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Abstract—Given a dataset comprised of individual-level data,
we consider the problem of identifying samples that may be
disclosed without incurring a privacy risk. We address this
challenge by designing a mapping that assigns a “privacy-risk
score” to each sample. This mapping, called the privacy watchdog,
is based on a sample-wise information leakage measure called
the information density, deemed here lift privacy. We show that
lift privacy is closely related to well-known information-theoretic
privacy metrics. Moreover, we demonstrate how the privacy
watchdog can be implemented using the Donsker-Varadhan rep-
resentation of KL-divergence. Finally, we illustrate this approach
on a real-world dataset.

I. INTRODUCTION

Consider a data scientist, Alice, who has in hand a dataset
Dn = {(si, xi)}ni=1 collected from n individuals. We assume
that each entry (si, xi) of the dataset is drawn i.i.d. from PS,X ,
where S represents an individual’s private/sensitve features (e.g.,
political preference) and X the remaining features (e.g., social
media posts). Alice wishes to publish the dataset {xi}ni=1, yet
knows that doing so may incur a privacy risk: by observing
xi, a malicious party may gain information about the private
feature, i.e., PS|X=xi

can be significantly different from PS .
However, not all realizations xi are equally informative, and
certain values could potentially be disclosed with minimal
privacy risk, i.e., PS|X=xi

≈ PS for some xi. How can Alice
identify the entries of {xi}ni=1 that pose the highest (or lowest)
privacy threat?

We address this challenge by designing a privacy watchdog:
a mapping that assigns a privacy-risk score to each sample in
the dataset Dn. Ideally, the watchdog should flag samples that
must be perturbed in order to ensure privacy, while indicating
which samples can be perfectly disclosed without excessive
harm. Moreover, the watchdog should be data-driven, learning
from the dataset which outcomes of X pose a privacy risk.

To construct a privacy watchdog, we adopt a sample-wise
information leakage measure. A natural choice is the ratio

l(s, x) ,
PS,X(s, x)

PS(s)PX(x)
=
PS|X(s|x)

PS(s)
, ∀(s, x) ∈ S × X , (1)

referred to as the lift [1] in the data mining literature. The
logarithm of the lift (log-lift) i(s, x) , log l(s, x) is, of course,
the information density, and plays a central role in spectral
methods in information theory and finite-blocklength analysis
[2]. The lift is at the heart of most information-theoretic
measures of privacy.

In this paper, we derive properties of lift as a privacy metric,
and show that an upper bound on lift (1) leads to upper
bounds on several other information-theoretic privacy measures,

including those based on Arimoto’s [3] and Sibson’s [4] mutual
information, f -divergences [5], and local differential privacy [6].
Moreover, we demonstrate how a privacy-assuring mapping
that merely perturbs the samples with large (absolute) log-
lift has favorable performance guarantees in terms of privacy
and utility. Of greater practical interest, we use variational
representations of divergence metrics [7] (and the Donsker-
Varadhan representation in particular) to build lift-based privacy
watchdogs using neural networks. We illustrate this approach
on ProPublica’s COMPAS recidivism dataset [8].

The design of privacy mechanisms is an imminent topic
in computer science [9], data mining [10], and information
theory [4], [11]–[15] communities. Within the latter, there
has been significant effort to characterize fundamental trade-
offs between privacy and utility (e.g., [11], [15]), as well as
produce privacy metrics with operational significance (e.g., [3],
[4], [16]). We also note that variations of information density
were mentioned in [10]–[12] as a measure of privacy. Here, we
widen our focus beyond the analysis of privacy mechanisms
and associated trade-offs to consider the practical challenge
faced by Alice. The privacy watchdog proposed here can be
applied to real-world datasets (as illustrated in Section IV),
and naturally serves as a building block for other privacy
mechsmisms (e.g., distorting data in accordance to the risk
scores given by the watchdog). Our ultimate goal is to create
a richer information-theoretic toolset for addressing privacy
challenges commonly found in data science.

The remainder of the paper is organized as follows. We
introduce notation and preliminaries next, and examine the
properties of lift as a privacy metric in Section II. We formulate
the privacy watchdog and explore its application in Section III
and finally consider implementation and evaluation with data
in Section IV. We omit the proofs of all results due to space
limitations. The proofs are available in [17].

