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Abstract Integer-valued trawl processes are a class of serially correlated, stationary
and infinitely divisible processes that Ole E. Barndorff-Nielsen has been working on
in recent years. In this Chapter, we provide the first analysis of likelihood inference
for trawl processes by focusing on the so-called exponential-trawl process, which
is also a continuous time hidden Markov process with countable state space. The
core ideas include prediction decomposition, filtering and smoothing, complete-data
analysis and EM algorithm. These can be easily scaled up to adapt to more general
trawl processes but with increasing computation efforts.

1 Introduction

In recent years, Ole E. Barndorff-Nielsen has been working on a class of stochastic
models called integer-valued trawl processes. References include [2], [4] and [5].
These are flexible models whose core randomness is driven by Poisson random
measures. Trawl processes are related to the up-stairs processes of [25] and the
random measure processes of [24]. Both of these processes are stationary. [5] also
brings out the relationship between their processes and M/G/∞ queues (e.g. [16],
[18] and [8, Ch. 6.31]) and mixed moving average processes (e.g. [22]). Related
discrete time count models include [9], [13], [10], [12], [15], [17], [26], [14], [17]
and [23]. Trawl processes also fall within the wide class of the so-called ambit fields
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(e.g. [7] and [3]). Recently, [21] models high frequency financial data by using a
trawl process to allow for fleeting movements to prices in addition to an integer-
valued Lévy process proposed by [6].

As far as we know, there is no existing literature that directly and completely
addresses likelihood inference for these trawl processes—or equivalently the pre-
diction based upon it. Even though there are a large number of papers that focus
on likelihood inference for marked point processes (see [11] for a survey), it only
indirectly and partially describes trawl processes in terms of their jumps. A thor-
ough likelihood inference for trawl processes needs to include the information in
the initial value of the process.

In this Chapter, we provide a thorough analysis of likelihood inference for
integer-valued trawl processes and demonstrate the core ideas—prediction decom-
position, filtering, smoothing and EM algorithm—by focusing on the so-called ex-
ponential trawl. It is not only a simplification of the modelling framework but also
an intellectually interesting special case of its own, as in this special case the result-
ing trawl process is a continuous time hidden Markov process with countable state
space. The theoretical analysis for the filtering and smoothing problems for this type
of process has been discussed in details by [19] and [20], using the classical theory
of Kolmogorov’s forward and backward differential equations. We particulary em-
phasize that the resulting EM algorithm in this special case is exact in the sense that
there are no discretization errors in its computation.

The major goal of this Chapter is to derive filtering and smoothing results in the
framework of trawl processes, so the analysis adopted here can be easily scaled up
to adapt to the discussions of other general trawls or even the inclusion of a non-
stationary component proposed in [21]. These general discussions will be dealt with
elsewhere, for they require a significantly more sophisticated particle filtering and
smoothing device. We also discuss non-negative trawl processes, which are particu-
larly easy to work with.

The structure of this Chapter is as follows. In Section 2, we remind the reader
how to construct trawl processes using the exponential trawl. Section 3 includes
details of how to carry out filtering and smoothing for these models. In Section 4, we
show likelihood inference for exponential-trawl processes based on these filters and
smoothers. Section 5 discusses the important but analytically tractable special case
of non-negative trawl processes. We finally conclude in Section 6. The Appendix
contains the proofs and derivations of various results given in this Chapter.

2 Exponential-Trawl Processes

In this Section, we build our notation, definitions and key structures for the exponential-
trawl process that will be focused on throughout this Chapter. We also provide its
log-likelihood function based on observed data.
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2.1 Definition

Our model will be based on a homogeneous Lévy basis on [0,1]×R 7−→ Z\{0},
which models the discretely scattered events of integer size (with direction) y ∈
Z\{0} at each point in time s ∈ R and height x ∈ [0,1]. It is defined by

L(dx,ds),
∫

∞

−∞

yN (dy,dx,ds) , (x,s) ∈ [0,1]×R,

where N is a three-dimensional Poisson random measure with intensity measure

E(N (dy,dx,ds)) = ν (dy)dxds.

Here ds means the arrival times are uniformly scattered (over R), dx means the ran-
dom heights are also uniformly scattered (over [0,1]) and ν (dy) is a Lévy measure
concentrated on the non-zero integers Z\{0}. Without any confusion, we will abuse
the notation ν (y) to denote the mass of the Lévy measure centered at y. Throughout
this Chapter, we assume that∫

∞

−∞

ν (dy) = ∑
y∈Z\{0}

ν (y)< ∞.

Following [5], we think of dragging a fixed Borel measurable set A ⊆ [0,1]×
(−∞,0] through time

At , A+(0, t), t ≥ 0,

so the trawl process is defined by

Yt , L(At) =
∫
[0,1]×R

1A (x,s− t)L(dx,ds) .

Throughout the rest of this Chapter, we will focus on the exponential trawl

A ,
{
(x,s) : s≤ 0, 0≤ x < d (s), exp(sφ)

}
, φ > 0,

to simplify our exposition of the key ideas. We will leave results on more general
trawls in another study.

