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Bounds on a Slope from Size Restrictions on  
Economic Shocks†

By Marco Stenborg Petterson, David Seim, and Jesse M. Shapiro*

We study the problem of learning about the effect of one  market-level 
variable (e.g., price) on another (e.g., quantity) in the presence of 
shocks to unobservables (e.g., preferences). We show that economic 
intuitions about the plausible size of the shocks can be informative 
about the parameter of interest. We illustrate with a main application 
to the grain market. (JEL D83, E23, G13, Q11)

Consider the problem of learning about the effect of one observed  market-level 
variable   p  t    (e.g., log price) on another observed  market-level variable   q  t    (e.g., 

log quantity demanded) from a finite time series    { ( p  t  ,  q  t  ) }   
t=1

  T    with at least  T ≥ 2  
periods. Economists often specify a linear model of the form

(1)   q  t   = θ  p  t   +  ε t  , 

where  θ  is an unknown slope (e.g., the price elasticity of demand) and   ε t    is an 
 unobserved factor (e.g., preferences). Models that can be cast into the form in 
 equation (1) include Barro and Redlick’s (2011, equation 1) model of the effect of 
fiscal policy on economic growth; Fiorito and Zanella’s (2012, equation 3) model 
of the supply of labor; Roberts and Schlenker’s (2013a, equations 1 and 3) model 
of the supply and demand for food grains; and Autor, Goldin, and Katz’s (2020, 
 equation 2) model of the demand for skill, among many others.

Absent further restrictions, the data are uninformative about the slope  θ . 
Economists often learn about  θ  by imposing restrictions on the evolution of   ε t   , for 
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example, that it is unrelated to an observable instrument (e.g., Fiorito and Zanella 
2012; Roberts and Schlenker 2013a) or that it is unrelated to   p  t    after accounting for 
time trends (e.g., Autor, Goldin, and Katz 2020). These restrictions are typically 
motivated by economic intuitions about the determinants of   ε t   .

In this paper, we show that economic intuitions about the size of fluctuations in   ε t    
can also be informative about  θ . Suppose, for example, that log prices   p  t    for a good 
vary considerably from year to year but log quantities   q  t    do not. Because   q  t    is stable, 
fluctuations in  θ  p  t    must be offset by fluctuations in   ε t   . It follows that a larger price 
elasticity of demand—a more negative  θ —implies larger fluctuations in   ε t    than does 
a smaller price elasticity of demand. Large fluctuations in   ε t    may be plausible if the 
good in question is a particular brand of scarf, preferences for which may change 
radically from year to year due to advertising campaigns, changes in fashion, etc. 
Large fluctuations in   ε t    may be less plausible if the good in question is a standard 
agricultural commodity, preferences for which are likely more stable. In this latter 
case, economic intuitions about the size of fluctuations in   ε t    may suggest a smaller 
price elasticity of demand—a less negative value of  θ .

We formalize this logic by supposing we can place an upper bound  B ≥ 0  on a 
generalized power mean, with power at least one, of the vector   (|Δ ε 2  |, …, |Δ ε T   |)    
of absolute shocks to the unobserved factor, where  Δ ε t   =  ε t   −  ε t−1    and  Δ  is the 
first difference operator. We show that any feasible such bound  B  implies that  θ  lies 
in a closed, bounded interval. We provide a computationally tractable character-
ization of the endpoints of the interval. We further show that some bounds  B  can 
be inconsistent with the data, implying that, in some settings, we can place a lower 
bound on the size of the true shocks even with no knowledge of  θ .

An economist interested in informing an audience (of, say, policymakers or other 
economists) about  θ  can exhibit the size of shocks necessary to rationalize differ-
ent values of  θ  or, alternatively, the values of  θ  consistent with each of a range of 
reasonable bounds  B  on the size of shocks. Such an exhibit can serve as a stand-
alone method of learning about  θ  or as a sensitivity analysis complementing another 
method.

We illustrate our approach with an application to the price elasticity of demand 
for staple grains following Roberts and Schlenker (2013a). Roberts and Schlenker 
(2013a) impose a linear model of the form in (1) and approach estimation and 
inference using orthogonality restrictions with respect to excluded instruments. 
Values of the demand elasticity  θ  much larger than Roberts and Schlenker’s  
(2013a) point estimate imply shocks  Δ ε t    that we consider implausibly large. 
Accordingly, a range of reasonable bounds on the size of shocks imply informative 
bounds on  θ  that are consistent with Roberts and Schlenker’s (2013a) inferences. 
An online Appendix includes a second application to the crowding out of male 
employment by female employment following Fukui, Nakamura, and Steinsson 
(2020), and an illustration of a  data-driven approach to informing bounds based 
on Ellison and Ellison (2009a).

Untestable restrictions on unobservable variables seem inherently subjec-
tive, and we find it unlikely that all economists will agree on an exact bound  B  
(Andrews, Gentzkow, and Shapiro 2020; Andrews and Shapiro 2021). It is for this 
reason that we advocate reporting the implications of a range of bounds  B  for the  
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parameter  θ , much as Conley, Hansen, and Rossi (2012) advocate reporting the 
implications of a range of violations of the exclusion restriction for the coefficient 
of interest in a linear instrumental variables model.

We also think it is unlikely that, in settings such as those we consider, econ-
omists will be unable to form useful intuitions about the plausible size of unob-
served shocks to economic variables. Such intuitions may be informed by everyday 
experience (as in our scarf example), economic theory, or by prior evidence on the 
determinants of the outcome variable (as we illustrate in our application). If such 
intuitions exist, failing to apply them means that the economist is leaving potentially 
useful information on the table.

We extend our approach in a few directions. We show how to obtain bounds 
on an average slope in the case where the model takes the nonlinear form  
  q  t   = q ( p  t  )  +  ε t    . We discuss the implications of mismeasurement of economic vari-
ables. An online Appendix discusses further extensions, including to incorporate 
covariates   x    t   , to allow for a nonseparable model   q  t   =  q ̃   ( p  t  ,  ε t  )  , and to obtain bounds 
on a function  γ ( ⋅ )   of one or more slope parameters.

The main contributions of this paper are to demonstrate that economic intuitions 
about the plausible size of shocks to unobservables are available and useful in import-
ant applications and to propose a formal approach to exploiting these intuitions. We 
expect that our approach will be most useful to economists analyzing a  time series 
or panel of  well-measured aggregate or  market-level variables. Economists analyz-
ing  cross-sectional microdata, such as from a random sample survey of individuals, 
may find it difficult to motivate restrictions on the size of unmeasured economic 
variables analogous to those we consider here. Economists analyzing poorly mea-
sured variables may be able to adopt our formal approach but, as we discuss in more 
detail in the paper, may require a statistical, in addition to economic, justification for 
restrictions on the size of shocks.

