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Abstract

Models phrased though moment conditions are central to much of modern inference. Here
these moment conditions are embedded within a nonparametric Bayesian setup. Handling such
a model is not probabilistically straightforward as the posterior has support on a manifold.
We solve the relevant issues, building new probability and computational tools using Hausdorff
measures to analyze them on real and simulated data. These new methods which involve
simulating on a manifold can be applied widely, including providing Bayesian analysis of quasi-
likelihoods, linear and nonlinear regression, missing data and hierarchical models.

Keywords: Decision theory; Empirical likelihood; Hausdorff measure; Markov chain Monte Carlo;
Method of moments; Nonparametric Bayes; Simulation on manifolds.

1 Introduction

1.1 Overview

Much of modern inference is phrased in terms of moment conditions and analyzed using asymptotic

approximations. Here we build a new methodology which dovetails with decision theory. Moment

conditions are embedded within a nonparametric Bayesian setup, allowing an individual to mix

moment conditions with data and scientifically informative priors to make rational decisions without

the recourse to the veil of parametric assumptions or asymptotics.

Embedding moments within nonparametrics is not probabilistically straightforward. This paper

spells out the issues, develops the corresponding probability theory to solve them and devises novel

∗We thank Isaiah Andrews, Yang Chen, Herman van Dijk, Mikkel Plagborg-Moller and Christian Robert for their
comments on an earlier draft.
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strategies for simulating on a manifold to implement them in practice on simulated and real data.

It covers the case where it is hard, or indeed impossible, to solve the moment equations. This

allows the rational analysis of moment condition models with many solutions.

The scope of the new methods is vast. It deals with, for example, linear, nonlinear and in-

strumental variable regression. By thinking of the moment condition as the score of a parametric

statistical model, our analysis also provides a Bayesian treatment of quasi-likelihood methods which

are widely applied in statistics (e.g. Cox (1961), White (1994)). Finally, this framework provides a

solid basis to deal systematically with missing data (e.g. Little and Rubin (2002)), shrink param-

eters (e.g. Efron (2012)) and build hierarchical models (e.g. Gelman et al. (2003)).

1.2 The conceptual challenge

It will be helpful in our discussion of the paper’s contribution and to place it in the context of the

literature to establish some notation; a formal statement will appear in Section 2.

Assume one has independent and identically distributed (i.i.d.) d-dimensional data Zi, i =

1, 2, ..., n, taking on the known support s1, s2, ..., sJ and having distribution function F . We then

write P(Zi = sj |θ, β) = θj where the p-dimensional β satisfies the r-dimensional moment condition

EZ {g(Z, β)} =

∫
g(z, β)F (dz) =

J∑
j=1

θjg(sj , β) = 0. (1)

Here β is the parameter of scientific interest. We then view θ = (θ1, θ2, ..., θJ−1)′ (with θJ =

1 − ι′θ, where ι is a vector of ones of appropriate size) as nuisance parameters to be treated

nonparametrically. The task is to learn p(β, θ|Z) or p(β|Z), where Z = (Z1, Z2, ..., Zn)′. A simple

example of this is g(sj , β) = sj − β which delivers the mean.

Although this problem is easy to state, it is not easily carried through, as traditional nonpara-

metric models clash with the moment conditions, in effect overspecifying the model. Expressing this

in a different way: the prior and posterior for β, θ are typically supported on a zero Lebesgue mea-

sure (J + p− 1− r)-dimensional set, Θβ,θ, in RJ+p−1. As a result, traditional Markov chain Monte

Carlo (MCMC) methods (or alternatives like importance sampling) for sampling from p(β, θ|Z)

entirely collapse. This paper solves this problem in two different ways: the comparative advantages

of each will depend upon the form of the moment conditions. Taken overall this paper provides a

unified solution to this central problem.

1.3 Literature on classical analysis of moments

Before we detail our new approach, we will discuss how this work relates to the literature.
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Moment based estimation was introduced by Pearson (1894). A relatively modern version of

this procedure first estimates θ̂ nonparametrically, that is F by the empirical distribution function

Fn, and then plugs it into (1), yielding the function∫
g(z, β)Fn(dz) =

J∑
j=1

θ̂jg(sj , β).

In the p = r case we move β around until this function equals a vector of zeros, delivering the method

of moments estimator β̂. Extensions include, for example, Sargan (1958, 1959), Durbin (1960),

Godambe (1960), Wedderburn (1974), McCullagh and Nelder (1989), Hansen (1982), Chamberlain

(1987), Hansen et al. (1996), Gallant and Tauchen (1996) and Gourieroux et al. (1993). Hall (2005)

gives a recent review.

An elegant implementation of moment based inference is through empirical likelihood. Moti-

vated by Owen (1988, 1990), Qin and Lawless (1994) and Imbens et al. (1998) discussed empirical

likelihood based inference in overidentified moment condition models. See also the reviews by Owen

(2001), Kitamura (2007) and Lancaster and Jun (2010).

1.4 Literature on Bayesian analysis of moments

Our work is fully Bayesian. Much of our work has been inspired by Chamberlain (1987) and in

particular Chamberlain and Imbens (2003). Chamberlain and Imbens (2003) place a Dirichlet prior

on θ, which implies the posterior on θ is Dirichlet. These priors and posteriors are straightforward

to sample from as noticed by Rubin (1981) in his Bayesian bootstrap. Chamberlain and Imbens

(2003) suggest that for each posterior draw of θ they would solve the moment conditions to imply

a value (or in principle a set of values) of β. Collecting a sample of such solved values provides a

sample from a posterior on β. Unfortunately these authors have no control over the prior for β,

the parameter of scientific interest.

Also important is Kitamura and Otsu (2011), who have two methods, both expressed in terms

of Dirichlet process priors. Here we convert them into our finite framework. In their exponentially

tilted case they first specify a prior p(β)p(θ) before finding θ∗ = (θ∗1, θ
∗
2, ..., θ

∗
J) which minimizes∑J

j=1 θ
∗
j log

(
θ∗j
θj

)
subject to the moment constraints

∑J
j=1 θ

∗
jg(sj , β) = 0 and the probability ax-

ioms. They then set P(Zi = sj |θ, β) = θ∗j , using this model to learn β and θ from the data. Shin

(2014) carefully investigates various computational aspects of this approach. This approach has

many advantages but it leaves pairs of β and θ with positive posterior probability which are not

logically compatible. Kitamura and Otsu (2011) also propose a synthetic Dirichlet process (with

connections to Doss (1985) and Newton et al. (1996)).
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There are also many papers which provide alternative methods, including a substantial literature

on the Bayesian use of moments through approximate methods. Chernozhukov and Hong (2003)

specify a quadratic form in the moment conditions and use this as the basis of a log quasi-likelihood

function. They then use this approximate likelihood to carry out Bayesian inference using MCMC

alongside a sandwich estimator. Related work includes Yin (2009). Muller (2013) provides a

Bayesian version of the asymptotic sandwich matrix commonly seen in quasi-likelihood inference

and links it to decision theory.

Lazar (2003), Schennach (2005) and Yang and He (2012) provide Bayesian interpretations to

empirical likelihood and study the resulting properties. Mengersen et al. (2013) look at moment

conditions and empirical likelihood using approximate Bayesian computation. See also Zellner

(1997) and Zellner et al. (1997), who suggested a Bayesian moment method by building a likelihood

defined through the maximum entropy density consistent with the moment conditions. Related is

the Bayesian work on factor and cointegration models, e.g. Strachan and van Dijk (2004).

In a series of papers Gallant and Hong (2007), Gallant et al. (2014) and Gallant (2015) develop

methods which devise a prior using fiducial arguments from moment conditions. Related work

includes Jaynes (2003) and Kwan (1998). Florens and Simoni (2015) have used Gaussian processes

in combination with moment constraints to carry out Bayesian inference.

1.5 Computational issues

Here the prior and posterior for β, θ are supported on a zero Lebesgue measure (J + p − 1 −

r)-dimensional set, Θβ,θ, in RJ+p−1. Hence Bayesian inference will need us to sample from a

distribution defined on a zero measure set, rendering standard Monte Carlo methods useless.

In an influential paper Gelfand et al. (1992) use MCMC methods to deal with constrained

parameter spaces, but in their paper the constraints do not change the dimension of the support.

Hurn et al. (1999) carry out MCMC in constrained parameter spaces (sampling from a distribution

π(x) subject to a constraint C(x) = 0) using block updating. Golchi and Campbell (2014) carry

out sampling subject to constraints using sequential Monte Carlo methods by slowly introducing

the constraints. However, they do not explore the change of measure issue we discuss here. Chiu

(2008) use a singular normal distribution in posterior updating for an under-identified hierarchical

model. Related work includes Sun et al. (1999). Overspecified factor models also have some of these

features, as discussed by West (2003). Fiorentini et al. (2004) face related but highly specialized

challenges when sampling missing data in a GARCH model.

There are few recent papers on MCMC simulation from distributions defined on manifolds.
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Brubaker et al. (2012) propose a Hamiltonian Monte Carlo on implicitly defined manifolds. Numeric

integration of the Hamiltonian dynamics requires solving a system of 3d nonlinear equations for each

update, where d is the dimension of the space in which the manifold is embedded (in our setting

d = J + p − 1). Byrne and Girolami (2013) introduce a Hamiltonian Monte Carlo simulation

algorithm for sampling from manifolds with known geodesic structure. They demonstrate how

this algorithm can be used in order to sample from the distributions defined on hyperspheres and

Stiefel manifolds of orthonormal matrices. Diaconis et al. (2013) provide a short review of concepts

in geometric measure theory. They discuss algorithms for sampling from distributions defined on

Riemannian manifolds that are similar to the “marginal method” that will be introduced shortly.

It is this paper which has been the most helpful to us in terms of Monte Carlo methods.

1.6 Outline of the paper

In the next section of the paper we will introduce the formal model under study, and discuss how one

specifies meaningful prior distributions on the parameters of interest. In Section 3 several methods

for inference and their relative merits and pitfalls are discussed. Section 4 discusses mechanisms

for generating priors for these models. We also draw out how to make inference when the support

of the data is unknown, regarding the unseen support as missing. This is followed by Section 5

in which some illustrative examples are demonstrated. Section 6 explores several empirical studies

before Section 7 concludes. An Appendix collects the proofs of the propositions stated in the paper

and a collection of additional results.