A. Notation

Capital and calligraphic letters are used to denote random
variables and sets, respectively. We also use boldface lowercase
letter to denote vectors. We use PS,X , for joint probability
distribution of S and X , PS|X for conditional probability
distribution of S given X , and PS and PX for marginal
probability distributions of S and X , respectively. When X is
distributed according to PX , we write X ∼ PX . We denote
`p-norm of an n-length vector z by ‖z‖p= (

∑n
i=1 z

p
i )

1
p , where

zi is the ith entry of z. We write 1{·} for the indicator function
which returns 1 if the condition in the parentheses is satisfied
and 0 otherwise.
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Let f : (0,∞)→ R be a convex function satisfying f(1) =
0. Assume that P and Q are two probability distributions over
a finite set X and that P � Q. The f -divergence [18] between
P and Q is given by

Df (P‖Q) , EQ
[
f

(
P (X)

Q(X)

)]
, (2)

where EQ denotes expectation with respect to distribution Q.
This definition can be used to generalize Shannon’s mutual
information. Replacing P and Q by PS,X and PSPX , one can
define f -information between S and X as

If (S;X) , Df (PS,X‖PSPX). (3)

Kullback-Leibler (KL) divergence D(P‖Q) and Shannon’s
mutual information I(S;X) are special cases of (2) and (3),
respectively, when f(t) = t log t.

II. LIFT-BASED MEASURE OF INFORMATION LEAKAGE

In this section, we first overview the privacy definition used
to design the watchdog, called ε-lift privacy, and then derive
some of its properties. In particular, we show ε-lift privacy
is closely related to other existing measures of information
leakages such as local differential privacy [6], maximal leakage
[4], α-leakage [16], and f -information [5]. We note that
variations of ε-lift privacy have appeared in the literature under
different guises (e.g., [10, Defn. 1] and [11, Defn. 6]).

A. ε-Lift Privacy

The value of log-lift i(s, x) indicates whether the sample
x carries significant information about private feature s. This
intuition naturally leads to the following definition.

Definition 1 (ε-lift privacy [11] ). For (S,X) ∼ PS,X , we say
X is an ε-lift private version of S if

−ε ≤ i(s, x) ≤ ε, ∀(s, x) ∈ S × X . (4)

In the following lemma, we demonstrate several properties
of ε-lift privacy.

Lemma 1. If X is an ε-lift private version of S, then

1) S is an ε-lift private version of X .
2) PS|X is 2ε-locally differentially private [6], i.e.

sup
∀s∈S,x,x′∈X

PS|X(s|x)

PS|X(s|x′)
≤ e2ε. (5)

3) The mutual information I(S;X) is upper bounded by ε.

Lemma 1 sheds light on the privacy guarantees that an ε-lift
privacy constraint can provide. In particular, if X is an ε-lift
private version of S, then X cannot reveal more than ε nats
of information (on average) about S. Next, we explore further
connections between ε-lift privacy and information-theoretic
measures of leakage.

B. Other Information Leakage Measures

Arimoto’s and Sibson’s mutual information and f -
information have recently been proposed as operational mea-
sures for information leakage, see e.g, [3] and [4]. Arimoto’s
mutual information of order α ∈ (1,∞) is given by [19]

IAα(S;X) ,
α

α− 1
log

EX [‖PS|X(·|X)‖α]

‖PS‖α
. (6)

It can also be defined (by continuity) for the extreme cases α =
1 and ∞, respectively, as limα→1 I

A
α(S;X) = I(S;X) and

IA∞(S;X) , limα→∞ IAα(S;X), and the latter characterizes
the ability of an adversary to correctly guess S given X . In
particular, it can be verified [3] that IA∞(S;X) = log Pc(S|X)

p∗S
,

where

Pc(S|X) , max
gX→S

Pr(S = g(X)) =
∑
x∈X

max
s∈S

PS,X(s, x),

denotes the probability of correctly guessing S given X and
p∗S , maxs∈S PS(s), thus providing an operational meaning
for IA∞(S;X).

Another operational measure of information leakage recently
proposed is Sibson’s mutual information [19] of order α ∈
(1,∞) between S and X , which is given by

ISα(S;X) , inf
QX

Dα(PS,X‖PSQX), (7)

where Dα(P‖Q) , 1
α−1 log

(∑
x P (x)αQ(x)1−α) is the

Rényi divergence. One can similarly define IS∞(S;X) as the
limit of ISα(S;X) when α→∞. This quantity, termed maximal
leakage, was recently shown to bear an interesting interpretation
in terms of worst-case privacy threats [4]. More precisely,
maximal leakage is equal to the logarithm of the multiplicative
gain in guessing any function of S given the observation of
X , that is

IS∞(S;X) = max
U−S−X

log
Pc(U |X)

p∗U
, (8)

where the maximization is taken over random variable U
forming the Markov chain U − S −X .