Example 1. Suppose that

ν(dy) = ν
+

δ {1} (dy)+ν
−

δ {−1} (dy) , ν
+,ν− > 0,

where δ {±1} (dy) is the Dirac point mass measure centered at ±1. The correspond-
ing L(dx,ds) is called a Skellam Lévy basis, while the special case of ν− = 0 is
called Poisson. The upper panel of Fig. 1 shows events in L using ν+ = ν− = 10,
taking sizes on 1,−1 with black and white dots respectively and with equal proba-
bility. The lower panel of Fig. 1 then illustrates the resulting Skellam exponential-
trawl process Yt = L(At) using φ = 2, which sums up all the effects (both positive
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Fig. 1 A moving trawl At is joined by the Skellam Lévy basis L(dx,ds), where the horizontal axis
s is time and the vertical axis x is height. The shaded area is an example of the exponential trawl
A, while we also show the outlines of At when t = 1/2 and t = 1. Also shown below is the implied
trawl process Yt = L(At). Code: EPTprocess Illurstration.R

and negative) captured by the exponential trawl. Dynamically, L(At) will move up
by 1 if the moving trawl At either captures one positive event or releases a negative
one; conversely, it will move down by 1 if vice versa. Notice that Y0 = L(A0) might
not be necessarily zero and the path of Y at negative time is not observed.

2.2 Markovian Counting Process

For y ∈ Z\{0}, let C(y)
t ∈ {0,1,2, ...} be the total counts of surviving events of size

y in the trawl at time t, which also includes the event that arrives exactly at time t, so
each C(y)

t must be càdlàg (right-continuous with left-limits). Then clearly the trawl
process can be represented as

Yt = ∑
y∈Z\{0}

yC(y)
t , t ≥ 0. (1)
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Note that each C(y)
t is not only a Poisson exponential-trawl process with (differ-

ent) intensity of arrivals ν (y) (and sharing the same trawl) but also a M/M/∞ queue
and hence a continuous time Markov process. Hence, for

{
C

(y)
t

}
t≥0

being the natu-

ral filtration generated by the counting process C(y)
t , i.e., C

(y)
t , σ

({
C(y)

s

}
0≤s≤t

)
,

it has (infinitesimal) transition probabilities (or rates or intensities)

lim
dt→0

P
(

C(y)
t −C(y)

t−dt = j
∣∣∣C (y)

t−dt

)
dt

=


ν (y) , if j = 1
φC(y)

t− , if j =−1
0, if j ∈ Z\{−1,1}

. (2)

The cases of j = 1 or −1—which correspond to the arrival of a new event of size y
and the departure of an old one—are the only two possible infinitessimal movements
of C(y)

t due to the point process nature of the Lévy basis. Note that the arrival rate
and departure rate are controlled by the Lévy measure ν and the trawl parameter φ

respectively. Derivation of (2) can be found in many standard references for queue
theory (e.g. [1]).

Remark 1. Let ∆Xt , Xt −Xt− denote the instantaneous jump of any process X at
time t. Then the transition probability (2) can be conveniently written in a differen-
tial form

P
(

∆C(y)
t = j

∣∣∣C (y)
t−

)
=


ν (y)dt, if j = 1
φC(y)

t− dt, if j =−1
0, if j ∈ Z\{−1,1}

.

Throughout this Chapter, our analysis will be majorly based on this infinitessimal
point of view for the ease of demonstration. All of our arguments can be rephrased
in a mathematically tighter way.

The independence property of the Lévy basis implies the independence between
each C(y)

t for y ∈ Z\{0}, so the joint count process

Ct ,
(
...,C(−2)

t ,C(−1)
t ,C(1)

t ,C(2)
t , ...

)
is also Markovian, which serves as the unobserved state process for the observed
hidden Markov process Yt and will be the central target for the filter and smoother
we will discuss in a moment. Let Ct , σ

(
{Cs}0≤s≤t

)
=
∨

y∈Z\{0}
C

(y)
t be the join

filtration. Clearly, from (2), Ct has (infinitesimal) transition probabilities

P(∆Ct = j|Ct−) =


ν (y)dt, if j = 1(y) for some y
φC(y)

t− dt, if j =−1(y) for some y
0, otherwise

, (3)

where 1(y) ∈ Z∞ is the vector that takes 1 at y-th component and 0 otherwise.
The trawl process Yt can be also written as
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Yt =
∞

∑
y=1

yY (y)
t , Y (y)

t ,C(y)
t −C(−y)

t ,

where each Y (y)
t is a Skellam exponential-trawl process. Each Y (y)

t is observed from
the path of Yt up to its initial value Y (y)

0 , for we can exactly observe all the jumps of Yt

and hence allocate them into the appropriate Y (y)
t . In other words, we can regard the

observed trawl process as (i) a marked point process ∆Yt ∈ Z\{0}, which consists
of several independent (given all the Y (y)

0 ) marked point process ∆Y (y)
t ∈ {−1,1},

plus (ii) the initial value Y0. The missing components Y (y)
0 ’s will have some mild

effects on ∆Y (y)
t . It is this initial value challenge that differentiates the likelihood

analysis of trawl processes from that of marked point processes.
The special case where Yt is always non-negative has further simpler structure, as

we must have C(−y)
t = 0 for all y = 1,2, ... and hence C(y)

t =Y (y)
t is directly observed

up to its initial condition C(y)
0 , which can be well-approximated if the observation

period T is large enough. We will go through these details in Section 5.

2.3 Conditional Intensities and Log-likelihood

Let {Ft}t≥0 be the natural filtration generated by the observed trawl process Yt ,
i.e. Ft , σ

(
{Ys}0≤s≤t

)
. Define the càdlàg conditional intensity process of the trawl

process Y as

λ
(y)
t− , lim

dt→0

P(Yt −Yt−dt = y|Ft−dt)

dt
, y ∈ Z\{0} , t > 0 (4)

or conveniently in a differential form

λ
(y)
t−dt , P(∆Yt = y|Ft−) . (5)

It means the (time-varying) predictive intensity of a size y move at time t of the
trawl process, conditional on information instantaneously before time t.

