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Estimation Efficiency Under Privacy Constraints
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Abstract

We investigate the problem of estimating a random variable Y under a privacy constraint dictated by another correlated random
variable X . When X and Y are discrete, we express the underlying privacy-utility tradeoff in terms of the privacy-constrained
guessing probability h(PXY , ε), the maximum probability Pc(Y |Z) of correctly guessing Y given an auxiliary random variable
Z, where the maximization is taken over all PZ|Y ensuring that Pc(X|Z) ≤ ε for a given privacy threshold ε ≥ 0. We prove that
h(PXY , ·) is concave and piecewise linear, which allows us to derive its expression in closed form for any ε when X and Y are
binary. In the non-binary case, we derive h(PXY , ε) in the high utility regime (i.e., for sufficiently large, but nontrivial, values
of ε) under the assumption that Y and Z have the same alphabets. We also analyze the privacy-constrained guessing probability
for two scenarios in which X , Y and Z are binary vectors. When X and Y are continuous random variables, we formulate the
corresponding privacy-utility tradeoff in terms of sENSR(PXY , ε), the smallest normalized minimum mean squared-error (mmse)
incurred in estimating Y from a Gaussian perturbation Z. Here the minimization is taken over a family of Gaussian perturbations
Z for which the mmse of f(X) given Z is within a factor 1 − ε from the variance of f(X) for any non-constant real-valued
function f . We derive tight upper and lower bounds for sENSR when Y is Gaussian. For general absolutely continuous random
variables, we obtain a tight lower bound for sENSR(PXY , ε) in the high privacy regime, i.e., for small ε.

Index Terms

Data privacy, privacy-utility tradeoff, guessing probability, Rényi’s entropy, minimum mean-squared error, maximal correlation,
Gaussian additive privacy mechanism.

I. INTRODUCTION

We consider the following constrained estimation problem: given two correlated random variables X and Y , how accurately

can Y be estimated from another correlated random variable Z , while ensuring that the "information leakage" about X is

limited? More precisely, we seek to design a randomized mechanism M which maps Y to an auxiliary random variable Z
such that the information leakage from X to Z is limited, and the "estimation efficiency" of Y given Z is maximal. This basic

question arises often in data privacy problems, where Alice wishes to disclose non-private information Y to Bob as accurately

as possible in order to receive a payoff, but in such a way that her private information X cannot be effectively inferred by

Bob. For instance, her browsing history might constitute the non-private information which a social media website collects in

order to provide personalized recommendations. In an ideal world, her browser should sanitize Y before its release in order

to avoid compromising her private information X (which may for example include her political leanings). In this context, her

browser has access only to Y , but the potential correlation between X and Y makes the sanitization of Y critical. Motivated

by this type of applications, we assume throughout the paper that X , Y , and Z form a Markov chain in that order, denoted

by X ⊸−− Y ⊸−− Z .

Given the joint distribution PXY , Alice chooses a random mapping M to generate the displayed data Z in such a way

that Bob can guess Y from Z as accurately as possible while being unable to use Z to efficiently guess X . Note that M, the

so-called privacy filter, is completely determined by PZ|Y . The system block diagram of this model is depicted in Fig. 1.
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Fig. 1. The system block diagram.

A quantitative answer to this problem requires: (i) an appropriate measure L(X → Z) of information leakage from X
to Z; and (ii) an appropriate measure S(Y |Z) of the estimation efficiency of Y given Z . A quantitative and operationally

well-justified measure of information leakage has been long sought to assess the performance of different mechanisms used

in practice. In this paper, we set S(Y |Z) = L(Y → Z) and propose two measures of information leakage depending on the

support of X and Y .
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Discrete case: When X ∈ X and Y ∈ Y are both discrete, it is natural to define information leakage as Bob’s efficiency

in guessing X . Hence, we propose L(X → Z) to be
Pc(X|Z)
Pc(X) , where Pc(X) := maxx∈X PX(x) is the probability of

correctly guessing X and

Pc(X |Z) :=
∑

z∈Z

PZ(z)max
x∈X

PX|Z(x|z)

=
∑

z∈Z

max
x∈X

PX(x)PZ|X (z|x),
(1)

is the probability of correctly guessing X given Z . Note that a large value of L(X → Z) corresponds to a small probability

of error in guessing X upon observing Z . Although we only assume that Z , the alphabet of Z , has finite cardinality, we

will show that any Z with cardinality |Y|+ 1 is sufficient for our purpose.

Continuous case: When X and Y are continuous random variables with X = Y = R, we associate information leakage

with Bob’s efficiency in estimating X given Z . Consequently, we define L(X → Z) to be
var(X)

mmse(X|Z) , where var(X) :=

E[(X − E[X ])2] is the variance of X and mmse(X |Z) := E[(X − E[X |Z])2] is the minimum mean squared-error of X
given Z .

Returning to the setup of Fig. 1, recall that in order to receive a utility, Alice wishes to disclose her non-private information

Y to Bob. However, Y might be correlated with her private information, represented by X . In order to quantify the tradeoff

between information display and privacy leakage, we investigate the quantity

sup
PZ|Y :X⊸−−Y ⊸−−Z

L(X→Z)≤ε

L(Y → Z). (2)

We seek to characterize this constrained optimization problem in both the discrete and the continuous cases. It is worth

mentioning that the chosen information leakage functions are special cases of leakage functions based on a large family of

general loss functions, see the discussion in [3, Section 6.2] and references therein. For example, Hamming and squared-error

loss functions give rise to the proposed leakage functions in the discrete and continuous cases, respectively.

In the discrete case, the optimization problem in (2) gives rise to the following definition.

Definition 1. Let (X,Y ) be a pair of discrete random variables with joint distribution PXY . We define the privacy-constrained

guessing function,

h(PXY , · ) : [Pc(X), 1] → [0, 1],

by

h(PXY , ε) := sup
PZ|Y :X⊸−−Y ⊸−−Z

Pc(X|Z)≤ε

Pc(Y |Z). (3)

We write h(ε) whenever PXY is clear from the context.

Let H∞(X) := − logPc(X) be the Rényi entropy of order ∞ and H∞(X |Z) := − logPc(X |Z) be its conditional version [4].

It follows that Pc(X |Z) = 2−H∞(X|Z) and Pc(X) = 2−H∞(X). Then, h is in correspondance with the function g∞(PXY , · ) :
R

+ → R
+ defined by

g∞(PXY , ε) := sup
PZ|Y :X⊸−−Y ⊸−−Z

I∞(X;Z)≤ε

I∞(Y ;Z), (4)

where I∞(X ;Z) := H∞(X) −H∞(X |Z) is Arimoto’s mutual information of order ∞ [5]–[7]. Indeed, it is straightforward

to show that

g∞(PXY , ε) = log
h(PXY , 2

εPc(X))

Pc(Y )
. (5)

The above functional relationship allows us to translate results for h into results for g∞. Two functions closely related to

g∞ are the "rate-privacy function" [8], defined as in (4) with I∞ replaced by Shannon’s mutual information, and the "privacy

funnel" [9] which is the dual representation of the rate-privacy function. Consequently, g∞ can be thought of as the rate-privacy

function of order ∞.

In the machine learning literature, the information bottleneck (IB) method has been proposed by Tishby et al. [10] to quantify

a fundamental relevance-compression tradeoff. Specifically, the IB method minimizes the "compression rate" I(Y ;Z) subject

to a relevance constraint given by I(X ;Z) ≥ R for some R ≥ 0. Thus, the IB problem is conceptually the dual of the privacy

funnel problem. Recently, the privacy funnel and the IB function were unified in a single geometric framework [11] which also

encompasses the privacy funnel of order ∞ (or equivalently g∞) and its dual which may be called the IB function of order

∞. The relation between the different properties of IB function (of order ∞) and the privacy funnel (of order ∞) within this

framework is the subject of ongoing research.



It is important to note that Arimoto’s mutual information of order ∞ differs from other notions of information leakage, for

example the ones studied in [8], [12]–[14], in the fact that I∞(X ;Z) = 0 is not necessarily equivalent to X and Z being

independent. Indeed, if X ∼ Bernoulli(p) with p ∈ [ 12 , 1] and PZ|X = BSC(α) with α ∈ [0, 12 ] (the binary symmetric channel

with crossover probability α), then Pc(X) = p and Pc(X |Z) = pᾱ + max{p̄ᾱ, αp}, where ā = 1 − a. In this case, it is

straightforward to verify that Pc(X |Z) = Pc(X) if and only if p ≥ ᾱ. Therefore, for 1
2 < ᾱ ≤ p < 1, I∞(X ;Z) = 0 despite

the fact that X and Z are not independent.

For continuous real-valued random variables X , Y , and Z , the optimization problem in (2) is hard and seems intractable

in general. In order to have a tractable model, we assume that the displayed data Z is a Gaussian perturbation of Y , i.e.,

Z = Zγ :=
√
γY +NG, where γ ≥ 0 and NG ∼ N (0, 1) is independent of (X,Y ). We thus consider the following privacy-utility

tradeoff, which is a dual representation of (2) with the privacy constraint strengthened.

Definition 2. Let (X,Y ) be a pair of real-valued random variables with joint density PXY . We define the strong estimation

noise-to-signal ratio sENSR(PXY , · ) : R+ → R
+ by

sENSR(PXY , ε) := inf
γ≥0

mmse(Y |Zγ)

var(Y )
,

where the infimum is taken over all γ ≥ 0 such that

mmse(f(X)|Zγ) ≥ (1− ε)var(f(X))

whenever f : R → R is measurable and var(f(X)) < ∞.

A. Main Contributions

We begin in Section II by investigating the salient properties of h. In Theorem 1, we show that the map h(PXY , ·) is

piecewise linear (Fig. 2). The proof relies on a geometric reformulation of h and a careful study of the directional derivatives

in the space of stochastic matrices. As a byproduct of Theorem 1, a formula for the derivative of h at Pc(X |Y ) is established

in (30). This formula, along with the concavity of h, permits us to obtain a tight upper bound for h. In particular, when

|X | = |Y| = 2, this upper bound and the chord lower bound for concave functions allow us to derive a closed form expression

for h in Theorem 2. Moreover, it is also shown that, depending on the backward channel PX|Y , either a Z-channel or a reverse

Z-channel (Fig. 3) achieves h(PXY , ε) for each ε.

We next consider a variant quantity h which we define analogously to h except that Z is required to be supported over

Y . By definition, h captures the fundamental trade-off between privacy and utility in situations where enlarging the alphabet

is not possible. This is particularly relevant when the displayed data might be used by parties not aware of the implemented

privatization scheme. The function h may not be concave and consequently the techniques developed to study h do not apply.

Nevertheless, we can still study the functional properties of h in the high utility regime (i.e., for sufficiently large privacy

threshold ε), deriving a closed form expression in Theorem 3.

We then specialize Theorem 3 to the binary vector case. Here, Zn is revealed publicly and the goal is to guess Y n under

the privacy constraint Pc(X
n|Zn) ≤ εn. We consider two models for the pair of random vectors (Xn, Y n). In the first

model (Theorem 4), we assume that Xn consists of n independent and identically distributed (i.i.d.) Bernoulli(p) samples with

p ∈ [ 12 , 1). In the second model (Theorem 5), we assume that Xn comprises the first n samples of a first-order homogeneous

Markov process having a simple symmetric transition matrix. We assume that in both cases Yk, k = 1, . . . , n, is the output of

a BSC(α), α ∈ [0, 12 ), whose input is Xk. We also study in detail the problem of learning from a private distribution, which

corresponds to the special case X1 = · · · = Xn of the second model (Proposition 3).

In the continuous case, we first show that the strong privacy constraint in Definition 2 is equivalent to a condition on the

maximal correlation (also referred to as the Hirschfeld-Gebelein-Rényi maximal correlation [15]–[17]) between X and Z . We

then derive the value of sENSR for the Gaussian case (Example 1) and obtain sharp lower and upper bounds for general X
and Gaussian Y in Theorem 7. Finally, we establish in Lemma 2 a tight lower bound for sENSR(PXY , ε) for general (X,Y )
in the high privacy regime (i.e., sufficiently small ε).

B. Related Work

There have been several choices proposed for an appropriate measure L of information leakage in the information theory and

computer science literature. Shannon’s mutual information I(X ;Z) (or equivalently the conditional entropy H(X |Z)), while

an intuitively reasonable choice, does not lead to an arguably "operational" privacy guarantee and thus may not satisfactorily

serve as an appropriate information leakage function, see [18] and [19]. Smith [18] discussed that the guessing entropy [20]

(defined as the expected number of guesses required to guess X from Z) cannot be adopted as an information leakage function

and then proposed Arimoto’s mutual information of order ∞ as an appropriate notion of information leakage. Operationally,

I∞(X ;Z) ≤ ε for sufficiently small ε implies that it is nearly as hard for an adversary observing Z to guess X as it is

without Z . Braun et al. [21] proposed the information leakage measures Pc(X |Z) − Pc(X) and max I∞(X ;Z), where the



maximization is taken over all priors PX . In [22], Barthe and Köpf studied the latter quantity in the context of differential

privacy [23].

Issa et al. [12] recently found an interesting operational interpretation for Is∞(X ;Z), Sibson’s mutual information of order ∞
[7], [24]. Specifically, they showed that the requirement Is∞(X ;Z) ≤ ε is equivalent to I∞(U ;Z) ≤ ε for all auxiliary random

variables U satisfying U ⊸−− X ⊸−− Z . Consequently, this constraint guarantees that no randomized function of X can be

efficiently estimated from Z , which leads to a strong privacy guarantee. In contrast, the privacy requirement I∞(X ;Z) ≤ ε
only guarantees to keep X itself private. Nonetheless, the latter requirement comes at a lower utility cost, as illustrated by the

following example. Suppose that X and Y are binary and that Alice wishes to reveal absolutely no information about X (i.e.,

perfect privacy) when disclosing a sanitized version of Y . According to the privacy constraint dictated by Sibson’s mutual

information, perfect privacy leads to the independence of X and Z . It can be shown that for binary Y and X ⊸−− Y ⊸−− Z ,

independence of X and Z implies independence of Y and Z (cf [8, Corollary 11]). Hence, perfect privacy under Sibson’s

mutual information results in trivial utility. However, as shown in Theorem 2, a non-trivial utility might be achieved for the

perfect privacy requirement I∞(X ;Z) = 0.

There exist other estimation-theoretic measures of information leakage in the literature. For example, Makhdoumi and Fawaz

[25] proposed to use maximal correlation ρm as a measure of information leakage. Later, Calmon et al. [26, Theorem 9] showed

that if X and Z are discrete random variables, then Pc(f(X)|Z)−Pc(f(X)) ≤ ρm(X,Z) for every function f , thus providing

an interesting operational interpretation for maximal correlation as a measure of information leakage. Similarly, we show that

mmse(f(X)|Z) ≥ (1− ρ2m(X,Z))var(f(X))

for every measurable real-valued function f . This then provides an operational interpretation for the privacy guarantee

ρ2m(X,Z) ≤ ε that we study in Section IV for X and Y absolutely continuous random variables. We refer the readers

to [27] for a fairly comprehensive list of existing information leakage measures.

