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Abstract—We study the problem of finding the element within
a convex set of conditional distributions with the smallest f -
divergence to a reference distribution. Motivated by applications
in machine learning, we refer to this problem as model projection
since any probabilistic classification model can be viewed as a
conditional distribution. We provide conditions under which the
existence and uniqueness of the optimal model can be guaranteed
and establish strong duality results. Strong duality, in turn, allows
the model projection problem to be reduced to a tractable
finite-dimensional optimization. Our application of interest is
fair machine learning: the model projection formulation can
be directly used to design fair models according to different
group fairness metrics. Moreover, this information-theoretic for-
mulation generalizes existing approaches within the fair machine
learning literature. We give explicit formulas for the optimal fair
model and a systematic procedure for computing it.

I. INTRODUCTION

Information projection [1–3] is a fundamental formulation in
several applications of information theory. Given a set of prob-
ability measures C and a reference measure P , a distribution
Q ∈ C is said to be the projection of P onto C if it uniquely
achieves the smallest KL-divergence Dkl(Q‖P ) among all
distributions in C [2]. Both the minimizing distribution Q
and the minimum divergence value are central quantities in
large deviation theory [4], universal source compression [5],
hypothesis testing [6], and beyond. Existence and uniqueness
of the optimal distribution have been studied in [2, 3]. In
particular, the optimal distribution has a simple closed-form
given by an exponential tilting of the reference distribution P
when the set C is determined by linear inequalities [2]. Even
though the information projection is most commonly defined
with “distance” measured by the KL-divergence [3, 6–10],
it has also been extended to Rényi divergences [11–13] and
f -divergences [14, 15].

We study a natural generalization of information projection:
finding the “closest” conditional distribution (in a prescribed
subset F of all possible conditional distributions) to a refer-
ence conditional distribution, where “distance” is measured
by averaged (i.e., conditional) f -divergences. Motivated by
applications in machine learning, we refer to this setting as
model projection, since probabilistic classification models (e.g.,
logistic regression, neural networks with a softmax output
layers) which map an input onto a probability distribution over
predicted classes can be viewed as a conditional distribution.
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Analogous to the treatment of information projection, we
start by proving the existence and uniqueness of the optimal
conditional distribution. We then establish strong duality, which,
in turn, leads to an equivalent formulation for obtaining
the optimal conditional distribution. This dual formulation
is easier to deal with since it converts an optimization with
possibly infinitely many primal variables into a tractable, finite-
dimensional optimization in Euclidean space. The optimal dual
variables, in turn, allow the minimizing conditional distribution
to be computed via a generalization of exponential “tilting.”
For a general f -divergence, one obtains the optimal conditional
distribution by tilting the reference distribution by the inverse of
the derivative of f . Naturally, this approach reduces to the usual
exponential tilting when KL-divergence is the f -divergence of
choice.

We provide an application of the model projection theory
to fair machine learning. A critical concern when applying
probabilistic classifiers to individual-level data is if the classifier
may discriminate (e.g., by having a higher error rate) in terms of
a (legally) sensitive attribute, such as race, gender, or ethnicity.
This concern has recently led to a plethora of research focusing
on two questions: (a) how does one “quantify” and “understand”
discrimination in typical machine learning algorithms? [16–22]
and (b) given a notion of fairness, how does one learn an
“optimal” fair model? [23–31]. We refer the reader to a recent
survey [32] and the references therein for a more detailed
literature review.

We focus on the problem of “projecting” a reference
probabilistic classifier to the set of classifiers that satisfy a
collection of fairness criteria. When the fairness criteria are
given in terms of linear constraints on the classifier—which
is the case for several commonly used fairness metrics [see
e.g., 27, 28]—this problem can be directly formulated as an
optimization via the model projection formulation. We derive
both explicit formulas for the optimal fair classifier and a
practical pipeline for the design process, thereby generalizing
recent methods [see e.g., 29, 30] for fairness assurance.

