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Abstract

This paper develops likelihood-based methods for estimation, inference, model se-
lection, and forecasting of continuous-time integer-valued trawl processes. The full
likelihood of integer-valued trawl processes is, in general, highly intractable, motivating
the use of composite likelihood methods, where we consider the pairwise likelihood in
lieu of the full likelihood. Maximizing the pairwise likelihood of the data yields an
estimator of the parameter vector of the model, and we prove consistency and, in the
short memory case, asymptotic normality of this estimator. When the underlying trawl
process has long memory, the asymptotic behaviour of the estimator is more involved;
we present some partial results for this case. The pairwise approach further allows us to
develop probabilistic forecasting methods, which can be used to construct the predictive
distribution of integer-valued time series. In a simulation study, we document the good
finite sample performance of the likelihood-based estimator and the associated model
selection procedure. Lastly, the methods are illustrated in an application to modelling
and forecasting financial bid-ask spread data, where we find that it is beneficial to
carefully model both the marginal distribution and the autocorrelation structure of the
data.
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1 Introduction

In this paper, we develop likelihood-based methods for estimation, inference, model selec-

tion, and forecasting of continuous-time integer-valued trawl (IVT) processes. IVT pro-

cesses, introduced in Barndorff-Nielsen et al. (2014), are a flexible class of integer-valued,

serially correlated, stationary, and infinitely divisible continuous-time stochastic processes.

In general, however, IVT processes are not Markovian, which implies that the structure of

the full likelihood of an IVT process is highly intractable (Shephard & Yang 2016). This

is the impetus of the present paper, where we propose to use composite likelihood (CL,

Lindsay 1988) methods for estimation and inference. Specifically, we propose to estimate

the parameters of an IVT model by maximizing the pairwise likelihood of the data. CL

methods in general, and the pairwise likelihood approach in particular, have been success-

fully used in many applications, such as statistical genetics (Larribe & Fearnhead 2011),

geostatistics (Hjort & Omre 1994), and finance (Engle et al. 2020). See Varin et al. (2011)

for an excellent overview of CL methods. Although the theory behind CL estimation is

quite well understood in the case of iid observations (e.g. Cox & Reid 2004, Varin & Vidoni

2005), the time series case, which is what we consider here, generally requires separate

treatment (Varin et al. 2011, p. 11). For instance, Davis & Yau (2011) develops the theory

of CL estimators in the setting of linear Gaussian time series models, while Chen et al.

(2016) and Ng et al. (2011) consider CL methods for a hidden Markov model and a time

series model with a latent autoregressive process, respectively. Also, Sørensen (2019) de-

velops a two-step CL estimation method for parameter-driven count time series models

with covariates. Our paper adds to the literature on CL methods for time series models

by deriving the theoretical properties (consistency, asymptotic normality) of a pairwise CL

estimator applied to IVT models.

A central feature of IVT processes is that they allow for specifying the correlation

structure of the model separately from the marginal distribution of the model, making

them flexible and well-suited for modelling count- or integer-valued data. In particular, the

marginal distribution of an IVT process can be any integer-valued infinitely divisible distri-

bution, while the correlation structure can be specified independently using a so-called trawl

function. This setup allows for both short- and long-memory of the IVT process. So far,

IVT processes have been applied to financial data (Barndorff-Nielsen et al. 2014, Shephard

& Yang 2017, Veraart 2019) and real-valued trawl processes to the modelling of extreme
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events in environmental time series (Noven et al. 2018). IVT processes are, under weak con-

ditions, stationary and ergodic, which motivated Barndorff-Nielsen et al. (2014) to suggest

a method-of-moments-based estimator for the parameters of the IVT model. This method-

of-moments-based estimator has been used in most applied work using IVT processes (e.g.

Barndorff-Nielsen et al. 2014, Shephard & Yang 2017, Veraart 2019). Exceptions are Shep-

hard & Yang (2016) and Noven et al. (2018). In Noven et al. (2018), a pairwise likelihood

was used for a hierarchical model involving a latent (Gamma-distributed) trawl process and

the corresponding asymptotic theory was derived in Courgeau & Veraart (2021). However,

the asymptotic theory for inference for integer-valued trawl processes which are observed di-

rectly is not covered by these earlier papers. In Shephard & Yang (2016), the authors derive

a prediction decomposition of the likelihood function of a particularly simple IVT process,

the so-called Poisson-Exponential IVT process, allowing them to conduct likelihood-based

estimation and inference. Although the likelihood estimation method developed in Shep-

hard & Yang (2016) theoretically applies to more general IVT processes, the computational

burden quickly becomes overwhelming in these scenarios, making estimation by classical

maximum likelihood methods infeasible in practice.

The contributions of this paper can be summarized as follows. First, we derive the

theoretical mixing properties of IVT processes. Using these, we prove consistency and, in

the short memory case, asymptotic normality of the maximum composite likelihood (MCL)

estimator of the parameter vector of an IVT model. We discuss the long memory case

and, based on a result about the asymptotic behaviour of partial sums of IVT processes,

conjecture that the MCL estimator has an α-stable limit with infinite variance in this

case. For the purpose of conducting feasible inference and model selection, we propose

two alternative estimators of the asymptotic variance of the MCL estimator in the short

memory case: a kernel-based estimator, inspired by the heteroskedastic and autocorrelation

consistent (HAC) estimator of Newey & West (1987), and a simulation-based estimator.

Second, we use the same principle of considering the pairwise likelihood in lieu of the full

likelihood, to derive the predictive distribution of an IVT model, conditional on the current

value of the process; this allows us to use the IVT framework for forecasting integer-valued

data. In a simulation study, we compare the MCL estimator to the standard method-of-

moments-based estimator suggested in Barndorff-Nielsen et al. (2014) and find that the

MCL estimator provides substantial improvements in most cases. Indeed, in a realistic

simulation setup, we find that the MCL estimator can improve on the method-of-moments-
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based estimator by more than 50%, in terms of finite sample root median squared error.

Since the asymptotic theory for (G)MM estimation of trawl processes has not been worked

out elsewhere, we also derive the asymptotic theory for GMM estimation and present the

results for comparison purposes in the Supplementary Material, see Section S12.

We apply the methods developed in the paper to a time series of the bid-ask spread

of a financial asset. The time series behaviour of the bid-ask spread has been extensively

studied in the literature on the theory of the microstructure of financial markets (e.g. Huang

& Stoll 1997, Bollen et al. 2004). The model selection procedure developed in the paper

indicates that a model with Negative Binomial marginal distribution and slowly decaying

autocorrelations most adequately describe the data. These findings are in line with those

of Groß-KlußMann & Hautsch (2013), who also found strong persistence in bid-ask spread

time series. Then, in a pseudo-out-of-sample forecast exercise, we find that it is important

to carefully model both the marginal distribution and the autocorrelation structure to

get accurate forecasts of the future bid-ask spread. These findings highlight the strength

of modelling using a framework where the choice of marginal distribution can be made

independently of the choice of autocorrelation structure.

The rest of the paper is structured as follows. Section 2 outlines the mathematical

setup of IVT processes, while Section 3 contains details on the estimation and model selec-

tion procedures. Section 4 presents the theory behind our proposed forecasting approach.

Section 5 summarises the results from our simulation study, investigating the finite sample

properties of the estimation and model selection procedures. Section 6 illustrates the use of

the new methodology in an empirical application to financial bid-ask spread data. Section

7 concludes. The proofs of the main mathematical results are given in an Appendix. Prac-

tical details on the implementation of the asymptotic theory and additional derivations are

given in the Supplementary Material, which also contains further simulation results and

extensive details on various calculations used in the implementation of the methods. A

software package for the implementation of simulation, estimation, inference, model selec-

tion, and forecasting of IVT processes is freely available in the MATLAB programming

language.1

1The software package can be found at https://github.com/mbennedsen/Likelihood-based-IVT.

4

https://github.com/mbennedsen/Likelihood-based-IVT


2 Integer-valued trawl processes

Let (Ω,F ,P) denote a probability space, supporting a Poisson random measure N , defined

on Z × [0, 1] × R, with mean (intensity) measure η ⊗ Leb ⊗ Leb. Throughout Leb denotes

the Lebesgue measure and η is a Lévy measure. A Lévy basis L is a homogeneous and

independently scattered random measure on [0, 1]× R, defined as

L(dx, ds) :=

∫ ∞
−∞

yN(dy, dx, ds), (x, s) ∈ [0, 1]× R. (2.1)

See, e.g., Rajput & Rosinski (1989) and Barndorff-Nielsen (2011) for further details on Lévy

bases. Since we are only interested in integer-valued Lévy bases, we will work under the

following assumption.

Assumption 2.1. The Lévy basis L is given by (2.1) with Lévy measure η, concentrated

on the integers (y ∈ Z), such that ‖η‖ :=
∑∞

y=−∞ y
2η(y) <∞.

The Lévy basis L is an infinitely divisible random measure with cumulant (log-characteristic)

function

CL(dx,ds)(θ) := logE[exp(iθL(dx, ds))] =

∫ ∞
−∞

(
eiθy − 1

)
η(dy)dxds, (x, s) ∈ [0, 1]× R.

An important random variable associated with the Lévy basis L, is the so-called Lévy seed,

L′, which we define as the random variable L′ satisfying E[exp(iθL′)] = exp(CL′(θ)), with

CL′(θ) =
∑∞

y=−∞
(
eiθy − 1

)
η(y).

Remark 2.1. Because the distribution of a Lévy process is entirely determined by its dis-

tribution at a particular time point, we can specify a Lévy process L′t from a Lévy seed L′,

by requiring that L′1 ∼ L′.

Using the Lévy seed, we can rewrite the cumulant function of the Lévy basis as CL(dx,ds)(θ) =

CL′(θ)dxds, or, for a Borel set B ∈ B([0, 1]× R),

CL(B)(θ) = CL′(θ)Leb(B). (2.2)

From (2.2) we have that κj(L(B)) = κj(L
′)Leb(B), j ≥ 0, where κj(Z) denotes the jth

cumulant of the random variable Z, when it exists.2 In particular E[L(B)] = E[L′]Leb(B),

and V ar(L(B)) = V ar(L′)Leb(B). The relationship (2.2) implies that the distribution

2Recall that the cumulants κj(Z) of the random variable Z are defined implicitly through the power

series expansion of the cumulant function of Z, i.e., CZ(θ) = logE[exp(iθZ)] =
∑∞
j=1 κj(Z)(iθ)j/j!.
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of the random variable L(B) is entirely specified by the Lévy seed L′ and the Lebesgue

measure of the set B. In Section 2.1 below, we illustrate how this can be used to construct

trawl processes with a given marginal distribution.

The Lévy basis L acts on sets in B([0, 1]×R). We restrict attention to trawl sets of the

form

At = A+ (0, t), A = {(x, s) : s ≤ 0, 0 ≤ x < d(s)}, t ≥ 0, (2.3)

where d is a trawl function, determining the shape of the trawl set At. Section 2.2 con-

tains several parametric examples for the trawl function d. We will impose the following

assumption.

Assumption 2.2. The trawl set At is given by (2.3), where the trawl function d : R− →

[0, 1] is continuous and monotonically increasing such that Leb(A) =
∫ 0
−∞ d(s) <∞.

Intuitively, At is obtained from the set A by “dragging” it along in time. Note in

particular that Leb(At) = Leb(A) for all t. Finally, define the IVT process X = (Xt)t≥0 as

the Lévy basis evaluated over the trawl set:

Xt := L(At), t ≥ 0. (2.4)

2.1 Modelling the marginal distribution

For an IVT process X as defined in (2.4), we have CXt(θ) = CL(At)(θ) = Leb(A)CL′(θ) =

CL′
Leb(A)

(θ), where L′t is a Lévy process with L′1 ∼ L′. Hence we observe that the marginal

distribution of the IVT process Xt is entirely decided by the Lebesgue measure of the trawl

set A and the Lévy seed L′ of the underlying Lévy basis L. Indeed, by specifying a dis-

tribution for L′, we can build IVT processes with the corresponding marginal distribution.

The following two examples illustrate how to do this; additional details can be found in the

Supplementary Material.

Example 2.1 (Poissonian Lévy seed). Let L′ ∼ Poisson(ν), i.e. L′ is distributed as a

Poisson random variable with intensity ν > 0. It follows from standard properties of

the Poisson distribution that Xt ∼ Poisson(νLeb(A)). In other words, for all t ≥ 0,

P (Xt = x) = (νLeb(A))xe−νLeb(A)/x!, x = 0, 1, 2, . . ..

Example 2.2 (Negative Binomial Lévy seed). Let L′ ∼ NB(m, p), i.e. L′ is distributed as

a Negative Binomial random variable with parameters m > 0 and p ∈ [0, 1]. It follows from
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standard properties of the Negative Binomial distribution that Xt ∼ NB(mLeb(A), p). In

other words, for all t ≥ 0, P (Xt = x) = Γ(Leb(A)m+x)
x!Γ(Leb(A)m) (1− p)Leb(A)mpx, x = 0, 1, 2, . . ., where

Γ(z) =
∫∞

0 yz−1e−ydy for z > 0 is the Γ-function.

2.2 Modelling the correlation structure

Recall that the shape of the trawl set At is determined by the trawl function d, see Equation

(2.3). A particularly tractable and flexible class of parametrically specified trawl functions

are the so-called superposition trawls (Barndorff-Nielsen et al. 2014, Shephard & Yang

2017). They are defined as d(s) :=
∫∞

0 eλsπ(dλ), for s ≤ 0, where π is a probability

measure on R+. This construction essentially randomizes the decay parameter λ in an

otherwise exponential function.

The IVT process with a superposition trawl function is stationary. Hence, we get the

autocorrelation function (Barndorff-Nielsen et al. 2014)

ρ(h) := Corr(L(At+h), L(At)) =
Leb(Ah ∩A)

Leb(A)
=

∫∞
h d(−s)ds∫∞
0 d(−s)ds

, h > 0. (2.5)

Example 2.3 (Exponential trawl function). For the case where the measure π has an atom

at λ > 0, i.e. π(dx) = δλ(dx), where δx(·) is the Dirac delta function at x ∈ R+, we get

d(s) = eλs for s ≤ 0. Consequently, ρ(h) = exp(−λh), for h ≥ 0.

Example 2.4 (Inverse Gaussian trawl function). Letting π be given by the inverse Gaussian

distribution π(dx) = (γ/δ)1/2

2K1/2(δγ)x
−1/2 exp

(
−1

2(δ2x−1 + γ2x)
)
dx, where Kν(·) is the modified

Bessel function of the third kind and γ, δ ≥ 0 with both not zero simultaneously. It can be

shown that the resulting trawl function is given by d(s) =
(

1− 2s
γ2

)−1/2
exp

(
δγ
(

1−
√

1− 2s
γ2

))
,

for s ≤ 0, and hence that the correlation function of the IVT process with inverse Gaussian

trawl function becomes ρ(h) = Corr(Xt+h, Xt) = exp
(
−δγ(

√
1 + 2h/γ2 − 1)

)
, for h ≥ 0.

The details on these calculations can be found in the Supplementary Material.

Example 2.5 (Gamma trawl function). Let π have the Γ(1 + H,α) density, π(dx) =

1
Γ(1+H)α

1+HλHe−λαdx, where α > 0 and H > 0. We can show that d(s) =
(
1− s

α

)−(H+1)
,

s ≤ 0, which implies the correlation function ρ(h) = Corr(Xt+h, Xt) = Leb(Ah∩A)
Leb(A) =(

1 + h
α

)−H
. Note that in this case

∫∞
0 ρ(h)dh = ∞ for H ∈ (0, 1] and

∫∞
0 ρ(h)dh =

α(H − 1)−1 for H > 1, from which we see that an IVT process with a Gamma trawl

function enjoys the long memory property, in the sense of a non-integrable autocorrelation

function, when H ∈ (0, 1]. The details on these calculations can be found in the Supple-

mentary Material.
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2.3 Modelling IVT processes

Using the above methods, we can build flexible continuous-time integer-valued processes

with a marginal distribution determined by the underlying Lévy basis, and independently

specified correlation structure determined by the trawl function. In our main examples

given above, we considered a Lévy basis with Poisson or Negative Binomial marginals, and

various trawl functions, namely the Exponential trawl function, the IG trawl function, and

the Gamma trawl function. Other specifications for the underlying Lévy basis and trawl

function than those given here could of course be considered. In practice, these choices

should be guided by the properties of the data being modelled.

The simplest IVT process we can construct in this way is the Poisson-Exponential IVT

process, i.e., the case where L′ ∼ Poisson(ν) and d(s) = exp(λs), s ≤ 0, see Examples 2.1

and 2.3. This special case results in a Markovian process, which is not in general true of

IVT processes (Barndorff-Nielsen et al. 2014). In fact, the model is similar to the popular

Poissonian INAR(1) model, introduced in McKenzie (1985) and Al-Osh & Alzaid (1987).

An illustration of the exponential trawl set, At, dragged through time, together with a

simulation of the resulting Poisson-Exponential IVT trawl process Xt = L(At), is seen in

Figure 1. The parameters used are λ = 1 and ν = 5. At each time point t, the value of Xt

(bottom plot) is the number of points inside the trawl set At (top plot).

3 Estimation of integer-valued trawl processes

Barndorff-Nielsen et al. (2014) showed that the parameter vector θ of an IVT process can

be consistently estimated using a generalized method of moments (GMM) procedure. In

Section 3.1, we propose a likelihood-based approach instead. Both estimation procedures

rely on the fact that the IVT process is stationary and mixing. The mixing property of IVT

processes is obtained from results given in Fuchs & Stelzer (2013), see Barndorff-Nielsen

et al. (2014, p. 699). Although mixing, in general, is sufficient for the consistency of

the estimators, the central limit theorem for the likelihood-based estimator (Theorem 3.3

below) relies on the stronger mixing concept of α-mixing, where the size (or rate) of mixing

can also be established. Let us recall the definition of α-mixing for a stationary process.

Let F0
−∞ = σ(Xt; t ≤ 0) and, for m > 0, F∞m = σ(Xt; t ≥ m), and define the numbers

αm := supG∈F0
−∞,H∈F∞m |P(H ∩ G) − P(H)P(G)|, for m > 0. The process X = (Xt)t∈R is

α-mixing if αm → 0 as m → ∞. It is α-mixing of size −φ0 if αm = O(m−φ), as m → ∞,
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Figure 1: Top: Simulation of a Poisson Lévy basis on R× [0, 1] (black dots) with an expo-

nential trawl set At (shaded) superimposed at three periods in time, t ∈ {0, 7, 8}. Bottom:

The associated trawl process Xt = L(At), given by the number of ‘points’ inside the trawl

set At at time t. The intensity of the Poisson random measure is ‖η‖ = η(1) = ν = 5 and

the parameter controlling the exponential trawl function, d(s) = exp(λs), is λ = 1.

for some φ > φ0.

We obtain the following important property for IVT processes.

Theorem 3.1. Let the IVT process X be given by (2.4) and let Assumptions 2.1 and 2.2

hold. Now, X is α-mixing with αm = O(ρ(m)) as m→∞, where ρ(m) is the autocorrelation

function of X.

Remark 3.1. The autocorrelation functions of the Exponential (Example 2.3) and IG (Ex-

ample 2.4) IVT models imply that these models are in fact α-mixing with an exponential

decay rate. The autocorrelation function of the Gamma (Example 2.5) IVT model implies

that it is α-mixing of size −(H − ε) for all ε > 0.

Remark 3.2. As an alternative to the proof of Theorem 3.1 provided in Appendix A, we

could first show that trawl processes are θ-weakly dependent, which we do in the Sup-

plementary Material, see Section S12. Then, as pointed out in Curato & Stelzer (2019,

p. 324) and shown in the discrete-time case in Doukhan et al. (2012), for integer-valued

trawl processes, the fact that they are θ-weakly dependent, implies that they are strongly
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mixing with the coefficient as stated in Theorem 3.1.

3.1 Estimation by composite likelihoods

Due to the non-Markovianity of the IVT process, we face computational difficulties when

attempting to estimate the model by maximizing the full likelihood, hence we propose to

use the CL method instead. The main idea behind the CL approach is to consider a,

possibly misspecified, likelihood function which captures the salient features of the data at

hand; here this means capturing the features of the Lévy basis, controlling the marginal

distribution, and those of the trawl function, controlling the dependence structure. We

focus on pairwise CLs.

3.1.1 Pairwise composite likelihood

Suppose we have n ∈ N observations of the IVT process X, x1, . . . , xn, on an equidistant

grid of size ∆ = T/n, for some T > 0. Define the following likelihood function using pairs

of observations k periods apart,

CL(k)(θ;x) :=

n−k∏
i=1

f(xi+k, xi; θ), k ≥ 1, (3.1)

where f(xi+k, xi; θ) is the joint probability mass function (PMF) of the observations xi

and xi+k, parametrized by the vector θ. From (3.1), we construct the composite likelihood

function

LCL(θ;x) := L(K)
CL (θ;x) :=

K∏
k=1

CL(k)(θ;x) =
K∏
k=1

n−k∏
i=1

f(xi+k, xi; θ), (3.2)

where K ∈ N denotes the number of pairwise likelihoods to include in the calculation of

the composite likelihood function.

The maximum composite likelihood (MCL) estimator of θ is defined as

θ̂CL := arg max
θ∈Θ

lCL(θ;x), (3.3)

where Θ is the parameter space and lCL(θ;x) := logLCL(θ;x) is the log composite likelihood

function. To apply this estimator in practice, we need to be able to calculate the PMFs

f(xi+k, xi). Section S5 in the Supplementary Material contains a discussion on how to

do this in the general integer-valued case. In the count-valued case, f(xi+k, xi) takes a

particularly simple form which is convenient in implementations. Indeed, letting Pθ(B)

denote the probability of the event B given parameters θ, we have the following.
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Proposition 3.1. Let the IVT process X be given by (2.4) and let Assumptions 2.1 and

2.2 hold. Suppose further, that the Lévy basis L is non-negative, i.e. η(y) = 0 for y < 0.

The joint PMF of two observations xi+k and xi is

f(xi+k, xi; θ) =

min{xi+k,xi}∑
c=0

Pθ
(
L(A(i+k)∆ \Ai∆) = xi+k − c

)
Pθ
(
L(Ai∆ \A(i+k)∆) = xi − c

)
· Pθ

(
L(A(i+k)∆ ∩Ai∆) = c

)
. (3.4)

The probabilities Pθ(·) in (3.4) can be expressed as a function of the parameters of

the Lévy seed and the trawl function. Indeed, for a Borel set B ∈ B([0, 1] × R) we have

Pθ(L(B) = x) = Pθ(L′Leb(B) = x), where L′t is a Lévy process with L′1 ∼ L′, and L′ being

the Lévy seed associated to X, see Remark 2.1. Also, Leb(A(i+k)∆ ∩ Ai∆) =
∫ −k∆
−∞ d(s)ds,

and Leb(A(i+k)∆\Ai∆) = Leb(Ai∆\A(i+k)∆) = Leb(A)−Leb(A(i+k)∆∩Ai∆) =
∫ 0
−k∆ d(s)ds.

Plugging these into (3.4) we obtain the pairwise likelihoods, f(xi+k, xi; θ), and thus the CL

function, LCL(θ;x), as a function of θ.

Example 3.1 (Poisson-Exponential IVT process). Let L′ ∼ Poisson(ν) and d(s) = exp(λs),

s ≤ 0, for some ν, λ > 0. Since L′ ∼ Poisson(ν) we have L(B) ∼ Poisson(Leb(B)ν) for

Borel sets B and hence Pθ (L(B) = x) = (νLeb(B))xe−νLeb(B)/x!, for x ≥ 0. Further, it

is not difficult to show that Leb(A(i+k)∆ ∩ Ai∆) = λ−1e−λk∆ and Leb(A(i+k)∆ \ Ai∆) =

λ−1(1−e−λk∆). Using this, the probabilities in (3.4) can be expressed as functions of ν and

λ and hence the maximization (3.3) can be carried out using standard numerical methods.

3.1.2 Asymptotic theory

Because we are only considering dependencies across pairs of observations and not their

dependence with the remaining observations, the pairwise composite likelihood function

(3.2) can be viewed as a misspecified likelihood. Nonetheless, since the individual PMFs

f(xi+k, xi; θ) in (3.2) are proper bivariate PMFs, the composite score function ∂lCL(θ;x)/∂θ

provides unbiased estimating equations and, under certain regularity assumptions, the usual

asymptotic results will apply (Cox & Reid 2004). However, as pointed out in Varin et al.

(2011), formally proving the results in the time series case requires more rigorous treatment.

The following two theorems provide the details on the asymptotic theory in the setup of

this paper. We will work under the following identification assumption.
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Assumption 3.1. For all θ ∈ Θ, it holds that

θ 6= θ0 ⇒
K∑
k=1

f(x1, x2; θ) 6=
K∑
k=1

f(x1, x2; θ0) (3.5)

for some x1, x2 ∈ Z.

First, we have a Law of Large Numbers.

Theorem 3.2. Fix K ∈ N, let the IVT process X be given by (2.4), and let Assumptions

2.1–2.2 and 3.1 hold. Then θ̂CL
P→ θ0, as n→∞.

Remark 3.3. As is often the case, the identification condition in Assumption 3.1 can be

difficult to check in practice. For the IVT processes considered in this paper and presented

in the examples above, our numerical experiments indicate that requiring K ≥ dim(θd),

where dim(θd) denotes the dimension of the parameters controlling the trawl function d,

results in θ0 being identified. A similar requirement was suggested in Davis & Yau (2011).