The study of the privacy-utility tradeoff from an information theoretic point of view was initiated by Yamamoto [28] and

further extended by several authors, see, e.g., [8], [9], [13], [29]–[33]. In relation with the present work, as already noted

the rate-privacy function g(PXY , ε) was introduced in [8] as the maximum I(Y ;Z) over all privacy filters PZ|Y such that

I(X ;Z) ≤ ε (the privacy funnel [9] is a dual representation of g(PXY , ε)). Motivated by [14], a more operational privacy-rate

function g̃(PXY , ε) was introduced also in [8] by replacing the privacy guarantee I(X ;Z) ≤ ε with ρ2m(X,Z) ≤ ε. It was

also shown that g(PXY , ε) can bound g̃(PXY , ε) from above.

C. Notation

Throughout, we use capital letters, e.g., X , to denote random variables and lowercase letters, e.g., x, to denote their

realizations. We use Xn to denote the vector (X1, X2, . . . , Xn). We let Z(β) denote the Z-channel with crossover probability

β. For any a ∈ [0, 1], we write ā for 1 − a. As already mentioned, we let BSC(α) denote the binary symmetric channel

with crossover probability α; we also use X⊥⊥Z to indicate the independence of random variables X and Z and we write

X ⊸−− Y ⊸−− Z when X and Z are conditionally independent given Y (i.e., when X,Y, and Z form a Markov chain in this

order). Finally, for real-valued random variables X and Z , the conditional variance of X given Z is given by var(X |Z) :=
E[(X − E(X |Z))2|Z].

D. Organization

The rest of the paper is organized as follows. We study the discrete case in Section II. In particular, we determine h in the

binary case and obtain a tight lower bound for h for general discrete alphabets in the high utility regime by studying h. In

Section III, we specialize our results to study h when Xn, Y n, and Zn are binary random vectors. In Section IV, we focus

on the continuous case and obtain sharp bounds on sENSR. We summarize our findings in Section V. Finally, we point out

that all proofs in the paper are deferred to the appendix.

II. DISCRETE SCALAR CASE

In this section, we assume that X and Y are finite-alphabet random variables taking values in X = {1, . . . ,M} and

Y = {1, . . . , N}, respectively. Let P (x, y) with x ∈ X and y ∈ Y be their joint distribution and pX and qY the marginal

distributions of X and Y , respectively. The goal here is to maximize the information leakage from Y to Z (i.e., utility) while

ensuring that the information leakage from X to Z (i.e., privacy leakage) remains bounded. As stated earlier, we quantify the

tradeoff between privacy and utility by means of h, as defined in (3).
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A. Geometric Properties of h

First, note that Pc(X |Y, Z) ≥ Pc(X |Z) ≥ Pc(X) for jointly distributed random variables X , Y and Z . Therefore, from (3)

we have that Pc(Y ) ≤ h(ε) ≤ 1 and that h(ε) = 1 if and only if ε ≥ Pc(X |Y ). Thus it is enough to study h on the interval

[Pc(X),Pc(X |Y )].
An application of the Support Lemma [34, Lemma 15.4] shows that it is enough to consider random variables Z supported

on Z = {1, . . . , N +1}. Thus, the privacy filter PZ|Y can be realized by an N × (N +1) stochastic matrix F ∈ MN×(N+1),

where MN×M denotes the set of all real-valued N ×M matrices. Let F be the set of all such matrices F . Then both privacy

P(P, F ) = Pc(X |Z) and utility U(P, F ) = Pc(Y |Z) are functions of F ∈ F and can be written as

P(P, F ) :=
N+1∑

z=1

max
1≤x≤M

N∑

y=1

P (x, y)F (y, z),

U(P, F ) :=

N+1∑

z=1

max
1≤y≤N

q(y)F (y, z).

(6)

In particular, we can express h(ε) as

h(ε) = sup
F∈F,

P(P,F )≤ε

U(P, F ). (7)

As before, we omit P in P(P, F ) and U(P, F ) when there is no risk of confusion.

It is straightforward to verify that P and U are continuous and convex on F . As a consequence, for every ε ∈ [Pc(X),Pc(X |Y )],
there exists G ∈ F such that P(G) = ε and U(G) = h(ε). It is then direct to show that h is continuous on [Pc(X),Pc(X |Y )].
Using a proof technique similar to [35, Theorem 2.3], it can also be shown1 that the graph of h is the upper boundary

of the two-dimensional convex set {(P(F ),U(F )) : F ∈ F} and thus h is concave and strictly increasing. The following

theorem, which is the most important and technically difficult result of this paper, states that h is a piecewise linear function,

as illustrated in Fig. 2.

Theorem 1. The function h : [Pc(X),Pc(X |Y )] → R
+ is piecewise linear, i.e., there exist K ≥ 1 and thresholds Pc(X) =

ε0 ≤ ε1 ≤ . . . ≤ εK = Pc(X |Y ) such that h is linear on [εi−1, εi] for all i = 1, . . . ,K .

The proof of this theorem, which is given in Appendix A, relies on the geometrical formulation of h. In particular, it is

proved that P and U , are piecewise linear functions on F . Using this fact, we establish the existence of a piecewise linear

path of optimal filters in F . The proof technique allows us to derive the slope of h on [εi−1, εi], given the family of optimal

filters at a single point ε ∈ [εi−1, εi]. For example, since the family of optimal filters at ε = Pc(X |Y ) is easily obtainable, it

is possible to compute h on the last interval. We utilize this observation in Section II-C to prove that in the binary case h is

indeed linear.

1Note that [35, Theorem 2.3] deals with a similar problem where Pc(X|Z) and Pc(Y |Z) are replaced by H(X|Z) and H(Y |Z), respectively. Just as
(H(X|Z), H(Y |Z)), the pair (Pc(X|Z),Pc(Y |Z)) can be written as a convex combination of points in a two-dimensional set. In our setting, this set turns
out to be {(Pc(X′),Pc(Y ′)) : Y ′ ∼ q′ ∈ P(Y) and X′ ∼ p′,where p′(x) =

∑

y PX|Y (x|y)q′(y)}. See [11] for a generalization of this argument.



B. Perfect Privacy

When ε = Pc(X), observing Z does not increase the probability of guessing X . In this case we say that perfect privacy

holds. An interesting problem is to characterize when non-trivial utility can be obtained under perfect privacy, that is, to

characterize when h(Pc(X)) > Pc(Y ) holds. To the best of our knowledge, a general necessary and sufficient condition for

this requirement is unknown.

Note that h(Pc(X)) > Pc(Y ) is equivalent to g∞(0) > 0. As opposed to the Shannon mutual information, I∞(X ;Z) = 0
does not necessarily imply that X⊥⊥Z . In particular, the weak independence2 argument from [8, Lemma 10] (see also [13])

cannot be applied for g∞. However, we have the following result whose proof is given in Appendix B.

Proposition 1. Let (X,Z) be a pair of random variables with X uniformly distributed. If I∞(X ;Z) = 0, then X⊥⊥Z .

As a consequence of Proposition 1, when X and Y are uniformly distributed, one can apply the weak independence arguments

from [8, Lemma 10] to obtain the following.

Corollary 1. If X and Y are uniformly distributed, then g∞(0) > 0 if and only if X is weakly independent of Y .

When X is uniform, the privacy requirement I∞(X ;Z) ≤ ε guarantees that an adversary observing Z cannot efficiently

estimate any arbitrary randomized function of X . To see this, consider a random variable U satisfying U ⊸−− X ⊸−− Z . Then

we have

Pc(U |Z) =
∑

z∈Z

max
u∈U

∑

x∈X

PUX(u, x)PZ|X(z|x)

≤
∑

z∈Z

[

max
x∈X

PZ|X(z|x)
] [

max
u∈U

∑

x∈X

PUX(u, x)

]

=
Pc(X |Z)Pc(U)

Pc(X)
,

which can be rearranged to yield I∞(U ;Z) ≤ I∞(X ;Z). It is worth mentioning that the data processing inequality for I∞
[4] states that I∞(Z;U) ≤ I∞(Z;X). However, I∞(Z;U) is not necessarily equal to I∞(U ;Z).

C. Binary Case

A channel W is called a binary input binary output channel with crossover probabilities α and β, denoted by BIBO(α, β),
if W(·|0) = (ᾱ, α) and W(·|1) = (β, β̄). Note that if X ∼ Bernoulli(p) with p ∈ [ 12 , 1) and PY |X = BIBO(α, β) with

α, β ∈ [0, 1
2 ), then Pc(X) = p and

Pc(X |Y ) = max{ᾱp̄, βp}+ β̄p.

In this case, if ᾱp̄ ≤ βp then Pc(X |Y ) = p = Pc(X) and hence h(p) = 1. The following theorem, whose proof is given in

Appendix C, establishes the linear behavior of h in the non-trivial case ᾱp̄ > βp.

Theorem 2. Let X ∼ Bernoulli(p) with p ∈ [ 12 , 1) and PY |X = BIBO(α, β) with α, β ∈ [0, 12 ) such that ᾱp̄ > βp. Then, for

any ε ∈ [p, ᾱp̄+ β̄p] = [Pc(X),Pc(X |Y )],

h(ε) =

{

1− ζ(ε)q, αᾱp̄2 < ββ̄p2,

1− ζ̃(ε)q̄, αᾱp̄2 ≥ ββ̄p2,

where q := qY (1) = αp̄+ β̄p,

ζ(ε) :=
ᾱp̄+ β̄p− ε

β̄p− αp̄
, and ζ̃(ε) :=

ᾱp̄+ β̄p− ε

ᾱp̄− βp
. (8)

Furthermore, the Z-channel Z(ζ(ε)) and the reverse Z-channel Z̃(ζ̃(ε)) achieve h(ε) when αᾱp̄2 < ββ̄p2 and αᾱp̄2 ≥ ββ̄p2,

respectively. The optimal privacy filters are depicted in Fig. 3.

Note that the condition αᾱp̄2 < ββ̄p2 is equivalent to

PX|Y (1|1) > PX|Y (0|0),
and that PX|Y (0|0) > 1

2 whenever ᾱp̄ > βp. Hence, intuitively speaking, the event Y = 1 reveals more information about X
than the event Y = 0. Consequently, an optimal privacy mechanism M needs to distort the event Y = 1.

Under the hypotheses of Theorem 2, there exists a Z-channel for every ε ∈ [Pc(X),Pc(X |Y )] that achieves h(ε). A minor

modification to the proof of Theorem 2 shows that the Z-channel is the only binary privacy filter with this optimality property

2X is said to be weakly independent of Z if the vectors {PX|Z(·|z) : z ∈ Z} are linearly dependent [36].
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Fig. 3. Optimal privacy mechanisms in Theorem 2.

for p ∈ (12 , 1). It is worth mentioning that in the symmetric case (α = β) with uniform input (p = 1
2 ), the channel BSC(0.5ζ(ε))

can be shown to also achieve h(ε).
It is straightforward to show that 1− ζ(p)q > q̄ if and only if p ∈ (12 , 1), and 1− ζ(p)q > q if and only if αᾱp̄2 < ββ̄p2.

Also, note that h(p) = q when αᾱp̄2 ≥ ββ̄p2. In particular, we have the following necessary and sufficient condition for the

non-trivial utility under perfect privacy.

Corollary 2. Let X ∼ Bernoulli(p) with p ∈ [ 12 , 1) and PY |X = BIBO(α, β) with α, β ∈ [0, 1
2 ) such that ᾱp̄ > βp. Then

g∞(0) > 0 if and only if αᾱp̄2 < ββ̄p2 and p ∈ (12 , 1).

D. A variant of h

Thus far, we studied the privacy-constrained guessing probability h(ε) where no constraint on the cardinality of the alphabet

of the displayed data Z is imposed (other than being finite). Nevertheless, we know that it is sufficient to consider Z with

cardinality |Y|+1. However, as mentioned in the introduction, it may be desirable to generate the displayed data on the same

alphabet as that of Y . In this section, we consider the case where Z is constrained to satisfy |Z| = |Y|, which leads to the

following variant of h, denoted by h.

Definition 3. For arbitrary discrete random variables X and Y supported on X and Y respectively, we define the function

h : [Pc(X),Pc(X |Y )] → R
+ by

h(ε) := sup
PZ|Y ∈Dε

Pc(Y |Z),

where

Dε :=
{
PZ|Y : Z = Y, X ⊸−− Y ⊸−− Z,Pc(X |Z) ≤ ε

}
.

Unlike h, the definition of h requires Z = Y . This difference makes the tools from [35] unavailable. In particular, the

concavity and hence the piecewise linearity of h do not carry over to h. However, we have the following theorem for h whose

proof is given in Appendix D. For notational convenience, we adopt the convention x
0 = +∞ for x > 0. For (y0, z0) ∈ Y ×Y ,

a channel W is said to be an N -ary Z-channel with crossover probability γ from y0 to z0, denoted by Zy0,z0(γ), if the input

and output alphabets are Y and W(y|y) = 1 for y 6= y0, W(z0|y0) = γ, and W(y0|y0) = γ̄. We also let h
′(Pc(X |Y )) denote

the left derivative of h(·) evaluated at ε = Pc(X |Y ).

Theorem 3. Let X and Y be discrete random variables. If Pc(X) < Pc(X |Y ), then there exists εL ∈ (Pc(X),Pc(X |Y )) such

that h is linear on [εL,Pc(X |Y )]. In particular, for every ε ∈ [εL,Pc(X |Y )],

h(ε) = 1− (Pc(X |Y )− ε)h′(Pc(X |Y )). (9)

Moreover, if qY (y) > 0 for all y ∈ Y and for each y ∈ Y there exists (a unique) xy ∈ X such that PX|Y (xy |y) > PX|Y (x|y)
for all x 6= xy , then

h
′(Pc(X |Y )) = min

(y,z)∈Y×Y

qY (y)

PXY (xy , y)− PXY (xz , y)
. (10)

In addition, if (y0, z0) ∈ Y × Y attains the minimum in (10), then there exists εy0,z0
L

< Pc(X |Y ) such that Zy0,z0(ζy0,z0(ε))
achieves h(ε) for every ε ∈ [εy0,z0

L
,Pc(X |Y )], where

ζy0,z0(ε) =
Pc(X |Y )− ε

PXY (xy0 , y0)− PXY (xz0 , y0)
.

It is clear, from Definition 3, that h(ε) ≤ h(ε) for all ε ∈ [Pc(X),Pc(X |Y )]. Hence, Theorem 3 provides a lower bound

for h in the high utility regime.



Although (9) establishes the linear behavior of h over [εL,Pc(X |Y )] for general X and Y , a priori it is not clear how to obtain

h
′(Pc(X |Y )). Under the assumptions of Theorem 3, (10) expresses h

′(Pc(X |Y )) as the minimum of finitely many numbers,

and a suitable Z-channel achieves h for ε close to Pc(X |Y ). As we will see in the following section, these assumptions are

rather general and allow us to derive a closed form expression for h in the high utility regime for some pairs of binary random

vectors (Xn, Y n) with Xn, Y n ∈ {0, 1}n.

III. BINARY VECTOR CASE

We next study privacy aware guessing for a pair of binary random vectors (Xn, Y n). First note that since having more side

information only improves the probability of correct guessing, one can write

Pc(X
n) ≤ Pc(X

n|Zn) ≤ Pc(X
n|Y n, Zn) = Pc(X

n|Y n)

for Xn
⊸−− Y n

⊸−− Zn and thus, we can restrict εn in the following definition to [Pc(X
n),Pc(X

n|Y n))].