Strikingly, the model projection formulation implies that the
optimal correction for an “unfair” model can be given by a
post-processing1 of the model’s output. This follows directly

1Broadly speaking, methods that correct a classifier for discrimination can
be categorized as pre-processing (changing the input to a model) [25, 33, 34],
in-processing (changing the model itself) [17, 24, 35], and post-processing
(modifying a model’s output) [18, 23] .
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from the fact that the projection of a conditional distribution is
an f -divergence-dependent tilting. The optimal post-processor
only depends on a combination of well-calibrated probabilistic
classifiers that predict both an outcome class as well as
membership in a protected group. Thus, the model projection
theory dictates that the problem of achieving a good fairness-
accuracy trade-off can be directly mapped to a task that data
scientists could do well: training accurate and well-calibrated
prediction models. With these models in hand, an unfair
classifier can be corrected by solving the model projection
optimization.

All proofs can be found in the extended version at [36].
Notation. We denote [c] , {1, · · · , c} and use lowercase and
uppercase bold letters to represent vectors (e.g., v) and matrices
(e.g., G), respectively. We denote by 0 the vector with all
entries equal to 0. The i-th coordinate of a vector v is denoted
by vi, and the (i, j)-th entry of a matrix G by Gi,j . The
i-th row of G is denoted by Gi,:. For two vectors a, b ∈ Rc,
we write a ≤ b to indicate that ai ≤ bi for all i ∈ [c].
Lists of functions are indicated by superscripts. The set of all
probability measures definable on a measurable space (Y,Σ)
is denoted by ∆Y . When Y = [c] is a finite alphabet, ∆[c] is
the probability simplex and we denote it by ∆c for short.

II. MODEL PROJECTION FORMULATION

In this section, we first recall the definition of information
projection and some of its properties. Then we formally
introduce model projection, which can be viewed as an
extension of information projection. We prove the existence and
uniqueness of the optimal model and establish strong duality.

A. Information Projection

For a given reference probability distribution and a set of
distributions, information projection seeks to find the “closest”
distribution within this set to the reference one. Fix a probability
space (Ω,Σ, P ). For any subset C ⊂∆Ω, let

Df (C ‖P ) , inf
Q∈C

Df (Q‖P ). (1)

Here for a convex f : (0,∞)→ R the f -divergence [37, 38]
is given by

Df (Q‖P ) , EP
[
f

(
dQ
dP

)]
− f(1) (2)

whenever Q is absolutely continuous with respect to (w.r.t.) P.
We say that a Q ∈ C is the Df -projection of P onto C if

Df (Q‖P ) = Df (C ‖P ) (3)

and Df (R‖P ) > Df (C ‖P ) whenever Q 6= R ∈ C . The
existence and uniqueness of the Df -projection has been
established under certain assumptions [14, 15]. Furthermore,
an explicit formula for the Dkl-projection (also termed I-
projection) under linear constraints was proved in [38].

B. Model Projection: Problem Setup

We introduce next the definition of model projection.

Definition 1. Consider a fixed random variable X and a prob-
ability space (X ,Σ1, PX) such that X ∼ PX . Moreover, fix
both a measurable space (Y,Σ2) and a conditional distribution
PY |X from X to Y. For a given convex set F of conditional
distributions from X to Y, the model projection of PY |X onto
F is given by the unique minimizer (if it exists) of

inf
WY |X∈F

EX
[
Df

(
WY |X(·|X)‖PY |X(·|X)

)]
. (4)

The model projection is the “closest” model to the prescribed
model PY |X , where we use the f -divergence to measure the
“closeness”. The choice of the f -divergence is determined by
the application at hand.

In what follows, let X = Rm and Y = [c]. In this setting,
conditional distributions from X to Y become simply vector-
valued functions. We reserve the letter y : X →∆c for PY |X

y(x) , (PY |X(1|x), · · · , PY |X(c|x)), x ∈ X (5)

and denote an arbitrary conditional distribution from X to Y
by a vector-valued function h : X →∆c. Then, (4) becomes

inf
h∈F

EX [Df (h(X)‖y(X))] . (6)

The choice of the constraint set F is usually application-
dependent. Throughout this paper, we consider a special
case in which the constraint set is constructed via linear
inequalities. In other words, for some given matrix-valued
function G : X → Rk×c the constraint set is in the form

F = {h : X →∆c | E [G(X)h(X)] ≤ 0} . (7)

C. Connection between Information and Model Projection
We connect model projection (4) with information projec-

tion (1) next. Keeping the notation before equation (1), suppose
Ω = X ×Y and that PX,Y ∈∆Ω is a probability measure that
disintegrates into PX and PY |X . Let P ⊂∆Ω be the subset
of all probability measures that marginalize to PX on X , i.e.,

P , {Q ∈∆Ω | Q(A× Y) = PX(A) for all A× Y ⊂ Σ} .