Our formal setup is closely related to a large literature, mainly in electrical engi-
neering and optimal control, that considers bounds on the size of unobservable noise 
in a system (see, e.g., Walter and  Piet-Lahanier 1990; Milanese et al. 1996). The 
focus of much of this literature is on settings in which, unlike ours, computation of 
exact parameter bounds is impossible and approximations are needed. In the paper, 
we highlight some specific connections between our characterizations and those in 
this and other related work.

Within economics, proposals to impose restrictions on the variability of unob-
served economic variables go back at least to Marschak and Andrews (1944; see, 
e.g., equation 1.37)1 and are related to (though distinct from) approaches based 
on bounded support of the outcome variable (e.g., Manski 1990). More broadly, 
many canonical approaches to identification impose restrictions on the distribution 
of unobserved variables (see, e.g., Matzkin 2007; Tamer 2010), such as the assump-
tion that the unobservables are uncorrelated with an observed instrument, have a 
correlation with the observed instrument that can be bounded or otherwise restricted 
(e.g., Conley, Hansen, and Rossi 2012; Nevo and Rosen 2012), or are independent 

1 Wald (1940, section 7) considers related restrictions on the distribution of measurement errors.
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of or uncorrelated with one another (e.g., Leamer 1981; Feenstra 1994; Feenstra and 
Weinstein 2017; MacKay and Miller 2023).2 The online Appendix discusses some 
connections between these types of approaches and ours.

Our approach is also related to recent proposals to learn about parameters of 
interest by restricting the realization of unobservables rather than their distribution. 
In the structural vector autoregression setting, Ben Zeev (2018) considers restric-
tions on the  time series properties of an unobserved shock including the timing of 
its maximum value;  Antolín-Díaz and  Rubio-Ramírez (2018) consider restrictions 
on the relative importance of a given shock in explaining the change in a given 
observed variable during a given time period (or periods); and Ludvigson, Ma, and 
Ng (2020) consider inequality constraints on the absolute magnitude of shocks 
during a given period (or periods) as well as inequality constraints on the correlation 
between a shock and an observed variable. In the demand estimation setting, Mullin 
and Snyder (2021) obtain bounds on the price elasticity of demand in a reference 
period under the assumption that demand is growing over time.3 Though related, 
none of these sets of restrictions coincides with those we consider here. In the policy 
evaluation setting with a binary treatment, Manski and Pepper (2018) consider a set 
of restrictions, including a bound on the variation in a given unit’s counterfactual 
outcome between pairs of years that coincides with the restrictions we study in the 
 two-period case.

Also in the structural vector autoregression setting, Giacomini, Kitagawa, and 
Read (2021) study inferential issues that arise in the presence of restrictions on the 
realizations of unobservables. Our approach instead characterizes bounds on the 
parameter of interest that hold with certainty under a given bound on the size of 
the realized shocks  Δ ε t   . Therefore, in common with the closely related engineering 
literature that we reference above, issues of probabilistic inference do not arise in 
our main setup.

The remainder of the paper is organized as follows. Section I presents our setup 
and results. Section  II presents our application. Section  III presents extensions. 
Section  IV concludes. An Appendix includes proofs of results stated in the text. 
An online Appendix discusses additional extensions, applications, and connections. 
An accompanying python package, PyBounds, facilitates adoption of our approach 
(Petterson et al. 2022).

2 See also Leontief (1929). Morgan (1990, chapter 6) quotes a 1913 thesis by Lenoir that discusses how the 
relative variability of demand and supply shocks influences the correct interpretation of data on market quantities 
and prices. Leamer (1981) also imposes that the demand (supply) elasticity is negative (positive). A large literature 
(reviewed, for example, in Uhlig 2017) develops the implications of sign restrictions in a variety of settings, and 
a related literature (e.g., Manski 1997) considers the implications of restrictions on functional form, including 
monotonicity.

3 In our leading example of  log-linear demand, this corresponds to the assumption that  Δ ε t   > 0  for all  t . Mullin 
and Snyder (2021) consider a variety of forms for demand in the reference period, including linear demand, demand 
known up to a scalar parameter, and concave demand.
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I. Setup and Characterization of Sets of Interest

A. Setup

For any  D -dimensional vector  v  and any  k ≥ 1 , write the generalized  k -mean

   M  k   (v)  =   (  1 _ 
D

     ∑ 
d=1

  
D

     v  d  
k )    

1/k

 , 

with   M    ∞   (v)  =  max d   { v  d  }   denoting the maximum value of the elements of  v  and   
M    2   (v)   denoting their root mean squared value. Let  |v| =  (| v  1  |, …, | v  D  |)   denote the 
absolute value of the vector  v .

Now let    M ˆ   k   (θ)  =  M  k   (|Δε (θ) |)   denote the  k -mean of the absolute value of the 
vector  Δε (θ)  =  (Δ ε 2   (θ) , …, Δ ε T   (θ) )  , where  Δ ε t   (θ)  = Δ   q  t   − θΔ   p  t    is the 
value of the shock to the unobserved factor in period  t  implied by a given slope  θ . 
Our main object of interest is the set of slopes

(2)    Θ ˆ   k   (B)  =  {θ ∈ 핉 :   M ˆ   k   (θ)  ≤ B}  

that are compatible with a given bound  B ≥ 0  on the value of    M ˆ   k   (θ)  . We focus on 
the case where the bound  B  holds with certainty, but note that our characterizations 
extend naturally to the case where the bound holds probabilistically.4

In some applications, we may wish to impose direct restrictions on the possible 
values of the slope  θ , for example, that  θ ≤ 0  in the case of a demand function. 
To capture these direct restrictions, we will suppose that  θ ∈  Θ –   ⊆ 핉 , where, for 
example,   Θ –   =  핉 ≤0    in the case where we impose that  θ ≤ 0  and   Θ –   = 핉  in the 
case where we impose no direct restrictions. A slope  θ  is compatible with the restric-
tion that    M ˆ   k   (θ)  ≤ B  and with the direct restrictions if and only if it is contained 

in    Θ ˆ   k   (B)  ∩  Θ –   .
Given the model in equation (1), a bound  B ≥ 0  is compatible with the data, and 

with the direct restrictions on  θ , if and only if    Θ ˆ   k   (B)  ∩  Θ –    is nonempty. We let

   (k,  Θ –  )  =  {B ∈  핉 ≥0   :   Θ ˆ   k   (B)  ∩  Θ –   ≠ ∅}  

denote the set of bounds  B  that are compatible with the data and with the direct 
restrictions on  θ .