Definition 4. For a given pair of binary random vectors (Xn, Y n), let hn : [P
1/n
c (Xn),P

1/n
c (Xn|Y n)] → R

+ be the function

defined by

hn(ε) := sup
PZn|Y n∈Dn,ε

P
1/n
c

(Y n|Zn), (11)

where Dn,ε := {PZn|Y n : Zn = {0, 1}n, Xn
⊸−− Y n

⊸−− Zn,P
1/n
c (Xn|Zn) ≤ ε}.

Note that this definition does not make any assumption about the privacy filters PZn|Y n apart from Zn = {0, 1}n.

Nonetheless, this restriction makes the functional properties of hn different from those of h.

We study hn in the following two scenarios for (Xn, Y n):

(a1) X1, . . . , Xn are i.i.d. samples drawn from Bernoulli(p),
(a2) X1 ∼ Bernoulli(p) and Xk = Xk−1 ⊕Uk for k = 2, . . . , n, where U2, . . . , Un are i.i.d. samples drawn from Bernoulli(r)

and independent of X1, and ⊕ denotes mod 2 addition,

and in both cases, we assume that

(b) Yk = Xk ⊕ Vk for k = 1, . . . , n, where V1, . . . , Vn are i.i.d. samples drawn from Bernoulli(α) and independent of Xn.

We study hn for (Xn, Y n) satisfying the assumptions (a1) and (b) in Section III-A and for (Xn, Y n) satisfying the assumptions

(a2) and (b) in Section III-B. In the latter section, we also study hn in the special case r = 0 in more detail.

A. I.I.D. Case

Here, we assume that (Xn, Y n) satisfy (a1) and (b) and apply Theorem 3 to derive a closed form expression for hn(ε) for

ε close to Pc(X
n|Y n). Additionally, we determine an optimal filter in the same regime.

We begin by identifying the domain [Pc(X
n),Pc(X

n|Y n)] of hn in the following lemma, whose proof follows directly

from the definition of Pc.

Lemma 1. Assume that (X1, Z1), . . . , (Xn, Zn) are independent pairs of random variables. Then

Pc(X
n|Zn) =

n∏

k=1

Pc(Xk|Zk).

Thus, according to this lemma, if p ∈ [ 12 , 1) and α ∈ [0, p̄) then Pc(X
n) = pn and Pc(X

n|Y n) = ᾱn. The following

theorem, whose proof is given in Appendix E, is a straightforward consequence of Theorem 3. A channel W is said to be

a 2n-ary Z-channel with crossover probability γ, denoted by Zn(γ), if its input and output alphabets are {0, 1}n and it is

Z1,0(γ), where 0 = (0, 0, . . . , 0) and 1 = (1, 1, . . . , 1).

Theorem 4. Assume that (Xn, Y n) satisfy (a1) and (b) with p ∈ [ 12 , 1) and α ∈ [0, 1
2 ) such that ᾱ > p. Then there exists

εL < ᾱ such that, for all ε ∈ [εL, ᾱ],
h

n
n(ε) = 1− ζn(ε)q

n

where q := αp̄+ ᾱp and

ζn(ε) :=
ᾱn − εn

(ᾱp)n − (αp̄)n
.

Moreover, the 2n-ary Z-channel Zn(ζn(ε)) achieves hn(ε) in this interval.
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Fig. 4. The optimal mechanism for h2(ε) for ε ∈ [εL, ᾱ].

The optimal privacy mechanism achieving h2(ε) is depicted in Fig. 4. From an implementation point of view, the simplest

family of privacy mechanisms consists of those mechanisms for which Zk is a noisy version of Yk for each k = 1, . . . , n.

Specifically, the family of mechanisms that generate Zk, given Yk, using a single BIBO channel W, and thus

PZn|Y n(zn|yn) =
n∏

k=1

W(zk|yk), (12)

for all yn, zn ∈ {0, 1}n. Now, let hi
n(ε) = supP

1/n
c (Y n|Zn), where the supremum is taken over all PZn|Y n satisfying (12)

and P
1/n
c (Xn|Zn) ≤ ε. It is clear that hi

n(ε) ≤ hn(ε) for all ε ∈ [P
1/n
c (Xn),P

1/n
c (Xn|Y n)]. The following proposition,

whose proof is given in Appendix F, shows that if we restrict the privacy filter PZn|Y n to be memoryless, then the optimal

filter coincides with the optimal filter in the scalar case, which in this case is Z(ζ(ε)) as defined in Theorem 2.

Proposition 2. Assume that (Xn, Y n) satisfy (a1) and (b) with p ∈ [ 12 , 1) and α ∈ [0, 12 ) such that ᾱ > p. Then, for all

ε ∈ [p, ᾱ],
h

i

n(ε) = 1− ζ(ε)q,

where q := αp̄+ ᾱp and ζ(ε) :=
ᾱp̄+ ᾱp− ε

ᾱp− αp̄
.

It must be noted that, despite the fact that (Xn, Y n) is i.i.d., the memoryless privacy filter associated to hi
n(ε) is not optimal,

as hn(ε) is a function of n while hi
n(ε) is not. The following corollary, whose proof is given in Appendix G, bounds the

loss resulting from using a memoryless filter instead of an optimal one for ε ∈ [εL, ᾱ]. Clearly, for n = 1, there is no gap as

h1(ε) = h(ε) = hi
1(ε).

Corollary 3. Let (Xn, Y n) satisfy (a1) and (b) with p ∈ [ 12 , 1) and α ∈ [0, 1
2 ) such that ᾱ > p. Let εL be as in Theorem 4. If

p > 1
2 and α > 0, then for ε ∈ [εL, ᾱ] and sufficiently large n

hn(ε)− h
i

n(ε) ≥ (ᾱ − ε)[Φ(1)− Φ(n)], (13)

where q = αp̄+ ᾱp and

Φ(n) :=
qnᾱn−1

(ᾱp)n − (αp̄)n
.

If p = 1
2 , then

h
i

n(ε) ≤ hn(ε) ≤ h
i

n(ε) +
α

2ᾱ
, (14)

for every n ≥ 1 and ε ∈ [εL, ᾱ].

Note that Φ(n) ↓ 0 as n → ∞. Thus (13) implies that, as expected, the gap between the performance of the optimal privacy

filter and that of the optimal memoryless privacy filter increases as n increases. This observation is numerically illustrated in

Fig. 5, where hn(ε) is plotted as a function of ε for n = 2 and n = 10. Moreover, (14) implies that when p = 1
2 and α is small,

hn(ε) can be approximated by hi
n(ε). Thus, we can approximate the optimal filter Zn(ζn(ε)) with a simple memoryless filter

given by Zk = Yk ⊕Wk, where W1, . . . ,Wn are i.i.d. Bernoulli(0.5ζ(ε)) random variables that are independent of (Xn, Y n).
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Fig. 5. The graphs of h10(ε) (green solid curve), h2(ε) (red dashed curve), and h
i

2(ε) = h
i

10(ε) (blue dotted line) given in Proposition 2
and Theorem 4 for i.i.d. (Xn, Y n) with X ∼ Bernoulli(0.6) and PY |X = BSC(0.2).

B. Markov Private Data

In this section, we assume that Xn comprises the first n samples of a homogeneous first-order Markov process having a

symmetric transition matrix; i.e., (Xn, Y n) satisfy (a2) and (b). In practice, this may account for data that follows a pattern,

such as a password.

It is easy to see that under assumptions (a2) and (b),

Pr(Xn = xn) = p̄r̄n−1

(
p

p̄

)x1 n∏

k=2

(r

r̄

)xk⊕xk−1

.

In particular, if r < 1
2 ≤ p, then a direct computation shows that Pc(X

n) = pr̄n−1. The values of Pc(X
n|Y n) for odd and

even n are slightly different. For simplicity, in what follows we assume that n is odd. In this case, as shown in equation (64)

in Appendix H,

Pc(X
n|Y n) = ᾱnr̄n−1

(n−1)/2
∑

k=0

(
n

k

)(α

ᾱ

)k

. (15)

Theorem 3 established the optimality of a Z-channel Zy0,z0 for some y0, z0 ∈ {0, 1}n. In order to find a closed form expression

for hn, it is necessary to find (y0, z0) which in principle depends on the parameters (p, α, r). The following theorem, whose

proof is given in Appendix H, bounds hn for different values of (p, α, r).

Theorem 5. Assume that n ∈ N is odd and (Xn, Y n) satisfy (a2) and (b) with p ∈ [ 12 , 1), α ∈ (0, 1
2 ), and ᾱp̄ > αp. If

r

r̄
<
(α

ᾱ

)n−1

, then there exists εL < Pc(X
n|Y n) such that

1− ζn(ε) Pr(Y
n = 1) ≤ h

n
n(ε) ≤ 1− ζn(ε)α

n,

for every ε ∈ [εL,Pc(X
n|Y n)], where

ζn(ε) := r̄
Pc(X

n|Y n)− εn

p(ᾱr̄)n − p̄(αr̄)n
.

Furthermore, the 2n-ary Z-channel Zn(ζn(ε)) achieves the lower bound in this interval.

The special case of r = 0 is of particular interest. Note that when r = 0, then (a2) corresponds to X1 = · · · = Xn = θ ∈
{0, 1}. Here, Y n ∈ {0, 1}n are i.i.d. copies drawn from PY |θ = Bernoulli(ᾱθαθ̄). The prior distribution of the parameter θ is

Bernoulli(p). The parameter θ is considered to be private and Y n must be guessed as accurately as possible. This problem can

be viewed as a reverse version of privacy-aware learning studied in [37]. The following proposition, whose proof is given in

Appendix I, provides a closed form expression for hn in the low privacy regime. Note that in this case, Pc(θ) = p and the

value of Pc(θ|Y n) is obtained from (15) by setting r = 0.

Proposition 3. Assume that n is odd. Let θ ∼ Bernoulli(p) with p ∈ [ 12 , 1) and Y n be n i.i.d. Bernoulli(ᾱθαθ̄) samples with

α ∈ (0, 1
2 ), ᾱp̄ > αp and p < Pc(θ|Y n). Then, there exists εL < Pc(θ|Y n) such that

max
PZn|Y n :Zn={0,1}n,

Pc(θ|Zn)≤εn

Pc(Y
n|Zn) = 1− ζn(ε)(pᾱ

n + p̄αn),



for every ε ∈ [εL,Pc(θ|Y n)] where

ζn(ε) =
Pc(θ|Y n)− εn

pᾱn − p̄αn
.

Moreover, the 2n-ary Z-channel Zn(ζn(ε)) achieves hn(ε) in this interval.

IV. CONTINUOUS CASE

In this section, we assume that X and Y are real-valued random variables having a joint density PXY and the filter PZ|Y

is realized by an independent additive Gaussian noise random variable. In particular, the privacy filter’s output is

Zγ =
√
γY +NG,

for some γ ≥ 0, where NG ∼ N (0, 1) is independent of (X,Y ). The choice of additive Guassian mechanisms is due to

their implementation simplicity and mathematical tractability. Nonetheless, additive non-Gaussian and more general non-linear

mechanisms might be natural in specific applications; their investigation is left as a future work. The goal of this section is to

study sENSR, defined in Definition 2. To make the notation simpler, we define the following.

Definition 5. Given a pair of absolutely continuous random variables (X,Y ) with distribution PXY and ε ≥ 0, we say that

Zγ satisfies ε-strong estimation privacy, denoted as Zγ ∈ Γ(PXY , ε), if

1− ε ≤ mmse(f(X)|Zγ)

var(f(X))
≤ 1, (16)

holds for every measurable function f : R → R with 0 < var(f(X)) < ∞. Similarly, Zγ is said to satisfy ε-weak estimation

privacy, denoted by Zγ ∈ ∂Γ(PXY , ε), if (16) holds for identity function, i.e., f(x) = x.

Similar to privacy, the utility between Y and Zγ will be measured in terms of mmse(Y |Zγ), and hence sENSR (Definition 2)

quantifies the tradeoff between utility and privacy. In fact, sENSR can be equivalently written as

sENSR(PXY , ε) = inf
γ≥0:Zγ∈Γ(PXY ,ε)

mmse(Y |Zγ)

var(Y )
.

We can analogously define the weak estimation noise-to-signal ratio as

wENSR(PXY , ε) := inf
γ≥0:Zγ∈∂Γ(PXY ,ε)

mmse(Y |Zγ)

var(Y )
.

Note that sENSR and wENSR are non-increasing since Γ(PXY , ε) ⊆ Γ(PXY , ε
′) and ∂Γ(PXY , ε) ⊆ ∂Γ(PXY , ε

′) if ε ≤ ε′.
For the sake of brevity, we omit PXY in Γ(PXY , ε), ∂Γ(PXY , ε), sENSR(PXY , ε), and wENSR(P, ε) when there is no risk

of confusion.

In what follows we derive equivalent conditions for Zγ ∈ Γ(ε) and Zγ ∈ ∂Γ(ε), respectively. Recall that the (Pearson)

correlation coefficient of the random variables U and V is defined as

ρ(U, V ) =
cov(U, V )

√

var(U)var(V )

provided that 0 < var(U), var(V ) < ∞. For a random variable U , let SU be the set of all measurable functions f : R → R

such that 0 < var(f(U)) < ∞. Consider the following.

Definition 6 ([17], [38]). Let U and V be a pair of random variables.

i) The maximal correlation of U and V , denoted by ρm(U, V ), is defined as

ρm(U, V ) := sup
(f,g)∈SU×SV

ρ(f(U), g(V )),

provided that 0 < var(U), var(V ) < ∞. If either SU × SV is empty (which happens precisely when either U or V is

constant almost surely), then we set ρm(U, V ) = 0.

ii) The one-sided maximal correlation3 between U and V , denoted by ηV (U), is defined as

ηV (U) := sup
g∈SV

ρ(U, g(V )),

provided that 0 < var(U) < ∞. If SV is empty, then we set ηV (U) = 0.

3This name is taken from [39, Def. 7.4]. Originally, Rényi named this quantity as the "correlation ratio" of U on V [17, eq. (6)].



Rényi [17] showed that η2V (U) = var(E[U|V ])
var(U) . Therefore, the law of total variance implies

mmse(U |V )

var(U)
=

E[var(U |V )]

var(U)
= 1− var(E[U |V ])

var(U)
= 1− η2V (U). (17)

It can also be shown that 0 ≤ ρm(U, V ) ≤ 1, where the lower bound is achieved if and only if U and V are independent, and

the upper bound is achieved if and only if there exists a pair of functions (f, g) ∈ SU × SV such that f(U) = g(V ) almost

surely [17]. It is well known that if (XG, YG) is a pair of jointly Gaussian random variables with correlation coefficient ρ,

then ρ2m(XG, YG) = ρ2(XG, YG), see [16] or [40] for a more recent proof. Rényi [17] derived an equivalent characterization

of maximal correlation as

ρ2m(U ;V ) = sup
f∈SU

η2V (f(U)). (18)

The following theorem, whose proof is given in Appendix J, provides an equivalent characterization of ε-strong estimation

privacy Zγ ∈ Γ(ε).

Theorem 6. Let U and V be non-degenerate random variables and ε ∈ [0, 1]. Then

mmse(f(U)|V ) ≥ (1 − ε)var(f(U)),

for all f ∈ SU if and only if ρ2m(U, V ) ≤ ε. In particular, Zγ ∈ Γ(ε) if and only if ρ2m(X,Zγ) ≤ ε.