Then the model projection (4) is information projection onto
a subset of P. In other words, for a set F of conditional
distributions, the model projection of PY |X onto F is exactly
information projection of PX,Y onto

C , {PXWY |X | WY |X ∈ F} ⊂P. (8)

It is important to note that P cannot be described by finitely
many linear constraints, precisely because a distribution may
not be determined by finitely many of its moments. Hence,
the results on information projection subject to finitely many
linear constraints do not seem applicable to model projection.

On the other direction, observe that model projection
subsumes information projection. This fact is rather trivial,
since for a singleton X = {x} the set Ω = X × Y can be
identified with Y via (x, y)↔ y. Then, PX is a trivial atom
PX = δx (and P = ∆Ω) so the averaging in (4) collapses into
only one term, whose minimization is precisely the problem
of information projection.
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III. MODEL PROJECTION THEORY

In this section, we first prove the existence and uniqueness
of the model projection onto a linear subset under the general
f -divergence setting. For the information projection framework
with f -divergence measuring “distance”, this problem has been
studied [14] under the condition f ′(0+) = −∞ to ensure that
the projection onto the linear set belongs to the interior of ∆c.
This condition also appears in our result. Then we compute the
model projection by establishing strong duality for a functional
optimization over the Banach space C(X ,∆c) of continuous
conditional distributions.2

To start with, we introduce four assumptions, which will be
the premises of our main theorems. These assumptions restrict
the behavior of the f -divergence, the linear constraints (see
(7)), the feasibility set, and the given conditional distribution
y, respectively. Our optimization is carried over the “interior”

C+(X ,∆c) ,

{
h ∈ C(X ,∆c) | inf

j,x
hj(x) > 0

}
. (9)

Assumption I:
(a) The function f : (0,∞) → R is twice continuously-

differentiable, f(1) = 0, f ′(0+) = −∞, and f ′′(t) > 0
for every t > 0.

(b) The functions Gi,j : X → R (for (i, j) ∈ [k] × [c]) are
bounded, differentiable, and have bounded gradients.

(c) There exists at least one conditional distribution h ∈
C+(X ,∆c) satisfying E [G(X)h(X)] < 0.

(d) The conditional distribution y belongs to C+(X ,∆c), and
each yj has continuous and bounded partial derivatives.

Theorem 1. Under Assumption I, there exists a unique hopt ∈
C+(X ,∆c) solving the model projection problem

min
h∈C+(X ,∆c)

E [Df (h(X)‖y(X))] ,

s.t. E [G(X)h(X)] ≤ 0.
(10)

Theorem 1 guarantees the existence and uniqueness of the
optimal model hopt. In fact, this optimal model owns an explicit
formula utilizing the convex conjugate of the f -divergence.
Recall that the convex conjugate Dconj

f is defined as

Dconj
f (v,p) , sup

q∈∆c

vTq −Df (q‖p). (11)

The formula of the optimal model shows that the model
projection onto a set constructed by linear constraints can
be obtained by tilting the reference model, where the tilting is
expressible in terms of v : X × Rk → Rc defined by

v(x;λλλ) , −G(x)Tλλλ. (12)

Under Assumption I-(a), the derivative f ′ is strictly increasing,
so one can define its inverse φ : (−∞,M)→ (0,∞) by

φ(u) , (f ′)
−1

(u), (13)

2We endow X = Rm with the standard topology, and ∆c ⊂ Rc with the
subspace topology, so continuity of h : X →∆c refers to the usual definition
of continuous functions between Euclidean spaces. Then, endowing C(X ,∆c)
with the sup-norm, ‖h‖∞ = supx∈X ‖h(x)‖, turns it into a Banach space.

where M = supt>0 f
′(t).

