for
all j € [t —1]. Also, iy = p—1K¢ and pf = pp—1K}
where Kj is the Markov kernel associated with the map
w > proj, (Vi (w) — noZy), where

U (w) = w — nVil(w, ).

In light of (1), one concludes the algorithm is (&, §)-DP if
E.(ur||p) < 4, forall ¢ € [n]. By definition, we have

Ec(ur|lpr) < Ec(pr—1llpp_1)n-(Kr)
E

<
< Ec(pr—ollpp_o)n-(Kr)n-(Kr—1).

Applying this for T' — ¢ times, we obtain

T
Ec(prllur) < Ec(uellpy) [T ne(K;)
j=t+1

T
= Ec(u—1Kelpe—iK) T ne(K;) an
j=t+1

Consequently, the computation of § boils down to comput-
ing the contraction coefficient of projected Gaussian kernels
and E.-divergence between mixture of projected Gaussian
distributions with the same variance. The former can be
tackled via Lemma 2. The latter, however, involves Jensen’s
inequality (recall that (u,v) — E.(u||v) is convex), the
data processing inequality (to get rid of the projection op-
erator) and Lemma 1. We will elaborate further in the next
section where we prove the main result.

3.2. Batch of size m

Here we assume at each iteration, the aggregator shares the
global update with m users. In this setting, 7' = - and,
in lieu of permutation, we define a mapping which assigns
each i € [n] to a single batch.
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Algorithm 1 Federated learning with a trusted aggregator

1: Input: Dataset {x1,...,2,} € R"?, learning rate 7,
batch size m, noise variance o2, initial distribution Lo

2: Choose Wy ~ pgo

3: fort =1to 7T do

4:  Take batch B; C
replacement 4 '

5:  Local update: W} | = n[VI{(W,_1,x;) + Z{],
Vj € By and Z] ~ N(0,02T)

6:  Upload: W/ _, is sent to aggregator

7:  Model aggregation: aggregator updates the model
parameter as W; = proj,(W;—1 — - > cp, W)

8: end for

9: Output: Wr

[n] of size m uniformly without

Theorem 2. Let the loss function w — £(w, z) be convex,
L-Lipschitz and B-smooth for all v € X and also n < %
Then Algorithm 1 is (¢,8)-DP for ¢ > 0 and

1—6. (22 B
52@95(\/277[;0') 105(2,)710\)) )

where 0. is defined in (5).

Proof. Consider two neighboring datasets =z =
{z1,...,z,} and ' = {@1,.. ., %21, 2, Tig1,. .. T}
Let i and p; be the distribution of W; the output of the
tth iteration when running on x and z’, respectively. To
derive ¢ for any given e, we need to compute E. (ur || /).
Let m : [n] — [T] specifies an assignment of users to
each batch, i.e., 7(i) = t if ¢ € B;. Note that p; = pu; for
t < (7). We now identify each iteration with a projected
Markov kernel. At iteration ¢, the aggregator generates

Wt = projp (Wt—l — % Z VE(Wt_l,xj) — &Zt),
JEB:

where Z; is now standard Gaussian random variable and
52 = % Hence, iteration ¢ can be realized by K; a
projected Markov kernel associated with the mapping w —
proj,(V¢(w) — 67Z;) where

Notice that K, receives W;_; and generates W both taking
values in ball(p). Due to the strong data processing inequal-
ity (see (11)) and convexity of (u,v) — E(u||v) for any

€ > 0, we can write

T
=E(ullpy) [ m(K;)

j=t+1

H ne (K (12)

J=t+1

T
Ee(prlpr) < Z Pr(m
t=1

T
=q Z E( ,utH/it
t=1

To compute a bound for 4, it thus suffices to compute 7 (K;)
for j € [T] and E.(p||u;) for t € [T]. We begin by com-
puting 7. (K;) for j € [T as follows

E<(Kj(w1)[K

ne(Kj) = sup j(w2))

w1 ,wz €ball(p)

< sup  Ec(N(¥;(w), 57D IN (T (ws), 671))
w1, wa Eball(p)
(13)
= sup E. (N (w1, 521)||N (we, 521))
wi,wz €Y (ball(p))
_ (,E(‘I’j(b;”(p))) (14)
<6.(%2) (1)
2
_ 95( pﬂ‘ﬁ) (16)

where the inequality in (13) is due to the data processing
inequality:

E- (proj, (N (¥ (w1), 5°T))[lproj, (N (¥; (w2), 5°1)))
< Ec(W(W;(w1), DN (T (w2), 5°1)).