From this theorem and (17), we can equivalently express sENSR(ε) and wENSR(ε) as

sENSR(ε) = 1− sup
γ≥0: ρ2

m(X,Zγ )≤ε

η2Zγ
(Y ),

wENSR(ε) = 1− sup
γ≥0: η2

Zγ
(X)≤ε

η2Zγ
(Y ).

It is known that both η and ρm satisfy the data processing inequality (see e.g., [14] and [41]) and hence ηZγ (X) ≤ ηY (X)
and ρm(X,Zγ) ≤ ρm(X,Y ). Therefore, we can restrict ε in the definition of wENSR(ε) and sENSR(ε) to the intervals

[0, η2Y (X)] and [0, ρ2m(X,Y )], respectively. Unlike the discrete case, it is clear that perfect privacy ε = 0 implies γ = 0. Thus

perfect privacy yields trivial utility; i.e., sENSR(0) = 1 and wENSR(0) = 1.

Note that γ 7→ mmse(Y |Zγ) is continuous and decreasing on (0,∞) [42] and γ 7→ ρ2m(X,Zγ) is left-continuous and

increasing on (0,∞) [43, Theorem 2]. Thus we can define γ∗
ε := max{γ ≥ 0 : ρ2m(X,Zγ) ≤ ε} for which we have

sENSR(ε) =
mmse(Y |Zγ∗

ε
)

var(Y )
. The left-continuity of γ 7→ ρ2m(X,Zγ) implies that ε 7→ γ∗

ε is right-continuous, and thus

ε 7→ sENSR(ε) is right-continuous on (0, ρ2m(X,Y )).

Example 1. Let (XG, YG) be jointly Gaussian random variables with mean zero and correlation coefficient ρ and let Zγ =√
γYG +NG. Since ρ2m(XG, Zγ) = ρ2(XG, Zγ), we have that

ρ2m(XG, Zγ) = ρ2
γvar(YG)

1 + γvar(YG)
,

and hence the mapping γ 7→ ρ2m(XG, Zγ) is strictly increasing. As a consequence, for 0 ≤ ε ≤ ρ2, the equation ρ2m(XG, Zγ) = ε
has a unique solution

γε :=
ε

var(YG)(ρ2 − ε)
,

and ρ2m(XG, Zγ) ≤ ε if and only if γ ≤ γε. On the other hand,

mmse(YG|Zγ) =
var(YG)

1 + γvar(YG)
,

which shows that the map γ 7→ mmse(YG|Zγ) is strictly decreasing. Therefore,

sENSR(ε) =
mmse(YG|Zγε)

var(YG)
= 1− ε

ρ2
. (19)

Clearly, for jointly Gaussian XG and YG, we have η2Zγ
(XG) = ρ2m(XG, Zγ) for any γ ≥ 0. Consequently, Γ(ε) = ∂Γ(ε) and,

for 0 ≤ ε ≤ ρ2,

sENSR(ε) = wENSR(ε) = 1− ε

ρ2
. (20)



Next, we obtain bounds on sENSR(ε) for the special case of Gaussian non-private data YG. The proof of the following result

is given in Appendix K.

Theorem 7. Let X be jointly distributed with Gaussian YG. Then,

1− ε

ρ2(X,YG)
≤ sENSR(PXYG

, ε) ≤ 1− ε

ρ2m(X,YG)
,

Combined with (20), this theorem shows that for a Gaussian Y , a Gaussian XG minimizes sENSR(ε) among all continuous

random variables X having identical ρ(X,YG) and maximizes sENSR(ε) among all continuous random variables X having

identical ρm(X,YG). These observations establish another extremal property of Gaussian distribution over AWGN channels,

see e.g., [44, Theorem 12] for another example. This theorem also implies that

sENSR(PXGYG
, ε)− sENSR(PXYG

, ε) ≤ ε

ρ2(X,YG)

− ε

ρ2m(X,YG)
,

for Gaussian XG which satisfies ρ2m(XG, YG) = ρ2m(X,YG). This demonstrates that if the difference ρ2m(X,YG)− ρ2(X,YG)
is small, then sENSR(PXYG

, ε) is very close to sENSR(PXGYG
, ε).

As stated before, for any given joint density PXY , perfect privacy results in trivial utility, i.e., sENSR(0) = 1. Therefore,

it is interesting to study the approximation of sENSR(ε) for sufficiently small ε, i.e., in the almost perfect privacy regime.

The next result, whose proof is given in Appendix L, provides such an approximation and also shows that the lower bound in

Theorem 7 holds for general Y for ε in the almost perfect privacy regime.

Lemma 2. We have that

lim sup
ε→0

1− sENSR(ε)

ε
≤ 1

ρ2(X,Y )
.

V. CONCLUSION

We studied the problem of displaying Y under a privacy constraint with respect to another correlated random variable X ,

where utility and privacy are measured in terms of the probability of correctly guessing and minimum mean-squared error in

the discrete and continuous cases, respectively.

In the discrete case, we introduced the privacy-constrained guessing function h to quantify the fundamental tradeoff between

privacy and utility. We proved that h is piecewise linear for every X and Y . When X and Y are binary, this result allowed

us to obtain h in closed form and to establish the optimility of the Z-channel. We then defined h analogously to h with the

additional assumption that Z is supported over the alphabet of Y , thereby providing a lower bound for h. For arbitrary X
and Y , we derived h in closed form in the high utility regime and established the optimality of a generalized Z-channel in

this regime. Finally, we specialized our results about h to the vector case, where Xn, Y n, and Zn are assumed to be binary

random vectors. Overall, these results provide tangible answers for the estimation theoretic privacy-utility tradeoff problem

and the performance of Z-channels in the high utility regime.

In the continuous case, we proposed the estimation-noise-to-signal ratio function sENSR to capture the fundamental privacy-

utility tradeoff with an intrinsic operational meaning. In the special case of additive Gaussian privacy filters, we showed that if

Y is Gaussian, then a Gaussian X minimizes sENSR among all (X,Y ) with identical correlation coefficients and maximizes

sENSR among all (X,Y ) with identical maximal correlations. We also obtained a tight lower bound for sENSR for general

absolutely continuous random variables when ε is sufficiently small.

APPENDIX A

PROOF OF THEOREM 1

Before proving Theorem 1, we need to establish some technical facts.

Consider the map H : F → [0, 1]× [0, 1] given by

H(F ) = (P(F ),U(F )),

with P(F ) and U(F ) defined in (6). For ease of notation, let D =
{
D ∈ MN×(N+1) : ‖D‖ = 1

}
where || · || denotes the

Euclidean norm in MN×(N+1) ≡ R
N(N+1). For G ∈ F , let

D(G) = {D ∈ D : G+ tD ∈ F for some t > 0} .
In graphical terms, D is the set of all possible directions in MN×(N+1) and D(G) is the set of directions that make t 7→ G+tD
(t ≥ 0) stay locally in F .

Lemma 3. For every G ∈ F , the set D(G) is compact.



Proof. Let A = {(y, z) : Gy,z = 0} and B = {(y, z) : Gy,z = 1}. It is straightforward to verify that

D(G) = A ∩ B ∩ C ∩ D,

where

A =
⋂

(y,z)∈A

{
D ∈ MN,(N+1) : Dy,z ≥ 0

}
,

B =
⋂

(y,z)∈B

{
D ∈ MN,(N+1) : Dy,z ≤ 0

}
,

C =

{

D ∈ MN,(N+1) :

N+1∑

z=1

Dy,z = 0, y = 1, . . . , N

}

.

Observe that since sets A, B, C and D are closed, so is D(G). Since D is bounded, we have that D(G) is bounded as well.

In particular, D(G) is closed and bounded and thus compact.

Lemma 4. Let G ∈ F be given and define τ : D(G) → R by

τ(D) := sup{t ≥ 0 | G+ tD ∈ F}.
The function τ is continuous on D(G).

Proof. Let ri(F) and rb(F) denote the relative interior and relative boundary of F , respectively. In what follows, we assume

that G ∈ rb(F). The proof for G ∈ ri(F) follows the same steps and the details are left to the reader. The proof of the

lemma is by contradiction. Assume that there exists a sequence (Dn)n≥0 ⊂ D(G) such that Dn → D0 but τ(Dn) 6→ τ(D0)
as n → ∞. Since F is bounded, the sequence (τ(Dn))n≥1 is necessarily bounded. Therefore, there must exist a subsequence

(Dnk
)k≥1 such that

lim
k→∞

τ(Dnk
) = r 6= τ(D0). (21)

By the maximality of τ(D), we have that G+ τ(D)D ∈ rb(F) for all D ∈ D(G). Notice that F is a convex polytope defined

by the intersection of finitely many hyperplanes. In particular, G+ τ(D)D belongs to one of the supporting hyperplanes of F .

Furthermore, the maximality of τ(D) can be used once again to show that G + τ(D)D belongs to a supporting hyperplane

of F that does not contain G. Since there are finitely many supporting hyperplanes of F , there exists a further subsequence

(Dn′
k
)k≥1 and a hyperplane H such that G+ τ(Dn′

k
)Dn′

k
∈ H for all k ≥ 1 and G /∈ H . Since H and F are closed sets, we

conclude that

lim
k→∞

G+ τ(Dn′
k
)Dn′

k
= G+ rD0 ∈ H ∩ F .

By the maximality of τ(D0) and (21), we have τ(D0) > r. Since H is a hyperplane and G /∈ H , it is easy to verify that

{G+ tD0 : t ∈ [0, τ(D0)]} ∩H = {G+ rD0}. (22)

In particular, (22) implies that G and G+τ(D0)D0 are on opposite sides of H . Since G ∈ F and H is a supporting hyperplane

of F , we conclude that G+ τ(D0)D0 /∈ F . This contradicts the fact that G+ τ(D)D ∈ rb(F) ⊂ F for all D ∈ D(G).

The following lemma shows the local linear nature of the mapping H. Let [G1, G2] = {λG1 + (1− λ)G2 : λ ∈ [0, 1]}.

Lemma 5. For every G ∈ F , there exists δ > 0 such that F 7→ H(F ) is linear on [G,G+ δD] for every D ∈ D(G).

Proof. Let P = [P (x, y)]x∈X ,y∈Y be the joint probability matrix of X and Y , and Q the diagonal matrix with q1, . . . , qN
as diagonal entries where qy = Pr(Y = y) for y ∈ Y . For G ∈ F let τ : D(G) → R be as defined in Lemma 4. The

definition of D(G) clearly implies that τ(D) > 0 for all D ∈ D(G). For x ∈ X , z ∈ Z , and D ∈ D(G), consider the function

f
(D)
x,z : R → R given by

f (D)
x,z (t) := [PG](x, z) + t[PD](x, z), (23)

where PG (resp., PD) is the product of matrices P and G (resp., P and D). Note that P(G + tD) =
∑

z∈Z

max
x∈X

f (D)
x,z (t) for

all t ∈ [0, τ(D)] (see (6)). Let
az = max

x∈X
[PG](x, z),

Mz = {x ∈ X : [PG](x, z) = az}, and

b(D)
z = max

x∈Mz

[PD](x, z).

(24)
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Fig. 6. Typical functions f
(D)
x,z (x = {1, 2, 3, 4}) for a given z ∈ Z and D ∈ D(G). In this example, we have Mz = {3, 4} and

az + tb
(D)
z = f

(D)
4,z (t). Notice that t

(D)
2,z = ∞ and t

(D)
3,z = t

(D)
4,z = 0.

Let t(D)
x,z := − az − [PG](x, z)

b
(D)
z − [PD](x, z)

whenever [PD](x, z) 6= b
(D)
z , and t

(D)
x,z = ∞ otherwise. Notice that f

(D)
x,z (t

(D)
x,z ) = az +

t
(D)
x,z b

(D)
z . Since t

(D)
x,z 6= 0 for all x /∈ Mz ,

t(D) := min
z∈Z

min
x/∈Mz

min{|t(D)
x,z |, τ(D)} > 0.

It is easy to see that az + tb(D)
z = max

x∈X
f (D)
x,z (t) for all t ∈ [0, t(D)]. In particular,

P(G+ tD) =

N+1∑

z=1

max
x∈X

f (D)
x,z (t) =

N+1∑

z=1

az + t

N+1∑

z=1

b(D)
z

= P(G) + tb(D), (25)

for every D ∈ D(G) and t ∈ [0, t(D)], where b(D) :=
∑N+1

z=1 b
(D)
z . Consequently, P is linear on [G,G+ t(D)D]. By Lemma 4,

τ : D(G) → R is continuous and bounded. Hence, the map D 7→ min{|t(D)
x,z |, τ(D)} (x /∈ Mz) is also continuous. In particular,

the map D 7→ t(D) is continuous. By compactness of D(G) established in Lemma 3, we conclude that δP := min
D∈D(G)

t(D) > 0.

Thus, P is linear on [G,G+ δPD] for every D ∈ D(G).

For y ∈ Y , z ∈ Z , and D ∈ D(G), consider the function g
(D)
y,z : R → R given by

g(D)
y,z (t) = [QG](y, z) + t[QD](y, z).

Observe that U(G+ tD) =
∑

z∈Z

max
y∈Y

g(D)
y,z (t) for all t ∈ [0, τ(D)] (see (6)). Similarly to (24), let

αz = max
y∈Y

[QG](y, z),

Nz = {y ∈ Y : [QG](y, z) = αz}, and

β(D)
z = max

y∈Nz

[QD](y, z).

Using a similar argument that resulted in (25), it can be shown that there exists δU > 0 such that

U(G+ tD) =

N+1∑

z=1

g(D)
yz,z(t) =

N+1∑

z=1

αz + t

N+1∑

z=1

β(D)
z

= U(G) + tβ(D), (26)

for every D ∈ D(G) and t ∈ [0, δU ], where β(D) :=
∑N+1

z=1 β
(D)
z . Consequently, U is linear on [G,G + δUD] for every

D ∈ D(G). Therefore, F 7→ H(F ) = (P(F ),U(F )) is linear on [G,G+δD] for every D ∈ D(G), where δ = min(δP , δU).



We say that a filter F ∈ F is optimal if U(F ) = h(P(F )). If F is an optimal filter and P(F ) = ε, we say that F is optimal

at ε. The following result is a straightforward application of the concavity of h, and thus its proof is omitted.

Lemma 6. For G ∈ F , let δ > 0 be as in Lemma 5. If there exist D ∈ D(G) and 0 < t1 < t2 ≤ δ such that G, G+ t1D and

G+ t2D are optimal filters, then G+ tD is an optimal filter for each t ∈ [0, δ].

A function [Pc(X),Pc(X |Y )] ∋ ε 7→ Fε ∈ F is called a path of optimal filters if P(Fε) = ε and U(Fε) = h(ε) for every

ε ∈ [Pc(X),Pc(X |Y )]. As mentioned in Section II-A, for every ε there exists Fε such that P(Fε) = ε and U(Fε) = h(ε),
i.e., a path of optimal filters always exists. In the rest of this section we establish the existence of a piecewise linear path of

optimal filters.

Lemma 7. For every ε ∈ [Pc(X),Pc(X |Y )), there exists Fε ∈ F and D ∈ D(Fε) such that Fε is an optimal filter at ε,

P(Fε + δD) > ε, and Fε + tD is an optimal filter for each t ∈ [0, δ] with δ > 0 as in Lemma 5 for Fε.