4 By (2),   M  k   (|Δε|)  ≤ B  implies  θ ∈   Θ ˆ   k   (B)   and vice versa. Therefore,  Pr (θ ∈   Θ ˆ   k   (B) )  = Pr ( M  k   (|Δε|) 
≤ B)  .
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We assume throughout that   p  t   ≠  p  t+1    for at least one  t < T . This condition 
holds in our application. If it fails, any bound that is compatible with the data is 
uninformative.5

B. Bounds on the Maximum Absolute Value of the Shock

We begin with the case of  k = ∞ , in which we bound the maximum absolute 
value of the shock. This case yields a particularly simple form for the sets of interest.

PROPOSITION 1: Let

    θ 
¯
   ∞   (B)  =   max  

 {t:Δ p  t  ≠0} 
   
{

  
Δ   q  t   _ Δ   p  t  

   −   B _ 
 |Δ   p  t  | 

  
}

 , 

    θ –   ∞   (B)  =   min  
 {t:Δ p  t  ≠0} 

   
{

  
Δ   q  t   _ Δ   p  t  

   +   B _ 
 |Δ   p  t  | 

  
}

 , 

and let   B ̃   ≥ 0  be the unique solution to    θ 
¯
   ∞   ( B ̃  )  =   θ –   ∞   ( B ̃  )  .

Then   (∞, 핉)  =  [   B 
¯

   ∞  , ∞)   for     B 
¯

   ∞   = max { max  {t:Δ p  t  =0}    { |Δ   q  t  | } ,  B ̃  }  , and for 
any  B ∈  (∞, 핉) , 

    Θ ˆ   ∞   (B)  =  [  θ 
¯
   ∞   (B) ,   θ –   ∞   (B) ] . 

All proofs are given in the Appendix. The objects     B 
¯

   ∞   ,    θ 
¯
   ∞   (B)  , and    θ –   ∞   (B)   defined in 

Proposition 1 can be readily calculated on datasets of reasonable size. In the extreme 
case where the bounds on the shocks are achieved, the limit points    θ 

¯
   ∞   (B)   and 

   θ –   ∞   (B)   coincide, and    Θ ˆ   ∞   (B)   is a singleton.6

Remark 1: The objects characterized in Proposition 1 have antecedents in prior 
work. The interval    Θ ˆ   ∞   (B)   solves a special case of Milanese and Belforte’s (1982) 
Problem B. The limit points    θ 

¯
   ∞   (B)   and    θ –   ∞   (B)   of the interval appear in the analy-

sis of the linear regression model with uniformly distributed errors (Robbins and 
Zhang 1986). Walter and  Piet-Lahanier (1996) study the computation of     B 

¯
   ∞    in a 

case with multiple unknown slope parameters.

5 Specifically, if  Δp = 0 , then    M ˆ   k   (θ)  =  M  k   ( |Δq| )   for all  θ ∈ 핉 , so    Θ ˆ   k   (B)  = 핉  if   M  k   ( |Δq| )  ≤ B  and  
   Θ ˆ   k   (B)  = ∅  otherwise. Thus, in this case   (k, 핉)  =  [ M  k   ( |Δq| ) , ∞)  .

6 More precisely, if    M ˆ   ∞   (θ)  = B  at the true  θ , and in particular there are  s, t  such that  Δ   p  s  , Δ   p  t   ≠ 0 ,  
 Δ ε s   = B sgn (−Δ   p  s  )  , and  Δ ε t   = B sgn (Δ   p  t  )  , then   |  Θ ˆ   ∞   (B) |  = 1 .
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C. Bounds on Other Generalized Means of the Absolute Value of the Shock

We next consider the case of  k ∈  (1, ∞)  . Here, we make use of the following 
properties of the function    M ˆ   k   (θ)  .

LEMMA 1: For  k ∈  (1, ∞)  , the function    M ˆ   k   (θ)   is unbounded and strictly 
decreasing on   (−∞,   θ ˘   k  )   and unbounded and strictly increasing on   (  θ ˘   k  , ∞)   for  

   θ ˘   k   =  arg min   θ     M ˆ   k   (θ) . 

Lemma 1 implies that    M ˆ   k   (θ)   has a “bowl” shape, first decreasing to a unique 
global minimum and then increasing. The following characterization of    Θ ˆ   k   (B)   is 
then immediate.

PROPOSITION 2: For  k ∈  (1, ∞)  , the set   (k, 핉)   is equal to   [   B 
¯

     k  , ∞)   for  
    B 
¯

     k   =  min   θ     M ˆ   k   (θ)  . Moreover, for any  B ∈  (k, 핉)   we have that

    Θ ˆ   k   (B)  =  [  θ 
¯
    k   (B) ,   θ –   k   (B) ] , 

where    θ 
¯
    k   (B) ,   θ –   k   (B)   are the only solutions to    M ˆ   k   (θ)  = B , with    θ ˘   k   =   θ 

¯
    k   (   B 
¯

     k  )  =  
  θ –   k   (   B 

¯
     k  )  .

Proposition 2 shows that   (k, 핉)   is a  left-bounded interval the limit point     B 
¯

     k    of 
which can be calculated by minimizing the function    M ˆ   k   (θ)  . The limit point     B 

¯
     k    has a 

direct economic interpretation as the minimum size of shocks necessary to rationalize  
the data.

Proposition 2 further shows that    Θ ˆ   k   (B)   is a closed, bounded interval the limit 
points of which can be calculated by solving the nonlinear equation    M ˆ   k   (θ)  = B  . 
By Lemma 1, on either side of    θ ˘   k    and for  B >    B 

¯
     k    the equation is strictly mono-

tone and has a unique solution, which simplifies computation. If we are in the 
extreme case where the bounds are achieved, i.e.,    M ˆ   k   (θ)  = B  at the true  θ , then 
either    θ 

¯
    k   (B)  = θ  or    θ –   k   (B)  = θ  or both if    M ˆ   k   (θ)  =    B 

¯
     k   . The sets characterized in 

Propositions 1 and 2 are related by the fact that    Θ ˆ   ∞   (B)  ⊆   Θ ˆ   k   (B)   for any  B ≥ 
0  and  k ∈  (1, ∞)  . Online Appendix D.1 extends the analysis to the case of  k = 1  
and shows that    Θ ˆ   1   (B)   likewise takes the form of an interval.