Theorem 2. Under Assumption I, we have the formula

hopt
j (x) = yj(x)φ(γ(x) +vj(x;λλλ∗)), (j, x) ∈ [c]×X (14)

where the function γ : X → R is uniquely defined by

Ej∼y(x)φ(γ(x) + vj(x;λλλ∗)) = 1, x ∈ X , (15)

and λλλ∗ ≥ 0 is any solution to the convex optimization problem

min
λλλ≥0

E
[
Dconj
f (v(X;λλλ),y(X))

]
. (16)

Remark 1. If X is finite, then Theorems 1 and 2 hold without
the differentiability assumptions on the Gi,j and on the yj .

The duality approach reduces the infinite-dimensional op-
timization (10) into a tractable finite-dimensional one (16).
Note that in our setting, a simple application of duality is
inaccessible. The primal optimization (10) is equivalent to

inf
h∈C+(X ,∆c)

sup
λλλ≥0

E
[
Df (h(X)‖y(X)) + λλλTG(X)h(X)

]
,

(17)
which is not necessarily equal to the dual optimization

sup
λλλ≥0

inf
h∈C+(X ,∆c)

E
[
Df (h(X)‖y(X)) + λλλTG(X)h(X)

]
.

(18)
The difficulty here is that the space C+(X ,∆c) is not pre-
compact. The minimax property does not hold in general if
neither of the two optimization spaces is precompact. Our
approach shows that, nevertheless, one may carve a precompact
subset of C+(X ,∆c) that is guaranteed to contain the sought
optimizer. Note that strict convexity of f implies that the
unique solution of the inner minimization in the dual (18) at
any outer maximizer λλλ∗ is in fact the unique solution to the
primal problem (17) (i.e., it is the sought model projection of
y onto F ∩ C+(X ,∆c), see (7) and (9)).

Remark 2. Notably, for the KL-divergence, the model pro-
jection formula closely resembles that of the information
projection. Analogous to the information projection formula
under linear constraints, the model projection formula (14) for
a fixed x ∈ X is an exponential tilt since for f(t) = t log t we
have φ(u) = eu−1. The difference between the two projections
is how the tilt is computed (i.e., in the value of the parameters
λλλ∗) where its value under the model projection setting reflects
the fact that we are penalizing the average distance. The optimal
parameters λλλ∗ for the Dkl-projection onto a set constructed by
linear inequalities

∫
gi dQ ≤ 0 are exactly the minimizers of

min
λλλ≥0

logE

E
exp

∑
i∈[k]

−λλλigi(X,Y )

∣∣∣∣∣∣X
 . (19)

On the other hand, by plugging

Dconj
kl (v,p) = log

∑
j∈[c]

pje
vj

into (16) the optimal parameters for the model projection
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problem are solutions to (writing gi(x, y) , Gi,y(x))

min
λλλ≥0

E

logE

exp
∑
i∈[k]

−λλλigi(X,Y )

∣∣∣∣∣∣X
 . (20)

We note that formula (14) is valid for f -divergences beyond
KL-divergence. To the best of our knowledge, an analogous
formula for the information projection (i.e., for general f -
divergences) does not appear in the literature.

IV. APPLICATION TO FAIR MACHINE LEARNING

In this section, we aim at designing a fairness-aware classifier.
We formalize an optimization for this purpose which coincides
with the model projection framework explored in the last
section. Prior works attempt to design fair classifiers by
implicitly solving a model projection problem, where accuracy
is measured by, for example, KL-divergence [29] and cross-
entropy [30]. Here we provide a general framework in the
setting of multiclass classification, and this approach allows
the usage of any f -divergence. In what follows, we formally
introduce our formulation.

We consider a (multiclass) classification problem where the
goal is to use an X -valued input variable X (e.g., criminal
history) to predict a target variable Y (e.g., criminal recidivism)
taking values in [c], with c denoting the number of classes.
We denote a probabilistic classifier, which can be viewed as
a conditional distribution, by h : X → ∆c. Hence, for each
x ∈ X , the classifier h assigns a probability vector h(x) that
corresponds to a “belief” of the true value of Y given an
observation X = x. The predicted output of the classifier h
given X is denoted by Ŷ . In other words, Ŷ is a [c]-valued
random variable distributed according to

Pr
(
Ŷ = j | X = x

)
= hj(x), (j, x) ∈ [c]×X . (21)

As a measure of fairness, we evaluate the performance
disparity w.r.t. a sensitive [d]-valued attribute S (e.g., race or
gender) which correlates with X but not used as an input for
the classification task. Nonetheless, we assume S is accessible
when designing the classifier. Our goal is to design a classifier
hopt : X →∆c that satisfies certain fairness criteria without
compromising accuracy.