Proof. Let K = 2(Pc(X |Y )− ε)−1. For every n,m > K , let Gn,m be an optimal filter at ε+ 1
n + 1

m . For every n > K , the

set {Gn,m : m > K} is an infinite set. Since F is compact, {Gn,m : m > K} has at least one accumulation point, say Gn.

Let (Gn,mk
)k≥1 ⊂ {Gn,m : m > K} be a subsequence with limk Gn,mk

= Gn. By continuity of P , U , and h, we have that

P(Gn) = lim
k→∞

P(Gn,mk
) = ε+

1

n
,

U(Gn) = lim
k→∞

U(Gn,mk
) = lim

k→∞
h(P(Gn,mk

)) = h(P(Gn)),

i.e., Gn is an optimal filter at ε+ 1
n . By the same arguments as before, the set {Gn : n > K} has at least one accumulation

point, say Fε, and this accumulation point is an optimal filter at ε. Let δ > 0 be as in Lemma 5 for Fε. By construction of

Fε, there exists n1 > K such that ‖Gn1 − Fε‖ < δ
2 . The filter Gn1 can be written as Gn1 = Fε + t1D1 with t1 ∈ (0, δ

2 ) and

D1 ∈ D(Fε). Recall that, by (25) and (26), for every D ∈ D(Fε) and t ∈ [0, δ],

P(Fε + tD) = ε+ tb(D) and U(Fε + tD) = h(ε) + tβ(D).

Notice that the maps D 7→ b(D) and D 7→ β(D) are continuous. Since P(Gn1) = ε + 1
n1

> ε, we conclude that b(D1) > 0
and, in particular, P(Fε + δD1) > ε.

Let (Gn1,mk
)k≥1 ⊂ {Gn1,m : m > K} be such that limk Gn1,mk

= Gn1 . For k large enough, we can write Gn1,mk
=

Fε + θkEk with θk ∈ [0, δ] and Ek ∈ D(Fε). Since θk → t1 and Ek → D1 as k → ∞, there exists n2 > K such that

θn2 < δ
2 and |b(En2) − b(D1)| < b(D1)

2 . Let t2 := θn2 and D2 := En2 . Clearly, t2 < δ
2 and 1

2b
(D1) < b(D2) < 2b(D1). These

inequalities yield P(Fε + δD1) > P(Fε + t2D2) and P(Fε + δD2) > P(Fε + t1D1). Thus, there exist s1, s2 ∈ [0, δ] such

that P(Fε + t2D2) = P(Fε + s1D1) and P(Fε + t1D1) = P(Fε + s2D2). In particular,

ε+ t2b
(D2) = ε+ s1b

(D1) and ε+ t1b
(D1) = ε+ s2b

(D2). (27)

By the optimality of Gn1 = Fε + t1D1 and Gn1,mn2
= Fε + t2D2,

U(Fε + t2D2) = h(ε) + t2β
(D2)

≥ h(ε) + s1β
(D1) = U(Fε + s1D1),

and

U(Fε + t1D1) = h(ε) + t1β
(D1)

≥ h(ε) + s2β
(D2) = U(Fε + s2D2).

By the equations in (27), the above inequalities are in fact equalities. In particular, Fε, Fε + t1D1 and Fε + s1D1 are optimal

filters. Invoking Lemma 6, we conclude that Fε + tD1 is an optimal filter for all t ∈ [0, δ].

Using an analogous proof, we can also prove the following lemma.

Lemma 8. For every ε ∈ (Pc(X),Pc(X |Y )], there exists Fε ∈ F and D ∈ D(Fε) such that Fε is an optimal filter at ε,

P(Fε + δD) < ε, and Fε + tD is an optimal filter for each t ∈ [0, δ] with δ > 0 as in Lemma 5 for Fε.

We are in position to prove Theorem 1.

Proof of Theorem 1. For notational simplicity, we define S := Pc(X) and T := Pc(X |Y ). In light of Lemmas 7 and 8, for

every ε ∈ (S, T ) there exist optimal filters Fε and Gε at ε, δε > 0, Dε ∈ D(Fε), and Eε ∈ D(Gε) such that Fε + tDε and

Gε + tEε are optimal filters for each t ∈ [0, δε], and P(Gε + δεEε) < ε < P(Fε + δεDε). Note that δε = min{δFε , δGε},

where δFε and δGε are the constants obtained in Lemma 5 for filters Fε and Gε, respectively. For every ε ∈ (S, T ), let

Vε = (P(Fε + δεEε),P(Gε + δεDε)). Similarly, there exist



a) an optimal filter FS at S, δS > 0, and DS ∈ D(FS) such that FS + tDS is an optimal filter for each t ∈ [0, δS ] and

P(FS + δSDS) > S;

b) an optimal filter GT at T , δT > 0, and ET ∈ D(GT ) such that GT + tET is an optimal filter for each t ∈ [0, δT ] and

P(GT + δTET ) < T .

Let VS = [S,P(FS + δSDS)) and VT = (P(GT + δTET ), T ]. The family {Vε : ε ∈ [S, T ]} forms an open cover of [S, T ] (in

the subspace topology). By compactness, there exist S = ε0 < · · · < εl = T such that {Vε0 , . . . , Vεl} forms an open cover for

[S, T ]. For each i ∈ {0, . . . , l − 1}, the mapping

[εi,P(Fεi + δεiDεi)) ∋ ε 7→ Fεi +
ε− εi

b(Dεi
)
Dεi ∈ F , (28)

is clearly linear. Similarly, for each i ∈ {1, . . . , l}, the mapping

(P(Gεi + δεiEεi ), εi] ∋ ε 7→ Gεi +
ε− εi

b(Eεi
)
Eεi ∈ F , (29)

is also linear. Notice that P
(

Fεi +
ε− εi

b(Dεi
)
Dεi

)

= ε = P
(

Gεi +
ε− εi

b(Eεi
)
Eεi

)

. Since {Vε0 , . . . , Vεl} forms an open cover for

[S, T ], the mappings in (28) and (29) implement a piecewise linear path of optimal filters.

The proof provided in this appendix establishes the existence of δ∗ > 0, an optimal filter F∗ at T := Pc(X |Y ), and

D∗ ∈ D(F∗) such that P(F∗ + δ∗D∗) < T (or equivalently b(D∗) < 0) and

h(ε) = 1 + (ε− T )
β(D∗)

b(D∗)
,

for every ε ∈ [T + δ∗b
(D∗), T ]. This then implies that

h
′(T ) = min

F∈F
P(F )=T

min
D∈D(F )

b(D)<0

β(D)

b(D)
. (30)

APPENDIX B

PROOF OF PROPOSITION 1

Since X is uniformly distributed in {1, . . . ,M},

− logPc(X) = logM = H(X).

By the definition of I∞(X ;Z), we have that

I∞(X ;Z) = log

(
Pc(X |Z)

Pc(X)

)

= H(X) + log

(
∑

z∈Z

PZ(z)max
x∈X

PX|Z(x|z)
)

≥ H(X) +
∑

z∈Z

PZ(z)max
x∈X

logPX|Z(x|z),

where the inequality follows from Jensen’s inequality. Clearly, for each z ∈ Z ,

max
x∈X

logPX|Z(x|z) ≥
∑

x∈X

PX|Z(x|z) logPX|Z(x|z)

= −H(X |Z = z).

Therefore,

I∞(X ;Z) ≥ H(X)−
∑

z∈Z

PZ(z)H(X |Z = z) = I(X ;Z).

Since I∞(X ;Z) = 0, we conclude that I(X ;Z) = 0 and thus X⊥⊥Z .



APPENDIX C

PROOF OF THEOREM 2

We first note that since h is concave on [Pc(X),Pc(X |Y )], its right derivative exists at ε = Pc(X |Y ). Therefore, we have

by concavity

h(ε) ≤ 1− (Pc(X |Y )− ε)h′(Pc(X |Y )), (31)

for all ε ∈ [p,Pc(X |Y )]. In Lemma 9 below, we show that

h
′(Pc(X |Y )) =

q

β̄p− αp̄
1{αᾱp̄2<ββ̄p2}

+
q̄

ᾱp̄− βp
1{αᾱp̄2≥ββ̄p2}.

Thus, (31) becomes

h(ε) ≤
{

1− ζ(ε)q, αᾱp̄2 < ββ̄p2,

1− ζ̃(ε)q̄, αᾱp̄2 ≥ ββ̄p2.
(32)

To finish the proof of Theorem 2 we show that the Z-channel Z(ζ(ε)) and the reverse Z-channel Z̃(ζ̃(ε)) achieve (31) and

(32), when αᾱp̄2 < ββ̄p2 and αᾱp̄2 ≥ ββ̄p2, respectively.

For αᾱp̄2 < ββ̄p2, consider the filter PZ|Y =

[
1 0

ζ(ε) 1− ζ(ε)

]

. Notice that

PXZ =

[
p̄(ᾱ+ αζ(ε)) p̄α(1− ζ(ε))
p(β + β̄ζ(ε)) pβ̄(1− ζ(ε))

]

, and

PY Z =

[
q̄ 0

qζ(ε) q(1− ζ(ε))

]

.

(33)

It is straightforward to verify that p̄(ᾱ + αζ(ε)) ≥ p(β + β̄ζ(ε)). As a consequence, Pc(X |Z) = ε. Since αᾱp̄2 < ββ̄p2,

we have that
q̄

q
> ζ(ε). Thus, Pc(Y |Z) = 1− ζ(ε)q.

For αᾱp̄2 ≥ ββ̄p2, consider the filter PZ|Y =

[

1− ζ̃(ε) ζ̃(ε)
0 1

]

. Notice that

PXZ =

[
p̄ᾱ(1− ζ̃(ε)) p̄(α+ ᾱζ̃(ε))

pβ(1 − ζ̃(ε)) p(β̄ + βζ̃(ε))

]

, and

PY Z =

[

q̄(1 − ζ̃(ε)) q̄ζ̃(ε)
0 q

]

.

(34)

Recall that ᾱp̄ > βp and also observe that p(β̄ + βζ̃(ε)) ≥ p̄(α + ᾱζ̃(ε)). As a consequence, Pc(X |Z) = ε. The fact that

αᾱp̄2 ≥ ββ̄p2 implies q ≥ q̄ζ̃(ε). Therefore, Pc(Y |Z) = 1− ζ̃(ε)q̄.

Lemma 9. Let X ∼ Bernoulli(p) with p ∈ [ 12 , 1) and PY |X ∼ BIBO(α, β) with α, β ∈ [0, 12 ) such that ᾱp̄ > βp. Then

h
′(Pc(X |Y )) =

q

β̄p− αp̄
1{αᾱp̄2<ββ̄p2} +

q̄

ᾱp̄− βp
1{αᾱp̄2≥ββ̄p2}.

Proof. As before, let T := Pc(X |Y ). We begin the proof by noticing that the Z-channels defined in (33) and (34) provide a

lower bound on h(ε) as follows:

h(ε) ≥ 1− ζ(ε)q1{αᾱp̄2<ββ̄p2} − ζ̃(ε)q̄1{αᾱp̄2≥ββ̄p2}. (35)

By concavity of h, this inequality implies

h
′(T ) ≤ q

β̄p− αp̄
1αᾱp̄2<ββ̄p2 +

q̄

ᾱp̄− βp
1αᾱp̄2≥ββ̄p2 .

The rest of the proof is devoted to establishing the reverse inequality. To this end, we use the variational formula for h′(T )
given in (30). Let P = [P (x, y)]x,y∈{0,1} be the joint probability matrix of X and Y . Without loss of generality we can assume

Z = {z1, z2, z3}. It follows from (25) and (26) that for every F ∈ F ⊂ M2×3 there exists δ > 0 such that

P(F + tD) = P(F ) + tb(D), and U(F + tD) = U(F ) + tβ(D), (36)



for every t ∈ [0, δ] and D ∈ D(F ), where b(D) =

3∑

i=1

max
x∈Mzi

[PD](x, zi) and β(D) =

3∑

i=1

max
y∈Nzi

q(y)D(y, zi) with

Mzi =
{

x ∈ {0, 1} : (PF )(x, zi) = max
x′∈{0,1}

(PF )(x′, zi)
}

,

Nzi =
{

y ∈ {0, 1} : q(y)F (y, zi) = max
y′∈{0,1}

q(y′)F (y′, zi)
}

.

Up to permutation of columns, which corresponds to permuting the elements of Z , the set of filters F ∈ F such that

P(F ) = T equals {[
1 0 0
0 u v

]

:
0 < v ≤ u

u+ v = 1

}
⋃
{[

0 u v
1 0 0

]

:
0 < v ≤ u

u+ v = 1

}

⋃
{[

1 0 0
0 1 0

]}

.

(37)

To compute h′(T ) using formula (30) we need to compute β(D) and b(D) for each D ∈ D(F ) with F of the form described

in (37).

Let F =

[
1 0 0
0 u v

]

for some 0 < v ≤ u and u+ v = 1. A direct computation shows that

PF =

[
ᾱp̄ uαp̄ vαp̄
βp uβ̄p vβ̄p

]

. (38)

In particular, Mz1 = {0}, Mz2 = {1}, and Mz3 = {1}. For every D ∈ D(F ), the matrix PD is equal to
[
ᾱp̄D11 + αp̄D21 ᾱp̄D12 + αp̄D22 ᾱp̄D13 + αp̄D23

βpD11 + β̄pD21 βpD12 + β̄pD22 βpD13 + β̄pD23

]

,

and hence b(D) = ᾱp̄D11 + αp̄D21 + βpD12 + β̄pD22 + βpD13 + β̄pD23. Notice that, for 1 ≤ i ≤ 3, we have that

Di1 +Di2 +Di3 = 0. In particular, b(D) = (ᾱp̄− βp)D11 + (αp̄− β̄p)D21. Consider the matrices,
[
q̄ 0
0 q

]

F =

[
q̄ 0 0
0 qu qv

]

,

and [
q̄ 0
0 q

]

D =

[
q̄D11 q̄D12 q̄D13

qD21 qD22 qD33

]

,

from which we obtain Nz1 = {0}, Nz2 = {1}, Nz3 = {1}, and therefore, β(D) = q̄D11 + qD22 + qD23 = q̄D11 − qD21.

In what follows we use the simple fact that
ax+ y

bx+ y
≥ min

{a

b
, 1
}

for a, b > 0 and x, y ≥ 0 with x + y > 0. For notational

simplicity, let η := q̄
q and ζ := ζ(p), where ζ(·) is defined in (8).

From the form of F , it is clear that −D11 ≥ 0 and D21 ≥ 0. If b(D) < 0, then D11 and D21 cannot be simultaneously zero,

and hence

β(D)

b(D)
=

q

β̄p− αp̄

−ηD11 +D21

−ζD11 +D21

≥ q

β̄p− αp̄
min

{
η

ζ
, 1

}

=

{
q

β̄p−αp̄
, αᾱp̄2 < ββ̄p2,

q̄
ᾱp̄−βp , αᾱp̄2 ≥ ββ̄p2.