Remark 2. To emphasize the Ft -predictability of λ
(y), i.e., being adapted to the left

natural filtration Ft−, we will keep the subscript t− throughout this Chapter. This is
particularly informative in the implementation of likelihood calculations, reminding
us to take the left-limit of the intensity process whenever there is a jump.

For any two σ -fields F and G , let the Radon-Nikodym derivative over F |G
between two probability measures P and Q be
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(
dP
dQ

)
F |G

,

(
dP
dQ

)
F∨G(

dP
dQ

)
G

.

In particular, when G = σ (X) for any random variable X , we will simply write
the subscript as F |X . The following classical result serves as the foundation for all
likelihood inference for jump processes.

Theorem 1. Let Xt be any integer-valued stochastic process and
{
F X

t
}

t≥0 be its
associated natural filtration. Assume that, under both P and Q, (i) it has finite ex-
pected number of jumps during (0,T ], and (ii) the conditional intensities λ

(y),P
t− and

λ
(y),Q
t− are well-defined using (4) and F X

t−. Then P�Q over F X
T |X0 if and only if

λ
(y),Q
t− is strictly positive. In this case, the logarithmic Radon-Nikodym derivative

over F X
T |X0 is

log
(

dP
dQ

)
F X

T |X0

= ∑
0<t≤T

∑
y∈Z\{0}

log

(
λ
(y),P
t−

λ
(y),Q
t−

)
1{∆Xt=y}

−
∫

t∈(0,T ]
∑

y∈Z\{0}

(
λ
(y),P
t− −λ

(y),Q
t−

)
dt.

Proposition 14.4.I of [11] provides a complete and mathematically rigorous treat-
ment for this Theorem. For completeness, we also provide an intuitive and heuristic
derivation in the Appendix. A direct application of Theorem 1 gives the following
Corollary.

Corollary 1. The log-likelihood function of the (general) trawl process is (ignoring
the constant)

lFT (θ) = ∑
0<t≤T

∑
y∈Z\{0}

logλ
(y)
t−1{∆Yt=y}−

∫
t∈(0,T ]

∑
y∈Z\{0}

λ
(y)
t−dt + lY0 (θ) , (6)

where the parameters of interest θ include the Lévy measure ν (dy) (i.e. ν (y)’s) and
the trawl parameter φ .

The study of likelihood inference for trawl processes then reduces to the cal-
culations of conditional intensities λ

(y)
t− for y ∈ Z\{0}. Now, by law of iterated

expectations and the fact that Ct ⊇Ft for all t (because of (1)), we have

λ
(y)
t−dt = E(P(∆Yt = y|Ct−) |Ft−)

= E
(
P
(

∆Ct = 1(y)
∣∣∣Ct−

)∣∣∣Ft−
)
+E

(
P
(

∆Ct =−1(−y)
∣∣∣Ct−

)∣∣∣Ft−
)

= ν (y)dt +φE
(

C(−y)
t−

∣∣∣Ft−
)

dt,
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where the second line follows because the event ∆Yt = y must come from either an
arrival of a new size y event or a departure of an old size −y event; the third line
follows from (3). Thus,

λ
(y)
t− = ν (y)+φE

(
C(−y)

t−

∣∣∣Ft−
)
, y ∈ Z\{0} . (7)

In next Section, we will study an exact filtering scheme to numerically calculate
E
(

C(−y)
t−

∣∣∣Ft−
)

.
The non-negative exponential-trawl process, where we always have positive

events, admits a further simplification

λ
(y)
t− = ν (y) , λ

(−y)
t− = φE

(
C(y)

t−

∣∣∣Ft−
)
, y = 1,2, ..., (8)

so likelihood inference for such a case is easier. In the Poisson case, all the impacts
are of size one, so in particular C(1)

0 =Y0 is also observed (as C(y)
0 = 0 for all y 6= 1),

which allows us to bypass the conditional expectation in (8) for y = 1.

3 Exact Filter and Smoother for Exponential-Trawl Processes

3.1 Filtering

In general we need to solve the filtering problems for Ct to implement (6) and (7).
Denote the filtering probability mass function as

pt,s (j), P(Ct = j|Fs) , j = (..., j−2, j−1, j1, j2, ...) , jy = 0,1,2, ..., t,s≥ 0.

Also, let ‖j‖1 , ∑y∈Z\{0} jy and Dt , ‖Ct‖1 = ∑y∈Z\{0}C
(y)
t .

Our goal here is to sequentially update pt−,t− (j), where the initial distribution is
derived from

C(y)
0

indep.
v Poisson

(
ν (y)

φ

)
subject to ∑

y∈Z\{0}
yC(y)

0 = Y0,

so, by letting Poisson(x|λ ), λ
xe−λ/x!, we have

p0,0 (j) =
∏y∈Z\{0}Poisson( jy|ν (y)/φ)

P
(

∑y∈Z\{0} yC(y)
0 = Y0

) ,

where the denominator can be numerically calculated using the inverse fast Fourier
transform [21].
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Notice that the filtering distribution not only updates at the times when the pro-
cess jumps but also at those inactivity periods. We discuss these two cases sepa-
rately.

Theorem 2 (Forward Filtering).