We assume that we have in hand a well-calibrated classifier
that approximates PY,S|X , i.e. that predicts both group mem-
bership S and the true label Y from input variables X . This
classifier can be directly marginalized into the following d+ 2
models:

• a label classifier y : X →∆c that predicts true label from
input variables,

y(x) , (PY |X(1|x), · · · , PY |X(c|x)) for x ∈ X , (22)

• a group membership classifier s : X →∆d that uses input
variables to predict group membership,

s(x) , (PS|X(1|x), · · · , PS|X(d|x)) for x ∈ X , (23)

FAIRNESS CRITERION EXPRESSION

Statistical parity

∣∣∣∣∣Pr(Ŷ = ŷ|S = s)

Pr(Ŷ = ŷ)
− 1

∣∣∣∣∣ ≤ α
Equalized odds

∣∣∣∣∣Pr(Ŷ = ŷ|Y = y, S = s)

Pr(Ŷ = ŷ|Y = y)
− 1

∣∣∣∣∣ ≤ α
Overall accuracy equality

∣∣∣∣∣Pr(Ŷ = Y |S = s)

Pr(Ŷ = Y )
− 1

∣∣∣∣∣ ≤ α
Table 1: Fairness criteria and their corresponding expressions. Here α > 0 is
a prescribed constant, and having a metric be satisfied amounts to having the
corresponding inequalities hold for every s ∈ [d] and y, ŷ ∈ [c].

• a set of disparate treatment classifiers y(s) : X →∆c that
predict true label from input variables for each group s ∈ [d],

y(s)(x) , (PY |X,S=s(1|x), · · · , PY |X,S=s(c|x)) (24)

for every (s, x) ∈ [d]×X .
In practice, the distribution PY,S can be reliably estimated as its
support size cd is usually small. The classifier that approximates
PY,S|X (and thus y, s, and y(s)) can be produced by training,
e.g., a logistic regression. This may lead to a discrepancy
between the underlying and the approximated classifiers. How
this discrepancy impacts the design of the optimal classifier is
still an open question that deserves future work.

A. Fairness Criteria

Many fairness criteria can be written as linear inequalities
[see e.g., 27, 28] in terms of the classifier h. Consequently,
these fairness criteria can be mapped directly to the constraints
in our model projection framework. We focus on three
commonly-used fairness metrics (see Table 1) and provide
their equivalent expressions in linear form in the following
lemma.

Lemma 1. Every fairness criterion listed in Table 1 can be
written in the form

E
[
〈δa(i)(X)− αb(i)(X),h(X)〉

]
≤ 0, (i, δ) ∈ [`]× {±1}

for a positive integer ` and functions a(i) : X → Rc and
b(i) : X → Rc≥0 that are completely determined by the
the classifiers {y, s,y(1), · · · ,y(d)} and the distributions PS ,
PS|Y , and where the expectation is taken w.r.t. PX .

We briefly go over the forms of the a(i) and b(i) for the
fairness metrics in Table 1. We let e(1), · · · , e(c) denote the
standard basis vectors of Rc.

a) Statistical parity [21]: measures whether the predicted
outcome Ŷ is independent of the sensitive attribute S. For
statistical parity, the functions a(i) and b(i) have the forms

a(s,ŷ)(x) =

(
ss(x)

PS(s)
− 1

)
e(ŷ) and b(s,ŷ)(x) = e(ŷ).

There are 2d · c constraints since (s, ŷ) ∈ [d]× [c].

2714

Authorized licensed use limited to: Harvard Library. Downloaded on September 10,2020 at 02:43:53 UTC from IEEE Xplore.  Restrictions apply. 



b) Equalized odds [18]: requires the predicted outcome
Ŷ and the sensitive attribute S to be independent conditioned
on the true label Y . When the classification task is binary, the
equalized odds becomes the equality of false positive rate and
false negative rate [20] over all sensitive groups. For equalized
odds,

a(s,ŷ,y)(x) =

(
ss(x)y

(s)
y (x)

PS|Y (s|y)
− yy(x)

)
e(ŷ),

b(s,ŷ,y)(x) = yy(x)e(ŷ).