We also impose a standard assumption on the parameter space.

Assumption 3.2. The set Θ is compact such that the true parameter vector, θ0, lies in

the interior of Θ.

It turns out that the asymptotic behaviour of the MCL estimator differs in the short-

and long-memory cases. The former is captured by the following assumption.

Assumption 3.3 (Short memory). The autocorrelation function of the IVT process satis-

fies limn→∞ ρ(n)n = 0.

Remark 3.4. Assumption 3.3 is satisfied by IVT processes with the Exponential trawl

(Example 2.3), the Inverse Gaussian trawl (Example 2.4), and the Gamma trawl (Example

2.5) with H > 1.

Under this assumption, the mixing property of IVT processes, presented in Theorem

3.1, implies that we can invoke a Central Limit Theorem for triangular arrays of mixing

processes (Davidson 1994, Corollary 24.7) to get the following result.

Theorem 3.3. Let the conditions from Theorem 3.2 hold, together with Assumptions 3.2–

3.3. Then,

√
n(θ̂CL − θ0)

d→ N
(
0, G(θ0)−1

)
, n→∞,
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where G(θ0) is the Godambe information matrix (Godambe 1960) matrix with inverse

G(θ0)−1 = H(θ0)−1V (θ0)H(θ0)−1, where

H(θ0) =−
K∑
k=1

E
[

∂2

∂θ′∂θ
log f(Xk∆, X0; θ)|θ=θ0

]
, and

V (θ0) =

K∑
k=1

V ar

(
∂

∂θ
log f(Xk∆, X0; θ)|θ=θ0

)

+ 2
K∑
k=1

K∑
k′=1

∞∑
i=1

Cov

(
∂

∂θ
log f(Xk∆, X0; θ)|θ=θ0 ,

∂

∂θ′
log f(X(i+k′)∆, Xi∆; θ)|θ=θ0

)
.

Further, the infinite sum in the expression for V (θ0) converges.

Theorem 3.3 implies that feasible inference can be conducted using an estimate of

the inverse of the Godambe information matrix Ĝ(θ̂CL)−1 = Ĥ(θ̂CL)−1V̂ (θ̂CL)Ĥ(θ̂CL)−1,

where θ̂CL is the MCL estimate from (3.3). Note that while the straight-forward estimator

Ĥ(θ̂CL) = −n−1 ∂
∂θ∂θ′ lCL(θ̂CL;x) is consistent for H(θ) due to the stationarity and ergod-

icity of the IVT process, V̂ (θ̂CL) is more difficult to obtain, since the obvious candidate

n−1 ∂
∂θ lCL(θ;x) ∂∂θ lCL(θ;x)′ vanishes at θ = θ̂CL, a fact also remarked in Varin & Vidoni

(2005). While it is possible to estimate V (θ0) using a Newey-West-type kernel estimator

(Newey & West 1987), we obtained more precise results using a simulation-based approach

to estimating V (θ0). The details of both approaches are provided in the Supplementary

Material, Section S4.3

3.1.3 Asymptotic theory in the long memory case

While the consistency result in Theorem 3.2 applies for all IVT processes satisfying As-

sumptions 2.1–2.2 and 3.1, Assumption 3.3, required in the central limit result in Theorem

3.3, excludes IVT processes with long memory, e.g. those with autocorrelation function

adhering to ρ(h) = O(h−H) for H ∈ (0, 1]. As mentioned in Remark 3.1, this is for instance

the case for the Gamma trawl function (Example 2.5) with H ∈ (0, 1].

Although a long memory CLT as such eludes us, we can say some things about the

asymptotic behaviour of the MCL estimator θ̂CL in the long memory case. For instance,

the convergence rate is likely slower than
√
n, as the following result suggests.

3It is also possible to approximate the standard error of θ̂CL using a standard parametric bootstrap

approach. However, as we discuss in Section S4.2 of the Supplementary Material, this solution is more

computationally expensive than the two alternative approaches suggested here.
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Theorem 3.4. Let the conditions from Theorem 3.2 hold and assume that the autocor-

relation function of the IVT process satisfies ρ(h) = L∞(h)h−H for some H ∈ (0, 1],

where L∞ is a function which is slowly varying at infinity, i.e. for all a > 0 it holds

that limx→∞
L∞(ax)
L∞(x) = 1. Then,

(i) For all ε > 0, nH/2−ε(θ̂CL − θ0)
P→ 0, as n→∞.

(ii) Let J = dim(θ0) be the dimension of θ0 and denote by θ̂CLi and θ0,i the ith component

of the vectors θ̂CL and θ0, respectively. Then, for i = 1, 2, . . . , J , we have that for all

ε > 0, V ar
(
nH/2+ε(θ̂CLi − θ0,i)

)
→∞, as n→∞.

Theorem 3.4(i) implies that the convergence rate of θ̂CL cannot be slower than nH/2 for

H ∈ (0, 1]. Further, Theorem 3.4(ii) implies that if the convergence rate is faster than nH/2

it must necessarily be the case that the limiting random variable has an infinite variance.

We conjecture that nH/(H+1)(θ̂CL−θ0)
(d)→MY1+H for a matrix M , where Yα is an α-stable

random vector. Note that, for H ∈ (0, 1) it is the case H/(1 + H) ∈ (H/2, 1/2), meaning

that the conjectured convergence rate is faster than nH/2, but slower that
√
n. Our reason

for the conjecture has its roots in Theorem 3.5 below. First, we introduce a technical

assumption on the trawl function d, ensuring that we are in the long memory case.

Assumption 3.4 (Long memory). Assume that H ∈ (0, 1) and

1. d(−x) = g1(x)x−H−1, x > 0, where g1 is a function that is slowly varying at infinity.

2. d′(−x) = g2(x)x−H−2, x > 0, where g2 is a function that is slowly varying at infinity.

Remark 3.5. The key condition in Theorem 3.4, namely ρ(h) = L∞(h)h−H for some H ∈

(0, 1), is implied by Assumption 3.4.

Remark 3.6. The Gamma trawl function (Example 2.5) fulfils Assumption 3.4 with g1(x) =(
x−1 + α−1

)−H−1
and g2(x) = H+1

α

(
x−1 + α−1

)−H−2
.

Theorem 3.5. Suppose L′ ∼ Poi(ν) and that the parameters of the trawl function d are

known. Let the conditions from Theorem 3.2 hold, along with Assumptions 3.2 and 3.4.

Then,

nH/(1+H)(ν̂CL − ν0 −Rn)
d→ H(ν0)−1ν−1

0 Y1+H , n→∞,
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where H(ν0) is given as in Theorem 3.3, Yα is an α-stable random variable with character-

istic function

φYα(u) := E[exp(iuYα)] = exp
(
c|u|αΓ(2− α)

(
cos
(πα

2

)
− i · sgn(u) sin

(πα
2

)))
, u ∈ R,

(3.6)

and where Rn is given by

Rn = H(ν0)−1ν−1
0 n−1Sn(U),

with Sn(U) :=
∑n

i=1 (Ui − E[Ui]) denoting the de-meaned partial sum of the sequence U =

{Ui}ni=1, where Ui :=
∑K

k=1 g(X(i+k)∆, Xi∆) and g(X(i+k)∆, Xi∆) := E[L(A(i+k)∆\Ai∆)|X(i+k)∆, Xi∆].

Remark 3.7. The asymptotic behaviour of the remainder term Rn in Theorem 3.5 is decided

by a quite general function g of the pairs (Xi, Xi+k) and one can show that similar issues

arise in the more general case where L′ is integer-valued and the parameters in the trawl

function are estimated. The asymptotic behaviour of such general functions of the data

could possibly be studied using mixing conditions for partial sums with α-stable limits

(e.g. Jakubowski 1993) or by deriving Breuer-Major-like theorems (Breuer & Major 1983,

Nourdin et al. 2011) valid for IVT processes using Malliavin calculus for Poissonian spaces,

see Basse-O’Connor et al. (2020) for a related approach. We believe that especially this

latter route could be fruitful, but leave it for future work.

The proof of Theorem 3.5 relies on a result about the partial sums of the IVT process

X, which might be of independent interest. We, therefore, state it here.

Theorem 3.6. Suppose the Lévy basis L is non-negative, i.e. η(y) = 0 for y < 0, and let

the conditions from Theorem 3.2 hold, along with Assumptions 3.2 and 3.4. Then,

n−
1

1+H Sn(X)
d→ Y1+H , n→∞,

where Yα is an α-stable random variable with characteristic function (3.6).

Remark 3.8. Closely related results about partial sums of trawl processes have previously

been put forth in Doukhan et al. (2019) and Pakkanen et al. (2021) in the context of

a discrete-time trawl process under a standard asymptotic scheme (n → ∞) and in the

context of a continuous-time trawl process under an infill asymptotic sampling scheme

(δ → 0), respectively. In this paper, we consider n observations of the continuous-time

trawl process sampled on an equidistant δ-grid, Xδ, X2δ, . . . , Xnδ, where δ > 0 is fixed, and
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let n → ∞. In this sense, our setup is closer to the one in Doukhan et al. (2019). Indeed,

it can be shown that the law of (Xδ, X2δ, . . . , Xnδ) is equal to the law of (Y1, Y2, . . . , Yn),

where Y is an appropriately specified discrete-time trawl process in the sense of Doukhan

et al. (2019). Although this highlights a close connection between the long memory results

of Doukhan et al. (2019) and those presented in this section, the underlying assumptions

in the two approaches are different. Firstly, the assumptions on the marginal distribution

made in Doukhan et al. (2019) are different from ours. In particular, while Doukhan et al.

(2019) are not restricting the marginal distribution of the process to be infinitely divisible,

they do impose a restrictions on the size of the jumps of the Lévy basis, see Equation

(3.36) in Doukhan et al. (2019). Secondly, our assumptions on the correlation structure

of the process are slightly different than the assumptions made in Doukhan et al. (2019).

In particular, besides polynomial decay, we also allow for a slowly varying function to

enter the correlation structure, compare Assumption 3.4 with Equation (2.12) in Doukhan

et al. (2019). For these reasons, although our setting is closely related to that in Doukhan

et al. (2019), we cannot use their results directly. We can, however, follow similar lines of

arguments as done in Doukhan et al. (2019), and this is what we do in the proof of Theorem

3.6, given in the Appendix.

3.2 Information criteria for model selection

Takeuchi’s Information Criterion (Takeuchi 1976) is an information criterion, which can

be used for model selection in the case of misspecified likelihoods. Varin & Vidoni (2005)

adapted the ideas of Takeuchi to the composite likelihood framework and provided argu-

ments for using the composite likelihood information criterion (CLAIC)

CLAIC = lLC(θ̂CL;x) + tr
{
V̂ (θ̂CL)Ĥ(θ̂CL)−1

}
as a basis for model selection, where tr{M} is the trace of the matrix M . Specifically, Varin

& Vidoni (2005) suggest picking the model that maximizes CLAIC.

Analogous to the usual Bayesian/Schwarz Information Criterion (BIC, Schwarz 1978),

we also suggest the alternative composite likelihood information criterion (Gao & Song

2010)

CLBIC = lCL(θ̂CL;x) +
log(n)

2
tr
{
V̂ (θ̂CL)Ĥ(θ̂CL)−1

}
,

where n is the number of observations of the data series x. Note that the various models

we consider are generally non-nested, whereas most research on model selection using the
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composite likelihood approach has considered nested model (Ng & Joe 2014). An analysis

of the properties of CLAIC and CLBIC in the non-nested case in the spirit of, e.g., Vuong

(1989) would be very valuable but is beyond the scope of the present article.

4 Forecasting integer-valued trawl processes

Let Ft = σ((Xs)s≤t) be the sigma-algebra generated by the history of the IVT process X up

until time t and let h > 0 be a forecast horizon. We are interested in the predictive distribu-

tion of the IVT process, i.e. the distribution of Xt+h|Ft. However, since the IVT process X

is in general non-Markovian, the distribution of Xt+h|Ft is highly intractable. This problem

is similar to the one encountered when considering the likelihood of observations of X, cf.

Section 3.1. For this reason, we propose to approximate the distribution of Xt+h|Ft by

Xt+h|Xt, i.e. instead of conditioning on the full information set, we only condition on the

most recent observation. Thus, our proposed solution to the forecasting problem is akin to

the proposed solution to the problem of the intractability of the full likelihood. That is,

instead of considering the full distribution of Xt+h|Ft, we use the conditional “pairwise”

distribution implied by Xt+h|Xt.

To fix ideas, let t ∈ R and h > 0, and consider the random variables Xt = L(At) =

L(At ∩ At+h) + L(At \ At+h) and Xt+h = L(At+h) = L(At ∩ At+h) + L(At+h \ At). The

goal is to find the conditional distribution of Xt+h given Xt. Note that L(At ∩ At+h) and

L(At+h \At) are independent random variables. Further, since L(At+h \At) is independent

of Xt with a known distribution, we only need to determine the distribution of L(At∩At+h)

given Xt. The following lemma characterises the conditional distribution of L(At ∩At+h).

Lemma 4.1. Let x ∈ N ∪ {0} and l ∈ {0, 1, . . . , x}, then

P(L(At ∩At+h) = l|Xt = x) =
P(L(At \At+h) = x− l)P(L(At ∩At+h) = l)

P(Xt = x)
.

Example 4.1. In the case when L′ ∼ Poi(ν), we get the Binomial distribution:

L(At ∩At+h)|Xt ∼ Bin

(
Xt,

Leb(A0 ∩Ah)

Leb(A0)

)
,

which implies that E(L(At ∩At+h)|Xt) = XtLeb(A0 ∩Ah)(Leb(A0))−1.

Example 4.2. In the case when L′ ∼ NB(m, p), we get the Dirichlet-multinomial distri-

bution:

L(At ∩At+h)|Xt ∼ Dirichlet−multinomial(Xt, α1, α2),
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where α1 = Leb(A0 \Ah)m,α2 = Leb(A0 ∩Ah)m) and α1 +α2 = Leb(A0)m. For x− l, x ∈

{0, . . . , Xt}, the corresponding probability mass function is given by

P(L(At ∩At+h) = l|Xt = x)

=

(
x

l

)
Γ(Leb(A0 \Ah)m+ x− l)

Γ(Leb(A0 \Ah)m)

Γ(Leb(A0 ∩Ah)m+ l)

Γ(Leb(A0 ∩Ah)m)

Γ(Leb(A0)m)

Γ(Leb(A0)m+ x)
, x ≥ l ≥ 0,

where
(
x
l

)
= x!

l!(x−l)! is the binomial coefficient. This implies that, as before, E(L(At ∩

At+h)|Xt) = XtLeb(A0 ∩Ah)(Leb(A0))−1.

Using Lemma 4.1, we can derive the distribution of Xt+h|Xt, which can be used for

probabilistic forecasting. The details for non-negative-valued Lévy bases are given in the

following proposition.

Proposition 4.1. Let the IVT process X be given by (2.4) and let Assumptions 2.1 and

2.2 hold. Suppose further, that the Lévy basis L is non-negative, i.e. η(y) = 0 for y < 0.

Now,

P(Xt+h = xt+h|Xt = xt) =

min(xt,xt+h)∑
c=0

P(L(At+h \At) = xt+h − c)P(L(At ∩At+h) = c|Xt = xt).

The following corollaries give the specific details for our two main specifications for the

marginal distribution of Xt, studied in Examples 4.1 and 4.2 above.

Corollary 4.1. If L′ ∼ Poi(ν), then

P(Xt+h = xt+h|Xt = xt)

=

min(xt,xt+h)∑
c=0

(νLeb(Ah \A0))xt+h−c

(xt+h − c)!
e−νLeb(Ah\A0)

(
xt
c

)(
Leb(Ah ∩A0)

Leb(A0)

)c(
1− Leb(Ah ∩A0)

Leb(A0)

)xt−c
.

Corollary 4.2. If L′ ∼ NB(m, p), then

P(Xt+h = xt+h|Xt = xt)

=

min(xt,xt+h)∑
c=0

(1− p)Leb(Ah\A0)mpxt+h−c
(
xt
c

)
1

(xt+h − c)!

· Γ(Leb(Ah \A0)m+ xt+h − c)
Γ(Leb(Ah \A0)m)

Γ(Leb(Ah \A0)m+ xt − c)
Γ(Leb(Ah \A0)m)

Γ(Leb(Ah ∩A0)m+ c)

Γ(Leb(Ah ∩A0)m)

Γ(Leb(A0)m)

Γ(Leb(A0)m+ xt)
.

If the parameters of an IVT process X with Poisson or Negative Binomial marginal dis-

tribution are known, we can use Corollary 4.1 or 4.2, and the calculations for the Lebesgue

measures of the trawl sets given in Section 2.2, for computing the predictive PMFs and thus
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for forecasting. When the true parameter values are unknown, they can be estimated using

the MCL estimator suggested above, and plugged into the formulas to arrive at estimates

of the predictive PMFs.

5 Monte Carlo simulation experiments

Using simulations, we examine the finite sample properties of the composite likelihood-

based estimation procedure and of the model selection procedure. Details are available in

the Supplementary Material, see Section S6. Here we summarise our main findings.

We consider six data-generating processes (DGPs): the Poisson-Exponential (P-Exp),

the Poisson-Inverse Gaussian (P-IG), the Poisson-Gamma (P-Gamma), the Negative Binomial-

Exponential (NB-Exp), the Negative Binomial-Inverse Gaussian (NB-IG), and the Negative

Binomial-Gamma (NB-Gamma) IVT models. The parameter choices used in the simulation

study, see Table S1 in the Supplementary Material, are motivated by the estimates of our

empirical study.

We compare the finite sample properties of the MCL estimator with the GMM estimator,

which has been used in the existing literature. Figure 2 plots the root median squared error

(RMSE) of the MCL estimator of a given parameter divided by the RMSE of the GMM

estimator of the same parameter for the six DGPs. Thus, numbers smaller than one indicate

that the MCL estimator has a lower RMSE than the GMM estimator and vice versa for

numbers larger than one. We see that for most parameters in most of the DGPs, the MCL

estimator outperforms the GMM estimator substantially; indeed, in many cases, the RMSE

of the MCL estimator is around 50% that of the GMM estimator. The exception seems to

be the trawl parameters, i.e. the parameters controlling the autocorrelation structure, in

the case of the Gamma and IG trawls, where the GMM estimator occasionally performs on

par with the MCL estimator. However, in most cases, it appears that the MCL estimator

is able to provide large improvements over the GMM estimator.

In the Supplementary Material (Section S6.3), we also examine how close the finite

sample distribution of the MCL estimator is to the true (Gaussian) asymptotic limit, as

presented in Theorem 3.3. We find that the Gaussian approximation is very good for the

case of the parameters governing the marginal distribution, as well as for the parameter λ

for the case of IVTs with exponential trawl functions. When there are two parameters in the

trawl function (δ and γ in the case of the IG trawl and H and α in the case of the Gamma
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Figure 2: Root median square error (RMSE) of the MCL estimator (3.3) divided by the

RMSE of the GMM estimator. The underlying IVT process Xt is simulated on the grid

t = ∆, 2∆, . . . , n∆, with ∆ = 0.10, see Table S1 for the values of the parameters used in the

simulations. For the Poisson-Exp and NB-Exp models we set K = 1 in Equations (S3.1)

and (3.3); for the other models we set K = 10.

trawl), however, the Gaussian distribution can be a poor approximation to the finite sample

distribution of the MCL estimator in case of the trawl parameters. This indicates that for

constructing confidence intervals or testing hypotheses on these parameters, it might be

useful to consider bootstrap approaches instead of relying on the Gaussian distribution.
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Table 1: Model selection results: bid-ask spread data

Model: Poisson-Exponential Poisson-IG Poisson-Gamma NB-Exponential NB-IG NB-Gamma

CL −244125.5 −242885.2 −242835.8 −216363.9 −216318.1 −216313.5

CLAIC −244125.7 −242899.1 −242855.8 −216364.0 −216318.5 −216313.9

CLBIC −244126.4 −242942.8 −242918.8 −216364.1 −216319.7 −216315.1

Composite likelihood and information criteria values for fitting the A bid-ask spread data on May 4, 2020,

shown in the top plot of Figure 3, calculated using six different models as given in the top row of the table

using K = 10. The maximum value for a given criteria (i.e. row-wise) is given in bold. The parameter

estimates corresponding to the fits are given in Table 2.

6 Application to financial bid-ask spread data

In this section, we apply the IVT modelling framework to the bid-ask spread of equity prices.

The bid-ask spread has been extensively studied in the market microstructure literature,

see, e.g., Huang & Stoll (1997) and Bollen et al. (2004). An application similar to the one

studied in this section was considered in Barndorff-Nielsen et al. (2014). To illustrate the

use of the methods proposed in this paper, we study the time series of the bid-ask spread,

measured in U.S. dollar cents, of the Agilent Technologies Inc. stock (ticker: A) on a single

day, May 4, 2020. We cleaned the data and sampled the data in 5s intervals, leading to

n = 3961 observations, see Section S7 in the Supplementary Material for details.

Let st be the bid-ask spread level at time t, the time series of which is displayed in the

top panel of Figure 3. Since the minimum spread level in the data is one tick (one dollar

cent), we work on this time series minus one, i.e on xt = st−1. We can now apply our model

selection method. We first inspect the empirical autocorrelation of the data (shown in the

right panels of Figure 3) which shows evidence of a very persistent process; we, therefore,

set K to a moderately large value to accurately capture the dependence structure of the

data. Here, we choose K = 10 but the results are robust to other choices.

Using this setting, we calculated the maximized composite likelihood value, CL, and

the two information criteria, CLAIC and CLBIC, obtained for these data using the six

models considered in Section 5. The results are shown in Table 1. The table shows that

the NB-Gamma model is the preferred model on all three criteria, while the second-best

model is the NB-IG model.

To further examine the fit of the various models, the bottom six rows of Figure 3 contain
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Table 2: Estimation results: bid-ask spread data

DGP ν m p λ δ γ H α

P-Exp 28.9319 4.0399

(0.6644) (0.0904)

P-IG 294.9102 1.5293 0.0371

(28.2715) (0.0424) (0.0040)

P-Gamma 83.8197 0.6123 0.0523

(−) (−) (−)

NB-Exp 6.4273 0.6665 1.7835

(0.9324) (0.0215) (0.1349)

NB-IG 7.7104 0.6675 1.7816 0.8292

(1.0111) (0.0238) (0.4436) (0.2094)

NB-Gamma 7.7336 0.6675 1.7020 0.7897

(1.1316) (0.0260) (0.7365) (0.3363)

Parameter estimates (standard errors in parentheses) from the six different DGPs when applied to the bid-

ask spread data of A on May 4, 2020 using the MCL estimator with K = 10. The standard errors have

been obtained using the simulation-based approach to estimating the asymptotic covariance matrix of the

MCL estimator, see Section S4 in the Supplementary Material. Since our asymptotic theory does not cover

the long memory case, no standard deviations are reported for the P-Gamma model. See Figure 3 for the

resulting fits of the models to the empirical distribution and autocorrelation.

22



10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00

0

20

0 5 10 15 20 25 30

0

0.1

0.2

1 5 10 15 20 25 30

0

0.5

1

0 5 10 15 20 25 30

0

0.1

0.2

1 5 10 15 20 25 30

0

0.5

1

0 5 10 15 20 25 30

0

0.1

0.2

1 5 10 15 20 25 30

0

0.5

1

0 5 10 15 20 25 30

0

0.1

0.2

1 5 10 15 20 25 30

0

0.5

1

0 5 10 15 20 25 30

0

0.1

0.2

1 5 10 15 20 25 30

0

0.5

1

0 5 10 15 20 25 30

0

0.1

0.2

1 5 10 15 20 25 30

0

0.5

1

Figure 3: Analysis of the A spread level on May 4, 2020. Top: The data (spread level in

cents) from 10:30AM to 4:00PM sampled every 5 seconds. The vertical red line separates the

initial in-sample period (left) from the out-of-sample period (right), used in the forecasting

exercise in Section 6.1. The bottom six rows show the empirical autocorrelation (left; blue

bars) and the empirical marginal distribution of the spread level (right; blue bars) together

with the fits from the six IVT models (red lines). The parameters of the models have been

estimated using the MCL estimator (3.3) with K = 10, see Table 2.

the empirical autocorrelation (left; blue bars) and the empirical marginal distribution of the

spread level (right; blue bars). Each respective row also shows the fit of one of the six models

considered in Table 1; the parameter estimates corresponding to the models are given in

Table 2. The fit of the models shown in the bottom six panels of Figure 3 and the selection

criteria of Table 1 indicate that the models based on the Negative Binomial distribution are
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preferred to the models based on the Poisson distribution. We conclude that, for this data

series, the Poisson distribution is unable to accurately describe the marginal distribution

of the spread level sampled every 5 seconds. That the Gamma and IG trawl functions are

preferred to the Exponential trawl function indicates that the Exponential autocorrelation

function is not flexible enough to capture the correlation structure of the data. By both

visual inspection of the autocorrelations in Figure 3 and the selection criteria of Table 1,

we conclude that the NB-Gamma model is the preferred model for these data. As shown

in Table 2, this model has Ĥ = 1.70 (s.e. 0.74), implying that the model possesses a slowly

decaying autocorrelation structure, albeit not the long memory property.