1. [Update by inactivity] Assume that the last jump time is τ (or τ = 0) and the
current time is t−, where ∆Ys = 0 for τ < s < t (and ∆Yτ 6= 0 if τ > 0). Then

pt−,t− (j) =
e−φ‖j‖1(t−τ)pτ,τ (j)

∑k e−φ‖k‖1(t−τ)pτ,τ (k)
, (9)

where pτ,τ is the filtering distribution we have already known at time τ .
2. [Update by jump] Assume that the current time is τ− and ∆Yτ = y for some

y ∈ Z\{0}. Then

pτ,τ (j) =
1

λ
(y)
τ−

(
ν (y) pτ−,τ−

(
j−1(y)

)
+φ ( j−y +1) pτ−,τ−

(
j+1(−y)

))
,

(10)
where pτ−,τ− is the filtering distribution we have already known at time τ−.

Overall, the filtering procedures (9) and (10) imply that pt−,t− (j) can be updated
in continuous time without discretization errors at any set of finite discrete time
points, so we call it an exact filter.

Example 2. For Skellam exponential-trawl process with Lévy intensities ν+ and ν−,
we always have

Yt− =C(+)
t− −C(−)

t− , t > 0,

so knowing pt−,t− ( j) , P
(

C(−)
t− = j

∣∣∣Ft−
)

immediately gives us pt−,t− ( j,k).
Hence, the filtering updating scheme reduces to the following: starting from τ = 0,

pt−,t− ( j) ∝ e−φ(2 j+Yτ )(t−τ)pτ,τ ( j) if ∆Ys = 0 for τ < s < t,

pτ,τ ( j) ∝ ν
+pτ−,τ− ( j)+φ ( j+1) pτ−,τ− ( j+1) if ∆Yτ = 1,

pτ,τ ( j) ∝ ν
−pτ−,τ− ( j−1)+φ ( j+Yτ−) pτ−,τ− ( j) if ∆Yτ =−1.

We then renormalize pt−,t− ( j) such that ∑
∞
j=0 pt−,t− ( j) = 1 in each step of the

updates. Knowing the filtering distributions pt−,t− ( j) allows us to calculate

E
(

C(−)
t−

∣∣∣Ft−
)
=

∞

∑
j=0

jpt−,t− ( j) , E
(

C(+)
t−

∣∣∣Ft−
)
=

∞

∑
j=0

jpt−,t− ( j)+Yt−.

Using the following settings, with time unit being second,

ν
+ = 0.013, ν

− = 0.011, φ = 0.034, T = 21×602 = 75,600 (sec.), (11)
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Fig. 2 Top left: A simulated path for the Skellam exponential-trawl process Yt . Top right,
Bottom left, Bottom right: Paths of the true hidden counting processes C(+)

t , C(−)
t and Dt =

C(+)
t + C(−)

t of surviving events in the trawl along with their filtering estimations. Code:
EPTprocess FilteringSmoothing Illustration.R

Fig. 2 shows a simulated path of the trawl process Yt together with the filtering
expectations of C(+)

t , C(−)
t and Dt = C(+)

t +C(−)
t , the total number of surviving

(both positive and negative) events in the trawl at time t.

3.2 Smoothing

We now consider the smoothing procedure for the exponential-trawl process Yt ,
which is necessary for the likelihood inference based on the EM algorithm we will
see in a moment.

Running the filtering procedure up to time T , we then start from pT,T to conduct
the smoothing procedure.

Theorem 3 (Backward Smoothing).

1. [Update by inactivity] Assume that the (backward) last jump time is τ (or τ = T )
and the current time is t, where ∆Ys = 0 for t ≤ s < τ (and ∆Yτ 6= 0 if τ < T ).
Then
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pt,T (j) = pτ−,T (j) ,

where pτ−,T is the smoothing distribution we have already known at time τ−.
2. [Update by jump] Assume that the current time is τ and ∆Yτ = y for some y ∈

Z\{0}. Then

pτ−,T (j) =
pτ−,τ− (j)

λ
(y)
τ−

ν (y)
pτ,T

(
j+1(y)

)
pτ,τ

(
j+1(y)

) +φ j−y

pτ,T

(
j−1(−y)

)
pτ,τ

(
j−1(−y)

)
 , (12)

where pτ−,τ− and pτ,τ are from the forward filtering procedure and pτ,T is the
smoothing distribution we have already known at time τ .

The two terms in (12) are

P
(

Cτ− = j,Cτ = j+1(y)
∣∣∣FT

)
and P

(
Cτ− = j,Cτ = j−1(y)

∣∣∣FT

)
respectively, so, in particular,

P
(

∆C(y)
τ = 1

∣∣∣FT

)
= ∑

j

pτ−,τ− (j)

λ
(y)
τ−

ν (y)
pτ,T

(
j+1(y)

)
pτ,τ

(
j+1(y)

)
 , (13)

P
(

∆C(y)
τ =−1

∣∣∣FT

)
= ∑

j

pτ−,τ− (j)

λ
(y)
τ−

φ j−y

pτ,T

(
j−1(−y)

)
pτ,τ

(
j−1(−y)

)
 . (14)

These (total) weights in (12) will be recorded for every jump time τ as by-products
of the smoothing procedure, for later they will play important roles in the EM algo-
rithm introduced in Subsection 4.3.

Example 3 (Continued from Example 2).
For Skellam exponential-trawl process, the smoothing updating scheme reduces

to the following: starting from τ = T ,

pt,T ( j) = pτ−,T ( j) if ∆Ys = 0 for t ≤ s < τ,

pτ−,T ( j) ∝ pτ−,τ− ( j)
(

ν
+ pτ,T ( j)

pτ,τ ( j)
+φ j

pτ,T ( j−1)
pτ,τ ( j−1)

)
if ∆Yτ = 1,

pτ−,T ( j) ∝ pτ−,τ− ( j)
(

ν
− pτ,T ( j+1)

pτ,τ ( j+1)
+φ (Yτ−+ j)

pτ,T ( j)
pτ,τ ( j)

)
if ∆Yτ =−1.