Also, the equality in (14) follows from Lemma 1 and (5),
and finally, the inequality in (15) follows from the following
two facts: (1) Since the loss functions w +— {(w, x) is con-
vex and B-smooth for all x € X, then w — w — V{(w, x)
is contractive for n < % (see e.g., Prop 18 in (Feldman et al.,
2018)) and so is w — ¥;(w); and (2) The map 7 — 0 (r)
is increasing.

Next, we compute E. (]| p}). Note that

i =/ pre—1(dy)Ke(y).
ball(p)

Since 7 (i) = t, data point z € B;. For this batch, we
define

Ui (w) == w — [VE w,x)

Z Vﬂwxj}

J€B:\{1}

and the corresponding Markov kernel K} associated with
w +— proj (Vi (w) — 5 Z;). It follows that

py = / fre—1(dy)Ki ().
ball(p)
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The convexity of (u,v) — E.(u||v) implies

E. (uellh) < / E (Ko (1) 1K) ()01 (dy)

< [ BN (01(0). 3NV (0), D ()

a7

(18)
By PR T P
<0.(20) 20)
< 95(\/2%’0) @)

where (17) follows from Jensen’s inequality, (18) follows
from the data processing inequality, (19) follows from
Lemma 1, and finally (20) is due to Lemma 2 as follows:
for any y € ball(p)

1P (y) — Tiy)ll = II%(W(%%) — Vi(y, z)))||
2y

where the inequality is due to the fact that w — ¢(w, x) is
L-Lipschitz for all 2 € X" and hence | V{(w, z)|| < 2L.

Plugging (16) and (21) into (12), we obtain the

E- (urllf) < q%(@) ié’? t(pr)
t=1

1— 95(”%)%

no

()

= qﬁs(ZLm>

a

O

Notice that if the cost function is strongly convex, then The-
orem 2 can be improved as, in this case, w — w — V(w, x)
is contractive with Lipschitz constant strictly smaller than
1 (see, e.g., Theorem 3.12 in (Bubeck, 2015)). In Fig. 2,
we demonstrate the privacy parameters obtained from Theo-
rem 2 for different sub-sampling rates ¢ = 0.1,0.2,0.3. As
illustrated in this figure, the more users are involved in each
iteration, the higher the privacy guarantee is.

4. Conclusion

In this work, we introduce a new approach for computing dif-
ferential privacy (DP) parameters via contraction coefficient
of Markov kernels under a certain f-divergence, namely E.-
divergence. In this approach, we interpret federated learning
algorithm as a composition of several Markov kernels and
express the DP privacy parameters as the product of con-
traction coefficients of such kernels. The main assumption

10°

1020

10-40 L

ID-GO L

1080k

Figure 2. Differential privacy parameters of Algorithm 1 for differ-
ent sub-sampling rates according to Theorem 2. The parameters of
algorithm are as follows: n = 0.5, L =1,p=1,0 = 1.5,n =
100.

is that the algorithm releases the model update only after a
certain number of iterations are passed; thus no composition
theorems are required. The proof technique relies on a tech-
nical theorem that establishes a close-form expression for
the contraction coefficient of general Markov kernels under
E.-divergence.

This approach can be adapted to study the the more typical
scenario where the model updates get released after each
iteration. The privacy analysis in this case amounts to de-
riving the contraction coefficient of a Markov kernel that
is obtained by tensor product of all T" kernels, i.e., a kernel
with T'-tuple input and output, under E_-divergence.
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