6.1 Forecasting the spread level

This section illustrates the use of IVT models for forecasting, as outlined in Section 4. The

aim is to forecast the future spread level of the A stock on May 4, i.e. the data studied above

and plotted in the top panel of Figure 3. We set aside the first n1 = 3221 observations as an

“in-sample period” for initial estimation of the parameters of the models, see the vertical

red line in the top panel of Figure 3 for the placement of this split. We then forecast the

spread level from 5 seconds until 100 seconds into the future, using the approach presented

in Section 4. That is, we forecast xn1+1, xn1+2, . . . , xn1+20 given the current value xn1 .

After this, we update the in-sample data set with one additional observation so that this

sample now contains n2 = n1 + 1 = 3222 observations. Then we again forecast the next

20 observations, xn2+1, xn2+2, . . . , xn2+20, given xn2 . We repeat this procedure until the

end of the sample, which yields noos = n− n1 − 20 = 720 out-of-sample forecasts for each

forecast horizon. To ease the computational burden, we only re-estimate the model every

24 periods (i.e. every 2 minutes).

To evaluate the forecasts, we consider four different loss metrics. The first two, the mean

absolute error (MAE) and the mean squared error (MSE), are often used in econometric

forecasting studies of real-valued data (e.g. Elliott & Timmermann 2016). For a forecast

horizon h = 1, 2, . . . , 20, define the mean absolute forecast error,

MAE(h) =
1

noos

n−(20−h)∑
i=n1+h

|xi − x̂i|i−h|,

where x̂i|i−h is the h-step ahead forecast of xi, constructed using the information available

up to observation i− h. That is, x̂i|i−h is the point forecast of xi coming from a particular
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IVT model, such as the conditional mean, median, or mode. In what follows, we set x̂i|i−h

equal to the estimated conditional mean, i.e. we set x̂i|i−h =
∑M

k=0 P̂(Xi|i−h = k)k, where

M ≥ 1 is a large (cut-off) number and P̂ is the estimated predictive density of the IVT

model.4 Here, we set M = 60 but the results are very robust to other choices. Define also

the mean squared forecast error

MSE(h) =
1

noos

n−(20−h)∑
i=n1+h

(xi − x̂i|i−h)2.

We consider two additional loss metrics, designed to directly evaluate the accuracy of the

estimated predictive PMF P̂, which is arguably more relevant to the problem at hand than

MAE and MSE. The first is the logarithmic score (Elliott & Timmermann 2016, p. 30),

logS(h) =
1

noos

n−(20−h)∑
i=n1+h

− log P̂(Xi|i−h = xi),

where xi is the realized outcome. The second is the ranked probability score (RPS; Epstein

1969),

RPS(h) =
1

noos

n−(20−h)∑
i=n1+h

M∑
k=0

(F̂i|i−h(k)− I{xi≤k})
2,

where F̂i|i−h(k) =
∑k

j=0 P̂(Xi|i−h = j) is the estimated cumulative distribution function

of Xi|xi−h coming from a given model and I{xi≤k} is the indicator function of the event

{xi ≤ k}.

Figure 4 shows the four different forecast loss metrics for the preferred NB-Gamma

IVT model as a ratio of the forecasting loss of a given benchmark model in the out-

of-sample forecasting exercise described above. The numbers plotted in the figure are

Loss(h)NB−Gamma/Loss(h)benchmark, where “Loss” denotes one of the four loss metrics

given above and h = 1, 2, . . . , 20 denotes the forecasting horizon. Thus, numbers less than

one favour the NB-Gamma model compared to the benchmark model and vice versa for

numbers greater than one. Initially, we choose the Poisson-Exponential IVT process as the

benchmark model (Figure 4, first column); as remarked above, this process is identical to

the Poissonian INAR(1) model, which is often used for forecasting count-valued data (e.g.

Freeland & McCabe 2004, McCabe & Martin 2005, Silva et al. 2009). It is evident from

the figure that losses from the NB-Gamma model are smaller than those from the Poisson-

Exponential model for practically all forecast horizons and loss metrics. In the case of the

4Letting x̂i|i−h be the conditional mode, instead of the conditional mean, produces results similar to

those reported here. These results are reported in the Supplementary Material, Section S7.2.
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two most relevant loss functions for evaluating the predictive distribution, the logS and

RPS, the reduction in losses are substantial for all forecast horizon, on the order of 20%.

To assess whether these loss differences are also statistically significant, we perform

the Diebold-Mariano test of superior predictive ability (Diebold and Mariano 1995). The

null hypothesis of the statistical test is that the two models have equal predictive power,

while the alternative hypothesis is that the NB-Gamma model provides superior forecasts

compared to the benchmark model. In Figure 4, a circle (asterisk) denotes rejection of

the Diebold-Mariano test at a 5% (1%) level. The test rejects the null hypothesis of equal

predictive ability for almost all forecast horizons and loss metrics at a 1% level.

To investigate whether the increased forecast performance of the NB-Gamma model

comes from having a more flexible marginal distribution than the Poisson-Exponential

benchmark model (Negative Binomial vs. Poisson marginals) or from having a more flexible

correlation structure (polynomial decay vs. exponential decay) or both, we compare the

forecasts from NB-Gamma model to those coming from a Poisson-Gamma model and from

an NB-Exp model. These results are given in the second and third columns of Figure 4,

respectively. From the second column, we see that the NB-Gamma model outperforms the

Poisson-Gamma model considerably, especially for the shorter forecast horizons, indicating

that it is important to use a model with Negative Binomial marginals when forecasting these

data. From the third column of the figure, we see that for the shorter forecast horizons, the

NB-Exp model performs on par with the NB-Gamma model, but for the longer forecast

horizons, the NB-Gamma model is superior. Hence, when forecasting, it also appears to

be important to specify a model with an accurate autocorrelation structure, especially for

longer forecasting horizons.

7 Conclusion

This paper has developed likelihood-based methods for the estimation, inference, model

selection, and forecasting of IVT processes. We proved the consistency and asymptotic

normality of the MCL estimator and provided the details on how to conduct feasible in-

ference and model selection. We also developed a pairwise approach to approximating the

conditional predictive PMF of the IVT process, which can be used for forecasting integer-

valued data. All these methods are implemented in a freely available software package

written in the MATLAB programming language.
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Figure 4: Forecasting the spread level of the A stock on May 4, 2020. Four different

loss metrics (row-wise, as indicated above each plot) and twenty forecast horizons, h =

1, 2, . . . , 20. The numbers plotted are relative average losses of the NB-Gamma forecasting

model, compared with the Poisson-Exponential model (first column), the Poisson-Gamma

model (second column), and the NB-Exponential model (third column), over noos = 720

out-of-sample forecasts. A circle above the bars indicates rejection null of equal forecasting

performance between the two models, against the alternative that the NB-Gamma model

provides superior forecasts, using the Diebold-Mariano (Diebold and Mariano 1995) test at

a 5% level; an asterisk denotes rejection at a 1% level.
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In a simulation exercise, we demonstrated the good properties of the MCL estimator

compared to the often-used method-of-moments-based estimator. Indeed, the reduction

in root median squared error of the MCL estimator was in many cases more than 50%

compared to the corresponding GMM estimator.

In an empirical application to financial bid-ask spread data, we illustrated the model

selection procedure and found that the Negative Binomial-Gamma IVT model provided

the best fit for the data. Using the forecast tools developed in the paper, we saw that this

model outperformed the simpler Poisson-Exponential IVT model considerably, resulting in

a reduction in forecast loss on the order of 20% for most forecast horizons. We demon-

strated that most of the superior forecasting performance came from accurate modelling of

the marginal distribution of the data; however, we also found that it was beneficial to care-

fully model the autocorrelation structure, especially for longer forecasting horizons. These

findings highlight the strengths of the IVT modelling framework, where the marginal dis-

tribution and autocorrelation structure can be modelled independently in a flexible fashion.
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A Mathematical proofs

We first give an alternative representation of the Lévy basis L, underlying the IVT process

X. From the construction of the IVT process in Section 2 in the main article, it is clear

that the distribution of L is representable as a compound Poisson distribution. That is, for

a Borel set B, we can write

Pθ(L(B) = x) =
∞∑
q=0

Pθ

(
q∑
i=1

Yi = x, Ñ(B) = q

)

=
∞∑
q=0

Pθ

(
q∑
i=1

Yi = x

)
Pθ(Ñ(B) = q), x ∈ Z, (A.1)

where Yi are iid integer-valued random variables with probability mass function η̃(y) :=

η(y)∑∞
y=−∞ η(y)

, i.e. Pθ(Yi = y) = η̃(y), where η is the Lévy measure given in the construction

of the IVT process in Equation. Likewise, Ñ is a Poisson random measure, given by

Ñ(dx, ds) =

∫ ∞
−∞

N(dy, dx, ds),

with an underlying intensity ν̃ :=
∑∞

y=−∞ η(y). The random variables Yi are independent

of the random measure Ñ . Intuitively, we have decomposed the event that the sum of the
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points in the set B equals x (i.e. {L(B) = x}) into the intersection of the two events that

there are q individual points in B (i.e. {Ñ(B) = q}) and the “sizes” of these q points add

up to x (i.e. {
∑q

i=1 Yi = x}). With this construction, we have

Pθ(Ñ(B) = q) =
(ν̃Leb(B))q

q!
e−ν̃Leb(B), q = 0, 1, 2, . . . . (A.2)

We will use this alternative representation of L in our proofs below.

Proof of Theorem 3.1. Let m > 0 and define Nm = Ñ(Am ∩ A) as the Poisson random

variable, which counts the number of ‘events’ in the set Am ∩ A0. From (A.2), we know

that there exists a constant ν̃ > 0 such that

P(Nm = 0) = e−ν̃Leb(Am∩A0)

and, therefore,

P(Nm 6= 0) = 1− P(Nm = 0) = 1− e−ν̃Leb(Am∩A0) = ν̃Leb(Am ∩A0) + o(Leb(Am ∩A0)),

(A.3)

as m→∞.

Let G ∈ F0
−∞ and H ∈ F∞m be such that P(G),P(H) > 0, and write, using the law of

total probability,

|P(H ∩G)− P(H)P(G)| = |P(H|G)− P(H)| · P(G)

= |P(H|G,Nm = 0)P(Nm = 0|G) + P(H|G,Nm 6= 0)P(Nm 6= 0|G)

− P(H|Nm = 0)P(Nm = 0)− P(H|Nm 6= 0)P(Nm 6= 0)| · P(G)

≤ (D1,m +D2,m) · P(G),

where

D1,m := |P(H|G,Nm = 0)P(Nm = 0|G)− P(H|Nm = 0)P(Nm = 0)|,

D2,m := |P(H|G,Nm 6= 0)P(Nm 6= 0|G)− P(H|Nm 6= 0)P(Nm 6= 0)|.

We seek to bound these expressions. For D1,m, we use the fact that on the event {Nm = 0}

the two events G and H are independent. For both D1,m and D2,m, we will use that the

probability of the complementary event {Nm 6= 0} is “small enough”, cf. Equation (A.3).

For the first of the terms, we get, using conditional independence of H and G and (A.3),

D1,m = P(H|Nm = 0) · |P(Nm = 0|G)− P(Nm = 0)|
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≤ |P(Nm = 0|G)− P(Nm = 0)|

≤ |1− P(Nm = 0|G)|+ |1− P(Nm = 0)|

= |1− P(Nm = 0|G)|+ ν̃Leb(Am ∩A0) + o(Leb(Am ∩A0)),

and, using the Bayes formula and then the law of total probability,

|1− P(Nm = 0|G)| = |1− P(G|Nm = 0)P(Nm = 0)P(G)−1|

= P(G)−1|P(G)− P(G|Nm = 0)P(Nm = 0)|

= P(G)−1|P(G|Nm = 0)P(Nm = 0) + P(G|Nm 6= 0)P(Nm 6= 0)

− P(G|Nm = 0)P(Nm = 0)|

= P(G)−1|P(G|Nm 6= 0)P(Nm 6= 0)|

≤ P(G)−1P(Nm 6= 0)

= P(G)−1(ν̃Leb(Am ∩A0) + o(Leb(Am ∩A0))).

We conclude that

D1,m · P(G) ≤ 2ν̃Leb(Am ∩A0) + o(Leb(Am ∩A0)).

For the second term above, we get

D2,m = |P(H|G,Nm 6= 0)P(Nm 6= 0|G)− P(H|Nm 6= 0)P(Nm 6= 0)|

= |P(H|G,Nm 6= 0)P(Nm 6= 0|G)− P(H|G,Nm 6= 0)P(Nm 6= 0)

+ P(H|G,Nm 6= 0)P(Nm 6= 0)− P(H|Nm 6= 0)P(Nm 6= 0)|

≤ E1,m + E2,m,

where

E1,m := |P(H|G,Nm 6= 0)P(Nm 6= 0|G)− P(H|G,Nm 6= 0)P(Nm 6= 0)|,

E2,m := |P(H|G,Nm 6= 0)P(Nm 6= 0)− P(H|Nm 6= 0)P(Nm 6= 0)|.

Now, by (A.3),

E2,m = P(Nm 6= 0)|P(H|G,Nm 6= 0)− P(H|Nm 6= 0)|

≤ P(Nm 6= 0)

= ν̃Leb(Am ∩A0) + o(Leb(Am ∩A0)).
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Also,

E1,m = |P(H|G,Nm 6= 0)P(Nm 6= 0|G)− P(H|G,Nm 6= 0)P(Nm 6= 0)|

= P(H|G,Nm 6= 0) · |P(Nm 6= 0|G)− P(Nm 6= 0)|

≤ |P(Nm 6= 0|G)− P(Nm 6= 0)|

≤ P(Nm 6= 0|G) + P(Nm 6= 0).

Using Bayes formula, we can write

P(Nm 6= 0|G) = P(G|Nm 6= 0)P(Nm 6= 0)P(G)−1

≤ P(Nm 6= 0)P(G)−1

so that, from (A.3),

E1,m ≤ (1 + P(G)−1)(ν̃Leb(Am ∩A0) + o(Leb(Am ∩A0))).

We conclude that

D2,m · P(G) ≤ 3ν̃Leb(Am ∩A0) + o(Leb(Am ∩A0)).

Taking it all together, we have that

|P(H ∩G)− P(H)P(G)| ≤ (D1,m +D2,m) · P(G)

≤ 5ν̃Leb(Am ∩A0) + o(Leb(Am ∩A0)),

implying, since G and H were arbitrary, that (taking supremums)

αm ≤ 5ν̃Leb(Am ∩A0) + o(Leb(Am ∩A0)),

which implies that αm ≤ O(Leb(Am ∩A0)).

To finish the proof, we show that we also have αm ≥ O(Leb(Am ∩ A0)). Letting

x1, x2 ∈ Z and defining the events H̃ := {X0 = x1} and G̃ := {Xm = x2}, the results and

the arguments in the proof of Lemma A.1 imply that

|P(H̃ ∩ G̃)− P(H̃)P(G̃)| = O(Leb(Am ∩A0)), m→∞.

Since, clearly, H̃ ∈ F0
−∞ and G̃ ∈ F∞m , we conclude that αm = supH∈F0

−∞,G∈F∞m |P(H ∩

G)− P(H)P(G)| ≥ |P(H̃ ∩ G̃)− P(H̃)P(G̃)| = O(Leb(Am ∩A0)).
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Proof of Proposition 3.1. When ν(y) = 0 for y < 0 we have Pθ(L(A(i+k)∆ ∩ Ai∆) = c) = 0

for c < 0. Further, since the maximal amount of events in L(A(i+k)∆ ∩ Ai∆) is bounded

by the number of events in xt+k and xt (no negative values in the trawl sets), we also have

Pθ(L(A(i+k)∆ ∩ Ai∆) = c) = 0 for c > min{xt+k, xt}. This, together with the discussion

of the decomposition of trawl sets in Section 3.1.1 (cf. Figure S1 in the Supplementary

Material), and the law of total probability implies that

f(xi+k,xi; θ) := Pθ
(
X(i+k)∆ = xi+k, Xi∆ = xi

)
=

∞∑
c=−∞

Pθ
(
X(i+k)∆ = xi+k, Xi∆ = xi|L(A(i+k)∆ ∩Ai∆) = c

)
· Pθ

(
L(A(i+k)∆ ∩Ai∆) = c

)
=

max{xi,xi+k}∑
c=0

Pθ
(
L(A(i+k)∆ \Ai∆) = xi+k − c

)
Pθ
(
L(Ai∆ \A(i+k)∆) = xi − c

)
· Pθ

(
L(A(i+k)∆ ∩Ai∆) = c

)
,

as we wanted to show.

Proof of Theorem 3.2. Due to the stationarity and ergodicity of the IVT processes con-

sidered in this paper, the normalized log-composite likelihood function will converge in

probability to its population counterpart, i.e.

Qn(θ) :=
1

n
lCL(θ;X) =

1

n

K∑
k=1

n−k∑
i=1

log f(X(i+k)∆, Xi∆; θ)
P→ E

[
K∑
k=1

log f(Xk∆, X0; θ)

]
=: Q(θ),

as n→∞. By the identifiability condition (3.5), and the fact that the pairwise likelihoods

are indeed proper (bivariate) likelihoods, the information inequality implies that Q(θ) is

uniquely maximized at θ = θ0 (Lemma 2.2 in Newey & McFadden 1994, p. 2124). The

result now follows from Theorem 4.1 and Theorem 4.3 in Wooldridge (1994).

Proof of Theorem 3.3. Let

sn(θ) :=
∂

∂θ
lCL(θ;X) =

K∑
k=1

n−k∑
i=1

∂

∂θ
log f(X(i+k)∆, Xi∆; θ)

denote the score function and consider the estimating equation related to the MCL estimator

θ̂ = θ̂CL, namely sn(θ̂) = 0. Using this equation, we Taylor expand sn(θ̂) around the true

parameter vector θ0 to get

sn(θ0) +
∂

∂θ′
sn(θ̄)(θ̂ − θ0) = 0,
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where θ̄ lies on the line segment between θ0 and θ̂ and ∂
∂θ′ sn(θ̄) is shorthand for ∂

∂θ′ sn(θ)|θ=θ̄.

Rearranging this equation and multiplying through by
√
n, we get

√
n(θ̂ − θ0) = −

(
1

n

∂

∂θ′
sn(θ̄)

)−1

n−1/2sn(θ0).

Stationarity and ergodicity, along with consistency of θ̂ due to Theorem 3.2, implies that

− 1
n
∂
∂θ′ sn(θ̄)′

P→ H(θ0) as n → ∞. To prove the result, we thus need to show that

n−1/2sn(θ0)
(d)→ N(0, V (θ0)) as n → ∞. By the mixing properties of the IVT process

X, given in Theorem 3.1, it is enough to show that E[sn(θ0)] = 0 and V ar
(
n−1/2sn(θ0)

)
→

V (θ0) as n→∞ (e.g. Davidson 1994, Corollary 24.7, p. 387).5

To show this, we consider, for simplicity, the case where θ is a scalar. The vector case

is similar, but with slightly more involved notation. First note that, clearly,

E [sn(θ0)] = E
[
∂

∂θ
lCL(θ;X)|θ=θ0

]
= 0.

Also

V ar (sn(θ0)) = V ar

(
∂

∂θ
lCL(θ;X)|θ=θ0

)
= V ar

(
K∑
k=1

n−k∑
i=1

∂

∂θ
log f(Xi∆, X(i+k)∆; θ)

∣∣
θ=θ0

)

=

K∑
k=1

n−k∑
i=1

V ar

(
∂

∂θ
log f(Xi∆, X(i+k)∆; θ)

∣∣
θ=θ0

)

+
K∑
k=1

K∑
k′=1

∑
i 6=j

Cov

(
∂

∂θ
log f(Xi∆, X(i+k)∆; θ)

∣∣
θ=θ0

,
∂

∂θ
log f(Xj∆, X(j+k′)∆; θ)

∣∣
θ=θ0

)
.

Due to stationarity, the first sum is O(n) as n→∞. To prove the proposition, we, therefore,

investigate the second sum. With slight abuse of notation, let ∂
∂θ log f(Xi∆, X(i+k)∆; θ)

∣∣
θ=θ0

be denoted by ∂
∂θ log f(Xi∆, X(i+k)∆; θ0). For l, k, k′ ≥ 1, define also the joint probability

mass functions

fl(x1, x2, x3, x4; k, k′, θ) := Pθ
(
X0 = x1, Xk∆ = x2, Xl∆ = x3, X(l+k′)∆ = x4

)
, x1, x2, x3, x4 ∈ Z.

and

fk(x1, x2) := Pθ (X0 = x1, Xk∆ = x2) , x1, x2 ∈ Z.

5Note that the crucial condition (c’) of Corollary 24.7 in Davidson (1994) relies on the IVT process X

being mixing of size φ0 for some φ0 > 1. This rules out the long memory processes, as shown in Theorem

3.1.
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Now, using that

E
[
∂

∂θ
log f(Xi∆, X(i+k)∆; θ0)

]
= 0,

we have, for all i, j, k, k′,

Cov

(
∂

∂θ
log f(Xi∆, X(i+k)∆; θ0),

∂

∂θ
log f(Xj∆, X(j+k′)∆; θ0)

)
= E

[
∂

∂θ
log f(Xi∆, X(i+k)∆; θ0)

∂

∂θ
log f(Xj∆, X(j+k′)∆; θ0)

]
=

∞∑
x1=−∞

∞∑
x2=−∞

∞∑
x3=−∞

∞∑
x4=−∞

∂

∂θ
fk(x1, x2; θ0)

∂

∂θ
fk′(x3, x4; θ0)

f|i−j|(x1, x2, x3, x4; k, k′, θ0)

fk(x1, x2; θ0)fk′(x3, x4; θ0)

=
∞∑

x1=−∞

∞∑
x2=−∞

∞∑
x3=−∞

∞∑
x4=−∞

∂

∂θ
fk(x1, x2; θ0)

∂

∂θ
fk′(x3, x4; θ0)

(
f|i−j|(x1, x2, x3, x4; k, k′, θ0)

fk(x1, x2; θ0)fk′(x3, x4; θ0)
− 1

)
,

where the last equality follows because e.g.,

∞∑
x1=−∞

∞∑
x2=−∞

∂

∂θ
fk(x1, x2; θ0) =

∂

∂θ

∞∑
x1=−∞

∞∑
x2=−∞

fk(x1, x2; θ0) =
∂

∂θ
1 = 0.

Now, Lemma A.1 below shows that(
fn(x1, x2, x3, x4; k, k′, θ0)

fk(x1, x2; θ0)fk′(x3, x4; θ0)
− 1

)
= O(Leb(An∆ ∩A0)), n→∞,

from which we conclude, using Equation (2.5), i.e. Leb(An∆ ∩ A0) = ρ(n∆)Leb(A), and

the condition on ρ imposed in the theorem, that the second sum in the expression for

V ar (sn(θ0)) is O(n) as well. Indeed, taking it all together, we have that, as n→∞,

n−1V ar (sn(θ0))→
K∑
k=1

V ar

(
∂

∂θ
log f(X0, Xk∆; θ)|θ=θ0

)

+ 2

K∑
k=1

K∑
k′=1

∞∑
i=1

Cov

(
∂

∂θ
log f(X0, Xk∆; θ)|θ=θ0 ,

∂

∂θ
log f(Xi∆, X(i+k′)∆; θ)

∣∣
θ=θ0

)
=: V (θ0),

where the series converges. This finalizes the proof.

Lemma A.1. Fix k, k′ ≥ 1, let X be an IVT process, let fk(·, ·; θ) be the joint PMF of

(X0, Xk∆), and let fn(·, ·, ·, ·; k, k′, θ) be the joint PMF of (X0, Xk∆, Xn∆, X(n+k′)∆). That

is

fk(x1, x2; θ) := Pθ (X0 = x1, Xk∆ = x2) , x1, x2 ∈ Z,
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and

fn(x1, x2, x3, x4; k, k′, θ) := Pθ
(
X0 = x1, Xk∆ = x2, Xn∆ = x3, X(n+k′)∆ = x4

)
, x1, x2, x3, x4 ∈ Z.

Define the function

Gn(x1, x2, x3, x4; k, k′, θ) :=

(
fn(x1, x2, x3, x4; k, k′, θ)

fk(x1, x2; θ)fk′(x3, x4; θ)
− 1

)
.

The following holds:

1

Leb(Ak∆ ∩An∆)
Gn(x1, x2, x3, x4; k, k′, θ)→ G(x1, x2, x3, x4; k, k′, θ), n→∞,

where G is a function, given in Equation (A.7) below, that depends on the Lévy basis and

trawl function of X. (In Remark A.1 below, we give the function G in the special case

where the Lévy basis is Poissonian and the trawl function is the Gamma trawl.)

Proof of Lemma A.1. Letting fn(x1, x2|x3, x4; k, k′, θ) := Pθ
(
X0 = x1, Xk∆ = x2|Xn∆ = x3, X(n+k′)∆ = x4

)
,

we can write

Gn(x1, x2, x3, x4; k, k′, θ) =
fn(x1, x2, x3, x4; θ)− fk(x1, x2; θ)fk′(x3, x4; θ)

fk(x1, x2; θ)fk′(x3, x4; θ)

=
fn(x1, x2|x3, x4; k, k′, θ)fk′(x3, x4; θ)− fk(x1, x2; θ)fk′(x3, x4; θ)

fk(x1, x2; θ)fk′(x3, x4; θ)

= (fn(x1, x2|x3, x4; k, k′, θ)− fk(x1, x2; θ))fk(x1, x2; θ)−1.