2 Bayesian moment conditions models

2.1 The model

Assume the data we have available to make inference is Z = (Z1, ..., Zn), where the Zi are d-

dimensional i.i.d. draws from an unknown distribution which has J points of known support

{s1, s2, ..., sJ} = S (we relax this known support condition in Section 3.6). Throughout we write

P(Zi = sj |θ, β) = θj , j = 1, 2, ..., J, (2)

with θ = (θ1, θ2, ..., θJ−1)′ ∈ Θθ ⊆ ∆J−1, where ∆J−1 ={θ = (θ1, θ2, ..., θJ−1)′; ι′θ < 1 and θj >

0} for all j and θJ = 1− ι′θ, in which ι is a vector of ones. Further, the science of the problem is

characterized by the values of β which solve the r unconditional moment conditions,

J∑
j=1

θjg(sj , β) = 0, (3)
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where β ∈ Θβ ⊆ Rp and g : Rd × Rp → Rr. Typically the scientific conclusions will center around

inferences on β, although predictive type inference may also additionally feature θ. This paper

concentrates on the case of exactly identified models (r = p). Appendix A.7 extends to the more

general case of over and under identification at the cost of more clutter but without having to

generate any new ideas.

2.2 Parameter space and prior

Throughout this paper we will think of β and θ as parameters to be learned from the data, Z. We

write the J + p− 1 parameters

(β′, θ′)′ ∈ Θβ,θ,

where Θβ,θ ⊆ Rp × ∆J−1 ⊂ RJ+p−1, as the joint support for β and θ. Each point within Θβ,θ

is a pair (β, θ) which satisfies both the moment conditions and probability axioms. The moment

conditions are:

Hβθ + gJ = 0 where Hβ = (g1, ..., gJ−1)− gJ ι′,

in which gj = g(sj , β) (for 1 ≤ j ≤ J). Moreover Hβ is assumed to be of full row rank (we

will often suppress the dependence on β and just write H). These constraints, together with the

inequalities θj ≥ 0 (for j = 1, 2, ..., J), implicitly define the (J − 1)-dimensional set of parameters

within RJ+p−1, which will be denoted by Θβ,θ. Hence the parameter space, Θβ,θ, depends upon

the support of the data, S = {s1, ..., sJ}, but is not data dependent. Throughout the paper, the

notation Θλ will generically represent the parameter space of λ in which λ is a set of parameters.

The set of admissible pairs (β, θ), denoted by Θβ,θ, is a zero measure set (with respect to

Lebesgue measure) in RJ+p−1. We will assume that researchers can place a prior density, p(β, θ),

with respect to the (J−1)−dimensional Hausdorff measure on Θβ,θ. Using the Hausdorff measure1

as the base measure, we are able to assign measures to the lower dimensional subsets of RJ+p−1
,

and therefore we can define probability density functions with respect to Hausdorff measure on

manifolds (and more complex zero Lebesgue measure sets) in an Euclidean space.

1Assume E ⊆ Rn, d ∈ [0,+∞) and δ ∈ (0,+∞]. The Hausdorff premeasure of E is defined as follows,

Hdδ(E) = vm inf
E⊆∪Ej

d(Ej)<δ

∞∑
j=1

(
diam(Ej)

2

)d

where vm =
Γ( 1

2
)d

2dΓ( d
2

+1)
is the volume of the unit d-sphere, and diam(Ej) is the diameter of Ej . Hdδ(E) is a nonincreasing

function of δ, and the d-dimensional Hausdorff measure of E is defined as its limit when δ goes to zero, Hd(E) =
limδ→0+ Hdδ(E). The Hausdorff measure is an outer measure. Moreover Hn defined on Rn coincide with Lebesgue
measure. See Federer (1969) for more details.
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Figure 1: In the plot on the left the blue curve, β = log
(

θ
1−θ

)
, is the parameter space of the logit

model, Θβ,θ. In the plot on the right the density of the prior p(β, θ) (with respect to Hausdorff
measure) is depicted. This density lives on the blue curve which supports Θβ,θ.

2.3 Some examples

To cement this we have built a starkly simple example which captures most of the challenges in

this problem. It faces off a nonparametric model against a scientific parameter of interest.

Example 1 (Logistic) Assume Z1|θ ∼ Bernoulli(θ), and let β = log
(

θ
1−θ

)
= logit(θ) be the

scientific parameter of interest. Jointly β, θ captures the inherent singularity implicit in all moment

based inference. The moment condition is

g(s, β) = s− eβ

1 + eβ
.

Therefore the parameter space, Θβ,θ, is

Θβ,θ =

{
(β, θ) ∈ R× [0, 1];β = log

(
θ

1− θ

)}
.

This is shown as the blue curve sitting at ground level in the left panel of Figure 1. Of fundamental

importance is that if θ moves by dθ then the length of the journey along this curve will be (by

Pythagoras’s theorem)

dθ
√

1 + J2
θ , Jθ =

∂β

∂θ
=
∂ log

(
θ

1−θ

)
∂θ

.

The right panel of Figure 1 repeats the support but now above it is a (the form of the density is not

expositionally important at this point) density p(β, θ) with respect to this curve, or more formally
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the one dimension Hausdorff measure on Θβ,θ. Then for any set C ⊂ Θβ,θ,

Pr {(β, θ) ∈ C} =

∫
Cθ

p(β, θ)

√
1 +

(
∂β

∂θ

)2

dθ,

where Cθ is the projection of C on θ’s axis (i.e. we integrate over all values of θ which imply a β

such that the pair (β, θ) ∈ C). This means as we integrate over θ, we must multiply the density on

the curve by the length of the curve.

We will study how to transform this prior p(β, θ) into a posterior and simulate from it. This

will allow us to learn β from the data. As with all Bayesian calculations, it is not trivial to establish

a widely acceptable prior p(β, θ). We will return to that very practical issue in Section 4.

Before we leave this section we give a less artful example.

Example 2 (Mean) Let Z be a scalar random variable and g(s, β) = s−β, so β is a mean. Then

Θβ,θ =

(β, θ) ;
J∑
j=1

θjsj = β, θj > 0 for all j, and ι′θ < 1

 .

Thus Θβ,θ is a region within a (J − 1)-dimensional hyperplane in RJ . However all elements of this

set are not admissible, since θ should satisfy the probability axioms (elements of θ should be positive

and 1 − ι′θ > 0). Therefore the parameter space Θβ,θ is a convex subset on the hyperplane. Then

if θ moves by dθ1, ...,dθJ−1 the area of the corresponding parallelogram on the hyperplane is

dθ1...dθJ−1

√
1 + JθJ

′
θ, Jθ =

{(
∂β

∂θ1

)
, ...,

(
∂β

∂θJ−1

)}
,

where ∂β/∂θj = sj − sJ , j = 1, 2, ..., J − 1. So for any measurable set C ⊂ Θβ,θ,

Pr {(β, θ) ∈ C} =

∫
Cθ

p(β, θ)

√√√√1 +
J−1∑
j=1

(
∂β

∂θj

)2

dθ =

∫
Cθ

p(β, θ)

√√√√1 +
J−1∑
j=1

(sj − sJ)2dθ

∝
∫
Cθ

p(β, θ)dθ.

where Cθ is the projection of C on θ (The last proportionality is due to the fact that the Jacobian

only depends on the support of the data). Thus the linearity of the moment condition (that results

in a flat parameter space Θβ,θ) translates into a somewhat trivial multiplicative correction factor

and so yields a simple relationship between Pr {(β, θ) ∈ C} and p(β, θ).

Example 3 (Regression) The previous example can be generalized to the family of regression

models. For instance consider a linear regression model, E
(
s(1)|s(2)

)
= β′s(2), where s = (s(1), s(2)),
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in which s(1) is a scalar and s(2) is a d-dimensional vector, and β is a p-dimensional vector of

parameters. The linear regression parameters solve the following moment condition equation,

E [g(s, β)] = E
[
s(2)(s(1) − β′s(2))

]
= 0.

We can also discuss the estimation of linear regression model with instrumental variables. Assume

s = (s(1), s(2), s(3)), where s(1) is a scalar, and s(2) and s(3) are p-dimensional vectors (indepen-

dent and instrumental variables, respectively). If we define g(s, β) = s(3)(s(1) − β′s(2)), then β is

the solution to E [g(s, β)] = 0. Moreover generalizing to the nonlinear regression model is easy.

Assume E
(
s(1)|s(2)

)
= µ(s(2), β). Then the corresponding moment condition equation is g(s, β) =

s(2)
{
s(1) − µ(s(2), β)

}
. For instance for a Poisson regression g(s, β) = s(2)

{
s(1) − exp(β′s(2))

}
.

Example 4 (Average treatment effect) Consider a casual inference problem with the obser-

vational data Zj = (Xj , Yj ,Wj) (for 1 ≤ j ≤ N), where Xj is the K-dimensional vector of the

j-th unit’s background variables, Yj is its scalar outcome variable, and Wj is the binary treatment

indicator. Assuming the super-population unconfoundedness, it can be shown that (Imbens and Ru-

bin (2015)) ESP [Yj(1)] = E
[
WjYj
e(Xj)

]
and ESP [Yj(0)] = E

[
(1−Wj)Yj
1−e(Xj)

]
, where e(Xj) is the propensity

score, e(Xj) = ηj = Pr(Wj = 1|Xj). Therefore the average treatment effect (ATE) is

τ = ESP [Yj(1)]− ESP [Yj(0)] = E
(
WjYj
e(Xj)

− (1−Wj)Yj
1− e(Xj)

)
,

One might use a logistic regression model for the propensity score, ηj = exp(γ′Xj)/ {1 + exp(γ′Xj)},

where γ is K-dimensional. Under these assumptions the model’s parameters, β = (γ, τ), solve the

following set of moment conditions,

E [g(Zj , β)] = E

[
Xj(Yj − ηj)

(Wj−ηj)Yj
ηj(1−ηj)

− τ

]
= 0,

If we assume the data points are i.i.d. realizations from a discrete distribution with finite and known

support S = {s1, ..., sj}, Pr(Zi = sj) = θj, the moment conditions are,

E [g(Zj , β)] =

 ∑J
j=1 θjXj(Yj − ηj)∑J
j=1 θj

(Wj−ηj)Yj
ηj(1−ηj)

− τ

 = 0.

Thus the propensity scores and the ATE can be estimated jointly (e.g. McCandless et al. (2009),

Zigler et al. (2013) and Zigler and Dominici (2014)).
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3 Inference

3.1 Likelihood and posterior

Under the assumptions formulated above, the model’s likelihood is

L(Z|β, θ) ∝
J∏
j=1

θ
nj
j ,

where nj =
∑N

i=1 1(Zi = sj). Note that although β does not appear in the likelihood explicitly,

due to the constraints on β and θ, the data is informative about β.