In particular, we obtain that

min
D∈D(F )

b(D)<0

β(D)

b(D)
≥
{

q
β̄p−αp̄

, αᾱp̄2 < ββ̄p2,
q̄

ᾱp̄−βp , αᾱp̄2 ≥ ββ̄p2.
(39)

The case F =

[
0 u v
1 0 0

]

for 0 < v ≤ u and u+ v = 1 is analogous.

Now, let F =

[
1 0 0
0 1 0

]

. By (38) with u = 1 and v = 0, we obtain that Mz1 = {0}, Mz2 = {1}, and Mz3 = {0, 1}. In

a similar way, Nz1 = {0}, Nz2 = {1}, and Nz3 = {0, 1}. Hence

b(D) = ᾱp̄D11 + αp̄D21 + βpD12 + β̄pD22



+max{ᾱp̄D13 + αp̄D23, βpD13 + β̄pD23},
β(D) = q̄D11 + qD22 +max{q̄D13, qD23}.

We therefore need to consider the following cases:

Case I: ᾱp̄D13 + αp̄D23 ≤ βpD13 + β̄pD23 and q̄D13 ≤ qD23. The computation in this case reduces to the computation for

F =

[
1 0 0
0 u v

]

.

Case II: ᾱp̄D13+αp̄D23 ≤ βpD13+ β̄pD23 and q̄D13 > qD23. Notice that these conditions imply that ζD13 ≤ D23 < ηD13,

and therefore this case requires ζ < η (or equivalently, αᾱp̄2 < ββ̄p2). This yields

b(D) = (ᾱp̄− βp)D11 + (αp̄− β̄p)D21,

and

β(D) = qD22 − q̄D12.

Hence, we have
β(D)

b(D)
=

q

β̄p− αp̄

D22 − ηD12

ζD11 −D21
.

By the form of F , we have that −D11, D12, D21 ≥ 0. The inequalities ζ < η and ζD13 ≤ D23 imply that
D22 − ηD12

ζD11 −D21
≥

1, and hence
β(D)

b(D)
≥ q

β̄p− αp̄
1{αᾱp̄2<ββ̄p2}. (40)

Case III: ᾱp̄D13+αp̄D23 > βpD13+β̄pD23 and q̄D13 ≤ qD23. Notice that these conditions imply that ηD13 ≤ D23 < ζD13,

and hence this case requires ζ > η (or equivalently, αᾱp̄2 > ββ̄p2). In this case, we have

b(D) = (βp− ᾱp̄)D12 + (β̄p− αp̄)D22,

and

β(D) = q̄D11 − qD21.

Therefore,
β(D)

b(D)
=

q̄

ᾱp̄− βp

D11 − η−1D21

−D12 + ζ−1D22
.

By the form of F , we have that −D22, D12, D21 ≥ 0. The inequalities ζ−1 < η−1 and ζD13 > D23 imply that
D11 − η−1D21

−D12 + ζ−1D22
> 1, and hence

β(D)

b(D)
>

q̄

ᾱp̄− βp
1{αᾱp̄2>ββ̄p2}. (41)

Case IV: ᾱp̄D13 + αp̄D23 > βpD13 + β̄pD23 and q̄D13 > qD23. Notice that these two inequalities imply that D23 <
min{ζ, η}D13. For this case we have that

b(D) = (βp− ᾱp̄)D12 + (β̄p− αp̄)D22,

and

β(D) = qD22 − q̄D12.

Hence, we have
β(D)

b(D)
=

q

β̄p− αp̄

ηD12 −D22

ζD12 −D22
.

By the form of F , we have that −D22, D12 ≥ 0. As before, we conclude that

β(D)

b(D)
≥ q

β̄p− αp̄
min

{
η

ζ
, 1

}

=

{
q

β̄p−αp̄
, αᾱp̄2 < ββ̄p2,

q̄
ᾱp̄−βp , αᾱp̄2 ≥ ββ̄p2.

(42)



Combining (39), (40), (41), and (42), we obtain

min
F∈F

P(F )=T

min
D∈D(F )

b(D)<0

β(D)

b(D)
≥
{

q
β̄p−αp̄

, αᾱp̄2 < ββ̄p2,
q̄

ᾱp̄−βp , αᾱp̄2 ≥ ββ̄p2,

as desired.

APPENDIX D

PROOF OF THEOREM 3

Recall that X = {1, . . . ,M} and Y = Z = {1, . . . , N}, P = [P (x, y)](x,y)∈X×Y is the joint probability matrix of X and

Y , and the marginals are pX(x) = Pr(X = x) and qY (y) = Pr(Y = y) for every x ∈ X and y ∈ Y . Similar to h, the

function h admits the alternative formulation

h(ε) = sup
F∈F: P(F )≤ε

U(F ),

where F is the set of all stochastic matrices F ∈ MN×N ,

P(F ) =
∑

z∈Z

max
x∈X

(PF )(x, z),

and

U(F ) =
∑

z∈Z

max
y∈Y

qY (y)F (y, z).

We let D = {D ∈ MN×N : ‖D‖ = 1} and, for each F ∈ F , we define

D(F ) := {D ∈ D : F + tD ∈ F for some t > 0} .
Before proving Theorem 3, we need to establish some technical lemmas. Notice that the proofs of Lemmas 3 and 5 do not

depend on the alphabets X , Y , and Z . Therefore, D(F ) is compact for any F ∈ F and also we obtain the following lemma.

Lemma 10. Let H : F → [0, 1]× [0, 1] be the mapping given by H(F ) = (P(F ),U(F )). For every F ∈ F , there exists δ > 0
such that H is linear on [F, F + δD] for every D ∈ D(F ).

The convex analysis tools used to study h heavily rely on the fact that |Z| = |Y|+ 1. Hence, they are unavailable in this

case, and thus we need an alternative approach to establish the desired functional properties of h.

Lemma 11. If Pc(X) < Pc(X |Y ), then h is continuous at Pc(X |Y ).

Proof. Without loss of generality, we will assume that qY (1) > 0. Let D∗ ∈ D(IN ) be given by

D∗ =








0 0 0 · · · 0
λ −λ 0 · · · 0
λ 0 −λ · · · 0
...

...
...

. . .
...

λ 0 0 · · · −λ







,

where λ = (2(N − 1))−1/2. As in the proof of Lemma 5, one can show that there exist δ1 > 0 and (xz)z∈Z ⊂ X such that

for every t ∈ [0, δ1],

P(IN + tD∗) =
∑

z∈Z

max
x∈X

(P (IN + tD∗))(x, z)

=
∑

z∈Z

(P (IN + tD∗))(xz , z). (43)

In this case, we have that

P(IN + tD∗) = P (x1, 1) + tλ

N∑

z=2

P (x1, z)

+(1− tλ)

N∑

z=2

P (xz , z)

=
∑

z∈Z

P (xz , z)



−tλ

(
∑

z∈Z

P (xz, z)− P (x1, z)

)

.

Note that Pc(X |Y ) = P(IN ) =
∑

z∈Z P (xz , z). Hence,

P(IN + tD∗) = Pc(X |Y )− tλσ, (44)

where σ =
∑

z∈Z

(P (xz , z) − P (x1, z)). Setting t = 0 in (43), we have that P (xz , z) ≥ P (x, z) for all (x, z) ∈ X × Z . If

P (xz , z) = P (x1, z) for all z ≥ 1, then

Pc(X |Y ) =
∑

z∈Z

P (x1, z) = pX(x1) ≤ Pc(X),

which contradicts the hypothesis of the lemma. Therefore, there exists z ∈ Z such that P (xz , z) > P (x1, z) and hence σ > 0.

Similarly, there exists δ2 > 0 such that for every t ∈ [0, δ2],

U(IN + tD∗) = qY (1) + (1 − tλ)

N∑

z=2

qY (z) = 1− tλ(1 − qY (1)). (45)

Let δ = min(δ1, δ2). From (44) and (45), we have for every t ∈ [0, δ]

1− tλ(1 − qY (1)) ≤ h(Pc(X |Y )− tλσ) ≤ 1. (46)

In particular,

lim
ε→Pc(X|Y )

h(ε) = lim
t→0

h(Pc(X |Y )− tλσ) = 1 = h(Pc(X |Y )),

i.e., h is continuous at Pc(X |Y ).

We say that F ∈ F is an optimal filter at ε if U(F ) = h(ε) and P(F ) ≤ ε. As opposed to h, the concavity of h is

unknown and hence the existence of an optimal filter at ε with P(F ) = ε is not immediate. Nonetheless, since P and U are

continuous functions, there exists an optimal filter F at ε (with P(F ) ≤ ε) for every ε ∈ [Pc(X),Pc(X |Y )]. For any F ∈ F
and δ > 0, let B(F, δ) = {G ∈ F : ‖G− F‖ < δ}.

Lemma 12. Let δ > 0 be as in Lemma 10 for IN , i.e., U and P are linear on [IN , IN + δD] for every D ∈ D(IN ). If

Pc(X) < Pc(X |Y ) and qY (y) > 0 for all y ∈ Y , then there exists εL < Pc(X |Y ) such that for every ε ∈ [εL,Pc(X |Y )] there

exists an optimal filter Fε at ε with Fε ∈ B(IN , δ).

Proof. Let F1 = {F ∈ F : U(F ) = 1} and let B =
⋃

F∈F1

B(F, δ). The proof is based on the following claim.

Claim. There exists εL < Pc(X |Y ) such that if F is an optimal filter at ε with ε ≥ εL, then F ∈ B.

Proof of the claim. The proof is by contradiction. Assume that for every ε < Pc(X |Y ) there exists an optimal filter Gε′

at ε′ ∈ [ε,Pc(X |Y )) with Gε′ /∈ B. Since h is a non-decreasing function, we have that U(Gε′ ) = h(ε′) ≥ h(ε).
Let K := (Pc(X |Y ) − Pc(X))−1. For each n > K , let Fn = GPc(X|Y )−1/n 6∈ B. Since F\B is compact, there exist

{n1 < n2 < · · · } and F ∈ F\B such that Fnk
→ F as k → ∞. By continuity of U and h at Pc(X |Y ), established in

Lemma 11, we have

1 ≥ U(F ) = lim
k→∞

U(Fnk
)

≥ lim
k→∞

h(Pc(X |Y )− n−1
k ) = h(Pc(X |Y )) = 1.

In particular, we have that F ∈ F1 ⊂ B, which contradicts the fact that F ∈ F\B.

The assumption qY (y) > 0 for every y ∈ Y implies that F ∈ F1 if and only if F is a permutation matrix, i.e., F can be

obtained by permuting the columns of IN . In particular, the mapping G 7→ GF−1 is a bijection between B(F, δ) and B(IN , δ)
which preserves P and U , i.e., P(G) = P(GF−1) and U(G) = U(GF−1) for every G ∈ B(F, δ). As mentioned earlier, there

exists an optimal filter Fε at ε for every ε ∈ [Pc(X),Pc(X |Y )]. By the claim, Fε, for ε ≥ εL, belongs to B and, in particular,

Fε ∈ B(F, δ) for some F ∈ F1. By the aforementioned properties of the bijection G 7→ GF−1, the filter FεF
−1 is an optimal

filter at ε with FεF
−1 ∈ B(IN , δ).

Now we are in position to prove Theorem 3.



Proof of Theorem 3. If qY (y) = 0 for some y ∈ Y , the effective cardinality of the alphabet of Y is |Y| − 1 and thus h(ε)
equals h(ε) for every ε ∈ [Pc(X),Pc(X |Y )]. In this case, h is piecewise linear and (9) follows trivially by Theorem 1. In

what follows, we assume that qY (y) > 0 for all y ∈ Y .

Let δ > 0 and ε′
L
< Pc(X |Y ) be as in Lemma 12. For each ε ∈ [ε′

L
,Pc(X |Y )), let Gε be an optimal filter at ε with

Gε ∈ B(IN , δ) whose existence was established in Lemma 12. Let tε ∈ [0, δ] and Dε ∈ D(IN ) be such that Gε = IN + tεDε

for every ε ∈ [ε′
L
,Pc(X |Y )). As in (25) and (26) in the proof of Lemma 5, for every t ∈ [0, δ] and D ∈ D(IN ),

P(IN + tD) = Pc(X |Y ) + tb(D)

U(IN + tD) = 1 + tβ(D),
(47)

where
b(D) =

∑

z∈Z

max
x∈Mz

(PD)(x, z)

β(D) =
∑

z∈Z

q(z)D(z, z),
(48)

where Mz = {x ∈ X : P (x, z) ≥ P (x′, z) for all x′ ∈ X}. Since P(F ) ≤ Pc(X |Y ) for all F ∈ F , it is immediate that

b(D) ≤ 0 for every D ∈ D(IN ). Moreover, since P(Gε) ≤ ε, we have that b(Dε) < 0 for all ε ∈ [ε′
L
,Pc(X |Y )). By definition

of D(IN ), it is clear that if D ∈ D(IN ), then we have D(y, y) ≤ 0 for all y ∈ Y , which together with the fact that ‖D‖ = 1
for all D ∈ D(IN ), implies that β(D) < 0 for all D ∈ D(IN ). We first establish the following intuitive claim.

Claim. Let ε′
L
< Pc(X |Y ) be as defined in Lemma 12. Then, there exists an optimal filter Gε at ε for each ε ∈ [ε′

L
,Pc(X |Y )]

such that P(Gε) = ε and U(Gε) = h(ε).

Proof of Claim. The filter Gε = IN + tεDε is optimal at ε for every ε ∈ [ε′
L
,Pc(X |Y )). To reach contradiction, assume that

there exists ε0 < ε such that P(Gε) = ε0. According to (47), we obtain Pc(X |Y ) + tεb
(Dε) = ε0 < ε and hence

tε >
Pc(X |Y )− ε

−b(Dε)
=: t′.

Now consider the filter IN + t′Dε. Since t′ ≤ δ, we have from (47) that P(IN + t′Dε) = ε and

h(ε)
(a)
= 1 + tεβ

(Dε)
(b)
< U(IN + t′Dε) = 1 + t′β(Dε),

where (a) is due to the optimality of Gε and (b) follows from the negativity of β(Dε). The above inequality contradicts

the maximality of h(ε). This implies that P(Gε) = ε which, according to (47), yields

h(ε) = 1− (Pc(X |Y )− ε)
β(Dε)

b(Dε)
, (49)

for all ε ∈ [ε′
L
,Pc(X |Y )).

Now fix ε′ ∈ [ε′
L
,Pc(X |Y )] with ε ≤ ε′. On the one hand, according to (49), we know that

h(ε′) = 1− (Pc(X |Y )− ε′)
β(Dε′ )

b(Dε′ )
. (50)

On the other hand, we obtain from (47) that 0 ≤ Pc(X|Y )−ε′

−b(Dε) ≤ tε and hence

P
(

IN +
Pc(X |Y )− ε′

−b(Dε)
Dε

)

= ε′, (51)

U
(

IN +
Pc(X |Y )− ε′

−b(Dε)
Dε

)

= 1− (Pc(X |Y )− ε′)
β(Dε)

b(Dε)
. (52)

Comparing (50) and (52), we conclude that

1− (Pc(X |Y )− ε′)
β(Dε′ )

b(Dε′)
= h(ε′) ≥ 1− (Pc(X |Y )− ε′)

β(Dε)

b(Dε)
,

and hence the function ε 7→ β(Dε)

b(Dε)
is non-increasing over [ε′

L
,Pc(X |Y )). Therefore, since

β(Dε)

b(Dε)
> 0, the limit lim

ε→Pc(X|Y )−

β(Dε)

b(Dε)
=:

A exists.