To prove the lemma, we, therefore, study the asymptotic behaviour of fn(x1, x2|x3, x4; k, k′, θ)−

fk(x1, x2; θ) as n→∞.

Recall first the decomposition of the trawl sets into three disjoint sets which led to

Proposition 3.1, see Figure S1. In a similar manner, we can decompose the four trawl sets

associated to X0 = L(A0), Xk∆ = L(Ak∆), Xn∆ = L(An∆), and X(n+k′)∆ = L(A(n+k′)∆),

into 10 disjoint sets as illustrated in Figure 5 below. For ease of notation, we ignore the

dependence on n, k, and k′ for a moment and write

A0 = C3 ∪ C4 ∪ C6 ∪ C7, Ak∆ = C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6,

An∆ = C1 ∪ C2 ∪ C3 ∪ C4 ∪D2 ∪D3, A(n+k′)∆ = C1 ∪ C3 ∪D1 ∪D2,

where the sets C1, C2, . . . , C7, D1, D2, D3 are disjoint. We will use below that limn→∞ Leb(Cj) =

0 for j = 1, 2, 3, 4, limn→∞ Leb(C5) = Leb(Ak∆ \ A0), limn→∞ Leb(C6) = Leb(A0 ∩ Ak∆),

limn→∞ Leb(C7) = Leb(A0 \Ak∆), limn→∞ Leb(D1) = Leb(Ak′∆ \A0), limn→∞ Leb(D2) =

Leb(A0 ∩Ak′∆), and limn→∞ Leb(D3) = Leb(A0 \Ak′∆), cf. Figure 5.
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Using this decomposition and the law of total probability, we may write

f(x1, x2; θ) =
∞∑

c1,c2,c3,c4=−∞
Pθ (L(C6) + L(C7) = x1 − c3 − c4, L(C5) + L(C6) = x2 − c1 − c2 − c3 − c4)

·
4∏
j=1

Pθ (L(Cj) = cj)

and

f(x1, x2|x3, x4; θ)

=
∞∑

c1,c2,c3,c4=−∞
Pθ (L(C6) + L(C7) = x1 − c3 − c4, L(C5) + L(C6) = x2 − c1 − c2 − c3 − c4)

· Pθ
(
L(C1) = c1, L(C2) = c2, L(C3) = c3, L(C4) = c4|Xn∆ = x3, X(n+k′)∆ = x4

)
.

Taking these together, we get

fn(x1, x2|x3, x4; θ)− f(x1, x2; θ)

=

∞∑
c1,c2,c3,c4=−∞

Pθ (L(C6) + L(C7) = x1 − c3 − c4, L(C5) + L(C6) = x2 − c1 − c2 − c3 − c4)

·

Pθ
(
L(C1) = c1, L(C2) = c2, L(C3) = c3, L(C4) = c4|Xn∆ = x3, X(n+k′)∆ = x4

)
−

4∏
j=1

Pθ (L(Cj) = cj)

 .

Note that, for the first term in the parenthesis, the following holds

Pθ
(
L(C1) = c1, L(C2) = c2, L(C3) = c3, L(C4) = c4|Xn∆ = x3, X(n+k′)∆ = x4

)
= f(x3, x4; θ)−1Pθ

(
L(C1) = c1, L(C2) = c2, L(C3) = c3, L(C4) = c4, Xn∆ = x3, X(n+k′)∆ = x4

)
= f(x3, x4; θ)−1Pθ (L(D2) + L(D3) = x3 − c1 − c2 − c3 − c4, L(D1) + L(D2) = x4 − c1 − c3)

·
4∏
j=1

Pθ (L(Cj) = cj) ,

which allows us to write

fn(x1, x2|x3, x4; θ)− f(x1, x2; θ)

=

∞∑
c1,c2,c3,c4=−∞

Pθ (L(C6) + L(C7) = x1 − c3 − c4, L(C5) + L(C6) = x2 − c1 − c2 − c3 − c4)

·
4∏
j=1

Pθ (L(Cj) = cj) f(x3, x4; θ)−1

· (Pθ (L(D2) + L(D3) = x3 − c1 − c2 − c3 − c4, L(D1) + L(D2) = x4 − c1 − c3)− f(x3, x4)) .
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Define the set C0 := {(c1, c2, c3, c4) ∈ Z4 : ci 6= 0 for at least one i = 1, 2, 3, 4}. The

above calculations imply that

fn(x1, x2|x3, x4; θ)− f(x1, x2; θ) = f(x3, x4)−1
(
F (1)
n + F (2)

n

)
, (A.4)

where

F (1)
n := Pθ (L(C6) + L(C7) = x1, L(C5) + L(C6) = x2)

4∏
j=1

Pθ (L(Cj) = 0)

· (Pθ (L(D2) + L(D3) = x3, L(D1) + L(D2) = x4)− f(x3, x4; θ))

and

F (2)
n :=

∑
(c1,c2,c3,c4)∈C0

Pθ (L(C6) + L(C7) = x1 − c3 − c4, L(C5) + L(C6) = x2 − c1 − c2 − c3 − c4)

·
4∏
j=1

Pθ (L(Cj) = cj)

· (Pθ (L(D2) + L(D3) = x3 − c1 − c2 − c3 − c4, L(D1) + L(D2) = x4 − c1 − c3)− f(x3, x4; θ)) .

We can think of F
(1)
n as the part of (fn(x1, x2|x3, x4; θ)− f(x1, x2; θ))f(x3, x4) where c1 =

c2 = c3 = c4 = 0, while F
(2)
n is the remainder.

We study first the behavior of F
(1)
n as n→∞. Considering the first two factors of this

term, the continuity of the probability measure Pθ(·) implies that

lim
n→∞

Pθ (L(C6) + L(C7) = x1, L(C5) + L(C6) = x2)

4∏
j=1

Pθ (L(Cj) = 0)

= Pθ (L(A0 ∩Ak∆) + L(A0 \Ak∆) = x1, L(A0 ∩Ak∆) + L(Ak∆ \A0) = x2)

= f(x1, x2; θ).

The third term in F
(1)
n , i.e.

Pθ (L(D2) + L(D3) = x3, L(D1) + L(D2) = x4)− f(x3, x4; θ)

will, by the same logic as above, converge to zero as n→∞. In fact, by decomposition of

the trawl sets of f(x3, x4; θ) in the same manner as above, we get that

Pθ (L(D2) + L(D3) = x3, L(D1) + L(D2) = x4)− f(x3, x4; θ)

= Pθ (L(D2) + L(D3) = x3, L(D1) + L(D2) = x4)

1−
4∏
j=1

Pθ (L(Cj) = 0)
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−
∑

(c1,c2,c3,c4)∈C0

Pθ (L(D2) + L(D3) = x3 − c1 − c2 − c3 − c4, L(D1) + L(D2) = x4 − c1 − c3)

·
4∏
j=1

Pθ (L(Cj) = cj) .

In the first part of Lemma A.2 below, we show that there exists a constant ν̃ > 0, such that

1−
4∏
j=1

Pθ (L(Cj) = 0) = ν̃Leb(Ak∆ ∩An∆) + o (Leb(Ak∆ ∩An∆)) ,

as n → ∞. Similarly, in the second part of Lemma A.2, we show that there exists a

non-negative function η̃ concentrated on the integers, such that, for cj 6= 0,

Pθ (L(Cj) = cj) = η̃(cj)ν̃Leb(Cj)e
−ν̃Leb(Cj) + o (Leb(Cj)) ,

as n→∞, while

Pθ (L(Cj) = 0) = e−ν̃Leb(Cj) + o (Leb(Cj)) ,

as n→∞. This shows that for quadruplets (c1, c2, c3, c4) where ci 6= 0 for some i = 1, 2, 3, 4

and cj = 0 for the remaining j 6= i (i.e. quadruplets of the form (c1, 0, 0, 0), (0, c2, 0, 0),

(0, 0, c3, 0) or (0, 0, 0, c4)), we have

4∏
j=1

Pθ (L(Cj) = cj) = η̃(ci)ν̃Leb(Ci)e
−ν̃

∑4
j=1 Leb(Cj) + o

 4∑
j=1

Leb(Cj)


= η̃(ci)ν̃Leb(Ci)e

−ν̃Leb(Ak∆∩An∆) + o (Leb(Ak∆ ∩An∆)) ,

as n → ∞. Conversely, for quadruplets (c1, c2, c3, c4) where ci, cj 6= 0 for at least two

distinct i, j = 1, 2, 3, 4, we have

4∏
j=1

Pθ (L(Cj) = cj) = o (Leb(Ak∆ ∩An∆)) ,

as n→∞.

Define the numbers aj := limn→∞
Leb(Cj)

Leb(An∆∩Ak∆) ≥ 0, j = 1, 2, 3, 4, which are such that∑4
j=1 aj = 1 since C1 ∪ C2 ∪ C3 ∪ C4 = An∆ ∩ Ak∆, cf. Figure 5 below. Taking the above

together, we may, after a little algebra, conclude that, as n→∞,

F
(1)
n

Leb(Ak∆ ∩An∆)
→ ν̃f(x1, x2; θ)f(x3, x4; θ) (A.5)

− ν̃f(x1, x2)
∑
c 6=0

η̃(c) ((a1 + a3)f(x3 − c, x4 − c; θ) + (a2 + a4)f(x3 − c, x4; θ)) .
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Figure 5: Illustration of the decomposition of the four trawl sets A0, Ak∆, An∆, A(n+k′)∆.

Turning now to F
(2)
n , similar calculations yield that, as n→∞,

F
(2)
n

Leb(Ak∆ ∩An∆)
→− ν̃f(x3, x4; θ)

∑
c 6=0

η̃(c) ((a1 + a2)f(x1, x2 − c; θ) + (a3 + a4)f(x1 − c, x2 − c; θ))

+ ν̃a1

∑
c 6=0

η̃(c)f(x1, x2 − c)f(x3 − c, x4 − c)

+ ν̃a2

∑
c 6=0

η̃(c)f(x1, x2 − c)f(x3 − c, x4)

+ ν̃a3

∑
c 6=0

η̃(c)f(x1 − c, x2 − c)f(x3 − c, x4 − c)

+ ν̃a4

∑
c 6=0

η̃(c)f(x1 − c, x2 − c)f(x3 − c, x4). (A.6)

Finally, recalling Equation (A.4), we can conclude that

lim
n→∞

Gn(x1, x2, x3, x4; k, k′, θ)

Leb(Ak∆ ∩An∆)
= lim

n→∞

F
(1)
n + F

(2)
n

Leb(Ak∆ ∩An∆)
fk(x1, x2; θ)−1fk′(x3, x4; θ)−1

=: G(x1, x2, x3, x4; k, k′, θ), (A.7)

where limn→∞
1

Leb(Ak∆∩An∆)F
(i)
n for i = 1, 2 are given above in Equations (A.5)–(A.6). (See

the following Remark A.1 for how the expression for G simplifies slightly in the case of an

IVT process with Poisson Lévy basis and Gamma trawl function.)

Remark A.1. Note that in the case of a Poisson Lévy basis (Example 2.1 in the main

article), we have ν̃ = ν, η̃(1) = 1, and η̃(c) = 0 for c 6= 1. Further, in the case of d being a
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Gamma trawl function (Example 2.5), it is straightforward to show that a1 = a2 = a4 = 0

and a3 = 1. For this specification, the limit in the proof of Lemma A.1 simplifies somewhat.

Indeed, in this case, Equation (A.7) yields

G(x1, x2, x3, x4; k, k′, θ) = ν

(
fk(x1 − 1, x2 − 1; θ)

fk(x1, x2; θ)
− 1

)(
fk′(x3 − 1, x4 − 1; θ)

fk′(x3, x4; θ)
− 1

)
.

Lemma A.2. In the setting of the proof of Lemma A.1, we have the following two-part

result.

(First part) There exists a constant ν̃ > 0, such that

1−
4∏
j=1

Pθ (L(Cj) = 0) = ν̃Leb(Ak∆ ∩An∆) + o (Leb(Ak∆ ∩An∆)) ,

as n→∞.

(Second part) There exists a non-negative function η̃, concentrated on the integers, such

that, for cj 6= 0,

Pθ (L(Cj) = cj) = η̃(cj)ν̃Leb(Cj)e
−ν̃Leb(Cj) + o (Leb(Cj)) ,

as n→∞, while

Pθ (L(Cj) = 0) = e−ν̃Leb(Cj) + o (Leb(Cj)) ,

as n→∞.

Proof of Lemma A.2. The proof of the lemma relies on the alternative representation of

the Lévy basis L given at the start of the Appendix, see Equation (A.1).

(Proof of second part) Note that since η(0) = 0, we have Pθ (Yi = 0) = 0. Using this in

the setup of Lemma A.1, we get, from Equations (A.1) and (A.2),

Pθ (L(Cj) = 0) = e−ν̃Leb(Cj) +

∞∑
q=2

Pθ

(
q∑
i=1

Yi = x

)
Pθ(Ñ(Cj) = q)

= e−ν̃Leb(Cj) + o (Leb(Cj)) ,

as n→∞, while for cj 6= 0,

Pθ (L(Cj) = cj) = Pθ (Y1 = cj)Pθ(Ñ(Cj) = 1) +
∞∑
q=2

Pθ

(
q∑
i=1

Yi = x

)
Pθ(Ñ(Cj) = q)

= η̃(cj)ν̃Leb(Cj)e
−ν̃Leb(Cj) + o (Leb(Cj)) ,

as n→∞. This proves the second part of the lemma.
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(Proof of first part) As for the first part, use Equations (A.1) and (A.2) to write

4∏
j=1

Pθ (L(Cj) = 0) = e−ν̃
∑4
j=1 Leb(Cj) + o

 4∑
j=1

Leb(Cj)


= e−ν̃Leb(An∆∩Ak∆) + o (Leb(An∆ ∩Ak∆))

= 1− ν̃Leb(An∆ ∩Ak∆) + o (Leb(An∆ ∩Ak∆)) ,

as n→∞, where we in the last line Taylor expanded the exponential function. This proves

the first part of the lemma.

Proof of Theorem 3.4. With similar calculations to those used in the proof of Theorem 3.3,

we can write

nH/2(θ̂ − θ0) = −
(

1

n

∂

∂θ′
sn(θ̄)

)−1

nH/2−1sn(θ0).

We again have that − 1
n
∂
∂θsn(θ̄)′

P→ H(θ0) as n → ∞. As in the proof of Theorem 3.3, we

can write

V ar (sn(θ0)) = A1,n +A2,n,

where A1,n is O(n). Further, Lemma A.1 implies that

A2,n = O(n2Leb(An∆ ∩A0)),

as n → ∞. Equation (2.5) along with the condition on ρ imposed in the theorem thus

yields

A2,n = O(n2L∞(n∆)n−H),

as n→∞. Using this, we get that, for all ε > 0,

nH−2±2εV ar (sn(θ0)) = O(nH−1±2ε) +O(L∞(n∆)n±2ε), (A.8)

as n→∞. Finally, we recall the so-called Potter bounds for slowly varying functions: Since

L∞ is a slowly varying function, for all ε > 0 it holds that (Bingham et al. 1989, Theorem

1.5.6(ii))

L∞(n∆)nε →∞ and L∞(n∆)n−ε → 0,

as n→∞. Combining the Potter bounds with (A.8) yields the required results.

46



Proof of Theorem 3.5. Set, for simplicity, K = 1. From the proof of Theorem 3.3, it is

clear that the asymptotic behaviour of ν̂CL is governed by the asymptotic behaviour of the

score function

sn(ν0) =
n∑
i=1

∂

∂ν
log f(Xi∆, X(i+1)∆)

∣∣∣∣
ν=ν0

=
n∑
i=1

1

f(Xi∆, X(i+1)∆)

∂

∂ν
f(Xi∆, X(i+1)∆)

∣∣∣∣
ν=ν0

.

(A.9)

Let B be a Borel set. Since L′ ∼ Poi(ν), we have

P (L(B) = x) =
[νLeb(B)]x exp(−νLeb(B))

x!
, x = 0, 1, . . . .

Hence,

∂

∂ν
P (L(B) = x) =

(
xν−1 − Leb(B)

)
P (L(B) = x) , x = 0, 1, . . . .

Using this, along with Proposition 3.1, it is straightforward to show that

1

f(X(i+1)∆, Xi∆)

∂

∂ν
f(Xi∆, X(i+1)∆) = ν−1(X(i+1)∆ +Xi∆)− Ci −Di (A.10)

where

Ci =
ν−1

f(X(i+1)∆, Xi∆)

min(Xi∆,X(i+1)∆)∑
c=0

c · P (L(A(i+1)∆) = X(i+1)∆, L(Ai∆) = Xi∆, (L(Ai∆ ∩A(i+1)∆) = c)

= ν−1

min(Xi∆,X(i+1)∆)∑
c=0

c · P ((L(Ai∆ ∩A(i+1)∆) = c|L(A(i+1)∆) = X(i+1)∆, L(Ai∆) = Xi∆)

= ν−1E[L(Ai∆ ∩A(i+1)∆)|Xi∆, X(i+1)∆]

= ν−1E[L(Ai+k)− L(A(i+1)∆ \Ai∆)|Xi∆, X(i+1)∆]

= ν−1E[X(i+1)∆ − L(A(i+1)∆ \Ai∆)|Xi∆, X(i+1)∆]

= ν−1
(
X(i+1)∆ − E[L(A(i+1)∆ \Ai∆)|Xi∆, X(i+1)∆]

)
(A.11)

and

Di = Leb(A(i+1)∆ \Ai∆) + Leb(Ai∆ \A(i+1)∆) + Leb(Ai∆ ∩A(i+1)∆)

= Leb(A) + Leb(A(i+1)∆ \Ai∆). (A.12)

Define Ui := E[L(A(i+1)∆ \ Ai∆)|Xi∆, X(i+1)∆], i = 1, 2, . . . , n. Recall that E[L(B)] =

νLeb(B) from which we deduce that

E[Xi∆] = νLeb(A), and E[Ui] = νLeb(A(i+1)∆ \Ai∆).
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Using the above and Equations (A.10)–(A.11) in Equation (A.9), we get

sn(ν0) = ν−1
0 Sn(X) + ν−1

0 Sn(U),

Using arguments similar to those in the proof of Theorem 3.3, the result now follows from

Theorem 3.6.

Before we provide the proof of Theorem 3.6, we will need the following two lemmas.

For two sequences an, bn, we will write “an ∼ bn” if an/bn tends to a non-zero constant as

n→∞.

Lemma A.3. Let Assumption 3.4 hold and define the sets

Bi,k = {(x, s) : (i− 1)∆ ≤ s ≤ i∆, d(s− (k + 1)∆) ≤ x < d(s− k∆)}, (A.13)

for i = 1, 2, . . . , n and k ∈ N. Then, for all i = 1, 2, . . . , n,

Leb(Bi,k) = ∆2d′(−(k − i+ 1 + r2)∆),

where r2 = r2(i, k) ∈ (−1, 1). In particular,

Leb(B1,N ) ∼ g2(N)N−H−2, N →∞,

and

∞∑
k=1

kLeb(B1,k) <∞.

Proof of Lemma A.3. Fix i ∈ {1, 2, . . . , n} and k ≥ 1. Using the mean value theorem twice,

we may write,

Leb(Bi,k) =

∫ i∆

(i−1)∆
(d(x− k∆)− d(x− (k + 1)∆)) dx

= ∆

∫ i∆

(i−1)∆
d′(x− (k + r1)∆)dx

= ∆[d(−(k + r1 − i)∆)− d(−(k + r1 − i+ 1)∆)]

= ∆2d′(−(k − i+ 1 + r2)∆),

where r1 ∈ (0, 1) and r2 ∈ (−1, 1), which proves the first part of the lemma. Note that r1

and r2 will in general depend on k and i, but we will suppress this for ease of notation.

The latter parts of the lemma now follow from Assumption 3.4.
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Lemma A.4. Let Assumption 3.4 hold and define the sets

B̄1,k = ∪∞j=k+1B1,j , k ∈ N. (A.14)

Then,

Leb(B̄1,N ) =

∫ ∆

0
d(s− (N + 1)∆)ds ∼ g1(N)N−H−1,

as N →∞. In particular, using also Lemma A.3,

∞∑
k=1

kLeb(B1,k)
1/2Leb(B̄1,k) <∞.

Proof of Lemma A.4. Using a change-of-variables, Assumption 3.4, Karamata’s theorem,

the mean value theorem, and standard properties of slowly varying functions, we get

Leb(B̄1,N ) =

∫ ∆

0
d(s− (N + 1)∆)ds

=

∫ (N+1)∆

N∆
d(−y)dy

=

∫ ∞
N∆

g1(y)y−H−1dy −
∫ ∞

(N+1)∆
g1(y)y−H−1dy

∼ 1

H
g1(N∆)(N∆)−H − 1

H
g1((N + 1)∆)((N + 1)∆)−H

=
∆−H

H
g1(N∆)

(
N−H − g1((N + 1)∆)

g1(N∆)
(N + 1)−H

)
=

∆−H

H
g1(N∆)

(
N−H − (N + 1)−H −

(
g1((N + 1)∆)

g1(N∆)
− 1

)
(N + 1)−H

)
∼ ∆−H

H
g1(N∆)

(
N−H − (N + 1)−H

)
= ∆−Hg1(N∆)(N + r1)−H−1

∼ g1(N∆)N−H−1,

∼ g1(N)N−H−1,

as N →∞, where r1 ∈ (0, 1). The latter parts of the lemma now follow from Assumption

3.4.

Proof of Theorem 3.6. Suppose for simplicity that L′ ∼ Poi(ν) for some ν > 0. The general

case follows along similar lines to the proof in the Poisson case, using the compound Poisson

representation of the IVT process as presented above.
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We follow the strategy of the proof outlined in Theorem 2 of Doukhan et al. (2019),

adapted to our purposes. First, define the sequence of random variables

Zi = Zi∆ = L(Ai∆ \A(i−1)∆) +

∞∑
j=1

L((Ai∆ ∩A(i−j)∆) \A(i−j−1)∆ + (0, j∆)), i = 1, 2, . . . , n,

where the sum converges almost surely by Kolmogorov’s three-series theorem. Note that

(Ai∆ ∩A(i−j)∆) \A(i−j−1)∆ = {(x, s) : (i− j − 1)∆ < s ≤ (i− j)∆, 0 ≤ d(s− i∆)},

and, hence, applying a time shift of j∆ leads to

(Ai∆ ∩A(i−j)∆) \A(i−j−1)∆ + (0, j∆)

= {(x, s) : (i− 1)∆ < s ≤ i∆, 0 ≤ d(s− (i+ j)∆)}.

We observe that we can write Zi as a sum of independent variables,

Zi =
∞∑
k=1

kL(Bi,k),

where Bi,k are disjoint sets, given as in Equation (A.14). The construction of Z1, and the

decomposition into independent variables, are illustrated in Figure 6. Note furthermore

that, by construction, the sequence {Zi}∞i=1 is iid. Let Sn(·) denote the de-meaned partial

sums of a process, e.g. Sn(X) =
∑n

i=1(Xi − E[Xi]). Here we use the short-hand notation

that Xi = Xi∆. Our aim is to show that

(i) P(Z1 > y) ∼ g(y)y−H−1, as y →∞, where g is a slowly varying function.

(ii) E[|Sn(X)− Sn(Z)|] = o(n1/(H+1)), as n→∞.

Indeed, the result of the present theorem follows from (i) and (ii). To see this, note that

(i) implies that (Ibragimov & Linnik 1971, Theorem 2.6.7)

n−1/(H+1)Sn(Z)
(d)→ L1+H , n→∞,

where L1+H is an (1 + H)-stable random variable with characteristic function as given in

Equation (3.6). Secondly, (ii) now implies that

n−1/(H+1)Sn(X) = n−1/(H+1)Sn(Z) + oP(1)
(d)→ L1+H , n→∞,

which is what we wanted to show.
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We proceed to prove (i). First, let Z∗ be given by

Z∗ =
∞∑
k=1

kI(L(B1,k) > 0),

where I(A) is the indicator of the set A. Note that Z1 ≥ Z∗ ≥ 0. Second, define Z∗∗ =

Z1 − Z∗. Let g be a slowly varying function. As in Doukhan et al. (2019), we prove that

(a) P(Z∗ > y) = g(y)y−H−1 + o(y−H−1) and (b) P(Z∗∗ > y) = o(y−H−1) as y →∞, which

allows us to deduce (i), i.e. P(Z1 > y) ∼ g(y)y−H−1 as y →∞.

To prove (a), define the random variables

Z∗1 :=

∞∑
k=1

kI(L(B1,k) > 0)I(L(B̄1,k) = 0),

Z∗2 :=

∞∑
k=1

kI(L(B1,k) > 0)I(L(B̄1,k) = 1),

where, as before,

B̄1,k = {(x, s) : 0 ≤ s ≤ ∆, 0 ≤ x < d(s− (k + 1)∆)} = ∪∞j=k+1B1,j . (A.15)

The intuition is that Z∗1 takes the value k if there is an observation in B1,k but not in

B1,k+1, B1,k+2, . . ., while Z∗2 takes the value k if there is an observation in B1,k and precisely

one observation in B1,k+1, B1,k+2, . . .. Note that Z∗ ≥ Z∗1 + Z∗2 ≥ 0. Define, analogously

to above Z∗3 = Z∗ − Z∗1 − Z∗2 , which is Z∗ with the two largest “points” removed.6 We

prove that (a’) P(Z∗1 > y) ∼ g(y)y−H−1 and (b’) P(Z∗2 > y) = o(y−H−1) and P(Z∗3 >

y) = o(y−H−1) as y → ∞, which allows us to deduce (a), i.e. P(Z∗ > y) ∼ g(y)y−H−1

as y → ∞. As noted in Doukhan et al. (2019), to prove (a’), we only need to prove

P(Z∗1 > N) ∼ g(N)N−H−1 + o(N−H−1) for N → ∞, where N ∈ N. Let therefore N ∈ N.