There are 2d · c2 constraints.
c) Overall accuracy equality [21]: requires the accuracy

of the predictive model to be the same across all sensitive
groups. In this case,

a(s)(x) =
ss(x)

PS(s)
y(s)(x)− y(x) and b(s)(x) = y(x).

There are 2d constraints.

B. Discrimination Correction

Here we consider designing a fair classifier via a
discrimination-correction optimization that is a special instance
of the model projection problem. Equipped with Lemma 1, we
formulate the discrimination-correction optimization problem
using f -divergence as a measure of “closeness”:

min
h∈C+(X ,∆c)

E [Df (h(X)‖y(X))] ,

s.t. E
[
〈δa(i)(X)− αb(i)(X),h(X)〉

]
≤ 0,

(25)

where α > 0 and the functions a(i) and b(i) (for i ∈ [`]) are
all determined by the pre-specified fairness requirements, and
δ ∈ {±1}. Recall that G is a matrix with 2` rows encoding
the constraints, i.e.,

G =
(
δa(i) − αb(i)

)T
(δ,i)∈{±1}×[`]

, (26)

and v(x;λλλ) = −G(x)Tλλλ (see (12)). Consequently, Theorems 1
and 2 together guarantee the existence and uniqueness of the
optimal classifier and they also give a way for designing such
classifier (see (14)). For the sake of illustration, we give the
following formula for the optimal classifier when accuracy is
measured in terms of the KL-divergence. It is worth noting
that this formula also appears in [29], but no explicit formula
for the optimal dual parameter λλλ∗ is presented therein.

Corollary 1. Assume the KL-divergence is used in (25). Then,
under Assumption I, the optimal fair classifier is given by

hopt
j (x) ∝ yj(x)evj(x;λλλ∗) (27)

where λλλ∗ is any solution to the convex optimization problem

min
λλλ≥0

E
[
logEj∼y(X)

[
evj(X;λλλ)

]]
. (28)

Remark 3. Assumption I is satisfied for the fairness criteria
considered in this paper as soon as mins,y PS|Y (s|y) > 0, and
y, s, and the y(s) satisfy Assumption I-(d). This is true since

Assumption I-(a) is satisfied for the KL-divergence, Assumption
I-(b) will also be satisfied in view of the formulas for the
fairness constraints given in Section IV-A, and Assumption
I-(c) is satisfied as the uniform classifier is strictly feasible.

The way we design the fair classifier falls into the post-
processing category. This is because the optimal fair classifier
is a tilting of the label classifier (see Theorem 2 and Corollary
1). Notably, the formulation (25) does not a priori assume a
post-processing design procedure. Nevertheless, the optimal
classifier turns out to own an optimality guarantee among all
classifiers.

We point out that the formulation in [30] presents a special
case of the model projection theory using cross-entropy as the
f -divergence of choice and assuming Y and S are binary. While
computationally lightweight, the experiments in [30, Section 6]
demonstrate that the model projection formulation may perform
favorably compared to state-of-the-art fairness intervention
mechanisms. Here, we provide a general theoretical work that
allows usage of a wide class of f -divergences. We refer the
reader to [30, Section 6] for numerical results and comparisons,
and omit further experiments due to space constraints.

C. Finite-Sample Considerations

The model projection framework gives an explicit way
for designing a fairness-aware classifier by first training a
classifier PY,S|X , and then solving a convex program to obtain
the dual parameter. Therefore, there are only two challenges
for a complete design process of a discrimination-correction
classifier: 1) obtaining a well-calibrated classifier PY,S|X , and
2) solving the dual convex program (16). This subsection
tackles the second challenge, under the assumption that the
first challenge is addressed.

The convex program relies on the underlying data distribution.
In practice, with finitely-many samples, one can solve the dual
convex program using an empirical objective function. Keeping
the assumption that the classifier PY,S|X is known, and letting
{Xi}i∈[n] be i.i.d. samples drawn from PX , we show the
following generalization bound for the dual problem (16).

Theorem 3. Let G be given by equation (26), U be a [c]-
valued random variable such that U |X = x is uniform for
every x, and denote

θ ,
cDf (PXPU |X‖PX,Y )

−maxi∈[2`] E [Gi,:(X)1]
, (29)

L , supx∈X ‖G(x)‖1, and ζ , L/θ. Let λλλn be the unique
solution to

min
λλλ≥0
‖λλλ‖1≤θ

1

n

∑
i∈[n]

Dconj
f (v(Xi;λλλ),y(Xi)) +

ζ√
n
‖λλλ‖22.