We also renormalize pt,T ( j) in each step of the updates.
Using the same simulated path and the same setting (11) as in Example 2, we

show the smoothing expectations of C(+)
t , C(−)

t and Dt in Fig. 3. For most of the
time, the smoothing expectations can match the truth quite well and will remove
those peaks of filtering expectations resulted from departures (such as the one close
to t = 400 in the plot for C(−)

t ).
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Fig. 3 Top left: A simulated path for the Skellam exponential-trawl process Yt . Top right,
Bottom left, Bottom right: Paths of the true hidden counting processes C(+)

t , C(−)
t and Dt =

C(+)
t +C(−)

t of surviving events in the trawl along with their smoothing estimations. Code:
EPTprocess FilteringSmoothing Illustration.R

Now we are capable of conducting likelihood inference for exponential-trawl
processes as one of the most important applications of the filtering and smoothing
procedures we have already built here.

4 Likelihood Inference for General Exponential-Trawl Processes

It has been reported by [5] and [21] that the moment-based inference for the family
of trawl processes could be easily performed, but such inference is arbitrarily depen-
dent on its procedure design. In this Section, we focus on the maximum likelihood
estimate (MLE) calculation for exponential-trawl processes with general Lévy basis
and demonstrate its correctness using several examples.
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4.1 MLE Calculation based on Filtering

Recall that the evaluation of the log-likelihood (6) requires the calculations of the
conditional intensities λ

(y)
t− and their integrals∫

t∈(0,T ]
λ
(y)
t−dt = ν (y)T +φ ∑

j
j−y

∫
t∈(0,T ]

pt−,t− (j)dt, (15)

which follows from (7) and E
(

C(−y)
t−

∣∣∣Ft−
)
= ∑j j−y pt−,t− (j).

However, we do not know the integral
∫

t∈(0,T ] pt−,t− (j)dt analytically, as the de-
nominator in (9) also depends on t. Hence, we have to calculate (9) in a dense grid of
time points—separated by a time gap δ inactivity during those inactivity periods—and
approximate (15) by linear interpolation. Clearly, the smaller the time gap δ inactivity,
the smaller the numerical error in (15) but the larger the computational burden.

Example 4. Using the true parameters in (11) and simulating a 10-day-long data
with T = 756,000 (sec.), Fig. 4 shows how an inappropriate choice of δ inactivity
will depict a wrong log-likelihood surface no matter how long the correct simulated
data we supply, where the comparison is made with respect to the first day portion
(75,600 (sec.)) of the 10-day-long simulated data. Using the same one-day-long
data, Fig. 5 also shows the corresponding log-likelihood function over ν+ or ν−

with other parameters fixed at the truth. Including the bottom left panel of Fig. 4, all
of the MLE’s (solid lines) are reasonably close to the true values (dashed lines) and
the likelihood ratio tests suggest that p-values are all greater than 20%.

4.2 Complete-Data Likelihood Inference

Even though in general it would be computationally expensive to calculate the MLE
by direct filtering, the maximum complete-data likelihood estimate (MCLE) is much
simpler. A comprehensive analysis of the complete-data likelihood inference is per-
formed in the following.

Let N(y),A
t and N(y),D

t be the counting process of the temporary arrival of size y
events and the departure of old size y events during the period (0,T ]. Also let

Ntype
t , ∑

y∈Z\{0}
N(y),type

t , type = A,D.

Theorem 4. The complete-data log-likelihood function of the exponential-trawl
process is (ignoring the constant)
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Fig. 4 Log-likelihood plots over φ (with ν+ and ν− fixed at the truth) using different δ inactivity
and a simulated 10-day-long (T = 756,000 (sec.)) Skellam exponential-trawl process. The one-
day-long data is the first tenth of the simulated data. The dashed lines indicate the true value of φ ,
while the solid lines indicate the optimal value of φ in each plot. The p-values using the likelihood
ratio test are 0.104% (Top left), 21.0% (Bottom left), 8.82×10−13 (Top right) and 46.1% (Bottom
right). Code: EPTprocess MLE Inference Simulation Small vs Large.R

lCT (θ) = ∑
y∈Z\{0}

(
log(ν (y))

(
N(y),A

T +C(y)
0

)
−ν (y)

(
T +φ

−1)) (16)

+ log(φ)
(
ND

T −D0
)
−φ

∫
t∈(0,T ]

Dt−dt,

so the corresponding MCLE’s for the Lévy measure and the trawl parameter are

ν̂MCLE (y) =
N(y),A

T +C(y)
0

T + φ̂
−1
MCLE

, y ∈ Z\{0} , (17)

φ̂ MCLE =
ΞT +

√
Ξ 2

T +4
NA

T +ND
T

T
∫

t∈(0,T ] Dt−dt

2
∫

t∈(0,T ] Dt−dt
,

ΞT , ND
T −D0−

1
T

∫
t∈(0,T ]

Dt−dt.
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Fig. 5 Log-likelihood plots over either ν+ or ν− for one simulated Skellam exponential-trawl
process. The dashed lines indicate the true value, while the solid lines indicate the optimal value of
ν+ or ν− in the individual plot. The p-values using the likelihood ratio test are 40.5% (Left) and
33.4% (Right). Code: EPTprocess MLE Inference Simulation Small vs Large.R

Furthermore, the MCLE’s above are strong consistent: with probability 1, as T→∞,

φ̂ MCLE→ φ and ν̂MCLE (y)→ ν (y) , y ∈ Z\{0} .