The posterior is supported on the same set as the prior, Θβ,θ, and may be written as

p(β, θ|Z) ∝ p(β, θ)

 J∏
j=1

θ
nj
j

 . (4)

The terms in (4) are easy to compute for any (β, θ) in Θβ,θ, but the support is defined implicitly.

3.2 Accessing the posterior

Inference can be carried out by sampling from the posterior distribution of the parameters. However,

in this problem, traditional simulation algorithms will fail because the prior and the posterior of the

model are supported on a zero Lebesgue measure set (e.g. all the proposed moves of a Metropolis-

Hastings (MH) algorithm with a traditional proposal will be rejected almost surely).

Here two solutions to this problem are given. In the first approach, called the “marginal

method”, we will derive the density function of the marginal of θ, which has a density with respect

to the Lebesgue measure p(θ) and therefore can be processed by conventional Monte Carlo methods.

Examples include standard MCMC algorithm and importance sampling. This is simple but comes

at the cost of having to solve for β for each proposal. If finding β (or indeed all the values of β

which solve given θ) is cheap then this provides a very solid solution to the problem.

In the second approach, called the “joint method”, we define a proposal in the space of (β, θ)

that assigns positive probability to Θβ,θ (so, with positive probability, the proposed moves remain

on the manifold Θβ,θ and will be accepted). An MH algorithm with this proposal is able to

efficiently move in the space. This does not require us to solve the moment conditions at all, which

is extremely attractive for difficult to solve moment condition models.

3.3 Marginal method

Let p(β, θ) be the density function of the model’s prior or posterior with respect to Hausdorff

measure on Θβ,θ. Proposition 1 gives the marginal density of θ with respect to Lebesgue measure.
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This implies that standard Monte Carlo methods (e.g. MCMC, importance sampling, sequential

importance sampling and Hamiltonian Monte Carlo) can be used2.

Proposition 1 Let p(β, θ) be the density function of the prior or posterior with respect to Hausdorff

measure supported on Θβ,θ. Moreover, assume p = r (the “just identified” case) and β is uniquely

determined by θ, i.e. β = β(θ). Then the density function of θ with respect to Lebesgue measure is

p(θ) =
√∣∣JθJ ′θ + Ip

∣∣ p(β, θ), (5)

where

Jθ =
∂β

∂θ′
= −

{
Eθ
(
∂g

∂β′

)}−1

Hβ, where Hβ = (g1, ..., gJ−1)− gJ ι′, (6)

with ι being a (J − 1)-vector of ones and

Eθ
(
∂g

∂β′

)
=

J∑
j=1

θj
∂g(sj , β)

∂β′
.

This proposition is a direct result of the “area formula” of Federer (1969) (see also Diaconis

et al. (2013)) and it can be generalized straightforwardly to the cases where for some values of θ

there exist more than one β by summing over the right hand side for each solution in β.

The Jacobian3 term
√∣∣JθJ ′θ + Ip

∣∣ depends on the geometry of the parameter space Θβ,θ (in

other words, it only depends on the moment conditions) and is independent of p(β, θ). To compute

this term we need to invert a p×p matrix and evaluate the determinant of a p×p matrix. However,

p is usually small, in which case the computational cost of these operations is negligible.

Importantly knowledge of the functional form of β as a function of θ is not needed, since the

partial derivatives can be obtained by the implicit function theorem. However, in order to evaluate

this density function for a given θ, we need its corresponding β. Although in some problems β has

a known analytic form as a function of θ, in many other situations it can be obtained through a

numeric optimization. We now return to the examples introduced in Section 2.

Example 1 (Continued) The density of θ in the logistic model is

p(θ) = p(β, θ)

√√√√√1 +

∂ log
(

θ
1−θ

)
∂θ

2

. (7)

2We sample from the unconstrained p(η), where ηj = log (θj+1/θj), for j = 1, ..., J − 1, with |∂θ/∂η| =
∏J
j=1 θj .

3A Jacobian correction terms also appears in reversible jump MCMC (e.g. Green (1995)), when the chain is allowed
to jump between models with different number of parameters. However there the (one-to-one) transformations are
operating between spaces of the same dimension, and the distributions in both spaces have densities w.r.t. Lebesgue
measure. On the other hand, the Jacobian in Proposition 1 corrects for a one-to-one mapping between spaces of
different dimensions and relates two densities that are defined w.r.t. different reference measures.
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Figure 2: Projection to the marginal density for θ. Blue density is the correct marginal den-
sity p(θ), given in (7), with respect to Lebesgue measure. The grey density is the naive density
p [β = log {θ/ (1− θ)} , θ] which ignores the corresponding length of the support.

Thus moment condition impacts the marginal prior on θ. Figure 2 shows the function p(θ), which

has blue shade below the curve, together with the naive p (β = log {θ/ (1− θ)} , θ), which has grey

shade. We can see the correct density is higher for high values of θ as there are more dense values

of β compatible with high values of θ than when θ is close to 0.5.

Example 2 (Continued) The density of θ in the mean model is

p(θ) = p(β, θ)

√√√√1 +

J−1∑
j=1

(sj − sJ)2 ∝ p(β, θ).

Hence in this case the geometry of moment condition does not impact the prior on θ. This will be

the case generally when the parameter space, Θβ,θ, is flat.

Example 3 (Continued) For the regression model write gj = g(sj , β) for 1 ≤ j ≤ J . Therefore

∂gj
∂β′

= −s(2)
j s

(2)′
j , and

∂β

∂θi
=

 J∑
j=1

θjs
(2)
j s

(2)′
j

−1

(gi − gJ) .

Moreover

JθJ
′
θ =

 J∑
j=1

θjs
(2)
j s

(2)′
j

−1{
J∑
i=1

(gi − gJ) (gi − gJ)′
} J∑

j=1

θjs
(2)
j s

(2)′
j

−1

.
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Similarly for the linear regression model with instrumental variables we have,

∂gj
∂β′

= −s(3)
j s

(2)′
j , and

∂β

∂θi
=

 J∑
j=1

θjs
(3)
j s

(2)′
j

−1

(gi − gJ) ,

and therefore

JθJ
′
θ =

 J∑
j=1

θjs
(3)
j s

(2)′
j

−1{
J∑
i=1

(gi − gJ) (gi − gJ)′
} J∑

j=1

θjs
(3)
j s

(2)′
j

−1

.

Again generalizing to nonlinear regression models is straightforward. If we define µj = µ(β, s
(2)
j ),

then

∂gj
∂β′

= −s(2)
j

∂µj
∂β′

, and
∂β

∂θi
=

 J∑
j=1

θjs
(2)
j

∂µj
∂β′

−1

(gi − gJ) ,

which implies

JθJ
′
θ =

 J∑
j=1

θjs
(2)
j

∂µj
∂β′

−1{
J∑
i=1

(gi − gJ) (gi − gJ)′
} J∑

j=1

θjs
(2)
j

∂µj
∂β′

−1

.

For instance for µ(β, s(2)) = exp(β′(2)) we have,

∂gj
∂β′

= −s(2)
j exp(β

′(2)
j )s

(2)′

j , and
∂β

∂θi
=

 J∑
j=1

θjs
(2)
j exp(β

′(2)
j )s

(2)′

j

−1

(gi − gJ) ,

and hence

JθJ
′
θ =

 J∑
j=1

θjs
(2)
j exp(β

′(2)
j )s

(2)′

j

−1{
J∑
i=1

(gi − gJ) (gi − gJ)′
} J∑

j=1

θjs
(2)
j exp(β

′(2)
j )s

(2)′

j

−1

.

Example 4 (Continued) For the casual inference problem write gj = g(sj , β), for 1 ≤ j ≤ J .

Then

∂gj
∂β′

=

 s
(1)
j ηj(1− ηj)s

(1)′

j 0K×1

01×K −1

 , and
∂β

∂θi
=



∑J

j=1 θjs
(1)
j ηj(1− ηj)s

(1)′

j 0K×1

01×K −1



−1

(gi − gJ) ,

which implies

JθJ
′
θ =



∑J

j=1 θjs
(1)
j ηj(1− ηj)s

(1)′

j 0K×1

01×K −1



−1{

J∑
i=1

(gi − gJ) (gi − gJ)′
}



∑J

j=1 θjs
(1)
j ηj(1− ηj)s

(1)′

j 0K×1

01×K −1



−1

.

13



An immediate consequence of Proposition 1 is that if we reparametrize the scientific parameters

of interest ψ = ψ(β) using a one to one transform, then

p(ψ, θ) =

√∣∣∣ ∂β∂θ′ ∂β∂θ′ ′ + Ip

∣∣∣√∣∣∣ ∂ψ∂θ′ ∂ψ∂θ′ ′ + Ip

∣∣∣p(β, θ), (8)

where p(ψ, θ) and p(β, θ) are densities with respect to Hausdorff measures.

3.4 Joint method

Alternatively, we may draw random samples directly from the posterior of (β, θ). This distribution is

supported on a zero Lebesgue measure set, Θβ,θ, with the density function (with respect to Hausdorff

measure) p(β, θ). If we ignore this and propose moves from a continuous proposal distribution in

RJ+p−1 (for instance a Gaussian proposal), the proposed moves are off the support of p(β, θ) almost

surely, and they will be rejected with probability one. Therefore in order to sample from p(β, θ) we

must find a proposal distribution that assigns positive probability to Θβ,θ. Drawing random samples

from this proposal should be easy and fast and (in order to compute the acceptance probability)

we should be able to evaluate its density function. This subsection will explain how this can be

achieved.

For a given value of β, the moment conditions imply the affine constraints on θ:

Hβθ + gJ = 0. (9)

Therefore Θθ|β is a (J − 1)-hyperplane in RJ+p−1. This property allows us to define a suitable

proposal distribution for (β, θ). Assume the current state of the MCMC is (β(t), θ(t)). First we

explain how a random sample from the proposal can be drawn, and then will show how the density

of this proposal can be evaluated. In order to draw a random sample from q(·, ·|β(t), θ(t)),

1. Draw β∗|β(t), θ(t) from an (almost) arbitrary proposal q(·|β(t), θ(t)).

2. Draw θ∗ from a singular distribution supported on the hyperplane P∗ = {λ ∈ RJ−1;H∗β∗λ+

g∗J = 0}. We denote the density of this distribution (with respect to the Hausdorff measure)

by q(·|β(t), θ(t), β∗). Moreover we assume the density can be easily evaluated at any θ∗. A

singular Normal distribution supported on P∗ is one suitable choice (see Khatri (1968)).