Figure  1 illustrates the logic of Proposition 2 in a hypothetical example. The 
function    M ˆ   k   (θ)   reaches a minimum at     B 

¯
     k   , implying that any bound   B ′   <    B 

¯
     k    is 

incompatible with the data. A horizontal line at  B >    B 
¯

     k    intersects the function  
   M ˆ   k   (θ)   twice, defining the endpoints    θ 

¯
     k   (B) ,   θ –   k   (B)   of the interval    Θ ˆ   k   (B)  .

In the special case of  k = 2 , in which we bound the root mean squared shock, 
the equation    M ˆ   2   (θ)  = B  is quadratic, and so the objects     B 

¯
     2   ,    θ ¯

    2   (B)  ,    θ –   2   (B)  , and    θ ˘   2    
described in Proposition 2 are available in closed form. Toward a characterization, 
for any  D -dimensional vector  v ∈  핉   D  , let  Δv =  (Δ v  2  , …, Δ v  D  )  ∈  핉   D−1  .  
For any  v, w ∈  핉   D  , let    s ˆ   vw   =  M  1   (Δv ∘ Δw)  , where  ∘  is the elementwise product. 
We then have the following.
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COROLLARY 1: For  k = 2  we have that

    θ 
¯
    2   (B)  =   

  s ˆ   qp  
 _ 

  s ˆ   pp  
   −  √ 

_________________

    (  
  s ˆ   qp  

 _ 
  s ˆ   pp  

  )    
2

  −   1 _ 
  s ˆ   pp  

   (  s ˆ   qq   −  B   2 )   , 

    θ –   2   (B)  =   
  s ˆ   qp  

 _ 
  s ˆ   pp  

   +  √ 

_________________

    (  
  s ˆ   qp  

 _ 
  s ˆ   pp  

  )    
2

  −   1 _ 
  s ˆ   pp  

   (  s ˆ   qq   −  B   2 )   , 

     B 
¯

     2   =  √ 

____________

    s ˆ   qq   −   (  
  s ˆ   qp  

 _ 
  s ˆ   pp  

  )    
2

   s ˆ   pp    , 

    θ ˘   2   =   
  s ˆ   qp  

 _ 
  s ˆ   pp  

  . 

Observe that    θ ˘   2   =   θ 
¯
    2   (   B 
¯

     2  )  =   θ –   2   (   B 
¯

     2  )   corresponds to the slope of the ordinary least 
squares regression of  Δ   q  t    on  Δ   p  t    with no intercept, i.e., the line through the ori-
gin with best  least-squares fit to the data    { (Δ   p  t  , Δ   q  t  ) }   

t=2
  T   . Reporting    Θ ˆ   2   (B)   for  

B ≥    B 
¯

     2    can therefore be seen as a form of sensitivity analysis with respect to an 
ordinary least squares estimate, relaxing the orthogonality of  Δ   p  t    and  Δ ε t   . Online 

0

M
k
(θ

)

B

B̲k

θ̲k(B)  θk

θ

 θk(B)

Figure 1. Illustration of Proposition 2

Notes: The plot illustrates the logic of Proposition 2 for a hypothetical example. For some  k ∈  (1, ∞)  , the plot 
shows the  k -mean of the absolute value of the shocks,    M ˆ   k   (θ)  , as a function of the unknown slope,  θ . Given an upper 
bound  B  on    M ˆ   k   (θ)  , we can infer that the slope  θ  must lie in the shaded interval    Θ ˆ   k   (B)  =  [  θ 

¯
    k   (B) ,   θ –   k   (B) ]  . Moreover, 

any bound  B  that is below     B 
¯

     k   =   M ˆ   k   (  θ ˘   k  )   is incompatible with the data because it lies below    M ˆ   k   (θ)   for all  θ .
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Appendixes E.1 and E.2 further discuss the connection between orthogonality 
restrictions and those we consider here.

II. Application to the Price Elasticity of World Demand for Staple Food Grains

A. Setting

Roberts and Schlenker (2013a) estimate the price elasticity of world demand for 
staple food grains using annual data from 1960 through 2007. We use their code and 
data (Roberts and Schlenker 2013b), supplemented with data from the World Bank 
(2019a, b) on annual world population and GDP. From these we construct a time 
series    { ( p  t  

D ,  q  t  
D ) }   

t=1
  T   , where   p  t  

D   is the log of the average  current-month futures price 
of grains delivered in year  t , measured in 2010 US dollars per calorie, and   q  t  

D   is the 
log of the quantity of grains consumed in the world in year  t , measured in calories 
per capita.7 We also construct a measure   y  t    of the log of the annual world GDP per 
capita in 2010 US dollars.8

Roberts and Schlenker (2013a, equation 3) assume that the demand curve takes 
a  log-linear form consistent with equation (1). Their analysis treats the  log-linear 
demand model as structural, using it, for example, to calculate the effect on equilib-
rium prices and consumer surplus of the US ethanol mandate (Roberts and Schlenker 
2013a, 2278–79).

Roberts and Schlenker (2013a) adopt an instrumental variables approach to esti-
mating the price elasticity of demand   θ   D  , using the contemporaneous yield shock 
as an excluded instrument for price. Their paper discusses the possibility that yields 
are endogenous to prices, for example, because growers adjust crop densities in 
response to prices.9 Their paper includes extensive sensitivity analysis related 
to their choice of instrument (see, e.g., Roberts and Schlenker 2013a, 2274–75). 
Roberts and Schlenker’s (2013a) inclusion of extensive discussion and sensitivity 
analysis related to the identifying assumption suggests that, while reasonable, not all 
economists immediately accept it as true and therefore, that there may be room for 
alternative approaches to learning about the parameter   θ   D  .

B. Forming Intuitions about the Plausible Size of Shocks

Prior research can inform economic intuitions about the size of shocks to 
world demand for staple grains. The major determinants of world demand for 
grain in the modern period are population and income (Johnson 1999; Valin 
et  al. 2014). We measure demand on a per capita basis, leaving income as a 
major determinant. Engel’s law (Engel 1857; Houthakker 1957) holds that the 
income elasticity of demand for food is less than one. Forecasts summarized in  

7 We use the definitions of price and total calories from Roberts and Schlenker (2013a, column 2c of table 1) and 
divide total calories by world population (World Bank 2019a) to obtain calories per capita.