We note that φ̂ MCLE depends on
∫

t∈(0,T ] Dt−, the total number of possible depar-
tures, weighed by time, at risk during the period (0,T ].

4.3 MLE Calculation based on EM Algorithm

In this Subsection, we introduce an EM algorithm that is particularly suitable for
exponential-trawl processes, as there are no discretization errors. The EM algorithm
is also computationally efficient. Compared with generic optimization methods like
limited-momory BFGS (L-BFGS), the updating scheme suggested by EM can con-
verge to the MLE in a fewer steps and with no error. Clearly, the use of EM needs
some extra computations in each step for backward smoothing, but in aggregate
EM performs much faster than L-BFGS as EM skips those intermediate filtering
calculations during those inactivity periods.

E-Step The linear form of the complete-data log-likelihood (16) allows us to eas-
ily take expectation on it with respect to P(·|FT ) (under a set of old estimated
parameters θ̂ old), which then requires the calculations of the following quantities
using the smoothing distribution pt,T :
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Table 1 The MLE calculations on one simulated Skellam exponential-trawl process us-
ing L-BFGS-B procedure in R (with default settings) and EM algorithm (with uni-
form tolerance 10−6 on the parameter space). The R elapsed time is 137.4 (sec.)
for L-BFGS-B and 3.3 (sec.) for EM, which is about 40 times speed up. Code:
EPTprocess MLE Inference Simulation LBFGS vs EM.R

Parameter Log-likelihood
Estimation ν+ ν− φ δ inactivity = 0.5 δ inactivity = 0.01

Truth 0.01260 0.01111 0.03402 −15,974.98 −15,974.9543
L-BFGS-B 0.01201 0.01128 0.03362 −15,973.92 −15,973.8915

EM 0.01199 0.01126 0.03354 −15,973.91 −15,973.8881

E
(

N(y),A
T

∣∣∣FT

)
= ∑

0<t≤T
P
(

∆C(y)
t = 1

∣∣∣FT

)
, (18)

E
(

N(y),D
T

∣∣∣FT

)
= ∑

0<t≤T
P
(

∆C(y)
t =−1

∣∣∣FT

)
,

E
(

C(y)
0

∣∣∣FT

)
= ∑

j
jy p0,T (j) , E(D0|FT ) = ∑

j
‖j‖1 p0,T (j) ,

E(Dt−|FT ) = ∑
j
‖j‖1 pt−,T (j) ,

where (13) and (14) will be extensively used. Note that E(Dt−|FT ) will be a
step function of t, so the calculation of

∫
t∈(0,T ]E(Dt−|FT )dt is trivially exact.

M-Step Since the E-Step generates a Q function that takes the same functional
form of θ as (16), the solution to M-Step takes the same form as the MCLE in
(17), where we just replace each of the hidden data related terms by their smooth-
ing expectations in (18). This can be also viewed as a representation of plug-in
principle for (17), i.e., replacing those unknown quantities (e.g. 1{

∆C(y)
t =1

}) by

the known ones (e.g. P
(

∆C(y)
t = 1

∣∣∣FT

)
). We further use the solution of this

M-Step for next iteration.

Example 5 (Continued from Example 2).
Using the same simulated Skellam exponential-trawl process path, Table 1 com-

pares the MLE derived from (i) the L-BFGS-B procedure in the optim function
of the R language (using the default tolerance settings) with that from (ii) the EM
algorithm (using the same initial parameter value), which stops until each parameter
differs less than a uniform tolerance 10−6.

As expected, using the EM algorithm gives estimation values that are very close
to the direct optimization of the log-likelihood function (using δ inactivity = 0.5). An
interesting feature here is that the MLE found by the EM algorithm has a slightly
larger log-likelihood value (even for δ inactivity = 0.01) than by the L-BFGS-B,
which might attribute to the numerical insufficiency of the default optimization tol-
erance setting of R.
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The L-BFGS-B procedure uses 27 evaluations of the filtering procedure (9 of
them for objective function evaluations and 18 of them for numerical gradients);
as a comparison, the EM algorithm takes 12 evaluations of the filtering procedure
plus 12 more of the smoothing procedure. In aggregate, the EM algorithm is over
40 times faster than the L-BFGS-B in terms of the computation time.

Starkly different from Example 4, the EM algorithm does not require the fine
evaluation of the integrals of λ

(y)
t− , so not only the filtering procedure in each it-

eration of the EM is faster (as it skips the grid calculations of λ
(y)
t− during those

inactivity periods) but also the convergent result of EM will maximize the numeri-
cally errorless log-likelihood (as it has nothing to do with δ inactivity to conduct EM).
As a conclusion, using EM algorithm to search the MLE for exponential-trawl pro-
cesses will dominate the direct optimization of log-likelihood both on the numerical
quality and on the computation speed.

4.4 Likelihood Inference without the Initial Information

If we consider the complete-data log-likelihood given the information C0, i.e.
lCT |C0 (θ), then the MCLE’s are even simpler:

ν̂MCLE (y) =
N(y),A

T
T

, φ̂ MCLE =
ND

T∫
t∈(0,T ] Dt−dt

.