We get, using Lemma A.4 and the fact that L′ ∼ Poi(ν),

P(Z∗1 > N) = P

( ∞∑
k=1

kI(L(B1,k) > 0)I(L(B̄1,k) = 0) > N

)

= P
(
L(B̄1,N ) > 0

)
= 1− P

(
L(B̄1,N ) = 0

)
= 1− e−νLeb(B̄1,N )

= Leb(B̄1,N ) + o(Leb(B̄1,N ))

6It can be shown that if H ∈ (1/2, 1), then we can set Z∗2 = 0, i.e., in this case, we only need to remove

the largest point from Z∗ for the proof to go through.
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∼ g1(N)N−H−1,

as N →∞.

To prove (b’), note that, by Lemma A.4,

P(Z∗2 > N) = P

( ∞∑
k=1

kI(L(B1,k) > 0)I(L(B̄1,k) = 1) > N

)

= P
(
L(B̄1,N ) > 1)

)
= 1− P

(
L(B̄1,N ) = 0

)
− P

(
L(B̄1,N ) = 1)

)
= 1− e−νLeb(B̄1,N ) − νLeb(B̄1,N )e−νLeb(B̄1,N )

≤ νLeb(B̄1,N )− νLeb(B̄1,N )e−νLeb(B̄1,N )

= νLeb(B̄1,N )(1− e−νLeb(B̄1,N ))

≤ ν2Leb(B̄1,N )2

∼ g1(N)2N−2−2H

= o(N−1−H),

as N →∞, by Lemma A.4. To show that P(Z∗3 > y) = o(y−H−1) as y →∞, we show that

Z∗3 is bounded in L2. Let ε ∈ (0, H). Using Minkowski’s inequality, the independence of

L(B1,k) and L(B̄1,k), and Lemmas A.3 and A.4, we get

E[(Z∗3 )2]1/2 = E
[
(Z∗ − Z∗1 − Z∗2 )2

]1/2

= E

( ∞∑
k=1

kI(L(B1,k) > 0)
(
1− I(L(B̄1,k) = 0)− I(L(B̄1,k) = 1)

))2
1/2

≤
∞∑
k=1

E
[
k2I(L(B1,k) > 0)2

(
1− I(L(B̄1,k) = 0)− I(L(B̄1,k) = 1)

)2]1/2

=
∞∑
k=1

kE
[
I(L(B1,k) > 0)I(L(B̄1,k) > 1)

]1/2
=

∞∑
k=1

kP(L(B1,k) > 0)1/2P(L(B̄1,k) > 1)1/2

=

∞∑
k=1

k (1− P(L(B1,k) = 0))1/2 (1− P(L(B̄1,k) = 0)− P(L(B̄1,k) = 1)
)1/2

=

∞∑
k=1

k (1− exp(−νLeb(B1,k))
1/2 (1− exp(−νLeb(B̄1,k))− νLeb(B̄1,k) exp(−νLeb(B̄1,k))

)1/2
≤
∞∑
k=1

kν1/2Leb(B1,k)
1/2
(
νLeb(B̄1,k)− νLeb(B̄1,k) exp(−νLeb(B̄1,k))

)1/2
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=
∞∑
k=1

kν1/2Leb(B1,k)
1/2ν1/2Leb(B̄1,k)

1/2
(
1− exp(−νLeb(B̄1,k))

)1/2
≤ ν3/2

∞∑
k=1

kLeb(B1,k)
1/2Leb(B̄1,k)

<∞,

where we used, repeatedly, that 1− e−x ≤ x.

To prove (b), we show that Z∗∗ is bounded in L2. We utilize the assumption that

L′ ∼ Poi(ν), which implies that L(B) = L(B) for all Borel sets B. This allows us to write

Z1 =

∞∑
k=1

kL(B1,k)

=

∞∑
k=1

kL(B1,k)I(L(B1,k) = 1) +

∞∑
k=1

kL(B1,k)I(L(B1,k) > 1)

=

∞∑
k=1

kI(L(B1,k) = 1) +

∞∑
k=1

kL(B1,k)I(L(B1,k) > 1),

and

Z∗1 =

∞∑
k=1

kI(L(B1,k) > 0)

=
∞∑
k=1

kI(L(B1,k) = 1) +
∞∑
k=1

kI(L(B1,k) > 1).

We deduce that

Z∗∗1 = Z1 − Z∗1

=

∞∑
k=1

kL(B1,k)I(L(B1,k) > 1)−
∞∑
k=1

kI(L(B1,k) > 1)

=
∞∑
k=1

kI(L(B1,k) > 1)(L(B1,k)− 1)

≤
∞∑
k=1

kI(L(B1,k) > 1)L(B1,k).

Using this and then Minkowski’s inequality, we may write

E[(Z∗∗1 )2]1/2 ≤ E[(
∞∑
k=1

kI(L(B1,k) > 1)L(B1,k))
2]1/2

≤
∞∑
k=1

E[k2I(L(B1,k) > 1)L(B1,k)
2]1/2

=
∞∑
k=1

kE[I(L(B1,k) > 1)L(B1,k)
2]1/2
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=
∞∑
k=1

kE[
∞∑
j=2

(I(L(B1,k) = j))L(B1,k)
2]1/2

=

∞∑
k=1

k

 ∞∑
j=2

E[I(L(B1,k) = j)j2]

1/2

=

∞∑
k=1

k

 ∞∑
j=2

P(I(L(B1,k) = j)j2

1/2

=
∞∑
k=1

k

 ∞∑
j=2

(νLeb(B1,k))
je−νLeb(B1,k)

j!
j2

1/2

=
∞∑
k=1

k

ν2Leb(B1,k)
2
∞∑
j=2

(νLeb(B1,k))
j−2e−νLeb(B1,k)

j!
j2

1/2

=
∞∑
k=1

k

ν2Leb(B1,k)
2
∞∑
j=0

(νLeb(B1,k))
je−νLeb(B1,k)

(j + 2)!
(j + 2)2

1/2

=
∞∑
k=1

k

ν2Leb(B1,k)
2
∞∑
j=0

(νLeb(B1,k))
je−νLeb(B1,k)

j!

(j + 2)

(j + 1)

1/2

≤
∞∑
k=1

k

ν2Leb(B1,k)
2
∞∑
j=0

2
(νLeb(B1,k))

je−νLeb(B1,k)

j!

1/2

=
√

2ν
∞∑
k=1

kLeb(B1,k)

<∞,

by Lemma A.3.

We now prove (ii). Let κ1 = E[L′]. Note first that

E[Z1] = κ1

Leb(Ai∆ \A(i−1)∆) +

∞∑
j=1

Leb((Ai∆ ∩A(i−j)∆) \A(i−j−1) + (0, j∆))


= κ1Leb(A)

= E[X1],

and

Xi = L(Ai∆ \A(i−1)∆) +

∞∑
j=1

L(Ai∆ ∩A(i−j)∆), i = 1, 2, . . . , n,

see Figure 6 for an illustration of these results. Now, following again Doukhan et al. (2019),
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we can use this to write

Sn(X)− Sn(Z) =
n∑
i=1

Xi −
n∑
i=1

Zi

=
n∑
i=1

Xi −
n∑
i=1

Zi

=
n∑
i=1

L(Ai∆ \A(i−1)∆) +
∞∑
j=1

L((Ai∆ ∩A(i−j)∆) \A(i−j−1)∆)


−

n∑
i=1

L(Ai∆ \A(i−1)∆) +
∞∑
j=1

L((Ai∆ ∩A(i−j)∆) \A(i−j−1)∆ + (0, j∆))


= R′n −R′′n,

where

R′n =
n∑
i=1

L(A0 ∩Ai∆),

and

R′′n =
n∑
i=1

∞∑
k=1

kL(Bn+1−i,i+k).

Let ε ∈ (0, H2/2). By Karamata’s Theorem, Assumption 3.4, and properties of slowly

varying functions, we have

E[R′n] = E[L′]

n∑
k=1

Leb(A0 ∩Ak∆)

= κ1

n∑
k=1

∫ ∞
k∆

d(−x)dx

∼
n∑
k=1

g1(k)k−H

∼ O(n1−H+ε),

as n→∞. Note that since ε < H2

2 , then 1−H+ε < 1
H+1 , proving that E[R′n] = o(n1/(H+1)).

Similarly, using Lemma A.4,

E[R′′n] = κ1

n∑
i=1

∞∑
k=1

kLeb(Bn+1−i,i+k)

= κ1

n∑
i=1

∞∑
k=1

kLeb(B1,i+k)

∼ O(n1−H+ε),

as n→∞. This concludes the proof.
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Figure 6: The construction of Z1 = L(A∆ \A0)+
∑∞

j=1 L(A∆∩A(1−j)∆ \A(−j)∆ +(0, j∆)),

and the decomposition into independent variables, Z1 =
∑∞

k=1 kL(B1,k).

Proof of Lemma 4.1. Using Bayes’ theorem and the unconditional independence of L(At ∩

At+h) and L(At \At+h), we have for x ∈ N ∪ {0} and l ∈ {0, 1, . . . , x}:

P(L(At ∩At+h) = l|Xt = x) =
P(Xt = x|L(At ∩At+h) = l)P(L(At ∩At+h) = l)

P(Xt = x)

=
P(L(At ∩At+h) + L(At \At+h) = x|L(At ∩At+h) = l)P(L(At ∩At+h) = l)

P(Xt = x)

=
P(L(At \At+h) = x− l|L(At ∩At+h) = l)P(L(At ∩At+h) = l)

P(Xt = x)

=
P(L(At \At+h) = x− l)P(L(At ∩At+h) = l)

P(Xt = x)
.

Proof of Proposition 4.1. Using the conditional law of total probability we obtain the fol-

lowing convolution formula

P(Xt+h = xt+h|Xt = xt) = P(L(At ∩At+h) + L(At+h \At) = xt+h|Xt = xt)

=

min(xt,xt+h)∑
c=0

P(L(At ∩At+h) + L(At+h \At) = xt+h|Xt = xt, L(At ∩At+h) = c)

· P(L(At ∩At+h) = c|Xt = xt)

=

min(xt,xt+h)∑
c=0

P(L(At+h \At) = xt+h − c|Xt = xt, L(At ∩At+h) = c)P(L(At ∩At+h) = c|Xt = xt)

=

min(xt,xt+h)∑
c=0

P(L(At+h \At) = xt+h − c)P(L(At ∩At+h) = c|Xt = xt).
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Supplemental Materials: Inference and forecasting for continuous-time

integer-valued trawl processes

S1 Introduction

This document is structured as follows.

• Section S2 presents a decomposition of trawl processes.

• Section S3 provides the details of a method of moment-based estimation of integer-

valued trawl processes so far used in the literature.

• Section S4 describes how the composite likelihood estimator and the corresponding

asymptotic covariance matrices can be computed in practice.

• Section S5 presents an expression for the pairwise likelihood for integer-valued pro-

cesses (not restricted to count data) and discusses a simulation unbiased estimator

for the composite likelihood.

• Section S6 contains additional details for the simulation study: Subsection S6.1 de-

scribes the simulation setup for the simulation study reported in the main article.

Subsections S6.2 and S6.4 present the finite sample results of the MCL estimator and

of the model selection procedure, respectively. Section S6.5 repeats the simulation

study using different parameter choices.

• Section S7 contains additional details on the empirical study, including details on

the data pre-processing, see Subsection S7.1, and additional forecasting results, see

Subsection S7.2.

• Sections S8 and S9 present details on various parametric Lévy bases and trawl func-

tions, respectively. These structures might be used in the construction of IVT pro-

cesses, as illustrated in the main paper.

• Section S10 contains details on how to calculate the gradients for the log-composite

likelihood functions implied by most of the parametric IVT processes. These cal-

culations are straightforward to make (although somewhat tedious) and can rather

easily be made for other IVT specifications than those considered here. The gradi-

ents can be used in the numerical optimization of the composite likelihood functions

1



and are also crucial for implementing the asymptotic theory presented in the main

paper. In particular, to estimate the asymptotic variance matrix V (θ), it is necessary

to evaluate the gradient at θ̂CL.

• Section S11 contains some additional technical calculations.

• Section S12 shows that IVT processes are θ-weakly dependent and presents the asymp-

totic theory for the GMM estimation of the parameters. Section S12.3 contains an

analytical comparison of the asymptotic variance of the MCL and GMM estimators

in the case of the Poisson-Exponential IVT process.

• Lastly, Section S13 contains brief details on the software packages accompanying the

main paper. In particular, we supply software for simulation, estimation (including

inference), model selection, and forecasting of IVT processes.
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S2 Trawl process decomposition

When deriving theoretical results for trawl processes, we typically decompose trawl sets at

different time points into a partition of disjoint sets. We note that, given a trawl function

d, it holds that

Leb(At) = Leb(A) =

∫ 0

−∞
d(s)ds. (S2.1)

It is also useful to note that for t ≥ s,

Leb(At ∩As) = Leb(At−s ∩A) =

∫ −(t−s)

−∞
d(s)ds, (S2.2)

and

Leb(At \As) = Leb(As \At) = L(A)− Leb(At ∩As). (S2.3)

Thus, given a trawl function d, it is straightforward to calculate Leb(A), Leb(At ∩As), and

L(At \As) for all t ≥ s ≥ 0.

Also, we can write, for 0 ≤ s ≤ t,

Xs = L(As) = L(As ∩At) + L(As \At),

Xt = L(At) = L(As ∩At) + L(At \As),

where the three random variables L(As ∩At), L(As \At), L(At \As) are independent since

the corresponding sets are disjoint. In Figure S1, we illustrate such a decomposition for

s = 3, t = 4.

-2 -1 0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

Figure S1: Decomposition of exponential trawl sets at times s = 3, t = 4, super-imposed on

a Poisson Lévy basis, with ν = 5, on R × [0, 1]. The exponential trawl parameter is set to

λ = 1.
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S3 Method-of-moments-based estimation of IVT processes

For a parametric IVT model, let the parameter vector θ of the model be given by θ =

(θd, θL), where θd contains the parameters governing the trawl function d and θL contains

the parameters governing the marginal distribution of the IVT process, as specified by the

underlying Lévy seed L′. For instance, in the case of the Poisson-Exponential IVT process

considered above, cf. Figure 1, we would have θd = λ and θL = ν. This section discusses how

θd and θL can be estimated in a two-step procedure using a method-of-moments procedure.

It is this procedure that has been used so far in most applied work on IVT processes.

Note that we develop the asymptotic theory for the full (one-step) GMM estimation of θ

in Section S12 below.

Because the correlation structure of an IVT process is decoupled from its marginal

distribution, the theoretical autocorrelation function of the process will not depend on θL,

and we can thus estimate θd in the first step, using the empirical autocorrelations of the

data. To be precise, let ρθd(h) be the parametric autocorrelation function as implied by

the trawl function d, see Equation (2.5), and let ρ̂(k) be the estimate of the empirical

autocorrelation of the data at lag k. The GMM estimator of θd is

θ̂GMM
d := arg min

θd∈Θd

K∑
k=1

(ρθd(k)− ρ̂(k))2 , (S3.1)

whereK ≥ 1 denotes the number of lags to include in the estimation and Θd is the parameter

space of the trawl parameters in θd.
7

For the estimation of the parameters θL governing the marginal distribution of the IVT

process, recall that the jth cumulant κj of Xt is given by

κj = Leb(A) · κ′j , j = 1, 2, . . . ,

where κ′j is the jth cumulant of the Lévy seed L′. Using the estimates θ̂GMM
d from the first

step, we can estimate the Lebesgue measure of the trawl set as

L̂eb(A) =

∫ ∞
0

d̂(−s)ds, (S3.2)

where d̂(·) denotes the estimate of the trawl function implied by the estimated trawl pa-

rameters θ̂GMM
d . The parameters governing the marginal distribution, θL, can now be

7In the case of the IVT process with an exponential trawl function d(s) = exp(λs), s ≤ 0, we use a

closed-form estimator of the λ parameter using only the autocorrelation function calculated at the first lag,

that is λ̂GMM = − log ρ̂(1)/∆, where ∆ > 0 is the equidistant time between observations.

4



estimated as follows. Let r be the number of elements in θL and denote by L̂eb(A) the

estimate of the Lebesgue measure obtained from (S3.2). Estimates of the cumulants, κ̂j ,

can be obtained straightforwardly by calculating the empirical cumulants of the data. Let

Ir be a set of r distinct natural numbers (e.g., the numbers from 1 to r). Now

κ̂j = L̂eb(A) · κ′j , j ∈ Ir,

defines r equations in the r unknowns θL. GMM estimates of the elements in θL, θ̂GMM
L ,

can be obtained by solving these r equations. Finally, set θ̂GMM := (θ̂GMM
d , θ̂GMM

L ), which

is the method-of-moments-based estimator of θ.
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S4 Practical details on feasible inference using the MCL es-

timator

As shown in Theorem 3.3 of Section 3.1.2, the asymptotic variance of the maximum com-

posite likelihood estimator, θ̂CL is given by the inverse Godambe information matrix,

G(θ0)−1 = H(θ0)−1V (θ0)H(θ0)−1.

As mentioned, the matrices H(θ0) and V (θ0) can be consistently estimated by

Ĥ(θ̂CL) = − 1

n

∂

∂θ∂θ′
lCL(θ̂CL;x)

= − 1

n

K∑
k=1

n−k∑
i=1

∂2

∂θθ′
log f(x(i+k)∆, xi∆; θ)|θ=θ̂CL ,

V̂HAC(θ̂CL) = Σ̂0 +

q∑
j=1

(
1− j

q + 1

)
(Σ̂j + Σ̂′j),

where

Σ̂j :=
1

n

K∑
k=1

K∑
k′=1

n−j−k′∑
i=1

∂

∂θ
log f(x(i+k)∆, xi∆; θ)|θ=θ̂CL

∂

∂θ′
log f(x(i+j+k′)∆, x(i+j)∆; θ))|θ=θ̂CL ,

and q ∈ N is the number of autocorrelation terms to take into account in the HAC estima-

tor. The Hessian, H(θ0), is straightforwardly estimated by the above expression. Indeed,

a numerical approximation of this matrix is often directly available as output from the

software maximizing the composite likelihood function. We have found that while this esti-

mator Ĥ(θ̂CL) is quite precise, the HAC estimator V̂HAC(θ̂CL) can be rather imprecise. In

practice, we therefore recommend estimating V (θ0) using simulation-based approach; the

details are given in the following S4.1.

S4.1 Simulation-based approach to estimating the asymptotic covariance

matrix

To obtain a simulation-based estimator of V (θ0), let B denote a positive integer (e.g.

B = 500) and suppose that θ̂CL is the maximum composite likelihood estimate of θ from

(3.3) when applied to the original data. To estimate V (θ0), do as follows:

1. For b = 1, 2, . . . , B, simulate N observations of a trawl process X(b) = {X(b)
i }Ni=1 with

underlying parameters θ̂CL.
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2. For b = 1, 2, . . . , B, use the simulated dataX(b) to calculate s(b)(θ̂CL) = N−1/2 ∂
∂θ lCL(θ̂CL;X(b)).

The gradient can either be calculated numerically or analytically.8 Note that the

bootstrap data is used to calculate the gradient, but the parameter vector θ̂CL is the

original estimator obtained from the initial (real) data set.

3. Estimate V (θ̂CL) as the sample covariance matrix of the simulated scores
{
s(b)(θ̂CL)

}B
b=1

.

Note that the number of simulated observations, N , in Step 1 does not need to equal the

number of observations in the original data set, n. When n is large, setting N = n can be

computationally costly; we found that setting N = 500 or even N = 100 provided good

results. In our simulation study and in the empirical application we have set B = N = 500.

S4.2 Feasible inference using parametric bootstrap methods

It is, of course, also possible to side-step the estimation of G(θ)−1 entirely, by considering

a “standard” parametric bootstrap approach where the asymptotic variance of the MCL

estimator is approximated directly by applying the MCL estimator to B bootstrap samples

of IVT processes simulated with parameters θ̂CL. While mechanically simpler to implement

than the simulation-based procedure suggested above in Section S4.1, such a parametric

bootstrap approach will often be more computationally demanding, since one needs to

apply the numerical optimization of the composite likelihood function in each bootstrap

replication, whereas the approach suggested in Section S4.1 only requires the evaluation of

the composite likelihood once for each b = 1, 2, . . . , B. Further, the “standard” bootstrap

only delivers standard errors of θ̂CL and can not be used for calculating information criteria

(Section 3.2). For these reasons, we do not consider the standard parametric bootstrap

approach in this paper. The interested reader should have no trouble implementing it,

however.

8The Supplementary Material contains analytical expressions for the gradients implied by the various

parametric specifications considered in this paper.
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S5 Pairwise likelihood for IVT processes and simulation-

based likelihood

Proposition 3.1 presented a simple expression for the pairwise PMFs f(xi+k, xi; θ) in the

case where the underlying Lévy basis is positive. In the general case, i.e. where the Lévy

basis is integer-valued, we have, by the law of total probability, that

f(xi+k,xi; θ) := Pθ
(
X(i+k)∆ = xi+k, Xi∆ = xi

)
=

∞∑
c=−∞

Pθ
(
X(i+k)∆ = xi+k, Xi∆ = xi|L(A(i+k)∆ ∩Ai∆) = c

)
· Pθ

(
L(A(i+k)∆ ∩Ai∆) = c

)
=

∞∑
c=−∞

Pθ
(
L(A(i+k)∆ \Ai∆) = xi+k − c

)
Pθ
(
L(Ai∆ \A(i+k)∆) = xi − c

)
(S5.1)

· Pθ
(
L(A(i+k)∆ ∩Ai∆) = c

)
,

which can be used for calculating the pairwise likelihood as a function of the parameter

vector θ, in the general integer-valued case. When implementing this result in practice,

one could truncate the sum in (S5.1) according to some criterion in order to approximate

the joint PMF. Truncation can be avoided by resorting to a simulation-based approach,

however. The following proposition shows that a simulation unbiased version of the joint

PMF exists and that the simulation is, in fact, easy to perform.

Proposition S5.1. Let t, s ≥ 0, choose M ∈ N and let C(j) ∼ L(At∩As), j = 1, 2, . . . ,M ,

be an iid sample. Then

f̂(xt, xs; θ) =
1

M

M∑
j=1

Pθ(L(At \As) = xt − C(j))Pθ(L(As \At) = xs − C(j))

is a simulation-based unbiased estimator of f(xt, xs; θ). We further note that the simulation

error

f̂(xt, xs; θ)− f(xt, xs; θ)

is, conditional on x, stochastically independent for different values of t and s. Also, this

error converges to zero at rate
√
M as long as

∞∑
c=−∞

f(xt|c; θ)2f(xs|c; θ)2f(x; θ) <∞,

where f(c; θ) = Pθ(C(1) = c) denotes the PMF of C(j), j = 1, 2, . . . ,M , and f(xt|c; θ) =

Pθ(Xt = xt|L(At ∩As) = c) denotes the conditional PMF of Xt.
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Proof of Proposition S5.1. Ignoring the dependence on θ we have

f(xt, xs) =
∞∑

c=−∞
f(xt, xs|c)f(c) =

∞∑
c=−∞

f(xt|xs, c)f(xs|c)f(c).

Since, conditionally on L(At ∩ As) = c, Xt and Xs are independent we have f(xt|xs, c) =

f(xt|c) and thus

f(xt, xs) =

∞∑
c=−∞

f(xt|c)f(xs|c)f(c),

which shows that sampling from f(c; θ) delivers the quantity we need. The rest of the

proposition is obvious.

Proposition S5.1 shows that the simulated CL function is an unbiased estimator of the

true CL function. In other words, if we let U denote the vector of uniform random variables

behind the simulation of {C(j)}Mj=1 and define

logLU (θ;x, u) = logL(K)
U (θ;x, u) :=

K∑
k=1

n−k∑
i=1

log f̂(xi+k, xi; θ),

then LU (θ;x, u) is a simulation unbiased estimator for the composite likelihood LCL(θ;x).

That is

LCL(θ;x) =

∫
LU (θ;x, u)fU (u)du,

where fU (u) ∝ 1 is the joint density of the uniform random numbers behind all the simu-

lations. It is well known that numerically optimizing a simulated likelihood function (the

so-called simulated maximum likelihood approach, see e.g. Lerman and Manski 1981) suf-

fers a number of drawbacks and can be fragile in practice (e.g. Flury and Shephard 2011).

However, as a result of the seminal Andrieu et al. (2010), it is feasible to do Markov Chain

Monte Carlo (MCMC) when one can unbiasedly simulate the likelihood. As a consequence,

it is feasible to perform simulation-based estimation through MCMC, instead of relying on

numerical optimization. From an estimation viewpoint, this can be an attractive approach

(Flury and Shephard 2011).
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S6 Simulation study

In this section, we provide additional information on the simulation study. We first de-

scribe the simulation set-up used for the study which we summarise in the main article in

Subsection S6.1.