In the Appendix A.3 we provide a way to determine the parameters of a singular Normal

distribution that can be used to propose for θ∗|β(t), θ(t), β∗.
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So far we have shown how a random proposal can be generated from q(·, ·|β(t), θ(t)). The

following propositions demonstrates how the density of this proposal can be evaluated when p = r.

Proposition 2 Let p(β, θ) be the density of (β, θ) with respect to (J − 1)-dimensional Hausdorff

measure on Θβ,θ. Moreover assume the density of β with respect to Lebesgue measure is p(β), and

the density of θ|β with respect to Hausdorff measure is p(θ|β) on Θθ|β, where Θθ|β is a hyperplane.

Then

p(β, θ) =
|JθJ ′θ|

1
2∣∣JθJ ′θ + Ip
∣∣ 1

2

p(β)p(θ|β), where Jθ =
∂β

∂θ′
. (10)

The proposed pairs (β∗, θ∗) satisfy the moment conditions, however the probabilities may not

satisfy the probability axioms (as some of θ∗ may be negative or θ∗J = 1− ι′θ∗ ≤ 0). Obviously in

these cases the proposal is rejected (since the posterior is zero), the MCMC algorithm sticks, and the

proposal’s density need not to be evaluated. If the proposal is valid, then the move (β, θ)→ (β∗, θ∗)

is accepted with probability

min

{
1,
p(β∗, θ∗|Z)

p(β, θ|Z)

q(β, θ|β∗, θ∗)
q(β∗, θ∗|β, θ)

}
. (11)

The terms inside this acceptance probability are straightforward to compute up to proportionality.

Note that in the joint method we do not need to solve for β in each iteration of the simulation,

because our proposed moves are elements of the parameter space Θβ,θ. Moreover, when J goes to

infinity, the Jacobian term in (10) converges to 1. To see this assume the data generating process

is a continuous distribution or a discrete distribution with infinite support, sj ∼ H. Then, with

probability one, just using a strong law of large numbers,

1

J
JθJ

′
θ =

1

J

{
Eθ
(
∂g

∂β′

)}−1

HβH
′
β

{
Eθ
(
∂g

∂β′

)′}−1

→ J .

where J =
{
Eθ
(
∂g
∂β′

)}−1
EH(gjg

′
j)

{
Eθ
(
∂g
∂β′

)′}−1

. Therefore

|JθJ ′θ|∣∣JθJ ′θ + Ip
∣∣ =

∣∣ 1
J JθJ

′
θ

∣∣∣∣ 1
J JθJ

′
θ + 1

J Ip
∣∣ → 1,

with probability one as J goes to infinity. This asymptotic approximation could be used to simplify

the computation of the acceptance probability, but otherwise does not change the substance of this

section, as proposals will be made in the same way — directly on the manifold.
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3.5 Relationship to the Bayesian bootstrap

The Rubin (1981) “Bayesian bootstrap” is at the core of Chamberlain and Imbens (2003). We

can implement our Proposition 1 by using their Bayesian bootstrap as a proposal which can be

reweighted to allow for informative priors on β. Throughout we assume β can be solved given θ.

Our generalization of Chamberlain and Imbens (2003) starts with the Dirichlet prior π∗(θ) ∝∏J
j=1 θ

α−1
j , α > 0. The Bayesian bootstrap then simulates from the proposal density,

g(θ|Z) ∝
J∏
j=1

θ
nj+α−1
j . (12)

We assume the researcher does this M times, writing the draws as
{
θ(k)
}
k=1,2,...,M

. For each θ(k)

we assume there is a unique β(k) which solves the corresponding moment conditions. Chamberlain

and Imbens (2003) stop at this point, using this sample as a Monte Carlo estimate of the posterior.

Correcting for the geometry of the problem, the actual posterior is

p(θ|Z) ∝ p(β, θ)

 J∏
j=1

θ
nj
j

∣∣JθJ ′θ + Ip
∣∣ 1

2 . (13)

The resulting weights from the true posterior density with respect to the Lebesgue measure dividing

by the density from the proposal are

w(k) =
p(β(k), θ(k))

∣∣∣J (k)
θ J

(k)′

θ + Ip

∣∣∣ 1
2

∏J
j=1

(
θ

(k)
j

)α−1 , k = 1, 2, ...,M, (14)

(where J
(k)
θ is equal to Jθ evaluated at (β(k), θ(k))) which normalize as w(k)∗ = w(k)/

(∑M
k=1w

(k)
)

.

An encouraging aspect of this weight is that it does not depend on the data.

In the special case where p(β, θ) ∝ π(β)π∗(θ), the weights may be simply evaluated as

w(k) ∝ π(β(k))
∣∣∣J (k)
θ J

(k)′

θ + Ip

∣∣∣ 1
2
, k = 1, 2, ...,M. (15)

We can use these weights to estimate E (h(β)|Z) ' 1
M

∑M
k=1w

(k)∗h(β(k)). This is importance

sampling, e.g. Marshall (1956), Geweke (1989), Liu (2001). An alternative is to resample with

probability proportional to the weight w(k), which delivers sampling importance resampling (SIR,

see Rubin (1988)). As with all importance samplers, the weights may become uneven although the

simplicity of the structure of the weights is encouraging. This sampling strategy becomes appealing

in the models where the β can be computed easily for any θ, and the prior distribution of β is not

too far from the posterior obtained from the Bayesian bootstrap.
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3.6 Missing support

So far we have assumed the support of the data is known. Here we extend this to assume the support

has J∗ > J elements, S∗ = (s1, ..., sJ∗), where its first J̃ = J∗ − J elements, S̃ = (s1, ..., sJ̃), have

not been observed in the sample, while the rest of its elements S = (sJ̃+1, ..., sJ) have been observed

at least once. Moreover let θ∗ = (θ̃, θ), where θ̃ and θ are the vector of the probabilities of the

elements of S̃ and (sJ̃+1, ..., sJ−1), and define θJ∗ = 1−
∑J∗−1

j=1 θ∗j . We assume the missing elements

of the support are i.i.d. draws from FS , sj
iid∼ FS for j = 1, ..., J̃ , with density fS with respect to

Lebesgue measure. The moment conditions are then

J∗∑
j=1

θjg(sj , β) = 0, (16)

while the posterior is

p(β, θ∗, S̃|Z) ∝ p(β, θ∗, S̃)

 J∗∏
j=1

θ
nj
j

 ,

where nj =
∑N

i=1 1(Zi = sj). Note that nj = 0 for 1 ≤ j ≤ J̃ , while nj is positive for J̃+1 ≤ j ≤ J∗.

Assume the researcher expresses a prior on (β, θ∗)|S̃ with respect to the Hausdorff measure (sup-

pressing the conditioning on S for notational convenience),

p(β, θ∗|S̃). (17)

Therefore

p(β, θ∗, S̃) =

 J̃∏
j=1

fS(s̃j)

 p(β, θ∗|S̃) (18)

Given θ∗ and S̃ (and S), β is uniquely determined. Therefore the core result we need to do inference

is a generalization of Proposition 1: the density of the probabilities and the missing support with

respect to the Lebesgue measure is

p(θ∗, S̃) =
∣∣∣Jθ∗J ′θ∗ + JS̃J

′
S̃

+ Ip

∣∣∣ 1
2

 J̃∏
j=1

fS(s̃j)

 p(β, θ∗|S̃), (19)

where

Jθ∗ =
∂β

∂θ∗
=

 J∗∑
j=1

θj
∂gj
∂β′

−1

H∗β, JS̃ =
∂β

∂S̃
=

 J∗∑
j=1

θj
∂gj
∂β′

−1

M̃,

M̃ =

{
θ1

(
∂g1

∂s′1

)
, · · · , θJ̃

(
∂gJ̃
∂s′

J̃

)}
. (20)
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Again this result follows from the area formula. Proposition 2 generalizes in the same way delivering

p(β, θ∗, S̃) =

∣∣∣Jθ∗J ′θ∗ + JS̃J
′
S̃

∣∣∣ 1
2

∣∣∣Jθ∗J ′θ∗ + JS̃J
′
S̃

+ Ip

∣∣∣ 1
2

p(β)p(θ∗|β, S̃)

 J̃∏
j=1

fS(s̃j)

 . (21)

Again the Jacobian will be close to one if J∗ is large. The ratio of J to J∗ does not make any

difference to this approximation.

Example 2 (Continued) Now add a single point of missing support. Then J∗ = 4, θ∗ =

(θ1, θ2, θ3)′, J = 3 and S∗ = {s1, s2, s3, s4} = {−1, 0, 1, s4}. Then β = θ3 − θ1 + s4θ4 =

θ3 − θ1 + s4(1− θ1 − θ2 − θ3). For this model

Jθ∗ =
∂β

∂θ∗
= (−1− s4,−s4, 1− s4) and JS̃ =

∂β

∂S̃
= θ4, (22)

and so JθJ
′
θ = 2 + 3s2

4 and JS̃J
′
S̃

= θ2
4. Hence, writing θ4 = 1− θ1 − θ2 − θ3,

p(s4, θ
∗) =

{√(
2 + 3s2

4

)
+ θ2

4 + 1

}
fS(s4)p(β, θ∗|s4). (23)

4 Some potential priors

So far we have discussed working with any prior p(β, θ) which is defined with respect to lower

dimensional Hausdorff measure supported on Θβ,θ. In this section we discuss potential ways of

selecting p(β, θ). As with all prior selection there is no uniquely good way of carrying this out.

4.1 A non-science prior

From a nonparametric standpoint it is natural to build a prior from p(θ), e.g. Dirichlet. Then

Proposition 1 implies there is a unique joint prior

p(β, θ) =
p(θ)√∣∣JθJ ′θ + Ip

∣∣ , (24)

which achieves this. The right hand side p(θ) is the density of θ with respect to Lebesgue measure,

while p(β, θ) is the density of (β, θ) with respect to Hausdorff measure. This implies

Pr {(β, θ) ∈ C} =

∫
Cθ

p(θ)dθ. (25)

The Dirichlet special case (24) is the implicit Chamberlain and Imbens (2003) prior on p(β, θ).
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4.2 A prior on the science

Proposition 2 says that

p(β, θ) =
|JθJ ′θ|

1/2∣∣JθJ ′θ + Ip
∣∣1/2 p(β)p(θ|β). (26)

If we place a prior on the science p(β) with respect to the Lebesgue measure, then we can form

a scientifically centered prior on p(β, θ) by specifying a prior on p(θ|β) with respect to the J −

1 − p dimensional Hausdorff measure. This prior sits on the hyperplane θ|β satisfying the linear

constraints (9) and the probability axioms. One such prior is Dirichlet subject to the constraints.