Recall that Lemma 1 established a connection between ε-
lift privacy and I(S;X). In the following proposition, we
generalize this connection to Sibson’s and Arimoto’s mutual
information as well as f -information.

Proposition 1. If X is an ε-lift private version of S, then
1) We have ISα(S;X) ≤ α

α−1ε, ∀α ∈ (1,∞). Moreover, the
maximal leakage is upper bounded by ε.

2) We have IAα(S;X) ≤ α
α−1ε, ∀α ∈ (1,∞). Moreover,

Pc(S|X) ≤ p∗Seε.
3) We have If (S;X) ≤ L(ε) where L(ε) , sup

e−ε≤t≤eε
f(t).

In light of this proposition, the ε-lift privacy guarantee is
stronger than those obtained by Arimoto’s and Sibson’s mutual
information and thus ε-lift privacy inherits the operational
interpretations described above. In particular, if X is an ε-
lift private version of S, then no adversary in possession of
observation X can efficiently guess any function of S.
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III. LIFT-BASED PRIVACY WATCHDOG

We define next the privacy watchdog framework as a simple,
yet powerful, privacy technique that acts directly on the sample
points. Unlike typical information-theoretic privacy-assuring
mechanisms, the privacy watchdog directly assigns a risk score
to each sample point from which it determines whether or not
a sample can be disclosed unperturbed. Here, we propose to
use the lift to generate the risk score for each sample point. We
then show how to incorporate such risk scores into designing
privacy-assuring mechanisms.

A. Lift-Based Privacy Watchdog

The privacy watchdog framework is described as follows.

Definition 2 (Privacy Watchdog). Given a dataset Dn =
{(si, xi)}ni=1 drawn i.i.d. from PS,X , the privacy watchdog
estimates1 i(s, x) for each pair (s, x) ∈ S×X and then decom-
poses X into two subsets Xε , {x ∈ X | |i(x, s)|≤ ε, ∀s ∈ S}
and X c , X\Xε. It then then labels all sample points xi ∈ Xε
as no privacy risk (as they do not significantly change the belief
about any of private features) and flags xi ∈ X cε as potential
privacy risks.

Based on the output of the watchdog, we can design a privacy
mapping PY |X that perturbs each sample flagged as posing
a privacy risk. A simple such mapping can be constructed as
follows: if x ∈ Xε, then it can be perfectly disclosed, i.e.,
Y = x, and if x ∈ X cε , then Y can be arbitrary generated on
X cε . The following proposition shows that the output of such
mechanism ensures lift privacy with respect to S.

Proposition 2. Let RY be any distribution on a finite set
Y = X satisfying RY (y) = 0, ∀y ∈ Xε, and let the PY |X be
given by

PY |X(y|x) =

{
1{x=y}, x ∈ Xε,
RY (y), x ∈ X cε .

(9)

Then Y is an γ-lift private version of S with

γ = max

{
log

[
1− eεPX(Xε) + eε

PX(X cε )

]
,

− log

[
1− eεPX(Xε)
PX(X cε )

]}
.

This proposition shows that by disclosing sample points in
Xε, and regardless of the randomization RY used for X cε , the
resulting Y is guaranteed to satisfy the lift privacy constraint.
In light of Lemma 1 and Proposition 1, the guarantees provided
by the mapping (9) results in upper bounds for the measures
of information leakage discussed in Section II-B.

Remark 1. It is important to mention that the mechanism in (9)
is perhaps the simplest lift-based privacy-assuring mechanism
and is used to merely illustrate the significance of the lift-based
watchdog framework. A possibly better mechanism would

1We describe in Section IV one method for estimating the log-lift from
data.

choose a randomization RY that is supported on entire X (as
opposed to X cε ).

B. Privacy Funnel

In order to quantify the trade-off between the information
leakage incurred by (9) and the utility (information shared
between X and Y ), we borrow ideas from privacy funnel
framework [20].