Note that these estimates are the most natural frequency estimates providing that we
know the hidden state process Ct : ν (y) is estimated by the sample intensity of all
the arrivals of size y events, while φ

−1 is estimated by the average lifetime among
all the departures of the temporary events, for the lifetime of any temporary event is
exponentially distributed with mean 1/φ .

However, here is a subtle statistical inconsistency if one wants to build an EM
algorithm based on lCT |C0 (θ). In practice, all the initial values C(y)

0 ’s are unknown,
so the only way we can work on lCT |C0 (θ) is to treat them as nuisance parameters.
Thus, the EM Q function is defined by

Q
(
θ
′,C′0|θ ,C0

)
= Eθ

(
lCT |C′0

(
θ
′)∣∣∣C0,FT

)
,

which not only requires the smoothing scheme based on Pθ (·|FT ,C0)—not Pθ (·|FT )—
but also finally gives us the MLE of the joint log-likelihood function lFT (θ ,C0)—
not the MLE of lFT (θ) nor of lFT |Y0 (θ). On the other hand, one might also define
the EM Q function as

Q
(
θ
′|θ
)
= Eθ

(
lCT |C0

(
θ
′) |FT

)
,

but in this case
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Q(θ |θ) = lFT |Y0 (θ)−Eθ

(
lC0|Y0 (θ) |FT

)
6= lFT |Y0 (θ) ,

which then breaks the fundamental monotonicity that guarantees the availability of
EM:

lFT |Y0 (θ
∗)≥ Q(θ ∗|θ) = max

θ
′

Q
(
θ
′|θ
)
≥ Q(θ |θ) = lFT |Y0 (θ) .

Therefore, even though the direct filtering allows the calculations of the MLE
whenever we include the initial information Y0 or not (i.e. to maximize lFT (θ) or
lFT |Y0 (θ)), a correct EM-based inference will automatically enforce the considera-
tion of Y0 (i.e. to maximize lFT (θ) using EM). This is a bit different from likelihood
inference for marked point processes, which usually ignores the effect of the initial
value Y0. This mild difference will clearly disappear asymptotically as T → ∞, but
here we still prefer to present a complete likelihood analysis for trawl processes
instead of treating them the same as marked point processes.

5 Likelihood Inference for Non-negative Exponential-Trawl
Processes

In this Section, we focus on exponential-trawl processes that are always non-
negative. Then all the negative movements of this type of processes must attribute
to the departures of the positive events in the trawl, so it is natural to split up Y into
the counting process of size y jumps

N(y)
t , ∑

0<s≤t
1{∆Ys=y}, y ∈ Z\{0} ,

which relates to C(y)
t via

C(y)
t =C(y)

0 +N(y)
t −N(−y)

t . (19)

Then, as mentioned in the end of Subsection 2.2,

Yt =
∞

∑
y=1

yC(y)
t =

∞

∑
y=1

yC(y)
0 +

∞

∑
y=1

y(N(y)
t −N(−y)

t ).

Clearly, the path of Yt reveals the path of each of the individual N(y)
t for y ∈ Z\{0},

so N(y)
t ∈Ft . Thus, the only unknown objects here are C(y)

0 ’s, for we just see Y0 =

∑
∞
y=1 yC(y)

0 and all the departures resulted from C(y)
0 ’s. If we can know C(y)

0 , then we

will see the complete path of C(y)
t and hence likelihood inference will be particularly

tractable.
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5.1 Partial Likelihood Inference

We can specialize Corollary 1 using (8) and write down the log-likelihood for the
non-negative case (ignoring the constant):

lFT (θ) =
∞

∑
y=1

(
log(ν (y))N(y)

T −ν (y)T
)

+ log(φ)N(−)
T −φ

∫
t∈(0,T ]

Eθ

(
C(+)

t−

∣∣∣Ft−
)

dt

+ ∑
0<t≤T

∞

∑
y=1

logEθ

(
C(y)

t−

∣∣∣Ft−
)

1{∆Yt=−y}+ lY0 (θ) ,

where N(−)
T , ∑

∞
y=1 N(−y)

T and C(+)
t− , ∑

∞
y=1 C(y)

t− .
Like the general case we studied in Section 4, there are no analytic expressions

available for the filtering expectations Eθ

(
C(y)

t−

∣∣∣Ft−
)

and the initial likelihood

lY0 (θ), so finding θ̂ MLE also requires the EM techniques we introduced before.
However, the first part of lFT (θ) that involves ν (y)’s is particularly analytically
tractable, so this leads us to consider the following maximum partial likelihood es-
timate (MPLE) for the Lévy measure:

ν̂MPLE (y) =
N(y)

T
T

, y = 1,2,3, ...,

which is a non-parametric moment estimate that is apparent from the non-negative
setting.

Even though ν̂MPLE is not ν̂MLE, it has several advantages. First, it has strong
consistency, i.e., with probability 1, ν̂MPLE (y) → ν (y) as T → ∞. Second, it is
asymptotically equivalent to the MCLE, because

ν̂MCLE (y) =
N(y)

T +C(y)
0

T + φ̂
−1
MCLE

=

N(y)
T
T

+
C(y)

0
T

1+
φ̂
−1
MCLE
T

≈ ν̂MPLE,

where the MCLE of θ is simply given from (17) but we need to replace those Dt−
by C(+)

t− . Third, it allows to estimate each component of the Lévy measure separately
from themselves and from φ , as given a long enough path of Y , including the ini-
tial value C(y)

0 and φ̂
−1
MCLE has no strong improvement on the estimation quality of

ν̂MPLE.
Alternatively, a parameterized common intensity function ν(y|η) can be used,

where η is some finite dimensional parameter. Then the MPLE is found by solving
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η̂MPLE , argmax
η

∞

∑
y=1

(
log(ν (y|η))N(y)

T −ν (y|η)T
)

and letting ν̂MPLE (y) = ν (y|η̂MPLE).
To infer on the trawl parameter φ , we can simply plug-in the ν̂MPLE (either

parametric or non-parametric) and then do the filtering procedure to calculate
Eθ=(ν̂MPLE,φ)

(
C(y)

t−

∣∣∣Ft−
)

for y = 1,2, ... and t ∈ (0,T ]. Combining this with an
(one-dimensional) optimization procedure we can find

φ̂ MPLE , argmax
φ

lFT (ν̂MPLE,φ) .