S6.1 Additional details on the simulation study reported in the main

article

In a simulation study, we examine the finite sample properties of the composite likelihood-

based estimation procedure and the model selection procedure.

The IVT framework is very flexible and there are many possible choices of data-

generating processes (DGPs) to use in the simulation studies. Here, we will consider the six

combinations of the two marginal distributions, given in Examples 2.1 and 2.2, and three

correlations structures, given in Examples 2.3, 2.4, and 2.5. In other words, we consider the

Poisson-Exponential (P-Exp), the Poisson-Inverse Gaussian (P-IG), the Poisson-Gamma

(P-Gamma), the Negative Binomial-Exponential (NB-Exp), the Negative Binomial-Inverse

Gaussian (NB-IG), and the Negative Binomial-Gamma (NB-Gamma) IVT models. Note

that the first model contains two free parameters, the second, third, and fourth models three

free parameters, and the fifth and sixth models four free parameters. Since the Lévy bases

considered here are non-negative-valued, we will use Proposition 3.1 for the calculation of

the pairwise likelihoods.

The parameter values used in the simulation studies are given in Table S1 and the

implied marginal distributions and autocorrelation structures are shown in Figure S2. The

figure illustrates the difference between the six DGPs: those based on the Poisson Lévy basis

have a more concentrated marginal distribution compared to those based on the Negative

Binomial Lévy basis; those based on the exponential trawl function have smaller degrees

of autocorrelation (memory) than those based on the Inverse Gaussian trawl function, and

the Gamma trawl function can exhibit still greater autocorrelation.

The choice of parameter values used in the simulation studies below and given in Table

S1 are based on the estimates obtained in the empirical study in Section 6. We have found

the finite sample properties of the methods proposed in this paper to be relatively robust

to the exact choice of parameter values.
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Table S1: Parameter values used in simulation studies

DGP ν m p λ δ γ H α

P-Exp 17.50 1.80

P-IG 17.50 1.80 0.80

P-Gamma 17.50 1.70 0.80

NB-Exp 7.50 0.70 1.80

NB-IG 7.50 0.70 1.80 0.80

NB-Gamma 7.50 0.70 1.70 0.80

Parameter values for the six different DGPs used in the simulation studies of Section 5. See Examples 2.1,

2.2, 2.3, 2.4, and 2.5 for details. The value ν = mp/(1− p) with m = 7.5 and p = 0.70 is chosen such that

the first moment of the Poisson and Negative Binomial Lévy bases are matched. Marginal distributions and

autocorrelation functions implied by these parameter values are shown in Figure S2.
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Figure S2: Marginal distributions of the Lévy bases and autocorrelations of the DGPs used in

the simulation studies of Section 5. The marginal distribution and autocorrelation structure

of IVT processes can be specified independently, resulting in six different DGPs in this setup

(P-Exp, P-IG, P-Gamma, NB-Exp, NB-IG, NB-Gamma). See Examples 2.1, 2.2, 2.3, 2.4,

and 2.5 for details. The parameter values used to produce the plots are given in Table S1.
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S6.2 Finite sample properties of the MCL estimator

Consider n equidistant observations of an IVT process on an equidistant grid of size 0.10,

i.e. X∆, X2∆, . . . , Xn∆ with ∆ = 0.10. We simulate 500 Monte Carlo replications of such

time series and in each iteration estimate the parameters of the model using the MCL

approach of Equation (3.3). For the IVT models based on the exponential trawl function

(Example 2.3), we set K = 1, while we set K = 10 for the remaining IVT models.9 In

extensive simulation experiments (not reported here), we verified that the results are robust

to the choice of K.

As mentioned, previous applied work using IVTs has mainly relied on the moment-based

estimator. We, therefore, compare the GMM estimation procedure, laid forth in Section

S3, with the MCL estimator suggested in this paper. Figure 2 plots the RMSE of the MCL

estimator of a given parameter divided by the RMSE of the GMM estimator of the same

parameter for the six DGPs of Table S1. Thus, numbers smaller than one indicate that the

MCL estimator has a lower RMSE than the GMM estimator and vice versa for numbers

larger than one. We see that for most parameters in most of the DGPs, the MCL estimator

outperforms the GMM estimator substantially; indeed, in many cases, the RMSE of the

MCL estimator is around 50% that of the GMM estimator. The exception seems to be the

trawl parameters, i.e. the parameters controlling the autocorrelation structure, in the case

of the Gamma and IG trawls, where the GMM estimator occasionally performs on par with

the MCL estimator. However, in most cases, it appears that the MCL estimator is able to

provide large improvements over the GMM estimator.

S6.2.1 Simulation results supplementing those from the main paper

The simulation results, for various values of n, are shown in Tables S2–S7 for the six DGPs

of Table S1. We report the median, the median bias, and the root median squared error

9Our analyses have shown that K = 1 will deliver good estimation results for the IVT models with

exponential trawl functions, but poor estimation results for the models with more other trawl functions.

This is not surprising since the correlation structure for an IVT model with an exponential trawl is very

simple, while it is more complicated for other IVT processes. The upshot is that choosing K = 1 is sufficient

for the simple exponential trawl-based IVT models, while it is necessary to choose K > 1 to obtain good

results for IVT models constructed using other trawl functions. This is analogous to the situation for the

GMM estimator, where the estimator of the λ parameter in the exponential trawl function has a closed-form

solution using only the autocorrelation function calculated at the first lag, cf. Section S3.
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Table S2: MCL estimation results: Poisson trawl process with exponential trawl function

ν̂ (ν = 17.5) λ̂ (λ = 1.8)

n Med. Bias RMSE Med. Bias RMSE

100 17.3213 −0.1787 1.8616 1.8351 0.0351 0.2035

250 17.4204 −0.0796 1.1761 1.8009 0.0009 0.1279

500 17.5179 0.0179 0.8444 1.8012 0.0012 0.0883

1000 17.6023 0.1023 0.6164 1.8049 0.0049 0.0626

2000 17.5540 0.0540 0.4538 1.8026 0.0026 0.0476

4000 17.5099 0.0099 0.3038 1.8000 0.0000 0.0327

8000 17.5302 0.0302 0.2197 1.8036 0.0036 0.0222

Median (Med.), median bias (Bias) and root median squared error (RMSE) of the MCL estimator with K =

1. DGP: Poisson-Exponential IVT process. The IVT process Xt is simulated on the grid t = ∆, 2∆, . . . , n∆,

with ∆ = 0.10, see Table S1 for the values of the parameters used in the simulations. Number of Monte

Carlo simulations: 500.

(RMSE) of the estimator, calculated over the 500 Monte Carlo replications. The reason

for reporting the median, instead of the mean, is that we found that when the number of

observations, n, is small, the estimation approach will occasionally result in large outliers

in few of the Monte Carlo runs, thus skewing the results (this was the case for both the

MCL and GMM estimators).

From the tables, we see evidence of the MCL estimator being consistent, i.e. the bias

converges towards zero as the number of observations, n, grows. As expected, the estimator

is most precise for the simpler models, e.g. the Poisson-Exp IVT (Table S2) and somewhat

less precise for the more complex models, e.g. the NB-IG model (Table S6) and NB-Gamma

model (Table S7).
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Table S3: CL estimation results: Poisson trawl process with IG trawl function

ν̂ (ν = 17.5) δ̂ (δ = 1.8) γ̂ (γ = 0.8)

n Med. Bias RMSE Med. Bias RMSE Med. Bias RMSE

250 17.7984 0.2984 1.8764 2.4177 0.6177 0.9923 1.0985 0.2985 0.5365

500 17.7749 0.2749 1.4921 2.0205 0.2205 0.6317 0.9306 0.1306 0.3352

1000 17.6514 0.1514 1.0344 1.9141 0.1141 0.4896 0.8592 0.0592 0.2422

2000 17.5182 0.0182 0.8090 1.8977 0.0977 0.3413 0.8333 0.0333 0.1864

4000 17.5273 0.0273 0.5931 1.8120 0.0120 0.2426 0.8051 0.0051 0.1347

8000 17.4966 −0.0034 0.4125 1.8072 0.0072 0.1692 0.8030 0.0030 0.0842

Median (Med.), median bias (Bias) and root median squared error (RMSE) of the MCL estimator with

K = 10. DGP: Poisson-IG IVT. The IVT process Xt is simulated on the grid t = ∆, 2∆, . . . , n∆, with

∆ = 0.10, see Table S1 for the values of the parameters used in the simulations. Number of Monte Carlo

simulations: 500.

Table S4: CL estimation results: Poisson trawl process with Γ trawl function

ν̂ (ν = 17.5) Ĥ (H = 1.7) α̂ (α = 0.8)

n Med. Bias RMSE Med. Bias RMSE Med. Bias RMSE

250 17.8207 0.3207 1.8470 3.0719 1.3719 1.4020 1.5159 0.7159 0.7302

500 17.5946 0.0946 1.2180 2.1831 0.4831 0.9537 1.0463 0.2463 0.4816

1000 17.4396 −0.0604 0.9877 1.8563 0.1563 0.7227 0.8914 0.0914 0.3636

2000 17.4540 −0.0460 0.6642 1.7807 0.0807 0.5371 0.8406 0.0406 0.2728

4000 17.5048 0.0048 0.4821 1.6902 −0.0098 0.3851 0.7784 −0.0216 0.2004

8000 17.5612 0.0612 0.3925 1.6433 −0.0567 0.2464 0.7607 −0.0393 0.1189

Median (Med.), median bias (Bias) and root median squared error (RMSE) of the MCL estimator with

K = 10. DGP: Poisson-Gamma IVT. The IVT process Xt is simulated on the grid t = ∆, 2∆, . . . , n∆, with

∆ = 0.10, see Table S1 for the values of the parameters used in the simulations. Number of Monte Carlo

simulations: 500.
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Table S5: CL estimation results: NB trawl process with exponential trawl function

m̂ (m = 7.5) p̂ (p = 0.7) λ̂ (λ = 1.8)

n Med. Bias RMSE Med. Bias RMSE Med. Bias RMSE

100 8.9761 1.4761 2.3850 0.6649 −0.0351 0.0623 1.9197 0.1197 0.2595

250 7.9680 0.4680 1.3264 0.6872 −0.0128 0.0353 1.8311 0.0311 0.1431

500 7.8443 0.3443 0.9956 0.6896 −0.0104 0.0287 1.8202 0.0202 0.1010

1000 7.6891 0.1891 0.6964 0.6970 −0.0030 0.0202 1.8106 0.0106 0.0728

2000 7.5855 0.0855 0.5010 0.6972 −0.0028 0.0143 1.8001 0.0001 0.0470

4000 7.5362 0.0362 0.3484 0.6993 −0.0007 0.0095 1.8013 0.0013 0.0316

8000 7.5265 0.0265 0.2365 0.6993 −0.0007 0.0065 1.7994 −0.0006 0.0251

Median (Med.), median bias (Bias) and root median squared error (RMSE) of the MCL estimator with

K = 1. DGP: Negative Binomial-Exponential IVT process. The IVT process Xt is simulated on the grid

t = ∆, 2∆, . . . , n∆, with ∆ = 0.10, see Table S1 for the values of the parameters used in the simulations.

Number of Monte Carlo simulations: 500.

Table S6: CL estimation results: NB trawl process with IG trawl function

m̂ (m = 7.5) p̂ (p = 0.7) δ̂ (δ = 1.8) γ̂ (γ = 0.8)

n Med. Bias RMSE Med. Bias RMSE Med. Bias RMSE Med. Bias RMSE

250 9.4842 1.9842 2.2867 0.6695 −0.0305 0.0501 3.1478 1.3478 1.3540 1.3513 0.5513 0.6440

500 8.1866 0.6866 1.4351 0.6885 −0.0115 0.0335 2.3665 0.5665 0.8803 1.0506 0.2506 0.4657

1000 7.7323 0.2323 0.8607 0.6941 −0.0059 0.0256 1.9682 0.1682 0.6219 0.8834 0.0834 0.3099

2000 7.6150 0.1150 0.5755 0.6970 −0.0030 0.0176 1.9398 0.1398 0.4398 0.8588 0.0588 0.2116

4000 7.5561 0.0561 0.4348 0.6994 −0.0006 0.0129 1.8866 0.0866 0.3547 0.8351 0.0351 0.1741

8000 7.5317 0.0317 0.3103 0.6990 −0.0010 0.0088 1.8470 0.0470 0.2266 0.8247 0.0247 0.1063

Median (Med.), median bias (Bias) and root median squared error (RMSE) of the MCL estimator with

K = 10. DGP: Negative Binomial-IG IVT. The IVT process Xt is simulated on the grid t = ∆, 2∆, . . . , n∆,

with ∆ = 0.10, see Table S1 for the values of the parameters used in the simulations. Number of Monte

Carlo simulations: 500.
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Table S7: CL estimation results: NB trawl process with Γ trawl function

m̂ (m = 7.5) p̂ (p = 0.7) Ĥ (H = 1.7) α̂ (α = 0.8)

n Med. Bias RMSE Med. Bias RMSE Med. Bias RMSE Med. Bias RMSE

250 9.2542 1.7542 2.3233 0.6678 −0.0322 0.0532 4.0968 2.3968 2.3968 1.9812 1.1812 1.1814

500 8.3098 0.8098 1.5008 0.6799 −0.0201 0.0384 2.6049 0.9049 1.2064 1.2160 0.4160 0.5768

1000 7.9214 0.4214 0.9728 0.6890 −0.0110 0.0257 2.2420 0.5420 0.9221 1.0470 0.2470 0.4404

2000 7.7270 0.2270 0.6394 0.6938 −0.0062 0.0179 1.9538 0.2538 0.7091 0.9244 0.1244 0.3413

4000 7.5876 0.0876 0.4594 0.6977 −0.0023 0.0130 1.8234 0.1234 0.5016 0.8545 0.0545 0.2418

8000 7.5249 0.0249 0.3355 0.6990 −0.0010 0.0091 1.7745 0.0745 0.3466 0.8436 0.0436 0.1671

Median (Med.), median bias (Bias) and root median squared error (RMSE) of the MCL estimator with

K = 10. DGP: Negative Binomial-Gamma IVT process. The IVT process Xt is simulated on the grid

t = ∆, 2∆, . . . , n∆, with ∆ = 0.10, see Table S1 for the values of the parameters used in the simulations.

Number of Monte Carlo simulations: 500.

16



S6.3 Finite sample approximation of the asymptotic distribution

This section investigates how close the finite sample distribution of the MCL estimator is

to the true (Gaussian) asymptotic limit, as presented in Theorem 3.3.

We simulate M = 1, 000 Monte Carlo replications of the IVT processes considered in

the previous section, i.e. with parameter values given in Table S1. For each replication, we

estimate the asymptotic covariance matrix G(θ0)−1 of Theorem 3.3 using the simulation-

based approach, described in Section S4.1. We then construct the standardized version of

the estimated parameters,

zi,m =
√
n
θ̂CLi − θi,0√
Ĝ(θ̂CL)−1

i,i

, m = 1, 2 . . . ,M, (S6.1)

where the i denote the ith entrance in the parameter vector θ, and Ĝ(θ̂CL)−1
i,i is the ith

diagonal entrance of the matrix Ĝ(θ̂CL)−1.

According to Theorem 3.3, we would expect that zi,m is distributed approximately as a

standard normal random variable. Figures S3–S8 contain QQ plots of {zi,m}Mm=1 for various

sample sizes (n), various parameters (denoted by i here), and for the six different DGPs,

respectively.

From the figures, we observe a general tendency: The finite sample distribution of the

estimators of the parameters governing the marginal distribution (ν for the Poisson dis-

tribution, m and p for the NB distribution) is close to the standard normal distribution.

The same holds for the trawl parameter in the case of the IVTs with exponential autocor-

relation function (Exponential trawl with parameter λ). The picture changes when there

are two parameters in the trawl function (δ and γ in the case of the IG trawl and H and

α in the case of the Gamma trawl): Here, the convergence to the Gaussian distribution

appears to be quite slow. Indeed, even for n = 8000, there are deviations from the Gaussian

distribution.
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Figure S3: QQ plot of {zi,m}Mm=1 of Equation (S6.1) for the Poisson-Exp DGP.
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Figure S4: QQ plot of {zi,m}Mm=1 of Equation (S6.1) for the Poisson-IG DGP.
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Figure S5: QQ plot of {zi,m}Mm=1 of Equation (S6.1) for the Poisson-Gamma DGP.
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Figure S6: QQ plot of {zi,m}Mm=1 of Equation (S6.1) for the NB-Exp DGP.
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Figure S7: QQ plot of {zi,m}Mm=1 of Equation (S6.1) for the NB-IG DGP.
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Figure S8: QQ plot of {zi,m}Mm=1 of Equation (S6.1) for the NB-Gamma DGP.
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S6.4 Finite sample properties of the model selection procedure

This section illustrates the use, and finite sample properties, of the model selection pro-

cedure introduced in Section 3.1.3 of the main paper. Consider n = 4000 equidistant

observations of an IVT process on a grid of ∆ = 0.10, i.e. X∆, X2∆, . . . , Xn∆.10 For each

of the six possible models, we then calculate the three goodness-of-fit measures, namely

the value of the maximized composite likelihood function CL, the AIC-like composite like-

lihood information criteria CLAIC, and the BIC-like composite likelihood information

criteria CLBIC. The model which has the maximum value of a criterion is “selected” by

that criterion. We repeat this process for 100 Monte Carlo replications and the six different

DGPs using the parameters of Table S1. Figure S9 reports the “selection rates” of the

models, i.e. the fraction of times that a model, given on the x-axis, is selected, for each of

the three different criteria. Each panel in the figure corresponds to a particular DGP, as

shown above, the respective panels.

Consider, for instance, the case where the true DGP is the NB-Exp IVT model. The

results from using this DGP are given in the upper right panel of Figure S9. In this

case, when we estimate the six different models and calculate the three goodness-of-fit

measures, the true model (i.e. NB-Exp) has the highest composite likelihood value in 70%

of simulations. In contrast, the CLAIC and CLBIC result in selecting the true model in

73% and 81% of the simulations, respectively. Note that since the models considered here

are not nested, it is not necessarily the case that the maximized composite likelihood value

CL will be larger for the more complicated models.

Overall, Figure S9 indicates that the model selection procedure is quite accurate when

the marginal distribution of the DGP is the Negative Binomial distribution. Conversely,

when the marginal distribution of the DGP is the Poisson distribution, the correct model

is chosen less often. However, in these situations, it is often the case that although the

Negative Binomial distribution is (incorrectly) preferred to the Poisson distribution, the

correct trawl function (autocorrelation structure) is nonetheless selected.

Lastly, to examine the effect of the tuning parameter K on the model selection proce-

dure, we ran the same experiment but using both K = 5 and K = 20 (results not shown

here, but available upon request). We find that the model selection procedure deteriorates

10The number of simulated observations, n = 4000, the space between observations, ∆ = 0.10, and the

tuning parameter, K = 10, are chosen such as to be comparable to the data studied in the empirical section

of the main paper.
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Figure S9: Simulation study of model selection procedure. Each plot represents the outcome

of a separate Monte Carlo study, where the true DGP in the study is given above the plot.

The numbers plotted are the average selection rates of the models given on the x-axis, using a

given criterion over M = 100 Monte Carlo simulations. For each Monte Carlo replication,

n = 4000 observations of the true DGP are simulated on a grid with step size ∆ = 0.10.

The parameters used in the study are given in Table S1 and we set K = 10.

when K = 5, while it performs similarly to that shown in Figure S9 when K = 20, indicat-

ing that it is important to set K sufficiently large value so that the selection criteria can

properly distinguish between the models.
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S6.5 Alternative simulation setup

We perform simulation experiments similar to those in the main paper but with a different

set of simulation settings. The parameter values used for the DGPs in this study are given

in Table S8; the associated implied marginal distributions of the underlying Lévy bases and

autocorrelations of the IVT processes are shown in Figure S10.

In this simulation study, we simulate n observations of an IVT process Xt on an equidis-

tant grid of size ∆ = 0.10. For the IVTs based on the exponential trawl function, we set

K = 1, while we set K = 3 for the remaining IVTs. This should be contrasted to the setup

of the main paper, where we set K = 10. The finite sample estimation results can be found

in Tables S9–S14. Figure S11 plots the relative RMSE of the MCL estimator compared to

the MM estimator; numbers smaller than one favour the MCL estimator.

26



Table S8: Parameter values used in simulation setup 2

DGP ν m p λ δ γ H α

P-Exp 5.00 1.00

P-IG 5.00 0.75 0.50

P-Gamma 5.00 0.50 0.75

NB-Exp 2.14 0.70 1.00

NB-IG 2.14 0.70 0.75 0.50

NB-Gamma 2.14 0.70 0.50 0.75

Parameter values for the six different DGPs used in the simulation studies of the Supplementary Material.

See the various Examples of the main paper for details. The value m = ν(1−p)/p with ν = 5 is chosen such

that the first moment of the Poisson and Negative Binomial Lévy bases are matched. Marginal distributions

and autocorrelation function implied by these parameter values are shown in Figure S10.
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Figure S10: Marginal distributions of the Lévy bases and autocorrelations of the DGPs used

in the simulation studies of Section S6.5. The marginal distribution and autocorrelation

structure of IVT processes can be specified independently, resulting in six different DGPs in

this setup (P-Exp, P-IG, P-Gamma, NB-Exp, NB-IG, NB-Gamma). The parameter values

used to produce the plots are given in Table S8. Note that the marginal distribution shown

in the top plots is of the underlying Lévy bases and not of the IVT process itself.
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Table S9: CL estimation results: Poisson trawl process with exponential trawl function

ν̂ (ν = 5) λ̂ (λ = 1)

Nobs Avg Bias RMSE Avg Bias RMSE

100 4.9994 −0.0006 0.6464 1.0131 0.0131 0.1220

250 5.0345 0.0345 0.4055 1.0099 0.0099 0.0756

500 5.0468 0.0468 0.2908 1.0074 0.0074 0.0623

1000 5.0100 0.0100 0.2181 1.0067 0.0067 0.0441

2000 5.0217 0.0217 0.1383 1.0026 0.0026 0.0288

4000 5.0103 0.0103 0.1058 1.0009 0.0009 0.0203

8000 5.0012 0.0012 0.0722 1.0005 0.0005 0.0150

Median (Med.), median bias (Bias) and root median squared error (RMSE) of the MCL estimator. DGP:

Poisson-Exponential IVT process. The IVT process Xt is simulated on the grid t = ∆, 2∆, . . . , n∆, with

∆ = 0.10, see Table S8 for the values of the parameters used in the simulations. K = 1. Number of Monte

Carlo simulations: 500.

Table S10: CL estimation results: Poisson trawl process with IG trawl function

ν̂ (ν = 5) δ̂ (δ = 0.75) γ̂ (γ = 0.5)

Nobs Avg Bias RMSE Avg Bias RMSE Avg Bias RMSE

250 4.8852 −0.1148 0.6536 0.8535 0.1035 0.2654 5.6836 5.1836 31.0800

500 4.8907 −0.1093 0.4725 0.8241 0.0741 0.1833 1.1475 0.6475 6.2198

1000 4.9770 −0.0230 0.3128 0.7849 0.0349 0.1266 0.5699 0.0699 0.2729

2000 4.9789 −0.0211 0.2322 0.7641 0.0141 0.0890 0.5281 0.0281 0.1196

4000 4.9921 −0.0079 0.1516 0.7525 0.0025 0.0640 0.5118 0.0118 0.0773

8000 4.9997 −0.0003 0.1203 0.7533 0.0033 0.0421 0.5042 0.0042 0.0543

Median (Med.), median bias (Bias) and root median squared error (RMSE) of the MCL estimator. DGP:

Poisson-IG IVT. The IVT process Xt is simulated on the grid t = ∆, 2∆, . . . , n∆, with ∆ = 0.10, see Table

S8 for the values of the parameters used in the simulations. K = 3. Number of Monte Carlo simulations:

500.
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Table S11: CL estimation results: Poisson trawl process with Γ trawl function

ν̂ (ν = 5) Ĥ (H = 0.5) α̂ (α = 0.75)

Nobs Avg Bias RMSE Avg Bias RMSE Avg Bias RMSE

250 5.0958 0.0958 0.4897 0.6691 0.1691 0.3452 0.9620 0.2120 0.5434

500 4.9864 −0.0136 0.3323 0.6360 0.1360 0.2879 0.9710 0.2210 0.4283

1000 4.9781 −0.0219 0.2526 0.5957 0.0957 0.2109 0.8667 0.1167 0.3183

2000 4.9866 −0.0134 0.1776 0.5765 0.0765 0.1531 0.8480 0.0980 0.2443

4000 4.9789 −0.0211 0.1233 0.5519 0.0519 0.1156 0.8223 0.0723 0.1678

8000 4.9720 −0.0280 0.0945 0.5515 0.0515 0.0864 0.8147 0.0647 0.1234

Median (Med.), median bias (Bias) and root median squared error (RMSE) of the MCL estimator. DGP:

Poisson-Gamma IVT. The IVT process Xt is simulated on the grid t = ∆, 2∆, . . . , n∆, with ∆ = 0.10,

see Table S8 for the values of the parameters used in the simulations. K = 3. Number of Monte Carlo

simulations: 500.