Given a pair of correlated random variables (S,X) ∼ PS,X ,
the goal of the privacy funnel is to determine a privacy-assuring
mapping PY |X that generates a representation Y of X such
that (i) S−X −Y and (ii) a given information leakage metric
L(S;Y ) (e.g., one of the measures defined in previous section)
is minimized while maximizing I(X;Y ) (utility preserved).
This trade-off can be quantified by the Lagrangian functional

F(PS,X , λ) , min
pY |X

L(S;Y )− λI(X;Y ), (10)

where larger λ ≥ 0 corresponds to higher utility. Privacy funnel
and F(PS,X , λ) are studied in more details in [20]. In general,
solving the minimization problem (10) is computationally
challenging due to its non-convexity. Although the privacy
funnel was derived in closed form expression in simple
cases such as binary symmetric channel [5] and Gaussian
mixture models [20], it is still unclear how to solve (even
algorithmically) the optimization problem in general. There
are two algorithms proposed for finding a local minimizer
of (10): (i) a greedy algorithm proposed in [20] and (ii) a
convex-geometric algorithm devised in [5] which works best
when |S| and |X | are small. However, these two algorithms
are not scalable to high-dimensional settings. To circumvent
this issue, algorithms based on neural network architectures
have recently been proposed, see e.g., [21] and [22]. The
watchdog-based mapping in (9) provides a new direction
for designing privacy-assuring mappings with (much) less
computational effort, translating the burden to solving the
problem of estimating the threshold log-lift from data.

It can be easily verified that for the mechanism given in (9)
I(X;Y ) is

I(X;Y ) = HXε
− PX(X cε ) logPX(X cε ), (11)

where HXε
, −

∑
x∈Xε

pX(x) log pX(x) is the entropy of X
conditioned on Xε. Thus, the utility consists of two parts: the
first term is somehow the information preserved by the lift
privacy, and the second term relates to the size of the set X cε .
In particular, in low privacy regime, i.e., when ε → ∞, we
have Xε = X and thus Y = X which leads to the utility
I(X;Y ) = HXε

= H(X).
By Proposition 1 and 2, there exists a function ζ : R+ → R+

of γ such that L(S;Y ) ≤ ζ(γ) for each measure of information
leakage introduced in Section II-B. Thus the objective function
of the privacy funnel in (10) is upper bounded as

F(PS,X , λ) ≤ L(S;Y )− λI(X;Y )

≤ ζ(γ)− λ [HXε
− PX(X cε ) logPX(X cε )] ,
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where γ was defined in Proposition 2. It gives an upper bound
of the Lagrangian defined in (10) which can be used to further
determine the solution of the privacy funnel.

IV. PRIVACY WATCHDOG FROM DATA

We showed in Sections II and III that the ε-lift privacy leads
to bounds on various information leakage measures and also
can be used to design a privacy watchdog. However, estimating
the log-lift from the data is somewhat challenging and has been
an active research problem in information theory and computer
science communities, see e.g., [7], [23] and [24]. In this section,
we propose a log-lift estimator based on Donsker-Varadhan
representation [7] and then use it to design a privacy watchdog
on the ProPublica’s COMPAS recidivism dataset [8].

A. The Log-Lift Estimator

The log-lift estimator takes advantage of the variational
representation of KL divergence2, called Donsker-Varadhan
(DV) representation, i.e.

I(S;X) = D(PS,X‖PSPX)

sup
g:S×X→R

EPS,X
[g(S,X)]− logEPSPX

[eg(S,X)].(12)

It can be shown that the log-lift is in fact a maximizer of the
above optimization problem, i.e., g∗(s, x) , log

PS,X(s,x)
PS(s)PX(x) .

As such, finding the optimal function g∗(s, x) is equivalent to
estimating the log-lift.

In (12), the search space for the function g is unconstrained.
A more practical, yet useful assumption, is to restrict the search
space to a family G(Θ) of bounded functions representable
by a neural network with parameters θ in a compact domain
Θ ⊂ Rm, where m is the number of parameters. The parameters
of the neural network can be fit by approximating (e.g., via
backpropagation) the solution of the following maximization
problem:

ĝn , argmax
g∈G(Θ)

EPSn,Xn
[g(S,X)]− logEPSnPXn

[eg(S,X)], (13)

where PSn,Xn and PSnPXn are the empirical distributions of
PS,X and PSPX respectively. The estimator in (13) belongs to
a broader class of extremum estimators [25] which consists of
estimators of the form â = argmax

a∈A
Λn(a), where Λn(a) is an

objective function and A is a parameter space. The consistency
of such estimators is guaranteed according to the following
lemma.