Then, with probability at least 1− δ,

E
[
Dconj
f (v(X;λλλn),y(X))

]
≤ min

λλλ≥0
E
[
Dconj
f (v(X;λλλ),y(X))

]
+

10Lθ

δ
√
n
.

(30)
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[22] I. Žliobaitĕ, “Measuring discrimination in algorithmic decision
making,” Data Min. Knowl. Discov., vol. 31, no. 4, pp.
1060–1089, Jul. 2017. [Online]. Available: https://doi.org/10.
1007/s10618-017-0506-1

[23] B. Woodworth, S. Gunasekar, M. I. Ohannessian, and N. Srebro,
“Learning non-discriminatory predictors,” in Conference on
Learning Theory, 2017, pp. 1920–1953.

[24] A. K. Menon and R. C. Williamson, “The cost of fairness in
binary classification,” in Conference on Fairness, Accountability
and Transparency, 2018, pp. 107–118.

[25] F. P. Calmon, D. Wei, B. Vinzamuri, K. N. Ramamurthy, and
K. R. Varshney, “Optimized pre-processing for discrimination
prevention,” in Advances in Neural Information Processing
Systems, 2017, pp. 3992–4001.

[26] H. Wang, B. Ustun, and F. P. Calmon, “Repairing without retrain-
ing: Avoiding disparate impact with counterfactual distributions,”
in International Conference on Machine Learning, 2019.

[27] A. Agarwal, A. Beygelzimer, M. Dudik, J. Langford, and
H. Wallach, “A reductions approach to fair classification,” in
International Conference on Machine Learning, 2018, pp. 60–69.

[28] L. E. Celis, L. Huang, V. Keswani, and N. K. Vishnoi, “Classifi-
cation with fairness constraints: A meta-algorithm with provable
guarantees,” in Conference on Fairness, Accountability, and
Transparency, 2019, pp. 319–328.

[29] H. Jiang and O. Nachum, “Identifying and correcting label bias
in machine learning,” arXiv preprint arXiv:1901.04966, 2019.

[30] D. Wei, K. N. Ramamurthy, and F. P. Calmon, “Optimized
score transformation for fair classification,” in 23rd International
Conference on Artificial Intelligence and Statistics, 2020.

[31] A. Ghassami, S. Khodadadian, and N. Kiyavash, “Fairness
in supervised learning: An information theoretic approach,”
in Proceedings of 2018 IEEE International Symposium on
Information Theory, 2018, pp. 176–180.

[32] A. Chouldechova and A. Roth, “The frontiers of fairness in
machine learning,” ArXiv, vol. abs/1810.08810, 2018.

[33] M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and
S. Venkatasubramanian, “Certifying and removing disparate
impact,” in Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2015,
pp. 259–268.

[34] F. Kamiran and T. Calders, “Data preprocessing techniques for
classification without discrimination,” Knowledge and Informa-
tion Systems, vol. 33, no. 1, pp. 1–33, 2012.

[35] M. B. Zafar, I. Valera, M. G. Rogriguez, and K. P. Gummadi,
“Fairness constraints: Mechanisms for fair classification,” in
Artificial Intelligence and Statistics, 2017, pp. 962–970.

[36] W. Alghamdi, S. Asoodeh, H. Wang, F. P. Calmon, D. Wei,
and K. N. Ramamurthy, “Model projection: Theory and
applications to fair machine learning,” 2020. [Online]. Available:
https://github.com/WaelAlghamdi/ModelProjection

[37] S. M. Ali and S. D. Silvey, “A general class of coefficients of
divergence of one distribution from another,” Journal of Royal
Statistics, vol. 28, pp. 131–142, 1966.

[38] I. Csiszár, “Information-type measures of difference of proba-
bility distributions and indirect observations,” Studia Sci. Math.
Hungar., vol. 2, pp. 299–318, 1967.

2716

Authorized licensed use limited to: Harvard Library. Downloaded on September 10,2020 at 02:43:53 UTC from IEEE Xplore.  Restrictions apply. 