Again if J gets large the Jacobian in (26) will become unimportant in practice.

4.3 Adhoc priors

A more brutal approach to building a prior is to define an “initial” prior (with respect to Lebesgue

measure) for β and θ which ignores the moment condition η(β, θ) where the implied initial marginal

prior on β, η (β), could be our substantive initial prior. From the Borel paradox (Kolmogorov

(1956)) we know there are many ways of building a p(β, θ) from η(β, θ) (conditioning on satisfying

the moment condition is not enough) but here we discuss various plausible methods.

This line of thinking leads to a generalization of (24), setting

p(β, θ) ∝ η(β, θ)∣∣JθJ ′θ + Ip
∣∣1/2 1Θβ,θ(β, θ). (27)

This prior scales the initial prior to countereffect the length of the curve mapping out the rela-

tionship between θ and β implied by the moment condition. This prior has the property that

p(θ) ∝ η(β, θ)1Θβ,θ(β, θ), with respect to the Lebesgue measure.

The simple case of η(β, θ) = η(β)η(θ), would imply under (27)

p(θ) ∝ η(β)η(θ)1Θβ,θ(β, θ). (28)

The case where η(θ) is Dirichlet is important. Then the Bayesian bootstrap weights (27) would

become the rather simple

wj ∝ η(β(j)), j = 1, 2, ...,M. (29)

This is a minimally informative generalization of Chamberlain and Imbens (2003).

An alternative to (27) is to put no mass on inadmissible combinations of β, θ. We call this the

“truncated prior”

p(β, θ) ∝ η(β, θ)1Θβ,θ(β, θ) (30)
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Figure 3: The parameter space (the blue curve) Θβ,θ and the initial prior π(β, θ) have been depicted.
Figure 1 shows the implied p(β, θ).

in which p(β, θ) is the density of the prior with respect to the (J−1)−dimension Hausdorff measure

in RJ−1+p. This would imply for any set C ∈ RJ−1+p

Pr {(β, θ) ∈ C} =

∫
Cθ

p(β, θ)
√∣∣JθJ ′θ + Ip

∣∣dθ (31)

∝
∫
Cθ

η(β, θ)
√∣∣JθJ ′θ + Ip

∣∣dθ.
Obviously it implies p(θ) ∝ η(β, θ)

√∣∣JθJ ′θ + Ip
∣∣1Θβ,θ(β, θ), with respect to the Lebesgue measure.

Example 5 (continuing logistic Example 1). Assume the initial prior

η(β, θ) ∝ θ0.01−1(1− θ)0.01−1e−
1
2

(β−1)2

, (32)

which is a relatively ignorant Dirichlet prior on the probabilities and an informative Gaussian prior

for β centered on one. This is depicted in Figure 3. With this initial prior and using the class of

priors (30), the density with respect to the univariate Hausdorff measure is

p(β, θ) ∝ η(β, θ)1Θβ,θ(β, θ). (33)

Figure 1 shows the corresponding p(β, θ) living on the manifold. In this case

p(θ) ∝ η(β, θ)

√
1 +

(
∂β

∂θ

)2

1Θβ,θ(β, θ), (34)
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with respect to the Lebesgue measure. With the alternative (27) prior, then

p(β, θ) ∝ η(β, θ)√
1 +

(
∂β
∂θ

)2
1Θβ,θ(β, θ), and p(θ) ∝ η(β, θ)1Θβ,θ(β, θ). (35)

5 Illustrative examples

In this section we present some illustrative examples and simulation studies. Since the MCMC

results obtained by the marginal and joint methods are indistinguishable we present only one of

them. At the end of the section we study how the methods scale.

5.1 The mean

Recall inference on the mean studied in Example 2. Now focus on J = 3 and S = (−1, 0, 1), so

β = θ3 − θ1 = 1− 2θ1 − θ2. Here we have taken the 2 dimensional Hausdorff prior as

p(β, θ) ∝ e−2|β−m|θα−1
1 θα−1

2 (1− θ1 − θ2)α−1 1 (min{θ1, θ2, 1− θ1 − θ2} ≥ 0) . (36)

We call this a “Laplace-Dirichlet” distribution on (β, θ), where β is centered around m and the

Dirichlet part is indexed by α.

By the marginal method:

p(θ) ∝ e−2|1−2θ1−θ2−m|θα−1
1 (1− θ1 − θ2)α−1 θα−1

2 1 (min{θ1, θ2, 1− θ1 − θ2} ≥ 0) , (37)

Figure 4 shows the contours of p(θ) for various values of m and α. We have plotted these contours

against (θ1, θ2, θ3)′ so the reader can compare θ1 and θ3.

If the Laplace-Dirichlet distribution has m = 0 then the density is symmetric with respect to θ1

and θ3. When the location parameter of p(β) is positive θ1 is on average smaller than θ3. Moreover

as α increases, the variability of p(θ) decreases.

Figure 5 draws the prior for β. Here the support of the data means β is restricted to the real

line, after observing the support of the data its prior is restricted to [−1, 1]. As α increases the

variance of β decreases. For instance the β’s prior centered at a positive value results in a prior for

θ tilted toward θ3, even if the prior of θ is symmetric. In the same way, a more informative initial

prior for θ yields a more peaked prior for β.
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Figure 4: Equiprobability contours implied by the Laplace-Dirichlet prior on p(β, θ) with respect
to the Hausdorff measure. Plotted is the marginal p(θ1, θ3) for several values of m and α, with θ2

implied as θ2 = 1− θ1 − θ3. This case has J = 3 points of support (s1 = −1, s2 = 0, s3 = 1) and
r = 1 moment constraints (the mean).
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Figure 5: Illustrating Example 1 (estimating the mean). Plot of p(β) for several values of m and
α. This case has J = 3 points of support (s1 = −1, s2 = 0, s3 = 1) and r = 1 moment constraints
(the mean). Initial prior for β is Laplace centered at m and the initial prior for θ is symmetric
Dirichlet with parameter α.
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Figure 6: Illustrating Example 1 with the partially observed support: inferring the mean β. The
prior and the posterior of the missing element of the support s4 (left panel) and mean β (right
panel).

5.2 Missing support and the mean

In the previous section, the finite support of β is caused by the known support of the data. We

now extend this to cover Example 2 where we have a single missing datapoint

s4 ∼ N(0, 102), (38)

all other features of the problem are unchanged. An adaptive MH algorithm has been used in order

to draw 10, 000 samples from the joint distribution. For the sake of brevity we present the results

only for the case of m = 0 and α = 0.5.

The means and standard error of the probabilities θ∗ are (0.3065, 0.3335, 0.3079, 0.0521) and

(0.0026, 0.0030, 0.0024, 0.0010), respectively. The left panel of Figure 6 shows the initial prior (38)

and the implied marginal distribution of the missing element of the support s4 from the joint

prior. The variance of the implied marginal is smaller than the prior’s variance, because the prior

distribution of β is informative about the support of the data. The right panel of Figure 6 shows

the Laplace element of the prior e−2|β−m| and the full marginal prior for β. The full marginal prior

is not the same as the Laplace distribution due to the informative priors on the probabilities.

5.3 Linear regression

Recall the linear regression of Example 3. Assume the observed data is Z = {(1, 1), (2, 4), (3, 9)}.

Earlier we have seen that the parameter space, Θβ,θ is a non-flat surface in R3. Figure 7 demon-

strates the posterior distribution of the parameters defined on this surface (the prior parameters

are α = 0.5 and m = 3).

Following the suggested MCMC simulation algorithms we draw 100, 000 samples from the poste-
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Figure 7: The posterior distribution of the linear regression model with data Z =
{(1, 1), (2, 4), (3, 9)}. The prior parameters are α = 0.5 and m = 3.

rior distribution of the parameters. In the Figure 8 we have drawn the contour plots of the posterior

distribution of the probabilities. Analytical results have been compared with the estimates obtained

by a kernel density estimator using the MCMC draws.

5.4 Simulation study

To demonstrate the scalability of the algorithms we consider a linear regression model with sample

size J = 500. The data Zj = (Yj , Xj), for 1 ≤ j ≤ J , is generated according to Xj ∼ N (1, 22),

Yj |Xj ∼ N (2 + 5Xj , 102). We assume the substantive prior of β is β ∼ N (µ0,Σ0), where the

elements of µ0 are equal to the 25% quantiles of the asymptotic MLE estimators, and Σ0 is equal

to the asymptotic variance of the MLE estimator multiplied by 100 (see Appendix A.5 for the

results with a different prior). The initial prior of θ is a symmetric Dirichlet distribution with

parameter α = 0.01. We have drawn 50, 000 samples from the posterior after a 5, 000 sample

burn-in (the chain’s trace has been thinned with a factor of 100, so has been iterated 5, 000, 000

times). The scatter plot of the sample is depicted in the top-left panel of Figure 9. Each circle

represents a data point in our sample and its radius is proportional to the expected value of its

posterior probability, i.e. E(θj |Z). In the top-right panel the correlogram (ACF) of the chains of

β and 10 elements of θ have been presented (the red dashed lines and the blue dotted lines are
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Figure 8: The posterior distribution of θ in the linear regression model with data Z =
{(1, 1), (2, 4), (3, 9)} (analytical results and the estimates obtained by a kernel density estimator
using 100, 000 MCMC draws). The prior parameters are α = 0.5 and m = 3.

corresponding to β and θ, respectively.) The ACFs demonstrate that the Markov chain is mixing

sufficiently well. In the bottom-left panel the contour plot of the posterior distribution of β has

been compared to the one obtained by the Bayesian bootstrapping of Chamberlain and Imbens

(2003). The posterior distributions are very close, because the prior’s information is roughly 1% of

the information content of the sample. The bottom-right panel shows a histogram of the samples

from the posterior distribution of β.

6 Empirical studies

In this section we study two empirical examples. The first focuses on an instrumental variable

based estimator, the second looks at estimating the average treatment effect from an experiment.