Lemma 2 (Consistency of Extremum Estimators [25]). Given
the extremum estimator â = argmax

a∈A
Λn(a), if (i) A is compact;

(ii) there exists a limiting function Λ0(a) such that Λn(a)
converges to Λ0(a) over A in probability; (iii) Λ0(a) is
continuous and has unique maximum at a = a0, then â is
a consistent estimator of a0.

2In fact, the variational representation of f -divergences, Df (P‖Q) =
sup

g:X→R
EP [g(X)]−EQ[f∗(g(X))], where f∗(y) , sup

x∈R
[xy− f(x)] is the

Fenchel conjugate of f , can be used in the log-lift estimator.

Using this lemma, together with the universal approximation
theorem of neural networks [26], we show in the following
proposition that the log-lift estimator in (13) is consistent.

Proposition 3. Assume EPS,X
[g(S,X)] and EPSPX

[eg(S,X)]
are finite. The log-lift estimator

ĝn = argmax
g∈G(Θ)

EPSn,Xn
[g(S,X)]− logEPSnPXn

[eg(S,X)]

is consistent, i.e., for any η > 0, there exist N > 0 such that
for all n > N ,

Pr{|ĝn(s, x)− g∗(s, x)|≤ η} = 1, ∀s ∈ S, x ∈ X . (14)

With the log-lift estimator (13) at hand, the set Xε can be
determined and hence the proposed watchdog-based privacy
mechanism in (9) can be implemented on real-world data, as
illustrated next.

As a final remark, we note that the approach outlined above
seeks to estimate the value g∗(s, x) across the entire domain
S × X , whereas the watchdog framework requires only a
threshold version of this function. We will explore the gain (in
terms of sample complexity) of this simplification in a future
work.

B. Numerical Experiments

In order to validate our privacy watchdog mechanism, we
implement it on the ProPublica’s COMPAS recidivism racial
bias dataset [8]. This dataset contains the criminal history and
demographic makeup of prisoners in Brower County, Florida
from 2013-2014. We set race as the private attribute S, and
restrict the dataset to entries with race marked as African
American (S = 0) and Caucasian (S = 1). Moreover, we
select gender, age, number of prior crimes, length of custody
and likelihood of recidivism to be the observation X . We pre-
process the dataset by dropping missing/incomplete records,
convert categorical variables by one-hot encoding, and finally
take 5278 samples with 70% − 30% training-test split. For
details about experimental settings, see [17].

In Fig. 1, we demonstrate the estimate of log-lifts i(S = 0, x)
and i(S = 1, x) for all samples, and the boundary of Xε with
ε = 0.85. Interestingly, based on the value of the lift, we may
be able to provide some interpretation on why a given sample
may or may not compromise privacy if released. For instance,
in Table I, we select samples (green dots in Fig. 1) with high
i(S = 0, x) and low i(S = 1, x). Observe that young males
with a high prior count and high recidivism risk score are
flagged as leaking significant information about the private
attribute. For other examples of extreme samples, see [17].

In Fig. 2, using the privacy watchdog-based privacy mech-
anism, we show the trade-off between the utility I(X;Y )
(11) and the bounds γ (Propoisiton 2) on information leakage
(measured by any metric in Section II-B). When ε is around
0.3, the privacy watchdog chooses to release samples that give
best utility and little information leakage. As ε becomes larger,
the utility remains unchanged, but the information leakage
increases. This kind of numerical analysis could be used to
tune the value of ε in the privacy watchdog.
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Fig. 1: Estimation of lifts for each samples in the COMPAS dataset.
The dashed square contains samples in Xε with ε = 0.85. Green dots
show samples with high privacy risk.

Gender Race Age Prior Counts Length of Stay Recidivism
M AA 21 1 1 9
M AA 33 5 0 5
M C 43 0 2 1
M AA 27 13 0 10
M AA 59 8 8 8
M AA 29 5 5 7
M AA 25 1 0 3

TABLE I: Extreme samples in the COMPAS dataset with high
i(s = 0, x) and low i(s = 1, x) in Fig. 1. M: Male, AA: African
American, C: Caucasian.
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Fig. 2: The trade-off between the utility and information leakage (in
privacy funnel with L(S;Y ) = I(S;Y ) in Section III) on training
and test set in COMPAS. Different ε gives the entire approximation of
the privacy funnel. The privacy watchdog reaches a best privacy-utility
operation point when ε is around 0.3.
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