8 We deflate to 2010 US dollars using the consumer price index from Roberts and Schlenker (2013b).
9 They write that “A potential shortcoming … is that yields themselves may be endogenous to price” (p. 2267) 

and that “yields might themselves be endogenous, which would make yield deviations an invalid instrument” 
(Roberts and Schlenker 2013a, 2272). 
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Valin et al. (2014, table 3) imply an income elasticity of world food crop demand 
ranging from 0.09 to 0.37.10 Taking the upper end of the range, the  income-driven 
shock to log  per capita demand in year  t  has absolute value   |0.37Δ   y  t  |  . The largest 
value of this shock over the sample period is   M    ∞   ( |0.37Δy| )  ≈ 0.05 . The root mean 
squared value is   M    2   ( |0.37Δy| )  ≈ 0.02 . Shocks substantially larger than these may 
seem implausible.

This discussion illustrates some aspects of our approach that are worth high-
lighting. One is that intuitions about the plausible size of shocks can be informed 
by data other than the data being analyzed. For example, estimates of the income 
elasticity of food demand can be informed by comparisons across countries at a 
point in time.11 Another is that the choice of reasonable bounds can be contextual. 
For example, in earlier historical periods the income elasticity of food demand was 
likely larger (see, e.g., Logan 2006), so an economist studying data from such a 
period might wish to consider larger bounds   B   D   than an economist studying data 
from the modern period. A final aspect is that intuitions about the plausible size of 
shocks are subjective. Although we find it implausible that shocks to demand were 
much larger than those that can be explained by shocks to income alone, we do not 
think it is possible to defend a single numerical bound as the most reasonable one. 
We therefore explore the implications of a range of bounds.

C. Implications of Bounds on the Size of Shocks

Figure 2 illustrates why intuitions about the size of shocks to demand are infor-
mative about the price elasticity of demand   θ   D  . The figure plots the value of the 
shock  Δ ε t   ( θ   D )   in each year  t  implied by two benchmark values of   θ   D  : the point esti-
mate    θ ˆ    RS  

  D   = −0.066  given in Roberts and Schlenker (2013a, column 2c of table 1), 
and the value   θ   D  = −1  implying unit price elasticity. The shocks  Δ ε t   (−1)   to per 
capita world food grain demand implied by unit price elasticity are, to us, implausi-
ble, reaching values as high as 0.55, more than 10 times the largest  income-driven 
shock, and implying that, at constant prices, the world changed its desired consump-
tion of food grains by 55 percent on a  per capita basis in a single year. By contrast, 
the shocks  Δ ε t   (−0.066)   implied by Roberts and Schlenker’s (2013a) point estimate 
appear much more reasonable. An economist interested in informing an audience 
about the price elasticity of demand   θ   D   could present a plot similar to Figure 2, 
allowing the audience to evaluate the plausibility of the shocks implied by different 
values of   θ   D  .

Following the logic of Section  I, we can also directly characterize the impli-
cations for the price elasticity   θ   D   of a given bound   B   D   on the size of the shocks. 

10 The models summarized in Valin et  al. (2014, table  3) imply that an increase from $6,700 to $16,000 
in world GDP over the period  2005–2050 will cause an increase in per capita food demand of between 8 and 
38 percent. The implied income elasticities therefore range from  ln (1.08) /ln (16,000/6,700)  ≈ 0.088  to 
 ln (1.38) /ln (16000/6700)  ≈ 0.370. 

11 Muhammad et al. (2011) estimate a model of food demand using  country-level data from 2005. Alexandratos 
and Bruinsma (2012, 56–57) use  cross-country variation to determine the relationship between calorie demand and 
 per capita expenditure in 2005/2007. Several of the models summarized in Valin et al. (2014, 56) use the studies 
by Muhammad et al. (2011) and Alexandratos and Bruinsma (2012) as source information on the income elasticity 
of demand for food.
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Figure  3 illustrates the construction of the bounds on   θ   D   implied by a bound of   
B   D  = 0.07  on the maximum shock. This value of   B   D   is chosen to be about 1.4 
times larger than the largest  income-driven shock,   M    ∞   ( |0.37Δy| )  ≈ 0.05 . The 
figure depicts a scatterplot of the  first-differenced data    { (Δ   p  t  

D , Δ   q  t  
D ) }   

t=2
  T   . In first 

differences, a demand function is a line through the origin with nonpositive slope 
  θ   D  ∈   Θ –     D  =  핉 ≤0   . The figure also depicts a dotted interval with radius   B   D  = 0.07  
around each point. A demand function consistent with a bound of   B   D  = 0.07  on 
the maximum absolute value of the demand shock is one that passes through all of 
the dotted intervals. The figure depicts a shaded region collecting all such demand 
functions, i.e., those with slope   θ   D  ∈   Θ ˆ   ∞   (0.07)  ∩   Θ –     D  .

A bound of   B   D  = 0.07  on the maximum absolute value of the demand shock 
is informative about the price elasticity of demand   θ   D  . Such a bound implies 
that   θ   D  ∈   Θ ˆ   ∞   (0.07)  ∩   Θ –     D  =  [−0.122, 0]  . This interval contains Roberts and 
Schlenker’s (2013a, column 2c of table 1) confidence interval of   [−0.107, −0.025]   
fairly tightly.

Not all readers may accept the same bound   B   D   on the size of the shock. It is there-
fore appealing to display the implications for the price elasticity   θ   D   of many  possible 
bounds   B   D  . Figure 4 does this. Panel A depicts the interval    Θ ˆ   ∞   ( B   D )  ∩   Θ –     D   of elastic-
ities compatible with each bound   B   D  ∈  [0, 0.10]   on the maximum  absolute shock. 
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Figure 2. Implied Shocks to World Demand for Food Grain under Different Elasticities

Notes: The plot depicts the shocks to demand for grain implied by different values of the price elasticity of demand 
in the setting of Roberts and Schlenker (2013a) described in Section  II. Each series corresponds to the shocks  
 Δ ε t   ( θ   D )   to demand implied by a given value of the price elasticity of demand   θ   D  . We depict the shocks implied by 
the point estimate of Roberts and Schlenker (2013a, column 2c of table 1), denoted    θ ˆ    RS  

  D   , and the shocks implied by 
 unit-elastic demand,   θ   D  = −1 .
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Panel B depicts the interval    Θ ˆ   2   ( B   D )  ∩   Θ –     D   of elasticities compatible with each 
bound   B   D  ∈  [0, 0.04]  on the root mean squared shock. In each case, we choose the 
range of bounds so that the largest bound is around twice the size   M  k   ( |0.37Δy| )   of 
the  income-driven shocks, thus allowing for  non-income-driven shocks to demand 
of about the same size as the  income-driven shocks. For comparison, we also depict 
the point estimate and confidence interval from Roberts and Schlenker (2013a, col-
umn 2c of table 1). An economist interested in informing an audience about the 
price elasticity of demand   θ   D   could present a plot similar to Figure 4, allowing the 
audience to evaluate the implications of different plausible bounds   B   D   on the size 
of the shocks and to compare these implications to those of other approaches to 
learning about   θ   D  .