6.1 Instrumental variables

In this section we demonstrate the applicability and scalability of the methodology developed in

this paper to a real dataset. We use a subsample of the earnings and schooling dataset studied

in Chamberlain and Imbens (2003). This dataset is a subset of the data studied in Angrist and

Krueger (1991) and consist of the self-reported weekly log-earnings (self-reported annual earnings

divided by 52) of 162, 512 male subjects who reported positive annual wages in 1979 along with
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Figure 9: Inference in linear regression model with J = 500. Top left shows circles who’s radius is
the posterior expectation of the probabilities given the data: E(θj |Z). Top right is the correlogram
for the thinned draws of the elements of β and ten elements of θ. The bottom graphs show the
estimated contour and marginal densities of the resulting posterior.

their number of years of education and their quarter of birth date. In turn this is a 5% random

sample from the 1980 Public Use Census Data. Bound et al. (2001) discuss the myriad of problems

of self-report income data but we do not address that issue here. For example, Britton et al. (2015)

compared UK self-reported income with tax based administrative data finding high income earners

significantly under self-recorded their incomes compared to that seen in administrative data.

Chamberlain and Imbens (2003) studied the dependence of earnings on the level of schooling

using a linear additive treatment effect model (e.g. Imbens and Rubin (2015)). They model

schooling levels as being determined by rational agents’ optimization of their lifetime expected

utility. Since the utility is a function of the earnings they needed to estimate the distribution of

earnings as a function of the schooling level.

The expected log-earnings YX with schooling level X is modeled here as E(YX |X,Y0) = Y0 +

β1X, where X is the schooling level, β1 is the unknown return to education, and Y0 is the earnings

level with no schooling at all. Let β0 be the expected value of Y0, so Y0 − β0 has a zero mean.

In order to estimate the unknown parameters, β = (β0, β1), we follow Angrist and Krueger

(1991) and Chamberlain and Imbens (2003) and use an instrumental variable (IV) W that is a

binary indicator: W = 0 if the subject was born in the first three quarters of the year and W = 1

otherwise. The instrumental variable W is correlated with the regressor X and thought by the

researchers to be uncorrelated with the errors.

We obtain the classic IV estimate of β using the full sample, and treat them as the “true” values

of β. Then we draw random samples with replacement of size J from the original data 1, 000 times.

Our aim will be to compare different estimators using these smaller samples.
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J = 100 J = 1, 000

J = 5, 000 J = 10, 000

Figure 10: 95% pointwise confidence regions for the marginal prior for β for J = 10, J = 1, 000,
J = 10, 000 and J = 100, 000 points of random support in top-left, top-right, bottom-left and
bottom-right, respectively. The confidence region is computed over 1,000 replications.

Our prior distribution, which is specified to be weakly informative, is

p(β, θ) ∝ 1√
JθJ

′
θ + I2

η(β)η(θ)1Θβ,θ(β, θ), (39)

where η(β) = ϕ (β0; 5, 4)ϕ (β1; 0, 0.2), and ϕ
(
·;µ, σ2

)
is the Gaussian density with mean µ and

variance σ2. The intercept is centered at 5 with variance 4, implying that the mean annual income

for those with no schooling is equal to $7, 717 (with 95% confidence interval [$153, $388965]) with

zero years of schooling. Moreover the prior of β1 has zero mean (no effect of number of schooling

years on income) with 95% interval [−0.88, 0.88] (that is equivalent to [−0.41%, 241%] income in-

crement for each additional year of schooling.) The probabilities θ are taken as a mildly informative

Dirichlet prior η(θ) ∝
J∏
j=1

θα−1
j , where α = 10−6 (we also tried α = J−1, with no substantial change

in the results).

For 1, 000 iterations, a random sample of size J has been drawn with replacement from the

162, 512 population. For each replication the resulting marginal prior distributions of β0 and β1

depend on the draws which generate the support and so vary over the 1, 000 samples. Figure 10

shows the pointwise 95% confidence intervals of the marginal prior distributions over these 1, 000
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Figure 11: The sampling distribution of classic IV (denoted frequentist), Bayesian bootstrapping
and Bayesian estimators of β in the linear regression model with the instrumental variable employing
sample sizes J = 10, J = 1, 000, J = 10, 000 and J = 100, 000.

replications, for J = 100, 1, 000, 5, 000 and 10, 000. It shows the information content of the prior

is modest and only mildly depends upon the random support and J , with less variation across

replications in the prior density as J increases. Similar results have been obtained for other

sample sizes J .

For each random sample, we compute the classic IV estimates of β and the Chamberlain and

Imbens (2003) Bayesian bootstrapping estimates obtained by 10, 000 draws. For the latter we

report both the means and the medians as the estimators. These estimators are compared with

the weakly informative Bayesian estimators (using the prior described earlier).

The Bayesian estimates are obtained by the following resampling method. Initially a sample of

size 10, 000 is drawn from a Dirichlet distribution with parameter (n1 + α− 1, ..., nJ + α− 1), and

the importance sampling weights are computed w(k) ∝ η(β(k)). Then a sample from the posterior

can be obtained by resampling using the normalized weights. Estimators of the mean and the

median of the posterior have been reported here. For J = 10, 100, 1, 000, 5, 000, 10, 000, 40, 000

and 100, 000 the effective sample size divided by J (Liu, 2001, p. 35) was 0.620, 0.576, 0.607, 0.719,

0.819, 0.978 and 0.997, respectively. This suggests this is a reasonable method for this problem.

In Figure 11 the sampling distribution of these five estimators have been plotted. The blue
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β0

Bias of mean Bias of median RMSE 95% CR length
Sample size J 10 1,000 10,000 10 1,000 10,000 10 1,000 10,000 10 1,000 10,000

Classic IV -0.104 0.214 -0.015 0.285 0.144 -0.009 14.27 35.41 0.216 42.83 44.52 0.832
BB E(θ|Z) -0.174 0.909 -0.020 0.347 0.259 -0.015 50.01 27.32 0.221 42.21 45.36 0.851
BB med(θ|Z) 0.240 0.190 -0.015 0.287 0.227 -0.009 2.369 1.247 0.216 9.491 5.137 0.834
E(θ|Z) 0.323 0.269 -0.007 0.324 0.292 -0.003 0.979 0.640 0.211 3.667 2.447 0.815
med(θ|Z) 0.324 0.261 -0.002 0.326 0.290 0.003 1.034 0.669 0.207 3.837 2.572 0.803

β1

Classic IV 0.007 -0.016 0.001 -0.017 -0.011 0.001 1.100 2.783 0.017 3.398 3.496 0.065
BB E(θ|Z) -0.001 -0.072 0.002 -0.019 -0.020 0.001 3.940 2.151 0.017 3.402 3.546 0.067
BB med(θ|Z) -0.017 -0.015 0.001 -0.018 -0.017 0.001 0.186 0.098 0.017 0.725 0.404 0.066
E(θ|Z) -0.023 -0.021 0.001 -0.020 -0.022 0.000 0.077 0.050 0.017 0.295 0.193 0.064
med(θ|Z) -0.023 -0.020 0.000 -0.021 -0.022 0.000 0.081 0.052 0.016 0.307 0.200 0.063

Table 1: Results for the linear regression with an instrument using 1, 000 replications sampling with
replacement. The bias of the mean is the difference of the mean of the replications and the true
value (using all 162,512 data points). The bias of the median is the median of the replications minus
the true value. The 95% confidence region (CR) length is the length of 95% of the replications
placing 2.5% of the mass in each tail. RMSE is the root mean square error over the replications.
BB denotes the (non-informative) Bayesian bootstrap. med denotes median. The last two rows are
posterior mean and posterior median of the Bayesian model with weakly informative prior.

curves correspond to the classical IV estimator. They exhibit a very imprecise estimator and assign

significant probabilities to economically irrelevant values of β (this is a well known disappointing

property of this estimator, e.g. Bound et al. (1995)). The mean of the Bayesian bootstrapping

estimator of Chamberlain and Imbens (2003) has a very large variance too (the orange curves), but

its median is more precise (the yellow curves). The Bayesian estimators (that are the mean and

the median of the posterior) are the most precise estimators.

The bias (with its standard error) and the root mean square error (RMSE) of the estimators

have been reported in Table 1. Although the Bayesian estimators are slightly biased, thanks to

their small variances they have lower RMSEs. In the Table and Figure 12 we have also reported

the length of the 95% confidence intervals of the sampling distribution of the estimators (over the

1,000 replications) of β0 and β1 for different sample sizes J = 10, 100, 1, 000, 5, 000, 10, 000, 40, 000

and 100, 000. This shows that the Bayesian estimators are far more accurate than the classical

IV estimator and Bayesian bootstrapping for most sample sizes. However, when J hits around

100, 000 the old methods catchup to our techniques.

Why does our method do better? For weakly identified models even a very modestly informative

prior, which downweights economically implausible values of the parameter space, has the trait of

cutting off the tails of the posterior corresponding to these implausible values. Because of the

ridge-like posterior induced by the weakly informative likelihood, the posterior contracts onto a
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Figure 12: The length of the 95% confidence intervals of the sampling distribution of the parameters
β0 and β1 for different sample sizes J = 10, 100, 1, 000, 5, 000, 10, 000, 40, 000 and 100, 000, and
for classical IV estimator, Bayesian bootstrapping (mean and median) and Bayesian (mean and
median). The bars denote our estimated 95% confidence intervals estimates of the lengths.

manifold, rather than a single point. As such, having a prior which constrains the feasible support

provides significant value.

In the Appendix A.6 we have relaxed the assumption that the support of Z is fully observed

in our sample. It can be seen that the estimates would not change significantly as long as α, the

parameter of the Dirichlet distribution in the prior of θ∗, is small. It can be shown that, when

α→ 0+, the marginal posterior distribution of θ and β of both models coincide.

6.2 Causal Inference

In this example we analyze a dataset originally collected and studied in Imbens et al. (2001). The

dataset contains socioeconomic variables of 496 individuals who had won monetary prizes in the

Massachusetts lottery. Following Imbens and Rubin (2015), we call the individuals who won large

sums of money “the winners” (237 observations), and the ones who won only small amounts “the

losers” (259 observations). The goal is to study the effect of unearned income on the economic

behavior of the subjects, more specifically, on their average labor income over the first six years
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following the year in which they had won the lottery. For each individual the treatment indicator,

Wi, is equal to one for the winners and zero for the losers. The uncontroversial assumption behind

this study is the random treatment assignment, however one may argue that the sample is not

representative of the population. For instance in the literature it is well documented that the lottery

players are slightly more likely to be male and middle-aged, with lower income and less education

(see Clotfelter and Cook (1989), Farrel and Walker (1999) and Ariyabuddhiphongs (2011), among

others).

The dataset includes the year in which the winning lottery ticket is purchased (YW), the number

of tickets purchased in a typical week (TB), the individual’s age (Age), gender (G) and years of

schooling (YS), an indicator showing whether she has been working during the year the winning

ticket is purchased (WT), and the annual social security earnings from 6 years prior to the year

in which the winning ticket is purchased (EYB1 to EYB6) to 6 years after that (EYA1 to EYA6),

all converted to 1986 dollars. The authors argue, perhaps optimistically, that the social security

income is potentially the most reliable measure of income in long run, although it is capped to the

maximum taxable earning ($42, 000 in 1986).