Let K = (Pc(X |Y ) − ε′
L
)−1. For each n > K , let Fn = G

Pc(X|Y )− 1
n

. Write Fn = IN + tnDn with tn ∈ [0, δ] and

Dn ∈ D(IN ). Since D(IN ) is compact, there exist {n1 < n2 < · · · } and D∗ ∈ D(IN ) such that Dnk
→ D∗ as k → ∞. By

continuity of the mappings D 7→ b(D) and D 7→ β(D), we have that b(Dnk
) → b(D

∗) and β(Dnk
) → β(D∗) as k → ∞.



Claim. We have that b(D
∗) < 0 and, in particular, A =

β(D∗)

b(D∗)
.

Proof of Claim. Recall that F ∈ F 1 if and only if F is a permutation matrix. In particular, F1 is finite with |F1| = N !.

Recall that b(D
∗) ≤ 0. Assume that b(D

∗) = 0. Since
β(Dnk

)

b(Dnk
)
→ A ∈ [0,∞) and b(Dnk

) → b(D
∗) = 0 as k → ∞, we

have that β(Dnk
) → 0 and hence β(D∗) = 0. This implies that U(IN + tD∗) = 1 for all t ∈ [0, δ], i.e., IN + tD∗ ∈ F1

for all t ∈ [0, δ]. This contradicts the fact that F1 is finite.

The claim implies that for ε ∈ [Pc(X |Y ) + δb(D
∗),Pc(X |Y )],

P
(

IN +
Pc(X |Y )− ε

−b(D∗)
D∗

)

= ε,

U
(

IN +
Pc(X |Y )− ε

−b(D∗)
D∗

)

= 1− (Pc(X |Y )− ε)A.

Recall that
β(D∗)

b(D∗)
= A ≤ β(Dε)

b(Dε)
for all ε ∈ [ε′

L
,Pc(X |Y )). Let εL := max{ε′

L
,Pc(X |Y ) + δb(D

∗)}. Then for all ε ∈
[εL,Pc(X |Y )]

h(ε) ≥ 1− (Pc(X |Y )− ε)
β(D∗)

b(D∗)

≥ 1− (Pc(X |Y )− ε)
β(Dε)

b(Dε)
= h(ε), (53)

where the equality follows from (49). This proves that h is linear on ε ∈ [εL,Pc(X |Y )].
Recall that β(D) < 0 for all D ∈ D(IN ). Clearly, (53) implies that

h
′(Pc(X |Y )) = min

D∈D(IN )

β(D)

b(D)
. (54)

If b(D) = 0 for some D ∈ D(IN ), the term
β(D)

b(D)
is defined to be +∞. Notice that this convention agrees with the fact that if

b(D) = 0 then D cannot be an optimal direction. Furthermore, for every D′ ∈ D(IN ) such that h
′(Pc(X |Y )) = β(D′)

b(D′) , there

exists εL < Pc(X |Y ) (depending on D′) such that

IN +
Pc(X |Y )− ε

−b(D′)
D′ (55)

achieves h(ε) for every ε ∈ [εL,Pc(X |Y )]. In addition, assume that for each y ∈ Y there exists (a unique) xy ∈ X such that

PX|Y (xy |y) > PX|Y (x|y), for all x 6= xy . In particular, Mz = {xz} for every z ∈ Z and hence (48) becomes

b(D) =
∑

z∈Z

(PD)(xz , z) and β(D) =
∑

z∈Z

qY (z)D(z, z),

for every D ∈ D(IN ). Using the fact that
∑

z∈Z

D(y, z) = 0 for all y ∈ Y , we obtain

b(D) = −
∑

y∈Y

∑

z 6=y

(P (xy , y)− P (xz , y))D(y, z),

and

β(D) = −
∑

y∈Y

∑

z 6=y

qY (y)D(y, z).

Therefore, for every D ∈ D(IN ),

β(D)

b(D)
=

∑

y∈Y

∑

z 6=y qY (y)D(y, z)
∑

y∈Y

∑

z 6=y(P (xy , y)− P (xz , y))D(y, z)
. (56)

Since

∑

k akxk
∑

k bkxk
≥ min

k

ak
bk

for ak > 0 and bk, xk ≥ 0 with
∑

k xk > 0, we obtain from (56) that for every D ∈ D(IN )

β(D)

b(D)
≥ min

(y,z)∈Y×Z

qY (y)

P (xy , y)− P (xz , y)
.



Equation (54) implies that

h
′(Pc(X |Y )) ≥ min

(y,z)∈Y×Z

qY (y)

P (xy , y)− P (xz , y)
.

Assume that (y0, z0) attains the above minimum. We note that one can easily show from (46) that 0 ≤ h
′(ε) ≤ 1−qY (1)

σ < ∞,

for some σ > 0. Hence, we have y0 6= z0. Now, consider the direction D∗ such that

D∗(y, z) =







λ, y = y0, z = z0

−λ, y = z = y0

0, otherwise,

where λ = 2−1/2. Equation (56) implies then that

β(D∗)

b(D∗)
=

qY (y0)

P (xy0 , y0)− P (xz0 , y0)
,

and hence

h
′(Pc(X |Y )) ≤ qY (y0)

P (xy0 , y0)− P (xz0 , y0)

= min
(y,z)∈Y×Z

qY (y)

P (xy , y)− P (xz , y)
.

As a consequence,

h
′(Pc(X |Y )) = min

(y,z)∈Y×Z

qY (y)

P (xy , y)− P (xz , y)
.

Moreover, (55) implies that there exists εy0,z0
L

< Pc(X |Y ) such that IN +
Pc(X |Y )− ε

−b(D∗)
D∗ achieves h(ε) for every ε ∈

[εy0,z0
L

,Pc(X |Y )]. Note that

IN +
Pc(X |Y )− ε

−b(D∗)
D∗ = Z

y0,z0(ζy0,z0(ε)),

where ζy0,z0(ε) =
Pc(X |Y )− ε

P (xy0 , y0)− P (xz0 , y0)
.

APPENDIX E

PROOF OF THEOREM 4

Let P = [P (xn, yn)]xn,yn∈{0,1}n denotes the joint probability matrix of Xn and Y n and q(yn) = Pr(Y n = yn) for

yn ∈ {0, 1}n. Let 0 = (0, 0, . . . , 0) and 1 = (1, 1, . . . , 1). We will show that (Xn, Y n) satisfies the hypotheses of Theorem 3

with y0 = 1 and z0 = 0.

Under the assumptions (a1) and (b), it is straightforward to verify that

P (xn, yn) = (ᾱp̄)n
n∏

k=1

(
p

p̄

)xk (α

ᾱ

)xk⊕yk

, (57)

for every xn, yn ∈ {0, 1}n. By assumption, Pc(X
n) = pn < ᾱn = Pc(X

n|Y n). It is also straightforward to verify that

q(yn) > 0 for all y ∈ {0, 1}n. Since ᾱp̄ > αp, we have from (57) that

Pr(Xn = zn, Y n = zn) > Pr(Xn = xn, Y n = zn),

for all xn 6= zn. In the notation of Theorem 3, xn
zn = zn for all zn ∈ {0, 1}n. Note that

min
yn,zn∈{0,1}n

q(yn)

P (xn
yn , yn)− P (xn

zn , yn)

= min
yn∈{0,1}n

q(yn)

P (yn, yn)− min
zn 6=yn

P (zn, yn)
.

It is easy to show that min
zn 6=yn

P (zn, yn) = (αp)n
n∏

k=1

(
p

p̄

)−yk

and that the minimum is attained by zn = (ȳ1, ȳ2, . . . , ȳn). As

a consequence,

min
yn,zn∈{0,1}n

q(yn)

P (xn
yn , yn)− P (xn

zn , yn)



= min
yn∈{0,1}n

∑

xn∈{0,1}n

n∏

k=1

(
p
p̄

)xk−yk (
α
ᾱ

)xk⊕yk

1−
(

pα
p̄ᾱ

)n

Π−2
yn

= min
yn∈{0,1}n

n∏

k=1

[

(pp̄ )
−yk(αᾱ )

yk + (pp̄ )
1−yk(αᾱ )

1−yk

]

1−
(

pα
p̄ᾱ

)n

Π−2
yn

,

where Πyn =

n∏

k=1

(
p

p̄

)yk

. Observe that the denominator is maximized when yn = 1. Using the fact that p ≥ 1
2 ≥ p̄, one can

show that the numerator is minimized when yn = 1. In particular,

min
yn,zn∈{0,1}n

q(yn)

P (xn
yn , yn)− P (xn

zn , yn)
=

(αp̄+ ᾱp)n

(ᾱp)n − (αp̄)n
,

and the minimum is attained by (yn0 , z
n
0 ) = (1,0).

Therefore (Xn, Y n) satisfies the hypotheses of Theorem 3 with (yn0 , z
n
0 ) = (1,0). Thus, there exists ε′

L
< ᾱn such that for

every ε ∈ [ε′
L
, ᾱn]

h(ε) = 1− ᾱn − ε

(ᾱp)n − (αp̄)n
qn.

Moreover, Z1,0(ζy0,z0(ε)) achieves h(ε) for every ε ∈ [ε′
L
, ᾱn], where

ζy0,z0(ε) =
ᾱn − ε

(ᾱp)n − (αp̄)n
.

Recall that h(ε) = h
n
n(ε

1/n) and let εL = (ε′
L
)1/n. Therefore, h

n
n(ε) = 1 − ζn(ε)q

n for all ε ∈ [εL, ᾱ] which is attained by

the Z-channel Zn(ζn(ε)), where ζn(ε) := ζy0,z0(εn).

APPENDIX F

PROOF OF PROPOSITION 2

For any privacy filter satisfying (12), (Xn, Zn) and (Y n, Zn) are i.i.d. By Lemma 1, we have Pc(X
n|Zn) = (Pc(X |Z))n

and Pc(Y
n|Zn) = (Pc(Y |Z))n where (X,Y, Z) has the common distribution of {(Xk, Yk, Zk)}nk=1. In particular,

h
i

n(ε) = sup
P
1/n
c (Xn|Zn)≤ε

P
1/n
c

(Y n|Zn) = sup
Pc(X|Z)≤ε

Pc(Y |Z),

where the first supremum assumes (12) and the second supremum is implicitly constrained to Z = {0, 1}. The result then

follows from Theorem 2.

APPENDIX G

PROOF OF COROLLARY 3

Assume that p > 1
2 . By Theorem 4, for every ε ∈ [εL, ᾱ] we have hn(ε) = [Anε

n +Bn]
1/n

, where An =
qn

(ᾱp)n − (αp̄)n

and Bn = 1− ᾱnqn

(ᾱp)n − (αp̄)n
. In particular,

h
′
n(ε) = An

(
ε

hn(ε)

)n−1

, (58)

h
′′
n(ε) = (n− 1)

AnBn

h
n+1
n (ε)

(
ε

hn(ε)

)n−2

.

Since p > 1
2 and α > 0, we have Bn → 1 as n → ∞. Let N0 ≥ 1 be such that Bn ≥ 0 for all n ≥ N0. In this case, we have

that h
′′
n(ε) ≥ 0 for all ε ∈ [εL, ᾱ] and n ≥ N0. In particular, hn is convex on [εL, ᾱ]. As a consequence, for all ε ∈ [εL, ᾱ]

and n ≥ N0

hn(ε) ≥ 1− (ᾱ− ε)h′
n(ᾱ).

Since hi
n(ε) = h1(ε) = 1− (ᾱ− ε)h′

1(ᾱ) for all ε ∈ [p, ᾱ], the above inequality implies that

hn(ε)− h
i

n(ε) ≥ (ᾱ− ε)(h′
1(ᾱ)− h

′
n(ᾱ))

for all ε ∈ [εL, ᾱ] and n ≥ N0. The result follows from (58).



Now, assume that p = 1
2 . In this case, we have for all ε ∈ [εL, ᾱ]

hn(ε) =

(
εn − αn

ᾱn − αn

)1/n

and h
i

n(ε) =
ε− α

ᾱ− α
.

Let Ξn : [ 12 , ᾱ] → R be given by Ξn(ε) = hn(ε)− hi
n(ε).

Claim. The function Ξn is decreasing on [ 12 , ᾱ].

Proof of Claim. We shall show that Ξ′
n(ε) ≤ 0 for all ε ∈ [ 12 , ᾱ]. A straightforward computation shows that

Ξ′
n(ε) =

1
[
1−

(
α
ε

)n](n−1)/n

1

[ᾱn − αn]1/n
− 1

ᾱ− α
.

This function is clearly decreasing, and so it is enough to show that Ξ′
n(

1
2 ) ≤ 0. Note that Ξ′

n(
1
2 ) ≤ 0 if and only if

(
1− α

ᾱ

)n

1−
(
α
ᾱ

)n ≤ [1 − (2α)n]n−1. (59)

Observe that

(
1− α

ᾱ

)n

1−
(
α
ᾱ

)n ≤
(

1− α

ᾱ

)n−1

. Using the fact that 4αᾱ ≤ 1, it is straightforward to verify that (59) holds.

Since Ξn is decreasing over [ 12 , ᾱ], we obtain for all ε ∈ [εL, ᾱ]

0 ≤ hn(ε)− h
i

n(ε) ≤ Ξn

(
1

2

)

=
1

2

[(
1− (2α)n

ᾱn − αn

)1/n

− 1

]

.

Since 1− (2α)n ≤ 1−
(
α
ᾱ

)n
, it is straightforward to show that Ξn

(
1
2

)
≤ α

2ᾱ , which completes the proof.

APPENDIX H

PROOF OF THEOREM 5

As before, let P = [P (xn, yn)]xn,yn∈{0,1}n denote the joint probability matrix of Xn and Y n and let q(yn) = Pr(Y n = yn)
for yn ∈ {0, 1}n. We first show that (Xn, Y n) satisfies the hypotheses of Theorem 3, and thus we can use (10) to obtain

bounds on h
′(Pc(X

n|Y n)). ((Note that Pc(X
n) < Pc(X

n|Y n) by the assumption.))

Assumptions (a2) and (b) imply that, for all xn, yn ∈ {0, 1}n

P (xn, yn) = (ᾱr̄)n
p̄

r̄

(
p

p̄

)x1 (α

ᾱ

)x1⊕y1

Υ(xn, yn), (60)

where Υ(xn, yn) =
n∏

k=2

(r

r̄

)xk⊕xk−1
(α

ᾱ

)xk⊕yk

and the product equals one if n = 1. Since α > 0, it is clear that q(yn) > 0

for all yn ∈ {0, 1}n. Let N0(z
n) = |{1 ≤ k ≤ n : zk = 0}| and N1(z

n) = |{1 ≤ k ≤ n : zk = 1}| for any binary vector

zn ∈ {0, 1}n. Recall that n is odd, so either N0(z
n) < N1(z

n) or N0(z
n) > N1(z

n). The following lemma shows that for

every yn ∈ {0, 1}n there exists (a unique) xn
yn ∈ {0, 1}n such that P (xn

yn , yn) > P (xn, yn) for all xn 6= xn
yn .