Figure 4 also illustrates the interpretation of the set   (k,   Θ –     D )  , depicted as the 
solid portion of the  x-axes. The data imply that the maximum absolute demand 
shock is at least 0.039 (panel A) and the root mean squared demand shock is at least 
0.017 (panel B). These implications may be of direct economic interest, and rely 
only on equation (1) and the sign restriction that   θ   D  ≤ 0 .

Online Appendix A includes several extensions of our analysis of the grain 
 market. Online Appendix A.1 develops bounds on the price elasticity of supply   θ   S   
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Figure 3. Constructing Bounds on an Elasticity from Bounds on Shocks

Notes: The plot illustrates the construction of bounds on the price elasticity of demand from bounds on the size 
of shocks to the demand for grain in the setting of Roberts and Schlenker (2013a) described in Section II. The 
 crosshatches depict a scatterplot of the data    { (Δ   p  t  

D , Δ   q  t  
D ) }   t=2  

T   . The dotted interval around each  crosshatch has 
radius   B   D  = 0.07 . The shaded region depicts all demand functions consistent with an upper bound of   B   D  = 0.07  
on the maximum absolute value of the demand shock. These are the  downward-sloping lines that pass through the 
origin and through all of the dotted intervals, i.e., the lines through the origin with slope   θ   D  ∈   Θ ˆ   ∞   (0.07)  ∩   Θ –     D   
for    Θ –     D  =  핉 ≤0   .
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Panel A. All bounds BD ∈ [0, 0.1] on the maximum shock (k = ∞)

Panel B. All bounds BD ∈ [0, 0.04] on the root mean squared shock (k = 2)

Figure 4. Implications of Bounds on Shocks to World Demand for Food Grain

Notes: The plots illustrate implications of bounds on the size of shocks to the demand for grain in the setting of 
Roberts and Schlenker (2013a) described in Section  II. Panel A depicts the interval    Θ ˆ   ∞   ( B   D )  ∩   Θ –     D   implied by 
bounds   B   D  ∈  [0, 0.1]   on the maximum shock, where    Θ –     D  =  핉 ≤0   . The dashed vertical line is at twice the maximum 
absolute  income-driven shock   M    ∞   ( |0.37Δy| )  . Panel B depicts the interval    Θ ˆ   2   ( B   D )  ∩   Θ –     D   implied by bounds   B   D  ∈  
[0, 0.04]   on the root mean squared shock. The dashed vertical line is at twice the root mean squared  income-driven 
shock   M    2   ( |0.37Δy| )  . In each plot, the horizontal line depicts the point estimate    θ ˆ    RS  

  D    of the price elasticity of demand 
in Roberts and Schlenker (2013a, column 2c of table 1), and the shaded region depicts the associated 95 percent 
confidence interval. The solid portion of the  x-axis corresponds to the bounds   B   D  ∈  (k,   Θ –     D )   that are compatible 
with the data.
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of staple grains based on bounds   B   S   on the size of shocks to supply, illustrated in 
online Appendix Figure A1. Online Appendix A.2 characterizes bounds on a func-
tion of the elasticities   θ   D   and   θ   S  , illustrated in online Appendix Figure A2 with an 
application to the “multiplier” parameter studied in Roberts and Schlenker (2013a). 
Online Appendix A.3 discusses the possibility of orthogonalizing with respect to an 
observed covariate, illustrated in online Appendix Figure A3 with an application to 
time trends considered in Roberts and Schlenker (2013a). Lastly, online Appendix 
Figure A4 illustrates the role of  k  by showing how   M  k   ( |0.37Δy| )   and the value of   
B   D   needed to obtain a given bound on the price elasticity vary with  k .

III. Extensions and Discussion

A. Nonlinear Model

In the setting of Section II and many others, the authors assume a linear relation-
ship between the observed variables of interest, as in equation (1). In settings where 
the economic model instead implies a nonlinear relationship via a known strictly 
monotone link function,   q  t   = f  (θ  p  t   +  ε t  )  , we may proceed by inverting the link 
function, replacing   q  t    with   f    −1  ( q  t  )   in (1), as in Berry (1994).

In some settings, we may instead be interested in nonlinear relationships of the 
form

(3)   q  t   = q ( p  t  )  +  ε t  , 

where  q ( ⋅ )   is an unknown function.
In such settings, a bound on the size of the shock can be used to derive a bound 

on the average slope   θ s,t    between any two periods  s < t  with   p  s   ≠  p  t   . In particular, 
we can write

   q  t   −  q  s   =  θ s,t   ( p  t   −  p  s  )  +  ε t   −  ε s  , 

where

   θ s,t   =   
q ( p  t  )  − q ( p  s  ) 

  ____________  p  t   −  p  s    . 

If  q ( ⋅ )   is everywhere differentiable, then by the mean value theorem,   θ s,t   = q′ (c)   
for some  c  strictly between   p  s    and   p  t   .

If we are prepared to impose an upper bound of  B  on the size of the shock between 
periods  s  and  t , then we can obtain a bound on the average slope   θ s,t    via the relation

(4)   { θ s,t   ∈ 핉 :  | ε t   −  ε s  |  ≤ B}  =  
[

  
 q  t   −  q  s   _  p  t   −  p  s     −   B _ 

 |  p  t   −  p  s  | 
  ,   
 q  t   −  q  s   _  p  t   −  p  s     +   B _ 

 |  p  t   −  p  s  | 
  
]

 . 

The interval given in equation (4) has the same structure as the interval    Θ ˆ   k   (B)  , for 
any  k , in the linear case with  T = 2 .
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The interval in equation (4) is informative in our application to the price elasticity 
of world demand for staple foods. Panel A of Figure 5 depicts the bounds on the 
average price elasticity   θ  t−1,t  

  D    if we assume that the shock in each year is no greater 
than   B   D  = 0.07 , as in panel A of Figure 4. In 80 percent of years  t , the analysis 
implies that demand is  price-inelastic on average between years  t − 1  and  t  in the 
sense that   θ  t−1,t  

  D   > −1 .
Even more informative statements are possible if we are prepared to assume that  

q ( ⋅ )   is a polynomial of known degree. Panel B of Figure 5 shows that even allowing 
for a polynomial of degree 6, a substantial generalization of linearity, in 89 percent 
of years, we can conclude that   θ  t−1,t  

  D   > −0.3 .
Online Appendix D.2 shows that in the case of a nonseparable model, an analog 

of the characterization in (4) can be obtained via a suitable reinterpretation of the 
economic quantities. Online Appendix D.3 further shows how to obtain a bound on 
the mean of the average slopes between adjacent periods by coupling a bound on 
the size of the shock with a bound on the variation in the slope of the function  q ( ⋅ )  .