In order to improve the overlap of the background variables, following the recommendation of

Imbens and Rubin (2015), initially we model the propensity scores using a logistic regression model,

and estimate the model’s parameter using the Bayesian bootstrapping of Chamberlain and Imbens

(2003). The covariates of the model are a constant, the linear terms TB, YS, WT, EYB1, Age, YW, the

indicator for the positiveness of the earning 5 years before winning the lottery (SEYB5), G, and the

quadratic terms YW × YW, EYB1 × G, TB × TB, TB × WT, YS × YS, YS × EYB1, TB × YS, EYB1 ×

Age, Age × Age, and YW × G. We discard the observations with too small (< 0.0891) or too large

(> 0.9109) estimates of propensity scores. This results in a sample of size N = 295 (142 winners

and 153 losers). In the proposed model the propensity score is regressed on 13 covariates using a

logistic regression. The vector of covariates is denoted by Xi, and include a constant, the linear

terms TB, YS, WT, EYB1, Age, SEYB5, YW, EYB5, and the quadratic terms YW × YW, TB × YW, TB ×

TB, and WT × YW. For details on the variable selection see Imbens and Rubin (2015). The outcome,

Yi, is the average of the individual’s income averaged over the first 6 years after purchasing the

winning lottery ticket. Therefore the parameters of the logistic regression model, γ, and the ATE,

τ , satisfy the following moment conditions,

E [g(Zi, β)] = 0, (40)
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in which, Zi = (Xi, Yi,Wi), β = (γ, τ), and,

g(Zi, β) =

[
Xi(Yi − ηi)

(Wi−ηi)Yi
ηi(1−ηi)

− τ

]
, (41)

where ηi = exp(γ′Xi)
1+exp(γ′Xi)

. If we assume Zis are i.i.d. draws from a discrete distribution supported

on {s1, ..., sJ}, with P(Zi = sj) = θj , the parameters (β, θ) will satisfy the following system of

equations,  ∑J
j=1 θjxj(yj − ηj)∑J
j=1 θj

(wj−ηj)yj
ηj(1−ηj)

− τ

 = 0. (42)

We let the prior of (β, θ) be

p(β, θ) ∝ 1√
JθJ

′
θ + I14

η(γ)η(τ)η(θ)1Θβ,θ(β, θ), (43)

in which the initial prior of the regression coefficients, η(γ), is a normal distribution centered at

their estimates obtained from the Bayesian bootstrap of Chamberlain and Imbens (2003) and its

covariance matrix is equal to the covariance matrix of estimates scaled by a factor of 100, and the

initial prior of ATE is a zero mean normal distribution with variance equal to 100. Moreover we

use a symmetric Dirichlet distribution with parameter α = 10−6 as the initial prior on θ.

By reweighting draws from the posterior distribution of the Bayesian bootstrap of Chamberlain

and Imbens (2003), we obtain 10, 000 independent draws from the posterior of our model. An

estimate of the posterior distribution of the ATE is depicted in Figure 13. A posteriori the expected

value of ATE is −$5, 346 (with 95% credible interval of [−$8, 069,−$2, 720]). This indicates that

the average income of the winners of the lotteries, in the years after winning the prize, tend to

slightly decrease. Our estimate of ATE is only slightly different from the frequentist estimate.

7 Conclusions

In this paper we have provided a coherent Bayesian calculus for rational nonparametric moment

based estimators, allowing users to specify scientifically meaningful priors. At the core of our

analysis is a prior density placed on the Hausdorff measure whose support is generated by the

scientific parameters of interest and the nonparametric probabilities. We show how to transform

this prior into a posterior density.

Much moment based analysis favoured in the literature delivers weakly identified parameters.

The use of very modest priors can dramatically improve estimation by downweighting vast regions

of economically implausible parameter values. Such weak priors play little role when the data is

informative but provide a safety net when this is not the case.
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Figure 13: The posterior distribution of the average treatment effect (ATE) on subsequent annual
earnings of a substantial lottery win for the lottery data set.

To harness these gains, at the center of our paper are the marginal method and the joint method.

The first is based on finding the density of the probabilities with respect to a Lebesgue measure.

This allows for the use of conventional simulation methods such as MCMC, importance sampling

and Hamiltonian Monte Carlo. It is convenient to use where the moment conditions can be solved

analytically or numerically very fast.

Our joint method is somewhat harder to code but has the virtue of never having to solve the

moment equations. This has some speed advantages but more fundamentally allows the rational

analysis of moment condition models with many solutions. As a side product our method provides

a novel way of generically simulating on a wide class of manifolds, which may be useful in other

areas of science.
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A Appendices

A.1 Proof of proposition 1

Since corresponding to every θ ∈ Θθ there is a unique β, there exist a one-to-one mapping between

Θβ,θ and Θθ: (β, θ) = {β(θ), θ)} = F (θ). Now let A be a measurable set on Θβ,θ, and assume

Sθ(A) is its projection on Θθ. Therefore

P(Sθ(A)) = P(A) =

∫
A
p(β, θ)dA =

∫
Sθ(A)

‖v1 ∧ · · · ∧ vJ−1‖ p(β, θ)dS

where vj = ∂F
∂θj

(for 1 ≤ j ≤ J − 1). Therefore ‖v1 ∧ · · · ∧ vJ−1‖ p(β, θ) is the density of θ with

respect to Lebesgue measure. Moreover,

‖v1 ∧ · · · ∧ vJ−1‖ = [Gram(v1, ..., vJ−1)]
1
2 =

∣∣J ′θJθ + IJ−1

∣∣ 1
2 =

∣∣JθJ ′θ + Ip
∣∣ 1

2

where Gram(·) is the Gramian determinant and Jθ = ∂β/∂θ
′
.

A.2 Proof of proposition 2

Let p(β) be the density of β. Then, given β, the vector of probabilities θ lives on a J − 1 − p

dimensional hyperplane in RJ−1 defined by Hθ+gJ = 0. This system of equation can be solved for

p elements of the variables θJ−p:J−1 = −H−1
2 (H1θ1:J−p−1 − gJ), where H1 = [h1 ... hJ−p−1] and

H2 = [hJ−p ... hJ−1]. Therefore, ∂θJ−p:J−1/∂θ1:J−p−1 = −H−1
2 H1 and so

p(θ1:J−p−1|β) =
∣∣∣H−1

2 H1H
′
1H

′−1
2 + Ip

∣∣∣ 1
2
p(θ|β),

p(θ1:J−p−1, β) =
∣∣∣H−1

2 H1H
′
1H

′−1
2 + Ip

∣∣∣ 1
2
p(β)p(θ|β).
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Therefore the density of θ is

p(θ) =

∣∣∣∣∂(θ1:J−p−1, β)

∂(θ)

∣∣∣∣ p(θ1:J−p−1, β) =

∣∣∣∣ ∂β

∂θJ−p:J−1

∣∣∣∣ p(θ1:J−p−1, β)

=

∣∣∣∣∣
[
E
(
∂g

∂β′

)]−1

H2

∣∣∣∣∣ p(θ1:J−p−1, β)

=

∣∣∣∣∣
[
E
(
∂g

∂β′

)]−1

H2

∣∣∣∣∣ ∣∣∣H−1
2 H1H

′
1H

′−1
2 + Ip

∣∣∣ 1
2
p(β)p(θ|β)

=

∣∣∣∣∣
[
E
(
∂g

∂β′

)]−1
∣∣∣∣∣ ∣∣H1H

′
1 +H2H

′
2

∣∣ 1
2 p(β)p(θ|β) =

∣∣∣∣∣
[
E
(
∂g

∂β′

)]−1
∣∣∣∣∣ ∣∣HH ′∣∣ 1

2 p(β)p(θ|β)

=

∣∣∣∣∣
[
E
(
∂g

∂β′

)]−1

HH ′
[
E
(
∂g′

∂β

)]−1
∣∣∣∣∣

1
2

p(β)p(θ|β) =

∣∣∣∣ ∂β∂θ′ ∂β
′

∂θ

∣∣∣∣ 1
2

p(β)p(θ|β).

Therefore:

p(β, θ) =

∣∣∣ ∂β
∂θ
′
∂β′

∂θ

∣∣∣ 1
2

∣∣∣ ∂β
∂θ
′
∂β′

∂θ + Ip

∣∣∣ 1
2

p(β)p(θ|β).

A.3 Joint method proposal

In order to generate a proposal value for θ∗, we can first draw π∗ from N (θ,ΣQ), and let θ∗ be

the closest point to π∗ in the hyperplane P∗ = {λ ∈ RJ−1;H∗λ + g∗J = 0}, where we measure the

distance between π∗ and θ∗ with the squared Euclidean norm:

θ∗ = argmin
θ

1

2
‖π∗ − θ‖22 +

1

2

(
ι′π∗ − ι′θ

)2
.

The quadratic penalty is certainly inelegant (e.g. compared to the log-likelihood of the multinomial

model, but see, for example, Owen (1991) and Antoine et al. (2007) who use it for their Euclidean

empirical likelihood) as the resulting θ∗ can have negative elements or may result in θ∗J = 1−ι′θ∗ ≤ 0.

However, by using a quadratic penalty, θ∗ becomes the solution to a quadratic optimization problem

subject to p equality constraints, and so has an analytic solution θ∗ = a∗ +B∗π∗.

The Lagrangian of the optimization is,

E(θ, λ) = ‖π∗ − θ‖22 +
(
ι′π∗ − ι′θ

)2
+ λ′∗θ + g∗J)

and the first order conditions are:

∂E

∂θ
= (I + ιι′∗ − π∗) +H∗

′
λ = 0,

∂E

∂λ
= H∗θ∗ + g∗J = 0.

Solving them for θ∗ and λ results in,

θ∗ = π∗ − (I + ιι′−1H∗
′
[
H∗(I + ιι′−1H∗

′
]−1

(H∗π∗ + g∗J)
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λ =
[
H∗(I + ιι′−1H∗

′
]−1

(H∗π∗ + g∗J).

Therefore θ∗ is an affine transformation of π∗: θ∗ = a∗ +B∗π∗, where

a∗ = −(I + ιι′−1H∗
′
[
H∗(I + ιι′−1H∗

′
]−1

g∗J

B∗ = I − (I + ιι′−1H∗
′
[
H∗(I + ιι′−1H∗

′
]−1

H∗.