Table S12: CL estimation results: NB trawl process with exponential trawl function

m̂ (m = 2.1429) p̂ (p = 0.7) λ̂ (λ = 1)

Nobs Avg Bias RMSE Avg Bias RMSE Avg Bias RMSE

100 2.7614 0.6186 0.8445 0.6268 −0.0732 0.1010 1.0021 0.0021 0.1902

250 2.3957 0.2528 0.4848 0.6692 −0.0308 0.0618 0.9921 −0.0079 0.1206

500 2.1957 0.0529 0.3009 0.6883 −0.0117 0.0394 1.0038 0.0038 0.0791

1000 2.2200 0.0771 0.2357 0.6912 −0.0088 0.0309 1.0008 0.0008 0.0596

2000 2.1887 0.0458 0.1632 0.6935 −0.0065 0.0215 1.0030 0.0030 0.0410

4000 2.1630 0.0201 0.1126 0.6967 −0.0033 0.0144 0.9999 −0.0001 0.0273

8000 2.1557 0.0128 0.0805 0.6985 −0.0015 0.0109 1.0012 0.0012 0.0210

Median (Med.), median bias (Bias) and root median squared error (RMSE) of the MCL estimator. DGP:

Negative Binomial-Exponential IVT process. The IVT process Xt is simulated on the grid t = ∆, 2∆, . . . , n∆,

with ∆ = 0.10, see Table S8 for the values of the parameters used in the simulations. K = 1. Number of

Monte Carlo simulations: 500.
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Table S13: CL estimation results: NB trawl process with IG trawl function

m̂ (m = 2.1429) p̂ (p = 0.7) δ̂ (δ = 0.75) γ̂ (γ = 0.5)

Nobs Avg Bias RMSE Avg Bias RMSE Avg Bias RMSE Avg Bias RMSE

250 2.5049 0.3621 0.5605 0.6361 −0.0639 0.0827 0.9671 0.2171 0.3323 0.6664 0.1664 0.2521

500 2.3485 0.2056 0.4236 0.6688 −0.0312 0.0632 0.8739 0.1239 0.2095 0.5738 0.0738 0.1402

1000 2.2625 0.1197 0.3055 0.6767 −0.0233 0.0450 0.7991 0.0491 0.1460 0.5280 0.0280 0.0986

2000 2.1975 0.0547 0.2073 0.6937 −0.0063 0.0303 0.7757 0.0257 0.1099 0.5147 0.0147 0.0769

4000 2.1757 0.0328 0.1384 0.6936 −0.0064 0.0199 0.7777 0.0277 0.0800 0.5203 0.0203 0.0573

8000 2.1661 0.0232 0.0970 0.6978 −0.0022 0.0152 0.7631 0.0131 0.0560 0.5127 0.0127 0.0380

Median (Med.), median bias (Bias) and root median squared error (RMSE) of the MCL estimator. DGP:

Negative Binomial-IG IVT. The IVT process Xt is simulated on the grid t = ∆, 2∆, . . . , n∆, with ∆ = 0.10,

see Table S8 for the values of the parameters used in the simulations. K = 3. Number of Monte Carlo

simulations: 500.

Table S14: CL estimation results: NB trawl process with Γ trawl function

m̂ (m = 2.1429) p̂ (p = 0.7) Ĥ (H = 0.5) α̂ (α = 0.75)

Nobs Avg Bias RMSE Avg Bias RMSE Avg Bias RMSE Avg Bias RMSE

500 2.6635 0.5206 0.5684 0.6240 −0.0760 0.0873 3.0978 2.5978 2.5978 4.6910 3.9410 3.9414

1000 2.4640 0.3212 0.4184 0.6510 −0.0490 0.0608 1.1213 0.6213 0.6213 1.6475 0.8975 0.8975

2000 2.3565 0.2136 0.3091 0.6659 −0.0341 0.0461 0.7854 0.2854 0.2887 1.1460 0.3960 0.4207

4000 2.2840 0.1411 0.1944 0.6739 −0.0261 0.0327 0.7204 0.2204 0.2391 1.0852 0.3352 0.3518

8000 2.2302 0.0873 0.1583 0.6843 −0.0157 0.0256 0.7034 0.2034 0.2142 1.0659 0.3159 0.3259

Median (Med.), median bias (Bias) and root median squared error (RMSE) of the MCL estimator. DGP:

Negative Binomial-Gamma IVT process. The IVT process Xt is simulated on the grid t = ∆, 2∆, . . . , n∆,

with ∆ = 0.10, see Table S8 for the values of the parameters used in the simulations. K = 3. Number of

Monte Carlo simulations: 500.
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Figure S11: Root median square error (RMSE) of the MCL estimator divided by the RMSE

of the GMM estimator. The underlying IVT process Xt is simulated on the grid t =

∆, 2∆, . . . , n∆, with ∆ = 0.10, see Table S8 for the values of the parameters used in the

simulations. For the Poisson-Exp and NB-Exp we set K = 1; for the other DGPs we set

K = 3. We also conducted the comparison with K = 5, as suggested in Barndorff-Nielsen

et al. (2014) with similar results (results not presented here but available from the authors

upon request).
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S7 Empirical study

This section contains additional details on the data pre-processing used in the empirical

study, see Subsection S7.1, and additional forecasting results, see Subsection S7.2.

S7.1 Details for the empirical study

We will now provide some additional details on the data preprocessing carried out for the

empirical study. In the article, we analyse the time series of the bid-ask spread, measured

in U.S. dollar cents, of the Agilent Technologies Inc. stock (ticker: A) on a single day,

May 4, 2020. The A stock is traded on the New York Stock Exchange, which is open from

9:30 AM to 4 PM. To avoid opening effects, we consider the data from 10:30 AM to 4 PM,

i.e. we discard the first 60 minutes of the day. Our data is gathered from the Trade and

Quote database and cleaned using the approach proposed in Barndorff-Nielsen et al. (2009).

The data is available at a very high frequency but to obtain equidistant data, we sample

the observations with ∆ = 1
12 minutes (i.e. 5 seconds) time steps, using the previous tick

approach, starting at 10:30 AM, resulting in n = 3961 observations.

S7.2 Additional forecasting results

Figures S12a–S12c report forecasting results analogous to those of Section 6.1 in the main

paper, but now using the conditional mode, instead of the conditional mean, as a point

forecast. That is, using the notation of Section 6.1 in the main paper, we set x̂i|i−h =

arg maxk P̂(Xi|i−h = k), where P̂ is the estimated predictive PMF of the IVT model.
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(a) NB-Gamma versus Poissonian INAR(1)
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Figure S12: Forecasting the spread level of the A stock on May 4, 2020. Four differ-

ent loss metrics and twenty forecast horizons, h = 1, 2, . . . , 20. The numbers plotted are

relative average losses of the NB-Gamma forecasting model, compared with the (a) Pois-

sonian INAR(1) model, the (b) Poisson-Gamma model, and the (c) NB-Exponential, over

noos = 720 out-of-sample forecasts. A circle above the bars indicates rejection null of equal

forecasting performance between the two models, against the alternative that the NB-Gamma

model provides superior forecasts, using the Diebold-Mariano (Diebold and Mariano 1995)

test at a 5% level; an asterisk denotes rejection at a 1% level.
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S8 Details concerning integer-valued Lévy bases

S8.1 Poisson Lévy basis

Consider the case where the Lévy basis is Poisson, i.e. L′ ∼ Poi(ν) for some intensity ν > 0.

For a bounded Borel set B with Leb(B) <∞, we have

L(B) ∼ Poi(νLeb(B)).

The cumulants, in this case, are κj = ν for all j ≥ 0.

S8.2 Negative binomial Lévy basis

We follow Barndorff-Nielsen et al. (2012, 2014) and denote by NB(m, p) the negative bi-

nomial law with parameters m ∈ N and p ∈ (0, 1). Recall, that a negative binomial random

variable is positively valued and can be interpreted as the number of successes, k, until

m failures in a sequence of iid Bernoulli trials, each with the probability of success p. Let

L′ ∼ NB(m, p); it holds that

P (L′ = k) =
Γ(m+ k)

k!Γ(m)
(1− p)mpk, k = 0, 1, 2, . . . .

As is well known, we have that L′t ∼ NB(mt, p) and therefore, for a Borel set B, it holds

that L(B) ∼ NB(Leb(B)m, p), which implies

P (L(B) = k) =
Γ(Leb(B)m+ k)

k!Γ(Leb(B)m)
(1− p)Leb(B)mpk, k = 0, 1, 2, . . . .

Here the relevant cumulants are κ1 = pm
1−p , κ2 = pm

(1−p)2 and κ4 = mp+4p2+p3

(1−p)4 .

S8.3 Skellam Lévy basis

The Skellam distribution is the distribution of the difference of two Poisson processes

N+
t and N−t and is therefore integer-valued. Let N±t ∼ Poi(ψ±) with ψ± > 0; then

S := N+
t −N

−
t ∼ Skellam(ψ+, ψ−). Further, the Skellam Lévy process (L′t)t≥0 with L′1 ∼

Skellam(ψ+, ψ−) has the marginal distribution L′t ∼ Skellam(tψ+, tψ−) (Barndorff-Nielsen

et al. 2012), meaning that for a Borel setB, we have L(B) ∼ Skellam(Leb(B)ψ+, Leb(B)ψ−).

The PMF of the random variable X ∼ Skellam(ψ+, ψ−) is given by

g(k;ψ+, ψ−) := P (X = k) = e−(ψ++ψ−)

(
ψ+

ψ−

)k/2
Ik

(
2
√
ψ+ψ−

)
,
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where Iν(x) is the modified Bessel function of the first kind (see e.g. Abramowitz and

Stegun (1972)) with parameter ν evaluated at x. In the symmetric case, ψ+ = ψ− = ψ,

this reduces to g(k;ψ) := e−2ψIk(2ψ). The cumulants are easily seen to be κj = ψ+ − ψ−

for j odd and κj = ψ+ + ψ− for j even.

S8.4 ∆NB Lévy basis

Analogous to the Skellam process, we can consider the difference of two Lévy seeds which

have negative binomials as their laws; Barndorff-Nielsen et al. (2012) call this a ∆NB Lévy

process. Let L± ∼ NB(m±, p±) be independent Lévy seeds with negative binomial laws.

Barndorff-Nielsen et al. (2012) show that for k ≥ 0, the difference Lévy seed L′ = L+−L−

has PMF

P (L′ = k) = (1− p+)m
+

(1− p−)m
− (p+)k(m+)k

k!
F (m+ + k,m−; k + 1; p+p−), (S8.1)

where

F (α, β; γ; z) =

∞∑
n=0

(α)n(β)n
(γ)n

zn

n!
, z ∈ [0, 1), α, β, γ > 0,

is the hypergeometric function, see e.g. Abramowitz and Stegun (1972), and (α)n = Γ(α+n)
Γ(α)

is the Pochhammer symbol. The PMF for k ≤ 0 is, by symmetry, given as S8.1, mutatis

mutandis. The resulting distribution is denoted as L′ ∼ ∆NB(m+, p+,m−, p−) and it is

easy to show that (Barndorff-Nielsen et al. 2012) the Lévy process corresponding to L′ has

marginal distribution L′t ∼ ∆NB(tm+, p+, tm−, p−), meaning that we have for a Borel set

B,

L(B) ∼ NB(Leb(B)m+, p+, Leb(B)m−, p−).

The cumulants for the ∆NB Lévy seed are easily deduced from those of the negative

binomial ones, recalling that the ∆NB law is the difference of two independent NB random

variables.
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S9 Details concerning parametric trawl functions

The expressions for the likelihoods in the previous section reveal that we are interested in

calculating expressions such as Leb(At\A) and Leb(At ∩ A) for different trawl functions.

In this section we derive the required results for various trawls based on the superposition

trawl function d(s) =
∫∞

0 eλsπ(dλ), s ≤ 0, see also the main paper.

S9.1 The exponential trawl

The case where the measure π has an atom at λ > 0, i.e. π(dx) = δλ(dx), where δy(·) is the

Dirac delta function at y ∈ R+, we get d(s) = eλs. Consequently, for t ≥ 0,

Leb(A) = λ−1, Leb(At\A) = λ−1(1− e−λt), Leb(At ∩A) = λ−1e−λt.

This implies the correlation function

ρ(h) = exp(−λh), h > 0.

S9.2 The finite superposition exponential trawl

Let π have finitely many atoms, i.e. π(dx) =
∑q

i=1wiδλi(dx) for q ∈ N. Then

d(s) =

q∑
i=1

wie
λis,

and

Leb(A) =

q∑
i=1

wiλ
−1
i , Leb(At\A) =

q∑
i=1

wiλ
−1
i (1− e−λit), Leb(At ∩A) =

q∑
i=1

wiλ
−1
i e−λit.

This implies the correlation function

ρ(h) =

(
q∑
i=1

ωiλ
−1
i

)−1 q∑
i=1

ωiλ
−1
i exp(−λih), h > 0.

S9.3 The GIG trawl

A flexible class of trawl functions can be specified through the generalized inverse Gaussian

(GIG) density function (see e.g. Barndorff-Nielsen et al. (2014)),

fπ(x) =
(γ/δ)ν

2Kν(δγ)
xν−1 exp

(
−1

2
(δ2x−1 + γ2x)

)
,

where ν ∈ R and γ, δ ≥ 0 with both not equal to zero simultaneously. Kν(x) is the modified

Bessel function of the third kind with parameter ν, evaluated at x (e.g. Abramowitz and
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Stegun (1972)). Suppose now, that π has density fπ, i.e. π(dλ) = fπ(λ)dλ. For s ≤ 0, the

trawl function becomes

d(s) =

∫ ∞
0

eλsfπ(λ)dλ =

(
1− 2s

γ2

)−ν/2 Kν (δγαs)

Kν(δγ)
,

whereas

Leb(A) =
γ

δ

Kν−1(δγ)

Kν(δγ)
, Leb(At ∩A) =

γα−ν+1
t

δ

Kν−1(δγαt)

Kν(δγ)
,

and

Leb(At\A) =
γ

δKν(δγ)

(
Kν−1(δγ)− α−ν+1

t Kν−1(δγαt)
)
,

where αt :=
√

2t
γ2 + 1. This implies the correlation function

ρ(h) = α−ν+1
h

Kν−1(δγαh)

Kν−1(δγ)
, h > 0.

S9.4 The IG trawl

The inverse Gaussian distribution is a special case of the GIG distributions, where ν = 1
2 .

In this case, the trawl function simplifies to

d(s) =

(
1− 2s

γ2

)−1/2

exp

(
δγ

(
1−

√
1− 2s

γ2

))
, s ≤ 0,

which means that

Leb(A) =
γ

δ
, Leb(At ∩A) =

γ

δ
eδγ(1−αt), Leb(At\A) =

γ

δ

(
1− eδγ(1−αt)

)
,

where again αt =
√

2t
γ2 + 1. This implies the correlation function

ρ(h) = exp(δγ(1− αh)), h > 0.

S9.5 The Γ trawl

An interesting case, capable of generating long memory in the trawl process, is given by

the Γ trawl. Suppose that π has the Γ(1 +H,α) density,

fπ(λ) =
1

Γ(1 +H)
α1+HλHe−λα,

where α > 0 and H > 0. Now,

d(s) =
(

1− s

α

)−(H+1)
, s ≤ 0,
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which implies

Leb(A) =
α

H
, Leb(At ∩A) =

α

H

(
1 +

t

α

)−H
, Leb(At\A) =

α

H

(
1−

(
1 +

t

α

)−H)
.

This yields the correlation function

ρ(h) = Corr(L(At+h), L(At)) =
Leb(Ah ∩A)

Leb(A)
=

(
1 +

h

α

)−H
,

so that ∫ ∞
0

ρ(h)dh =

 ∞ if H ∈ (0, 1],

α
H−1 if H > 1,

from which we see, that the trawl process has long memory for H ∈ (0, 1].
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S10 Details concerning gradients

Recall that we have the composite log-likelihood function

lCL(θ;x) := l
(K)
CL (θ;x) = logL

(K)
CL (θ;x) =

K∑
k=1

n−k∑
i=1

log f(xi+k, xi; θ).

Let θi be an element of θ. The derivative of lCL(θ;x) wrt. θi is

∂

∂θi
lCL(θ;x) =

∂

∂θi
logL

(K)
CL (θ;x) =

K∑
k=1

n−k∑
i=1

1

f(xi+k, xi; θ)

∂

∂θi
f(xi+k, xi; θ). (S10.1)

Recall also that

f(xi+k, xi; θ) =

∞∑
c=−∞

P
(c)
1,i,k · P

(c)
2,i,k · P

(c)
3,k

with

P
(c)
1,i,k := P (L(Ak∆ \A) = xi+k − c) , P

(c)
2,i,k = P (L(Ak∆ \A) = xi − c) , P

(c)
3,k = P (L(Ak∆ ∩A) = c) ,

implying that

∂

∂θi
f(xi+k, xi; θ) =

∞∑
c=−∞

(
∂

∂θi
P

(c)
1,i,k · P

(c)
2,i,k · P

(c)
3,k + P

(c)
1,i,k ·

∂

∂θi
P

(c)
2,i,k · P

(c)
3,k + P

(c)
1,i,k · P

(c)
2,i,k ·

∂

∂θi
P

(c)
3,k

)
.

(S10.2)

The terms P
(c)
1,i,k, P

(c)
2,i,k, P

(c)
3,k are calculated in the numerical maximization of the composite

likelihood routine for all c. The aim of this section is to calculate ∂
∂θi
P

(c)
j,i,k for j = 1, 2, 3, so

that the gradient of the log-likelihood function is easily calculated using Equations (S10.1)

and (S10.2). It is clear that ∂
∂θi
P

(c)
j,i,k will depend on both the Lévy basis as well as the form

of the trawl set (and hence the trawl function). We first supply the relevant derivations

for the Poisson Lévy basis (Section S10.2) and the Negative Binomial Lévy basis (Section

S10.3), and then the trawl functions Exp, SupExp, IG, and Γ (Sections S10.4–S10.7).

S10.1 Some preliminary practical details

In our numerical implementation of the composite likelihood methods, we often have re-

strictions on some parameters. Most notably, we have positivity restriction, e.g. we require

that the intensity ν > 0 for the Poisson Lévy basis. One could impose such restrictions by

using a constrained optimization procedure when performing the numerical optimization of

the log composite likelihood function lCL(θ;x). We prefer to work with an unconstrained
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optimization procedure, by transforming the parameters such that they are fulfilling their

restrictions automatically. That is if θ is a restricted parameter, we find an invertible

transformation function g, such that θ̃ = g−1(θ) ∈ R is unrestricted. The unconstrained

numerical optimizer is optimizing over the unrestricted parameter θ̃ and arrives at, say,

θ̃∗. Our estimate of θ is thus θ̂ = g(θ̃∗). Consequently, it is necessary to correct for this

when calculating standard errors (delta rule) as well as when supplying a gradient for our

numerical optimization scheme. The reason is that the calculations concerning the gradi-

ent, detailed in the previous section, are with respect to θ, and not θ̃, which is the actual

parameter being used in the numerical optimization procedure. In the case of a transformed

variable, the gradient that should be supplied to the machine is therefore not the one given

in (S10.2), but rather

∂

∂θ̃i
f(xi+k, xi; θ) =

∂

∂θi
f(xi+k, xi; θ)

∂θi

∂θ̃i
=

∂

∂θi
f(xi+k, xi; θ)

∂

∂θ̃i
g(θ̃).

In this paper two restrictions are encountered: many parameters are positive, while a

few are restricted to be in the unit interval. If θ > 0 is a positive parameter, we use a log

transformation by defining the new parameter θ̃ through

θ̃ = g−1(θ) = log θ, θ = g(θ̃) = exp(θ̃).

If p ∈ (0, 1) is a parameter, we use an inverse logistic (sigmoid) transformation,

p̃ = g−1(p) = log

(
p

1− p

)
, p = g(p̃) =

1

1 + exp(−p̃)
.

S10.2 Poisson Lévy basis

Let L′ ∼ Poi(ν) and recall that for a Borel set B, this implies

P (L(B) = x) =
[νLeb(B)]x exp(−νLeb(B))

x!
.

We deduce, that for a generic parameter θ 6= ν,

∂

∂θ
P (L(B) = x) =

(
xLeb(B)−1 − ν

)
P (L(B) = x)

∂

∂θ
Leb(B).

The only ingredient left to calculate is

∂

∂ν
P (L(B) = x) =

(
xν−1 − Leb(B)

)
P (L(B) = x) .
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S10.3 Negative Binomial Lévy basis

Recall that in the case where the Lévy seed L′ is distributed as a Negative Binomial random

variable with parameters m > 0 and p ∈ [0, 1], we have L(B) ∼ NB(Leb(B)m, p), which

implies

P (L(B) = x) =
Γ(Leb(B)m+ x)

x!Γ(Leb(B)m)
(1− p)Leb(B)mpx, x = 0, 1, 2, . . . .

Using the well-known property of the Γ function that Γ(x + 1) = xΓ(x) (Gradshteyn and

Ryzhik 2007, p. 904), we can write

P (L(B) = x) = (Leb(B)m+ x− 1) (Leb(B)m+ x− 2) · · · (Leb(B)m)
1

x!
(1− p)Leb(B)mpx,

for k = 0, 1, 2, . . .. We deduce, that for a generic parameter θ 6= m, p,

∂

∂θ
P (L(B) = x)

=

(
∂

∂θ
Leb(B)

)
mP (L(B) = x)

(
log(1− p) +

1

Leb(B)m
+

1

Leb(B)m+ 1
+ · · ·+ 1

Leb(B)m+ x− 1

)
.

The only ingredients left to calculate are

∂

∂p
P (L(B) = x) = P (L(B) = x)

(
x

p
− Leb(B)m

1− p

)
,

and

∂

∂m
P (L(B) = x)

= P (L(B) = x)Leb(B)

(
log(1− p) +

1

Leb(B)m
+

1

Leb(B)m+ 1
+ · · ·+ 1

Leb(B)m+ x− 1

)
.

S10.4 Exponential trawl function

Let L′ be a generic Lévy seed and d(s) = exp(λs) for s ≤ 0. Recall that for t > 0,

Leb(At \A) = λ−1(1− exp(−λt)), Leb(At ∩A) = λ−1 exp(−λt).

It is not difficult to show that

∂

∂λ
Leb(At \A) = λ−1

(
t exp(−λt)− λ−1(1− exp(−λt))

)
,

while

∂

∂λ
Leb(At ∩A) = −λ−1 exp(−λt)

(
λ−1 + t

)
.
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S10.5 SupExp trawl function

Let L′ be a generic Lévy seed and d(s) be the supExp trawl function (see above). Recall

that for t > 0,

Leb(At \A) =

q∑
i=1

wiλ
−1
i (1− e−λit), Leb(At ∩A) =

q∑
i=1

wiλ
−1
i e−λit.

It is not difficult to show that for j = 1, 2, . . . , q,

∂

∂λj
Leb(At \A) = wjλ

−1
j

(
t exp(−λjt)− λ−1

j (1− exp(−λjt))
)
,

∂

∂λj
Leb(At ∩A) = −wjλ−1

j exp(−λjt)
(
λ−1
j + t

)
,

while

∂

∂wj
Leb(At \A) = λ−1

j (1− e−λjt),

∂

∂wj
Leb(At ∩A) = λ−1

j e−λjt.

S10.6 IG trawl function

Let L′ be a generic Lévy seed and d(s) be the IG trawl (see above). Recall that, for t > 0,

Leb(At \A) =
γ

δ
(1− exp(δγ(1− αt))) , Leb(At ∩A) =

γ

δ
exp(δγ(1− αt)),

where αt =
√

2t
γ2 + 1.

We can show that

∂

∂δ
Leb(At \A) = −δ−1Leb(At \A)− γ2δ−1(1− αt) exp(δγ(1− αt)),

∂

∂γ
Leb(At \A) = −γ−1Leb(At \A)− γ exp(δγ(1− αt))[1− αt + 2γ−2α−1

t t],

and

∂

∂δ
Leb(At ∩A) = Leb(At ∩A)(γ(1− αt)− δ−1),

∂

∂γ
Leb(At ∩A) = Leb(At ∩A)(γ−1 + δ(1− αt) + 2δγ−2α−1

t t).

S10.7 Γ trawl function

Let L′ be a generic Lévy seed and d(s) be the Γ trawl (see above). Recall that, for t > 0,

Leb(At \A) =
α

H

(
1−

(
1 +

t

α

)−H)
, Leb(At ∩A) =

α

H

(
1 +

t

α

)−H
.
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It is easy to show that

∂

∂H
Leb(At ∩A) = − α

H

(
1 +

t

α

)−H (
H−1 + log

(
1 +

t

α

))
,

∂

∂α
Leb(At ∩A) =

(
1 +

t

α

)−(H+1)(
H−1

(
1 +

t

α

)
+
t

α

)
.

and

∂

∂H
Leb(At \A) = −αH−2 − ∂

∂H
Leb(At ∩A),

∂

∂α
Leb(At \A) = H−1 − ∂

∂α
Leb(At ∩A).
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S11 Additional calculations

S11.1 Calculations for the GIG trawl of Section S9.3

We have the trawl function

d(s) =

(
1− 2s

γ2

)−ν/2 Kν

(
δγ
√

1− 2s
γ2

)
Kν(δγ)

.