B. Mismeasured Variables

Suppose that the economist observes    q ˆ   t   =  q  t   +  μ t    for   μ t    an unobserved mea-
surement error.12 The economist can proceed as in Section I, now treating  B  as a 
bound on the size   M  k   ( |Δ ε t   + Δ  μ t  | )   of the absolute value   |Δ ε t   + Δ  μ t  |   of the shock 
to the composite unobservable comprised of both the unobserved economic fac-
tor   ε t    and the unobserved measurement error   μ t   . The presence of measurement 
error may necessitate using different values of  B  and  k  than would be appropriate 
in its absence. For example, it may be that the economist is prepared to impose 
a bound  B  on   M    ∞   ( |Δ ε t  | )   but not on   M    ∞   ( |Δ ε t   + Δ  μ t  | )  , say because occasional 
extreme economic shocks are not plausible but occasional severe mismeasurement 
is plausible. In such a setting, the economist may prefer to impose a bound on, say,  
  M    2   ( |Δ ε t   + Δ  μ t  | )  , guided by intuitions about the plausible size of measurement 
error in a typical period.

Suppose that measurement error is present but the economist fails to account for 
it. If some bound  B  applies to the size   M  k   ( |Δ ε t  | )   of the economic shock, but only 
a looser bound  B′ ≥ B  is appropriate for the size   M  k   ( |Δ ε t   + Δ  μ t  | )   of the com-
posite shock, then the economist using the bound  B  that is too tight will obtain an 
interval for  θ  that is too tight, because    Θ ˆ   k   (B)  ⊆   Θ ˆ   k   (B′)  .

Suppose next that it is   p  t   , rather than   q  t   , that is potentially mismeasured. In gen-
eral, this situation does not fit in the framework of Section I and therefore requires 
a different approach or characterization. A partial exception is the case where the 
measurement error in   p  t    takes a known statistical form, such as when it comes from 
sampling variation. Online Appendix Section B.3 discusses such a situation in the 
context of a specific application.

12 Starting from any true value   q  t    and measured value    q ˆ   t   , we can always define   μ t   ≡   q ˆ   t   −  q  t   .
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Figure 5. Relaxing Linearity of the Demand Function

Notes: Each plot depicts bounds on the average price elasticity of demand   θ  t−1,t  
  D    between each pair of adjacent 

years based on the assumption that the absolute shock to world demand for staple food grains is no greater than   
B   D  = 0.07 . In panel A, the depicted bounds are formed by intersecting the set in equation (4) with the sign restric-
tion that the average price elasticity is nonpositive. Each line segment represents the interval of possible average 
price elasticities, with an arrow indicating that the interval contains price elasticities less than −1. In panel B, we 
further impose that the function  q ( ⋅ )   is a polynomial of known degree, the derivative of which is nonpositive every-
where on the closed interval from the lowest to the highest observed price. Each line segment represents the interval 
of possible average price elasticities under the given polynomial degree (from 1 to 6).
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IV. Conclusions

Unobserved shocks to economic variables have economic meaning, and econ-
omists will in some situations have intuitions about their size. We formalize an 
approach to using these intuitions to bound a slope parameter in a linear economic 
model that nests many models used in empirical research. We illustrate the utility 
of the approach with an application, where we argue that the approach can use-
fully complement existing approaches to learning about the parameter of interest. 
We extend the approach to the case of nonlinear models and show that it remains 
informative.

Appendix: Proofs of Results Stated in Text

A. Proof of Proposition 1

We have that

    M ˆ   ∞   (θ)  =   max  
t∈ {2,…,T} 

   { |Δ   q  t   − θΔ   p  t  | } . 

Therefore,    M ˆ   ∞   (θ)  ≤ B  if and only if

  −B ≤ Δ   q  t   − θΔ   p  t   ≤ B 

for all  t ≥ 2 . For a given  t ≥ 2 , if  Δ   p  t   = 0 , this condition is equivalent to

  Δ   q  t   ∈  [−B, B] , 

whereas if  Δ   p  t   ≠ 0 , it is equivalent to

  θ ∈  
[

  
Δ   q  t   _ Δ   p  t  

   −   B _ 
 |Δ   p  t  | 

  ,   
Δ   q  t   _ Δ   p  t  

   +   B _ 
 |Δ   p  t  | 

  
]

 . 

Therefore, if  B <  |Δ   q  t  |   for some  t ≥ 2  with  Δ   p  t   = 0 , then    Θ ˆ   ∞   (B)  = ∅ . So 
take  B ≥  max  {t:Δ p  t  =0}    |Δ   q  t  |  . Let    θ 

¯
    ∞   (B)   and    θ –   ∞   (B)   be as defined in the state-

ment of the proposition. If    θ 
¯
    ∞   (B)  >   θ –   ∞   (B)  , then    Θ ˆ   ∞   (B)  = ∅ ; otherwise, 

   Θ ˆ   ∞   (B)  =  [  θ 
¯

    ∞   (B) ,   θ –   ∞   (B) ]  . Notice that    θ 
¯
    ∞   (B)   is continuous and strictly decreas-

ing in  B  with   lim B→∞     θ 
¯
    ∞   (B)  = −∞  and that    θ –   ∞   (B)   is continuous and strictly 

increasing in  B  with   lim B→∞     θ –   ∞   (B)  = ∞ . Notice further that

    θ 
¯
    ∞   (0)  =   max  

 {t:Δ p  t  ≠0} 
   {  

Δ   q  t   _ Δ   p  t  
  }  ≥   min  

 {t:Δ p  t  ≠0} 
   {  

Δ   q  t   _ Δ   p  t  
  }  =   θ –   ∞   (0) . 