This transformation from π∗ to θ∗ is a many-to-one affine transformation. Consequently,

θ∗|β∗, β(t), θ(t) is a singular normal distribution with mean a∗+B∗θ(t) and variance matrix B∗ΣQB
∗.

A singular normal distribution with mean µ and (singular) variance matrix Σ has a density on

the range of the covariance matrix (e.g. Khatri (1968)), given by

(2π)−
1
2
rank(Σ)|Σ|−

1
2

rank(Σ) exp

{
−1

2
(x− µ)′Σ+ (x− µ)

}
,

where |Σ|rank(Σ) is the product of non-zero eigenvalues of Σ and Σ+ is its Moore-Penrose inverse.

In our algorithm, ΣQ and the parameters inside q(·|β(t), θ(t)) are the tuning parameters. We

may either adapt them in the course of simulation, or they can be set to some fixed values obtained

from an estimate of the posterior’s distribution. Here we document how we have carried this out

for our simulation and empirical work. A simple to calculate candidate for the covariance of β’s

proposal is Σβ =
(

Σ−1
0β

+ Σ−1
BBβ

)−1
, where Σ−1

0β
is the prior’s covariance and Σ−1

BBβ
is the covariance

of the estimates of β obtained by Bayesian bootstrapping of Chamberlain and Imbens (2003) (As

an alternative we may use the asymptotic covariance of the least squares or GMM estimators).

Moreover a suitable candidate for ΣQ is diag(θ̂
2

1, ..., θ̂
2

J−1) where:

θ̂ = (θ̂1, ..., θ̂J−1) = argmax
θ

J∑
j=1

nj ln θj subject to Ĥθ + ĝJ = 0, (44)

in which Ĥ = (ĝ1, ..., ĝJ−1)− ĝJ ι′, ĝj = g(β̂, sj) and β̂ =
(
Σ0β + ΣBBβ

)−1
(

Σ0βµBBβ + ΣBBβµ0β

)
.

A.4 Large support

An apparent drawback of the joint method is that in each evaluation of the proposal’s density, the

Moore-Penrose inverse of the (J − 1) × (J − 1) matrix B∗ΣQB
∗′ should be computed. In general

this costs O(J3) computational operations. This type of challenge is very common in Bayesian

analysis and a standard approach to this problem is to make proposals to update a block of K � J

elements of θ, with cost O(K3).

Let the K × 1 vector u be a randomly (without replacement) selected subset of the indices

{1, ..., J − 1} and the (J −K − 1)× 1 vector v be its complement. Moreover let θ̃ = (θu1 , ..., θuK )
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Figure 14: Inference in linear regression model with J = 500 and an informative prior.

and θ̄ = (θv1 , ..., θvJ−K−1). The proposal’s vector of probabilities, θ∗, is equal to θ except for the K

elements with indices in u, θ̃
∗

= (θ∗u1
, ..., θ∗uK ), that is obtained by solving:

θ̃
∗

= argmin
θ̃

1

2
‖θ̃ − π̃∗‖+

1

2

(
ι′θ̃ − ι′π̃∗

)
subject to H̄∗θ̄

(t)
+ H̃∗θ̃ + g∗J = 0, (45)

where H̃∗ =
(
g∗u1

, ..., g∗uK
)
− g∗J ι′, H̄∗ =

(
g∗v1
, ..., g∗vJ−K−1

)
− g∗J ι′, and π̃∗ is a random draw from

N(θ̃,Σθ̃). Again this is a quadratic optimization problem subject to a set of equality constraints

with the following solution: θ̃
∗

= ã∗ + B̃∗π̃∗, where

ã∗ = −(I + ιι′−1H̃∗
′
[
H̃∗(I + ιι′−1H̃∗

′
]−1 (

H̄∗θ̄
(t)

+ g∗J

)
B̃∗ = I − (I + ιι′−1H̃∗

′
[
H̃∗(I + ιι′−1H̃∗

′
]−1

H̃∗.

A.5 Linear regression with an informative prior

Here we report the results for the linear regression model with sample size J = 500, and an

informative prior for β. We place a normal prior on β with the mean equal to β̂MLE + (5,−5)′ and

the variance equal to the asymptotic variance of β̂MLE. Therefore the prior is as informative as the

data, however centered at a significantly different point.

Figure 14’s top left panel shows a scatter plot of the sample. Each circle represents a data

point and its radius is proportional to E(θj |Z). In the top-right the ACF of the chains of β and

50 elements of θ have been presented (the red dashed lines and the blue dotted lines correspond

to β and θ, respectively.) These show that the Markov chain is mixing sufficiently well. In the

bottom-left panel the contour plot of the prior distribution (bottom), posterior distribution of β

using Bayesian bootstrapping, and the posterior distribution of β considering the informative prior

(middle) have been depicted. In the bottom-right panel the histogram of the samples from the

posterior of β can be seen.
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A.6 Instrumental variables with partially observed support

Now we assume the support of S = (X,Y,W ) has other J missing elements (not observed in the

data), therefore J∗ = 2J . The density of our prior for the missing elements of the support is,

fS(s̃) = fS(1)(s̃(1))fS(2)(s̃(2))fS(3)(s̃(3)) (46)

in which fS(1)(s̃(1)) and fS(3)(s̃(3)) are the density of a uniform distribution on {0, 1, ..., 20} and

{0, 1}, respectively, and fS(2)(s̃(2)) is a normal density with mean 6 and standard deviation 3.

Moreover we assume,

p(β, θ∗|S̃) ∝ 1√
Jθ∗J

′
θ∗ + JS̃J

′
S̃

+ I2

η(β)η(θ∗)1Θβ,θ∗,S̃
(β, θ∗, S̃), (47)

where η(β) = ϕ (β0; 5, 4)ϕ (β1; 0, 0.2) (similar to the previous case), and η(θ∗) is the density a

symmetric Dirichlet distribution with α = 10−6. Hence the posterior distribution of (θ∗, S̃) is:

p(θ∗, S̃|Z) ∝ η(β)

 J̃∏
j=1

fS(s̃j)

 J∗∏
j=1

θ∗
nj+α−1

j

 . (48)

To sample from this distribution we can reweight random draws from the following proposal,

g(θ∗, S̃|Z) ∝

 J̃∏
j=1

fS(s̃j)

 J∗∏
j=1

θ∗
nj+α−1

j

 , (49)

with he weights proportional to η(β). Now we set J = 10, and for 1000 times we draw a random

sample from our dataset. Then we compare the posterior distribution of the parameters under two

assumptions. In the first model we assume the support of S is fully observed in the data (similar

to the previous section of this example), while in the second model we assume the data has J̃ = 10

more elements that are not observed in our sample. Since the prior of the probabilities and β is

barely informative the posterior distributions of β are almost indistinguishable under these two

assumptions.

A.7 Not the just identified case

A.7.1 Abstract expression of the problem

Collect all the parameters in the model and constraints as

ψ = (θ1, ..., θJ−1, β1, ..., βp)
′, g(ψ) = 0r.
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Then resulting constrained support is ψ ∈ Θψ. Write λ = ψI , φ = ψIc , where I selects distinct

indexes of ψ and Ic is the complement, so I ∪ Ic = {1, 2, ..., p+ J − 1}. Throughout we take

dim(φ) = r and consequently dim(λ) = J −m, where m = r − p+ 1.

Given the freedom to build I we make the following assumption.

Assumption A. Under g(ψ) = 0 knowledge of λ reveals φ, so there exists a unique φ = t(λ).

A.7.2 Marginal method

Under Assumption A, the area formula implies that p(λ) = p(ψ)

√∣∣∣Ir + JφλJ
′
φλ

∣∣∣, Jφλ = ∂φ/∂λ′,

where p(ψ) is a density with respect to the (J − 1 + p− r)-dimensional Hausdorff measure on Θψ,

while p(λ) is a density with respect to the J −m-dimensional Lebesgue measure.

A.7.3 Underidentification

Definition 1 If r < p (so m ≤ 0) then the system is called underidentified.

We split β =
(
β1, ..., βp

)′
as β[1] = βJ , β[2] = βJ c , where J ∪ J c = {1, 2, ..., p}, dim(J ) = p−r

and dim(J c) = r, and build λ = (θ1, ..., θJ−1, β
′
[1])
′, φ = β[2]. Hence λ augments θ with p − r

elements from β. Assumption A holds if J can be found such that β[2] = t(θ1, ..., θJ−1, β[1]).

Example 6 Consider instrumental variables problem g(s, β) = s(3)
{
s(1) − β′s(2)

}
, dim(s(2)) = p,

dim(s(3)) = r. If p > r then split β =
(
β′[1], β

′
[2]

)′
, where dim(β[1]) = r − p and dim(β[2]) = r.

Write sj =
(
s′j,[1], s

′
j,[2]

)′
, then

J∑
j=1

θjs
(3)
j

{(
s

(1)
j − β

′
[1]s

(2)
j,[1]

)
− β′[2]s

(2)
j,[2]

}
= 0r.

Knowledge of β[1] puts us back to the just identified, so Assumption A holds under weak assumptions

and so p(θ, β[2]) can be computed using the area formula.

A.7.4 Overidentification

Definition 2 If r > p so m ≥ 1 (e.g. r = 2,p = 1, m = 2) then the system is called overidentified.

We split θ = (θ1, ..., θJ−1)′ as θ[1] = θJ , θ[2] = θJ c ,where J ∪ J c = {1, 2, ..., J − 1}, dim(J ) =

J −m and dim(J c) = m − 1, and build λ = θ′[1], φ =
(
θ′[2], β

′
)′

. Hence λ is a subset of θ with

J −m elements, while φ contains all the other probabilities and the entire β. Then Assumption A

holds if we can find a J such that
(
θ′[2], β

′
)′

= t(θ′[1]).
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Example 7 Again consider g(s, β) = s(3)
{
s(1) − β′s(2)

}
, dim(s(2)) = p, dim(s(3)) = r. If p <

r then split θ =
(
θ′[1], θ

′
[2]

)′
, where dim(θ′[2], β

′) = r, so there are r moment conditions and r

unknowns. Given θ[1], we can then solve for the extended set of parameters
(
θ′[2], β

′
)

, where

dim(θ[1])∑
j=1

θjs
(3)
j

{
s

(1)
j − β

′s
(2)
j

}
+

J∑
j=dim(θ[1])+1

θjs
(3)
j

{
s

(1)
j − β

′s
(2)
j

}
= 0r.

This is typically exactly identified, but non-linear due to the θjβ terms for j = dim(θ[1]) + 1, ..., J .
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