Lemma 13. Let (Xn, Y n) be as in the hypothesis of Theorem 5. Then, we have for any yn ∈ {0, 1}n

P (xn, yn) ≤
{

(ᾱr̄)n p̄
r̄

(
α
ᾱ

)N1(y
n)

, if N0(y
n) > N1(y

n),

(ᾱr̄)n p
r̄

(
α
ᾱ

)N0(y
n)

, if N0(y
n) < N1(y

n),

for all xn ∈ {0, 1}n with equality if and only if xn = 0 or xn = 1, respectively.

To prove this lemma, we will make use of the following fact.

Claim. Let yn ∈ {0, 1}n be given. If xn ∈ {0, 1}n maximizes P (xn, yn), then x1 = x2 = · · · = xn.

Proof of Claim. We prove the result using backward induction. To do so, we assume that the maximizer xn satisfies xn =
xn−1 = · · · = xl for 2 ≤ l ≤ n. It is sufficient to show that xn = · · · = xl = xl−1. In light of (60), we have

P (xn, yn) = Al−1

(r

r̄

)xl⊕xl−1
n∏

k=l

(α

ᾱ

)xl⊕yk

, (61)



where4

Al−1 = (ᾱr̄)n
p̄

r̄

(
p

p̄

)x1 (α

ᾱ

)x1⊕y1

Υ(xℓ−1, yℓ−1).

Notice that Al−1 depends only on x1, . . . , xl−1. By the induction hypothesis, we have xl = · · · = xn. In particular, xn equals

either

x̃n := {x1, . . . , xl−1, x̄l−1, . . . , x̄l−1
︸ ︷︷ ︸

n−l+1

},

or

x̂n := {x1, . . . , xl−1, xl−1, . . . , xl−1
︸ ︷︷ ︸

n−l+1

}.

By (61), we have that

P (x̃n, yn) = Al−1
r

r̄

n∏

k=l

(α

ᾱ

)1−xl−1⊕yk

,

and

P (x̂n, yn) = Al−1

n∏

k=l

(α

ᾱ

)xl−1⊕yk

.

By the assumptions on r and α, we have

r

r̄

n∏

k=l

(α

ᾱ

)1−xl−1⊕yk

≤ r

r̄
<
(α

ᾱ

)n−1

≤
(α

ᾱ

)n−l+1

≤
n∏

k=l

(α

ᾱ

)xl−1⊕yk

,

which shows that P (x̃n, yn) < P (x̂n, yn) and hence xn = x̂n. In other words, xl−1 = xl = · · · = xn. This completes the

induction step.

Proof of Lemma 13. By the above claim, for any given yn ∈ {0, 1}n, the maximizer xn ∈ {0, 1}n of P (xn, yn) is either

xn = 0 or xn = 1, for which we have

P (0, yn) = (ᾱr̄)n
p̄

r̄

(α

ᾱ

)N1(y
n)

, (62)

P (1, yn) = (ᾱr̄)n
p

r̄

(α

ᾱ

)N0(y
n)

. (63)

Assume N0(y
n) > N1(y

n) and recall that αp < ᾱp̄. In this case,

p
(α

ᾱ

)N0(y
n)

≤ αp

ᾱ

(α

ᾱ

)N1(y
n)

< p̄
(α

ᾱ

)N1(y
n)

,

which implies P (0, yn) > P (1, yn), and hence xn = 0 is the only maximizer. If N0(y
n) < N1(y

n), then
(
α
ᾱ

)N0(y
n)

>
(
α
ᾱ

)N1(y
n)

. Since p ≥ p̄, we conclude that

p
(α

ᾱ

)N0(y
n)

> p̄
(α

ᾱ

)N1(y
n)

.

Consequently, P (1, yn) > P (0, yn) and hence xn = 1 is the only maximizer.

Note that

Pc(X
n|Y n) =

∑

yn∈{0,1}n

max
xn∈{0,1}n

P (xn, yn)

(a)
=

∑

yn:N0(yn)>N1(yn)

P (0, yn)

+
∑

yn:N0(yn)<N1(yn)

P (1, yn)

4When l ≤ 3, we use the convention that
∏l−1

k=2

(

r
r̄

)xk⊕xk−1
(

α
ᾱ

)xk⊕yk = 1.



(b)
= ᾱnr̄n−1

(n−1)/2
∑

k=0

(
n

k

)(α

ᾱ

)k

, (64)

where (a) is due to Lemma 13 and (b) comes from (62) and (63).

In order to be able to use Theorem 3, we first need to show that Pc(X
n) < Pc(X

n|Y n). Note that 1 =
∑n

k=0

(
n
k

)
αnᾱn−k

and hence ᾱn
∑n

k=0

(
n
k

) (
α
ᾱ

)k
= 1. We can therefore write

1

ᾱn
=

n∑

k=0

(
n

k

)(α

ᾱ

)k

=

(n−1)/2
∑

k=0

(
n

k

)(α

ᾱ

)k
(

1 +
(α

ᾱ

)n−2k
)

≤
(n−1)/2
∑

k=0

(
n

k

)(α

ᾱ

)k (

1 +
α

ᾱ

)

<

(n−1)/2
∑

k=0

(
n

k

)(α

ᾱ

)k
(

1 +
p̄

p

)

=
1

p

(n−1)/2
∑

k=0

(
n

k

)(α

ᾱ

)k

, (65)

which implies that Pc(X
n) < Pc(X

n|Y n).
Now that all the hypotheses of Theorem 3 are shown to be satisfied, we can use (10) to study h

′(Pc(X
n|Y n)). The following

lemma is important in bounding h
′(Pc(X

n|Y n)).

Lemma 14. Let (Xn, Y n) be as in the hypothesis of Theorem 5. Then, for all yn ∈ {0, 1}n,

q(yn) ≥ αn.

Proof. From (60), we have

P (xn, yn) = (ᾱr̄)n
p̄

r̄

(
p

p̄

)x1 (α

ᾱ

)x1⊕y1

Υn(x
n, yn)

≥
(α

ᾱ

)n

(ᾱr̄)n
p̄

r̄

(
p

p̄

)x1 n∏

k=2

(r

r̄

)xk⊕xk−1

= αnr̄n
p̄

r̄

(
p

p̄

)x1 n∏

k=2

(r

r̄

)xk⊕xk−1

.

Summing over all xn ∈ {0, 1}n, we obtain

q(yn) ≥ αnr̄n−1p̄
∑

xn∈{0,1}n

(
p

p̄

)x1 n∏

k=2

(r

r̄

)xk⊕xk−1.

(66)

On the other hand, it is straightforward to verify that

1 =
∑

x∈{0,1}n

Pr(Xn = xn)

= r̄n−1p̄
∑

xn∈{0,1}n

(
p

p̄

)x1 n∏

k=2

(r

r̄

)xk⊕xk−1

.

(67)

Plugging (67) into (66), the result follows.

By (10) and the previous lemma,

h
′(Pc(X

n|Y n)) ≥ min
yn,zn∈{0,1}n

αn

P (xn
yn , yn)− P (xn

zn , yn)
.



Since both xn
yn and xn

zn are either 0 or 1, we have to maximize

ϑ :=

{

(ᾱr̄)n p̄
r̄

(
α
ᾱ

)N1(y
n) − (ᾱr̄)n p

r̄

(
α
ᾱ

)N0(y
n)

, if yn ∈ R0,

(ᾱr̄)n p
r̄

(
α
ᾱ

)N0(y
n) − (ᾱr̄)n p̄

r̄

(
α
ᾱ

)N1(y
n)

, if yn /∈ R0,

where R0 = {yn ∈ {0, 1}n : N0(y
n) > N1(y

n)}. Clearly, ϑ is maximized when yn = 1 and thus

h
′(Pc(X

n|Y n)) ≥ r̄αn

p(ᾱr̄)n − p̄(αr̄)n
.

By (9) and the fact that h
n
n(ε) = h(εn),

h
n
n(ε) ≤ 1− r̄

Pc(X
n|Y n)− εn

p(ᾱr̄)n − p̄(αr̄)n
αn,

where Pc(X
n|Y n) is computed in (64).

The lower bound follows from considering the direction D̃ ∈ D(I2n), whose entries are all zero except D̃(1,0) = λ and

D̃(1,1) = −λ for λ = 2−1/2. In particular, plugging D̃ into (56), we obtain an upper bound for h
′(Pc(X

n|Y n)) and thus

a lower bound for h(ε) for the desired range of ε. Note that the filter I2n + ζn(ε)D̃ corresponds to the 2n-ary Z-channel

Zn(ζn(ε)).

APPENDIX I

PROOF OF PROPOSITION 3

Since r = 0, the joint distribution PθY n can be equivalently written as the joint probability matrix P = [P (xn, yn)]xn,yn∈{0,1}n

with x1 = x2 = · · · = xn = θ. As in the proof of Theorem 5, the hypotheses of Theorem 3 are fulfilled. In particular,

h
′(Pc(θ|Y n)) = min

yn,zn∈{0,1}n

q(yn)

P (xn
yn , yn)− P (xn

zn , yn)
. (68)

In this case, (60) becomes

P (0, yn) = p̄ᾱn
(α

ᾱ

)N1(y
n)

,

and

P (1, yn) = pᾱn
(α

ᾱ

)N0(y
n)

.

In particular,

h
′(Pc(θ|Y n)) = min

yn,zn∈{0,1}n

pᾱn
(
α
ᾱ

)N0(y
n)

+ p̄ᾱn
(
α
ᾱ

)N1(y
n)

P (xn
yn , yn)− P (xn

zn , yn)
.

Lemma 13 implies that both xn
yn and xn

zn are either 0 or 1. If N0(y
n) > N1(y

n), then

pᾱn
(
α
ᾱ

)N0(y
n)

+ p̄ᾱn
(
α
ᾱ

)N1(y
n)

P (xn
yn , yn)− P (xn

zn , yn)

≥ pᾱn
(
α
ᾱ

)N0(y
n)

+ p̄ᾱn
(
α
ᾱ

)N1(y
n)

p̄ᾱn
(
α
ᾱ

)N1(yn) − pᾱn
(
α
ᾱ

)N0(yn)
,

with equality if and only if N1(z
n) > N0(z

n). It is not hard to show that

pᾱn
(
α
ᾱ

)N0(y
n)

+ p̄ᾱn
(
α
ᾱ

)N1(y
n)

p̄ᾱn
(
α
ᾱ

)N1(yn) − pᾱn
(
α
ᾱ

)N0(yn)
≥ p̄+ p

(
α
ᾱ

)n

p̄− p
(
α
ᾱ

)n , (69)

with equality if and only if yn = 0. Similarly, if N1(y
n) > N0(y

n), then

pᾱn
(
α
ᾱ

)N0(y
n)

+ p̄ᾱn
(
α
ᾱ

)N1(y
n)

P (xn
yn , yn)− P (xn

zn , yn)

≥ pᾱn
(
α
ᾱ

)N0(y
n)

+ p̄ᾱn
(
α
ᾱ

)N1(y
n)

pᾱn
(
α
ᾱ

)N0(yn) − p̄ᾱn
(
α
ᾱ

)N1(yn)
,



with equality if and only if N0(z
n) > N1(z

n). As before,

pᾱn
(
α
ᾱ

)N0(y
n)

+ p̄ᾱn
(
α
ᾱ

)N1(y
n)

p̄ᾱn
(
α
ᾱ

)N1(yn) − pᾱn
(
α
ᾱ

)N0(yn)
≥ p+ p̄

(
α
ᾱ

)n

p− p̄
(
α
ᾱ

)n , (70)

with equality if and only if yn = 1. From (69) and (70), we conclude that

h
′(Pc(θ|Y n)) =

p+ p̄
(
α
ᾱ

)n

p− p̄
(
α
ᾱ

)n =
pᾱn + p̄αn

pᾱn − p̄αn
,

and y0 = 1 and z0 = 0 achieve the minimum in (68). From the last part of Theorem 3 the optimality of the 2n-ary Z-channel

Zn(ζn(ε)) is evident.

APPENDIX J

PROOF OF THEOREM 6

From (17) and (18) we obtain that

inf
f∈SU

mmse(f(U)|V )

var(f(U))
= 1− sup

f∈SU

η2V (f(U)) = 1− ρ2m(U, V ).

From the previous equation it is clear that ρ2m(U, V ) ≤ ε if and only if

mmse(f(U)|V ) ≥ (1 − ε)var(f(U)),

for all f ∈ SU . By (16), we obtain Zγ ∈ Γ(ε) if and only if ρ2m(X,Zγ) ≤ ε.

APPENDIX K

PROOF OF THEOREM 7

Without loss of generality, assume E(X) = E(YG) = 0. Since YG is Gaussian, (17) implies that

sENSR(ε) = inf
γ:ρ2

m(X,Zγ)≤ε

mmse(YG|Zγ)

var(YG)

= 1− sup
γ:ρ2

m(X,Zγ )≤ε

ρ2m(YG;Zγ). (71)

A straightforward computation leads to

ρ2m(YG, Zγ) = ρ2(YG, Zγ) =
γvar(YG)

1 + γvar(YG)
, (72)

ρ2m(X,Zγ) ≥ ρ2(X,Zγ) = ρ2(X,YG)ρ
2
m(YG, Zγ).

The preceding inequality and (71) imply

sENSR(ε) ≥ 1− sup
γ:ρ2

m(X,Zγ )≤ε

ρ2m(X,Zγ)

ρ2(X,YG)
≥ 1− ε

ρ2(X,YG)
,

which proves the lower bound.

The strong data processing inequality for maximal correlation [8, Lemma 6] states that ρ2m(X,Zγ) ≤ ρ2m(X,YG)ρ
2
m(YG, Zγ).

In particular, if ρ2m(YG, Zγ) ≤
ε

ρ2m(X,Y )
, then ρ2m(X,Zγ) ≤ ε. Therefore, (71) implies

sENSR(ε) ≤ 1− sup
γ:ρ2

m(YG,Zγ)≤
ε

ρ2m(X,Y
G
)

ρ2m(YG;Zγ)

= 1− ε

ρ2m(X,YG)
,

where the last equality follows from the continuity of γ 7→ ρ2m(YG, Zγ), established in (72), finishing the proof of the upper

bound.
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PROOF OF LEMMA 2

Let

γ∗
ε := max{γ ≥ 0 : ρ2m(XG, Zγ) ≤ ε}. (73)

Recall that

ρ2m(X,Zγ) ≥ ρ2(X,Zγ) =
γρ2(X,Y )var(Y )

1 + γvar(Y )
. (74)

Since ε → 0, we can assume that ε < ρ2(X,Y ). Thus, from (74) we obtain

γ∗
ε ≤ ε

var(Y )(ρ2(X,Y )− ε)
. (75)

In particular, γ∗
ε → 0 as ε → 0. Since γ 7→ mmse(Y |Zγ) is decreasing, we have that sENSR(ε) = mmse(Y |Zγ∗

ε
). Therefore,

the first-order approximation of sENSR(·) around zero yields

sENSR(ε) = 1 +
γ∗
ε

var(Y )

d

dγ∗
ε

mmse(Y |Zγ∗
ε
)
∣
∣
∣
ε=0

+ o(γ∗
ε )

(a)
= 1− var(Y )γ∗

ε + o(γ∗
ε )

(b)

≥ 1− ε

ρ2(X,Y )
+ o(ε)

where (a) follows from the fact that d
dγmmse(Y |Zγ) = −E[var2(Y |Zγ)] [42, Prop. 9] and (b) follows from (75).
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