Therefore, there is a unique solution   B ̃   ≥ 0  to    θ 
¯
    ∞   ( B ̃  )  =   θ –   ∞   ( B ̃  )  . The proposition 

then follows immediately. ∎
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B. Proof of Lemma 1

We proceed by establishing several elementary properties of the function    M ˆ   k   (θ)  :

    M ˆ   k   (θ)  =   (  1 _ 
T − 1

     ∑ 
t=2

  
T

      |Δ   q  t   − θΔ   p  t  |    k )    
1/k

  

for  k ∈  (1, ∞)  .

Property (i ).—   M ˆ   k   (θ)   is continuous in  θ  for all  θ ∈ 핉 .

 This property follows because    M ˆ   k   (θ)   is a composite of continuous elementary 
operations.

Property (ii ).—  lim   θ→−∞     M ˆ   k   (θ)  =  lim   θ→∞     M ˆ   k   (θ)  = ∞ .

Observe that for   t ′    such that  Δ   p   t ′     ≠ 0 ,

    lim  
θ→−∞

     |Δ   q  t′   − θΔ   p  t′  |    k  =   lim  
θ→∞

     |Δ   q  t′   − θΔ   p  t′  |    k  = ∞, 

whereas for  t″  such that  Δ   p  t″   = 0 ,

    lim  
θ→−∞

     |Δ   q   t ″     − θΔ   p  t″  |    k  =   lim  
θ→∞

     |Δ   q  t″   − θΔ   p  t″  |    k  =   |Δ   q  t″  |    k . 
 The property then follows immediately because   lim   x→∞    x   1/k  = ∞  for  k > 0 , 
and by assumption  Δ   p  t   ≠ 0  for some  t ∈  {2, …, T}  .

Property (iii).—   (  M ˆ   k   (θ) )    k   is strictly convex in  θ  on 핉.

We have that

    (  M ˆ   k   (θ) )    
k
  =  (  1 _ 

T − 1
     ∑ 
t=2

  
T

      |Δ   q  t   − θΔ   p  t  |    k ) . 

 If  Δ   p  t   = 0 , then the function    |Δ   q  t   − θΔ   p  t   |    k   is trivially weakly convex in  θ . 
Therefore, it suffices to show that if  Δ   p  t   ≠ 0 , then the function    |Δ   q  t   − θΔ   p  t   |    k   
is strictly convex in  θ . But this follows from the strict convexity of    | x |    k   in  x  on  핉  
for  k > 1  because if  f  (x)   is strictly convex in  x , then so is  f  (ax + b)   for  a ≠ 0 .

Property (iv).—There is    θ ˘   k   ∈ 핉  such that    θ ˘   k   = arg  min  θ      M ˆ   k   (θ) . 

 Pick some  c′ >   M ˆ   k   (0)  . By Properties (i) and (ii), there are at least two 
solutions to  c′ =   M ˆ   k   (θ)  . By Property (iii), there are at most two solu-
tions to    ( c ′  )    k  =   (  M ˆ   k   (θ) )    

k
  . Hence, there are exactly two solutions to   

c ′   =   M ˆ   k   (θ)  ; denote these   θ 
¯
   (c′) ,  θ –   (c′)  , with   θ 

¯
   (c′)  <  θ –   (c′)  . Because the interval  

  [ θ 
¯
   (c′) ,  θ –   (c′) ]   is compact, by Properties (i) and (iii),    (  M ˆ   k   (θ) )    k   has a minimum on 

  [ θ 
¯
   (c′) ,  θ –   (c′) ]   at some unique    θ ˘   k    on the interior of   [ θ 

¯
   (c′) ,  θ –   (c′) ]  . But also by Property 
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(iii),    (  M ˆ   k   (θ) )    k  >   (  M ˆ   k   (  θ ˘   k  ) )    
k
   for any  θ ∉  [ θ 

¯
   (c′) ,  θ 

–   (c′) ]  , and hence,    θ ˘   k   =  
arg min  θ   (  M ˆ   k   (θ) )  .

Property (v).—   M ˆ   k   (θ')  >   M ˆ   k   (θ″)   for any  θ' < θ″ <   θ ˘   k   , and    M ˆ   k   (θ')  <   M ˆ   k   (θ″)   
for any    θ ˘   k   < θ' < θ″ .

 This is an immediate consequence of Property (iii), applying the strict monoto-
nicity of   x   k   on   핉 ≥0    for  k ∈  (1, ∞)  . ∎

C. Proof of Proposition 2

This follows immediately from Lemma 1. ∎

D. Proof of Corollary 1

We have that

    M ˆ   2   (θ)  =   [  1 _ 
T − 1

     ∑ 
t=2

  
T

      (Δ   q  t   − θΔ   p  t  )    2 ]    
1/2

 . 

By Lemma 1,    M ˆ   2   (θ)   has a unique global minimizer    θ ˘   2   . Because    M ˆ   2   (θ)   is nonnega-
tive and is differentiable in  θ  when    M ˆ   2   (θ)  > 0 , either    M ˆ   2   (  θ ˘   2  )  = 0  or    M ˆ   2   (  θ ˘   2  )  > 0  
and     d _ 

dθ     M ˆ   2   (θ) ∣ θ=  θ ˘   2  
   = 0 . In either case, we have that

    s ˆ   qp   −   θ ˘   2     s ˆ   pp   = 0. 

Because    s ˆ   pp   ≠ 0 , we can also say that

    θ ˘   2   =   
  s ˆ   qp  

 _ 
  s ˆ   pp  

  . 

It then follows that

     B 
¯

     2   =   M ˆ   2   (  θ ˘   2  )  =   M ˆ   2   (  
  s ˆ   qp  

 _ 
  s ˆ   pp  

  )  =  √ 

____________

    s ˆ   qq   −   (  
  s ˆ   qp  

 _ 
  s ˆ   pp  

  )    
2

   s ˆ   pp    . 

Observe that, by the  Cauchy-Schwarz inequality, this expression is  real-valued.
Next, by Proposition 2, the bounds    θ 

¯
      2   (B) ,   θ –   2   (B)   solve    M ˆ   2   (θ)  = B , which is 

equivalent to the quadratic equation

   (  s ˆ   qq   −  B   2 )  − 2 θ   s ˆ   qp   +  θ   2    s ˆ   pp   = 0. 

The roots of this quadratic equation are given by

    
  s ˆ   qp  

 _ 
  s ˆ   pp  

   ±  √ 

_________________

    (  
  s ˆ   qp  

 _ 
  s ˆ   pp  

  )    
2

  −   1 _ 
  s ˆ   pp  

   (  s ˆ   qq   −  B   2 )   . 

Observe that these roots are  real-valued whenever  B ≥    B 
¯

     2   , thus completing the 
proof. ∎
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