In the following we use the substitution x =
√

1 + 2s
γ2 to get

Leb(A) =

∫ ∞
0

d(−s)ds =

∫ ∞
0

(
1 +

2s

γ2

)−ν/2 Kν

(
δγ
√

1 + 2s
γ2

)
Kν(δγ)

ds

=

∫ ∞
1

x−ν+1Kν (δγx)

Kν(δγ)
γ2dx

=
γ2

Kν(δγ)

(∫ ∞
0

x−ν+1Kν (δγx)−
∫ 1

0
x−ν+1Kν (δγx)

)
.

Now apply (6.561.12) and (6.561.16) in Gradshteyn and Ryzhik (2007) to get11

Leb(A) =
γ

δ

Kν−1(δγ)

Kν(δγ)
.

Set α :=
√

2t
γ2 + 1. Now, make the same substitution as above to get

Leb(At ∩A) =

∫ ∞
t

d(−s)ds =

∫ ∞
0

(
1 +

2s

γ2

)−ν/2 Kν

(
δγ
√

1 + 2s
γ2

)
Kν(δγ)

ds

=

∫ ∞
α

x−ν+1Kν (δγx)

Kν(δγ)
γ2dx.

Set y = α−1x to get∫ ∞
α

x−ν+1Kν (δγx)

Kν(δγ)
γ2dx =

γ2

Kν(δγ)

∫ ∞
1

(αy)−ν+1Kν (δγαy)αdy

=
γ2α−ν+2

Kν(δγ)

∫ ∞
1

y−ν+1Kν (δγαy) dy.

Now, splitting the integral as above and using the same formulae yields

Leb(At ∩A) =
γα−ν+1

δ

Kν−1(δγα)

Kν(δγ)
.

S11.2 Calculations for the IG trawl of Section S9.4

We have

d(s) =

(
1− 2s

γ2

)−1/2

exp

(
δγ

(
1−

√
1− 2s

γ2

))
,

11Note, that we here need to impose ν < 1.
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which means that

Leb(A) =

∫ ∞
0

d(−s)ds =

∫ ∞
0

(
1 +

2s

γ2

)−1/2

exp

(
δγ

(
1−

√
1 +

2s

γ2

))
ds.

So, after the change of variable x =
√

1 + 2s
γ2 we have

Leb(A) =

∫ ∞
0

d(−s)ds =

∫ ∞
1

x−1 exp (δγ(1− x)) γ2xdx

= γ2

∫ ∞
1

exp (δγ(1− x)) dx

= γ2eδγ
∫ ∞

1
e−δγxdx

=
γ

δ
.

Again, defining α :=
√

2t
γ2 + 1, we get by similar calculations

Leb(At ∩A) =

∫ ∞
t

d(−s)ds = γ2eδγ
∫ ∞
α

e−δγxdx =
γ

δ
eδγ(1−α).
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S12 Weak dependence of trawl processes and asymptotic

theory for the GMM approach

In this section, we show that trawl processes, not necessarily restricted to the integer-valued

case, are θ-weakly dependent and we state and prove the asymptotic theory for the GMM

approach to parameter estimation.

S12.1 Weak dependence of trawl processes

In this section, we show that (integer-valued) trawl processes are θ-weakly dependent, see

Curato & Stelzer (2019, Definition 3.2).

Let us consider a (not necessarily integer-valued) Lévy seed L′ with characteristic triplet

(γ, a, η), i.e. an infinitely divisible random variable with characteristic function given by

Ψ(θ;L′) = E(exp(iθL′)) = exp

(
iθγ − 1

2
θ2a+

∫
R

(
eiθξ − 1− iθξI[−1,1](ξ)

)
η(dξ)

)
,

(S12.1)

for θ ∈ R.

In the case of an integer-valued trawl process, we have

Ψ(θ;L′) = E(exp(iθL′)) = exp

(∫
R

(
eiθξ − 1

)
η(dξ)

)
= exp

∑
ξ

(
eiθξ − 1

)
η(ξ)

 ,

(S12.2)

for θ ∈ R. I.e. in this case, the corresponding characteristic triplet is given by (γ, 0, η),

where γ =
∫
R ξI[−1,1](ξ)η(dξ) =

∑1
ξ=−1 ξη(ξ).

We set

At = {(x, s) : s ≤ t, 0 ≤ x ≤ d(s− t)},

for a function d : (−∞, 0] → [0,∞). Let us also define a function g : [0,∞) → [0,∞) by

g(s) := d(−s), for all s ≥ 0. We note that the trawl process associated with the Lévy seed

L′ can be expressed as X = (Xt)t≥0 with

Xt = L(At) =

∫
(−∞,t]×R

I(0,d(s−t))(x)L(dx, ds) =

∫
(−∞,t]×R

I(0,g(t−s))(x)L(dx, ds) (S12.3)

=

∫
R×R

f(x, t− s)L(dx, ds), (S12.4)

with f(x, t−s) = I(0,g(t−s))(x)I[0,∞)(t−s), which is a special case of a causal mixed moving

average processes as defined in Curato & Stelzer (2019, Definition 3.3). Hence, using Curato

46



& Stelzer (2019, Corollary 3.4) and assuming that
∫
|ξ|>1 |ξ|

2η(dξ) <∞, we deduce that the

trawl process is θ-weakly dependent in the sense of Curato & Stelzer (2019, Definition 3.2)

with coefficient, for r ≥ 0,

θX(r) =

(
Var(L′)

∫
(−∞,−r)×R

I2(0,g(−s))(x)I2[0,∞)(−s)dxds

+

∣∣∣∣∣E(L′)

∫
(−∞,−r)×R

I(0,g(−s))(x)I[0,∞)(−s)dxds

∣∣∣∣∣
2
1/2

=

(
Var(L′)

∫ −r
−∞

g(−s)ds+ (E(L′))2

(∫ −r
−∞

g(−s)ds
)2
)1/2

=

(
Var(L′)

∫ ∞
r

g(s)ds+ (E(L′))2

(∫ ∞
r

g(s)ds

)2
)1/2

=

(
Cov(X0, Xr) +

(E(L′))2

(Var(L′))2
(Cov(X0, Xr))

2

)1/2

,

where E(L′) = γ +
∫
|ξ|>1 η(dξ), and Var(L′) = a+

∫
R ξ

2η(dξ).

In the case when L′ is of finite variation, i.e. when the characteristic triplet is given by

(γ, 0, η) with
∫
R |ξ|η(ξ) < ∞, which includes, in particular, integer-valued trawl processes,

then the coefficient is, for r ≥ 0, given by

θX(r) =

∫
(−∞,−r)×R

∫
R
|I(0,g(−s))(x)I[0,∞)(−s)ξ|η(dξ)dxds

+

∫
(−∞,−r)×R

|I(0,g(−s))(x)I[0,∞)(−s)γ0|dxds

=

(∫
R
|ξ|η(dξ) + |γ0|

)∫ ∞
r

g(s)ds = cCov(X0, Xr),

where c =
(∫

R |ξ|η(dξ) + |γ0|
)
/Var(L′) and γ0 = γ −

∫
|ξ|≤1 ξη(dξ).

We note that, in the case of an integer-valued trawl, we have γ0 = γ −
∫
|ξ|≤1 ξη(dξ) =∫

R ξI[−1,1](ξ)η(dξ)−
∫
|ξ|≤1 ξη(dξ) = 0 and, hence, c =

∫
R |ξ|η(dξ) =

∑
ξ |ξ|η(ξ).

We note that, as pointed out in Curato & Stelzer (2019, p. 324) and shown in the

discrete-time case in Doukhan et al. (2012), for integer-valued trawl processes, the fact that

IVT processes are θ-weakly dependent, implies that they are strongly mixing.

S12.2 GMM estimation for trawl processes

In Barndorff-Nielsen et al. (2014), the authors proposed estimating the trawl parameters

via a (generalised) method of moments (G)MM. We shall now derive the corresponding

asymptotic theory.
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Consider the equidistantly sampled process X∆, X2∆, . . . , Xn∆, for ∆ = T/n > 0, T >

0, n ∈ N. The GMM estimator is based on the sample mean, sample variance and sample

autocovariances up to lag m ≥ 2. Consider the vector

Y
(m)
t = (Xt∆, X(t+1)∆, . . . , X(t+m)∆),

for t = 1, . . . , n − m. Let Θ denote the parameter space of the trawl process and set

µ := µ(θ) = E(X0) and D(k) := D(k, θ) := E(X0Xk∆), for k = 0, . . . ,m. For a given

parametric model of X, D(k) is just a function of the model parameter(s) θ.

Define the measurable function h : Rm+1 ×Θ→ Rm+2 by

h(Y
(m)
t , θ) =



hE(Y
(m)
t , θ)

h0(Y
(m)
t , θ)

h1(Y
(m)
t , θ)
...

hm(Y
(m)
t , θ)


=



Xt∆ − µ(θ)

X2
t∆ −D(0, θ)

Xt∆X(t+1)∆ −D(1, θ)
...

Xt∆X(t+m)∆ −D(m, θ)


.

The corresponding sample moments can be defined as

gn,m(θ) =
1

n−m

n−m∑
t=1

h(Y
(m)
t , θ) =



1
n−m

∑n−m
t=1 hE(Y

(m)
t , θ)

1
n−m

∑n−m
t=1 h0(Y

(m)
t , θ)

...

1
n−m

∑n−m
t=1 hm(Y

(m)
t , θ)

 .

We can then estimate the true parameter θ0, say, by minimising the objective function of

the GMM, which leads to the estimator

θ̂n,m0,GMM = argmingn,m(θ)>An,mgn,m(θ), (S12.1)

where An,m is the positive-definite weight matrix of the m+ 2 moments considered.

We would like to derive a central limit theorem for the GMM estimator. As a first step,

as in (Curato & Stelzer 2019, Section 6.1 for supOU processes), we derive a central limit

theorem for the moment function h(Y
(m)
t , θ0):

Theorem S12.1. Consider a trawl process X with characteristic triplet (γ, a, η) and sup-

pose that
∫
|ξ|>1 |ξ|

4+δη(dξ) <∞, for some δ > 0 and suppose that the θ-weakly dependence

coefficient of the trawl process is given by θX(r) = O(r−α), for α >
(
1 + 1

δ

) (
1 + 1

2+δ

)
. Set
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Y
(m)
t = (Xt∆, X(t+1)∆, . . . , X(t+m)∆), for t = 1, . . . , n−m. Then h(Y

(m)
t , θ0) is a θ-weakly

dependent process, the matrix

Σa =
∑
l∈Z

Cov(h(Y
(m)

0 , θ0), h(Y
(m)
l , θ0))

is finite, positive definite and, as n→∞,

√
ngn,m(θ0)

d→ N(0,Σa).

Proof of Theorem S12.1. We note that Y = (Y
(m)
t )t∈R can be represented as a causal (m+

1)-dimensional mixed moving average process given by

Y
(m)
t =

∫
(−∞,t∆]×R


I(0,g(t∆−s))(x)

I(0,g((t−1)∆−s))(x)
...

I(0,g((t−m)∆−s))(x)

L(dx, ds) =

∫
(−∞,t∆]×R


I(0,g(t∆−s))(x)

I(0,g(t∆−s−∆))(x)
...

I(0,g(t∆−s−m∆))(x)

L(dx, ds),

which is θ-weak dependent with coefficient θ(r) = DθX(r − m∆), for r ≥ m∆, where

D = (m∆ + 1)1/2 for general trawl processes and D = (m∆ + 1) in the finite variation case,

see Curato & Stelzer (2019, Proposition 4.1)

Note that the condition
∫
|ξ|>1 |ξ|

4+δη(dξ) < ∞ implies the existence of the (4 + δ)-

moment of the trawl process. Define a function H : Rm+1 → Rm+2 such that

H(Y
(m)
t ) = h(Y

(m)
t , θ0) +


µ(θ0)

D(0, θ0)
...

D(m, θ0)

 =



Xt∆ − µ(θ0)

X2
t∆ −D(0, θ0)

Xt∆X(t+1)∆ −D(1, θ0)
...

Xt∆X(t+m)∆ −D(m, θ0)


+



µ(θ0)

D(0, θ0)

D(1, θ0)
...

D(m, θ0)



=



Xt∆

X2
t∆

Xt∆X(t+1)∆

...

Xt∆X(t+m)∆


.

Curato & Stelzer (2019) showed that the function H satisfies the conditions of Curato &

Stelzer (2019, Proposition 3.4) for p = 4 + δ, c = 1, a = 2. Hence, according to Curato &

Stelzer (2019, Proposition 3.4), H(Y
(m)
t ) is a θ-weakly dependent process with coefficient
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C(DθX(r−m∆))
2+δ
3+δ , for r ≥ m∆, for a constant C > 0 independent of r. We can now deduce

that h(Y
(m)
t , θ0) is a zero-mean, θ-weakly dependent process with the same coefficient.

Applying the Cramer-Wold device and Dedecker & Rio (2000, Theorem 1) allows us to

conclude as in the proof of Curato & Stelzer (2019, Theorem 6.1), where we note that the

moment condition appearing in Dedecker & Rio (2000, Theorem 1) is implied for a weakly

θ-dependent process with coefficient θ(r) = O(r−α
∗
), for α∗ > 1+1/δ, see e.g. Curato et al.

(2022). I.e. in our setting we require that α∗ = α2+δ
3+δ > 1+1/δ ⇔ α > (1+ 1

δ )(1+ 1
2+δ ).

Let us now formulate the technical assumptions for the weak consistency and the central

limit theorem of the GMM estimator.

We start off with the assumptions which guarantee weak consistency, cf. Mátyás (1999,

Assumptions 1.1-1.3)

Assumption S12.1. (i) Suppose that E(h(Y
(m)
t , θ)) exists and is finite for all θ ∈ Θ

and for all t.

(ii) Set h
(m)
t (θ) = E(h(Y

(m)
t , θ)). There exists a θ0 ∈ Θ such that h

(m)
t (θ) = 0 for all t if

and only if θ = θ0.

We note that by construction, Assumption S12.1 (i) is satisfied in our setting under suit-

able moment conditions on L′, whereas (ii) needs to be verified for the specific parametric

case of interest.

Next, we impose an assumption on the convergence of the sample moments to the pop-

ulation moments. To this end, let h(m)(θ) =
∑n−m

t=1 h
(m)
t (θ). We denote the jth component

of the m+2-dimensional vectors h(m)(θ) and gn,m(θ) by h
(m)
j (θ) and gn,m;j(θ), respectively.

Assumption S12.2. Suppose that, for j = 1, . . . ,m+ 2, as n→∞,

sup
θ∈Θ
|h(m)
j (θ)− gn,m;j(θ)|

P→ 0,

The next assumption concerns the convergence of the weighting matrix:

Assumption S12.3. There exists a sequence of non-random, positive definite matrices

An,m such that, as n→∞, |An,m −An,m|
P→ 0.

Theorem S12.2. Assume that Assumptions S12.1, S12.2, S12.3 hold. Then the GMM

estimator θ̂n,m0,GMM defined in (S12.1) is weakly consistent.

Proof. This is an immediate consequence of Mátyás (1999, Theorem 1.1).
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Remark S12.1. We note that Mátyás (1999, p. 14–17) discusses alternative (sufficient)

assumptions which might be easier to check in practice.

Assumption S12.4. Θ is a compact parameter space which includes the true parameter

θ0.

Remark S12.2. We note that, in practice, we would often impose bounds on the parameter

space Θ, so even if the true parameter constraints on Θ might not necessarily imply a

compact space, it can typically be chosen to be compact when imposing suitable constraints

in the optimisation.

Assumption S12.5. The weight matrix An,m converges in probability to a positive definite

matrix A.

Assumption S12.6. The covariance matrix Σa is positive definite.

Theorem S12.3. Consider a trawl process X with characteristic triplet (γ, a, η) and sup-

pose that
∫
|ξ|>1 |ξ|

4+δη(dξ) <∞, for some δ > 0 and and suppose that the θ-weakly depen-

dence coefficient of the trawl process is given by θX(r) = O(r−α), for α >
(
1 + 1

δ

) (
1 + 1

2+δ

)
.

Suppose that Assumptions S12.1, S12.4, S12.5, S12.6 hold. Then, as n→∞,

√
n(θ̂n,m0,GMM − θ0)

d→ N(0,MΣaM
>),

where

Σa =
∑
l∈Z

Cov(h(Y
(m)

0 , θ0), h(Y
(m)
l , θ0)),

M = (G>0 AG0)−1G>0 A, where G0 = E

[
∂h(Y

(m)
t , θ)

∂θ>

]
θ=θ0

.

Proof of Theorem S12.3. The proof follows the strategy of the proof of Mátyás (1999, The-

orem 1.2), see also Curato & Stelzer (2019, Proof of Theorem 6.2) for the case of a supOU

process. Hence, we verify the Assumptions 1.1-1.3 and 1.7-1.9 in Mátyás (1999, Chapter

1).

We note that Assumption 1.1 in Mátyás (1999) is implied by Assumption S12.1.

For Assumption 1.2 in Mátyás (1999), see our Assumption S12.2, we verify the corre-

sponding sufficient conditions Assumption 1.4, 1.5 and 1.6 in Mátyás (1999).

Assumption 1.3 in Mátyás (1999) holds due to Assumption S12.5.

Assumption 1.4 in Mátyás (1999) is implied by our Assumption S12.4.
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Assumption 1.5 in Mátyás (1999) is satisfied since the trawl process is a special case of

a mixed moving average process and hence mixing and ergodic, see Fuchs & Stelzer (2013).

Assumption 1.6 in Mátyás (1999) implies that we need to show that each component of

the function h satisfies a (stochastic) Lipschitz condition. For the first component, we have

|hE(Y
(m)
t , θ1)− hE(Y

(m)
t , θ2)| = | − µ(θ1) + µ(θ2)|,

and similar expressions hold for the other components. In all cases, we observe that the

random components cancel out and, hence, we only require a Lipschitz condition for the

deterministic parts. We note that, when taking partial derivatives with respect to the model

parameters, we get that these partial derivatives are bounded and, hence, the components

are Lipschitz continuous and Assumption 1.6 in Mátyás (1999) holds.

Assumption 1.7 in Mátyás (1999) holds by construction. Then h(Y
(m)
t , θ) is continuously

differentiable with respect to θ ∈ Θ. We set

Gn,m(θ) :=
1

n−m

n−m∑
t=1

∂h(Y
(m)
t , θ)

∂θ>
.

Note that Assumption 1.8 in Mátyás (1999) holds if we can show that
∂h(Y

(m)
t ,θ)

∂θ>
satisfies

a weak law of large numbers in a neighbourhood of θ0. I.e. we need to show that, for any

sequence (θ∗n) such that θ∗n
P→ θ0, we haveGn,m(θ∗n)

P→ G0. From the definition of h(Y
(m)
t , θ),

we can read off that the partial derivative matrix
∂h(Y

(m)
t ,θ)

∂θ>
does not depend on Y

(m)
t , which

implies that Gn,m(θ) :=
∂h(Y

(m)
t ,θ)

∂θ>
and G0 = E

[
∂h(Y

(m)
t ,θ)

∂θ>

]
θ=θ0

=
∂h(Y

(m)
t ,θ)

∂θ>

∣∣∣∣
θ=θ0

. We can

now apply the continuous mapping theorem, to deduce that Assumption 1.8 in Mátyás

(1999) holds.

Finally, we need to justify that Assumption 1.9 in Mátyás (1999) holds. However, this

is a direct consequence of Theorem S12.1.

Hence, the same steps as in the proof of Mátyás (1999, Theorem 2.1) can be applied

since Assumption S12.6 holds, where fT and FT need to be replaced by gn,m and Gn,m.

Let us now study some examples when the condition that the θ-weakly dependence

coefficient of the trawl process is given by θX(r) = O(r−α), for α >
(
1 + 1

δ

) (
1 + 1

2+δ

)
.

Suppose in the following two examples that we consider an integer-valued trawl process,

then θX(r) ∝ Cov(X0, Xr).

Example S12.1. In the case of an exponential trawl function with parameter λ > 0,
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we have that θX(r) ∝ e−λr, which decays even faster than any polynomial decay, so the

condition that θX(r) = O(r−α), for α >
(
1 + 1

δ

) (
1 + 1

2+δ

)
holds.

Example S12.2. In the case of a Gamma trawl function with parameters α > 0, H > 0,

we have that θX(r) ∝ r−H . So the condition in the two theorems implies that we need that

H >
(
1 + 1

δ

) (
1 + 1

2+δ

)
> 1, which excludes the long-memory setting.

S12.3 Comparison of the asymptotic variances of the MCL and GMM

estimators: The case of the Poisson-Exponential IVT process

In Section 5, the GMM and MCL estimators were compared in finite samples. By consider-

ing the CLT of the MCL estimator (Theorem 3.3) and that of the GMM estimator (Theorem

S12.3), we may also compare the two estimators analytically by comparing the values of

the asymptotic variance (AVAR) of the two estimators. Indeed, in the short-memory case,

we have results to the effect that (Theorem 3.3 and Theorem S12.3)

√
n(θ̂x − θ0)

(d)→ N(0, AV ARx), x = MCL,GMM, (S12.1)

where AV ARx is the asymptotic variance matrix for x = MCL,GMM . Both approaches

to calculating AV ARx rely on terms for which we do not have closed-form expressions,

but that we instead have to estimate using simulations.12 We illustrate this in the case of

the Poisson-Exponential IVT model with ν = 17.50 and λ = 1.80 (same setup as in the

paper, cf. Table S1). We set K = 10 for the MCL estimator and m = 10 for the GMM

estimator. We use the estimation-based method with B = N = 500 (Section S4.1) to

calculate the V matrix of the MCL estimator of Theorem 3.313; to calculate Σa of Theorem

S12.3, we use a similar simulation-based approach. To be precise, for b = 1, 2, . . . , B with

B = 500, we simulate N = 500 observations of a Poisson-Exponential IVT process (with

ν = 17.5 and λ = 1.8) Y , which we use to calculate Σ
(b)
a = Cov(h(Y

(m)
0 , θ0), h(Y

(m)
0 , θ0)) +

2
∑50

l=1 Cov(h(Y
(m)

0 , θ0), h(Y
(m)
l , θ0)). Then we estimate Σa ≈ 1

B

∑B
b=1 Σ

(b)
a .

We run the above simulation-based procedure 100 times. The simulation-based es-

timated values for the diagonal element of
√
AV ARx, for the runs i = 1, 2, . . .M , are

12This holds in particular for the V matrix in the MCL CLT, see Theorem 3.3 and the discussion following

it. It also holds for the Σa matrix in the GMM CLT, see Theorem S12.3.
13We also need to estimate the H matrix of Theorem 3.3, which we would normally get as standard

output from the numerical MCL estimation procedure. Here, we simulate one instance of a very long

(n = 20, 000) Poisson-Exponential IVT process and use this to estimate H via standard output from the

numerical optimizer.
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Figure S13: Left plot: Simulation-based estimates of the asymptotic variance of ν̂,

i.e.
√
AV ARx(1, 1) for x = MCL,GMM , where AV ARx is the asymptotic covariance

matrix of θ̂, see Equation (S12.1). Right plot: Simulation-based estimates of the asymp-

totic variance of λ̂, i.e.
√
AV ARx(2, 2) for x = MCL,GMM . Horizontal lines denote the

average over the 100 simulations.

shown in Figure S13. The diagonal elements of AV ARMCL (red crosses) are always smaller

than those of AV ARGMM (blue circles), and the simulation-based estimates of the lat-

ter are much more volatile. The ratio of the average values of the diagonal elements of
√
AV ARMCL to those of

√
AV ARGMM are 0.50 and 0.51 for ν and λ, respectively. Inci-

dentally, these numbers are close to those found in the finite sample comparison between

the two methods, cf. Figure 2.
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S13 Software (MATLAB)

The following functions are available in the MATLAB software language. We give a very

brief description of the functions here but refer to the extensive documentation in the code

for further details. The code can be freely downloaded from

https://github.com/mbennedsen/Likelihood-based-IVT.

• simulateIVT:

– Simulates equidistant observations of a parametric IVT process, specified by

a Lévy basis and a trawl function. The Lévy basis and trawl function can

be specified independently of each other using the framework described in this

Supplementary Material.

• estimateIVT:

– Takes as input a vector of equidistantly spaced observations and a paramet-

ric specification (Lévy basis and trawl function) and outputs estimates of the

corresponding parameters using the maximum composite likelihood approach

developed in the main paper.

• modelselectIVT:

– This function estimates six parametric IVT models (Poisson-Exponential, Poisson-

IG, Poisson-Gamma, NB-Exponential, NB-IG, NB-Gamma) and calculates the

composite likelihood function when evaluated in the optimized parameters, as

well as the CLAIC and CLBIC criteria given in the main paper. These three

criteria can be used for model selection, with larger values indicating a better

fit.

• forecastIVT:

– Takes as input a parametric IVT model (Lévy basis and trawl function), a fore-

cast horizon (which can be a vector of several forecast horizons), as well as

historical observations; the output is the predictive probability distribution for

the given forecast horizons. The parameters underlying the predictive distribu-

tion are estimated using the maximum composite likelihood approach presented

in the main paper.
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• analyze stock A and analyze simulated data:

– These files illustrate the use of the functions simulateIVT, estimateIVT, modelselectIVT,

and forecastIVT. The file analyze stock A reproduces the output of the main

paper, while analyze simulated data simulates a user-specified IVT process

and then conducts analyses similar to those considered in the main paper on

these simulated data.
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