5.2 Estimate the Missing Initial Missing Values

Except the Poisson case (Y0 = C(1)
0 , C(y)

0 = 0 for all y > 1 and hence in particular

θ̂ MCLE = θ̂ MLE), every C(y)
0 ’s are missing, so in principle we need to estimate these

initial values in order to get (an approximation of) θ̂ MCLE. Indeed, the EM algorithm
also does so through the smoothing expectations

E
(

C(y)
t−

∣∣∣FT

)
= E

(
C(y)

0

∣∣∣FT

)
+N(y)

t −N(−y)
t ,

but it just iterates (17) until converges. Nevertheless, there is another simpler esti-
mation of C(y)

0 thanks to the special non-negative feature.
The following Proposition only relies on the fact that Yt is non-negative and in

fact does not depend on the choice of the trawl.

Proposition 1. Assume that the (general) trawl process Yt is non-negative. If

C(y),L
0,T , sup

t∈[0,T ]

(
N(−y)

t −N(y)
t

)
, C(y),U

0,T ,

Y0−∑y′ 6=y y′C(y′),L
0,T

y

 ,
where N(y)

0 , 0 conventionally and bxc means the integer part of x, then

C(y),U
0,T ≥C(y)

0 ≥C(y),L
0,T .

Furthermore,
lim

T→∞
C(y),U

0,T = lim
T→∞

C(y),L
0,T =C(y)

0 .

Thus, a straightforward and sharp estimation to C(y)
0 can be given by, e.g.,
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Ĉ(y)
0 ,

C(y),U
0,T +C(y),L

0,T

2

 ,
so use this estimation in (17) will give an estimate of θ that is almost as good as
θ̂ MCLE.

Example 6. Figure 6 illustrates Proposition 1 with a non-negative geometric Lévy
basis, where

ν(y|η) = ‖ν‖η (1−η)y−1 , y = 1,2, ...,
‖ν‖ = 3, η = 0.5, φ = 0.5, T = 100.

The paths of the upper bound C(y),U
0,t and the lower bound C(y),L

0,t are shown as step
functions of time t in Fig. 6. We can observe a strong convergent pattern, as all the
bounds for different y converge after t > 15—the perfect estimations of the initial
values C(y)

0 ’s. Furthermore, as Y0 = C(1)
0 + 2C(2)

0 + 4C(4)
0 in this case, all the other

C(y)
0 ’s for y 6= 1,2,4 must be zero. We then have discovered all the initial values and

can use them to conduct MCLE by (17).
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Fig. 6 Top left: A simulated path for the exponential-trawl process Yt using non-negative geometric
Lévy basis. Top right, Bottom left, Bottom right: Paths of C(y),U

0,t and C(y),L
0,t along with the true C(y)

0
for y = 1,2,4. Code: EPTprocess NonNegativeInitialEstimate.R
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6 Conclusion

In this Chapter, we studied likelihood-based inference of the trawl processes by
explicitly working on the filtering and smoothing procedures inherited from this
model. It is plausible and practically implementable under the exponential trawl.
We used some simulation examples to justify the correctness of our procedures.

The major contribution of this Chapter is to provide an easiest beginning step
toward likelihood inference for all of the other more general trawl processes, which
might even allow the inclusion of a non-stationary Lévy process component. [21]
calls it a fleeting price process and extensively uses it for the study of high frequency
financial econometrics.

The filters for the fleeting price process they proposed will allow an econometri-
cally interesting decomposition of observed prices into equilibrium prices and mar-
ket microstructure noises. More empirical analysis about these will be addressed in
the future work.

Appendix: Proofs and Derivations

6.1 Heuristic Proof of Theorem 1

Our heuristic derivation starts from the following prediction decomposition of the
Radon-Nikodym derivative:

log
(

dP
dQ

)
F X

T |X0

=
∫

t∈(0,T ]
log
(

dP
dQ

)
Xt |F X

t−

, (20)

where the integral over t ∈ (0,T ] means a continuous sum of the integrand random
variables. Thus,(

dP
dQ

)
Xt |F X

t−

=

(
dP
dQ

)
∆Xt |F X

t−

= ∑
y∈Z\{0}

P
(
∆Xt = y|F X

t−
)

Q
(
∆Xt = y|F X

t−
)1{∆Xt=y}+

P
(
∆Xt = 0|F X

t−
)

Q
(
∆Xt = 0|F X

t−
)1{∆Xt=0}

= ∑
y∈Z\{0}

λ
(y),P
t− dt

λ
(y),Q
t− dt

1{∆Xt=y}+
1−∑y∈Z\{0}λ

(y),P
t− dt

1−∑y∈Z\{0}λ
(y),Q
t− dt

1{∆Xt=0},

where the first equality follows because Xt− is known in F X
t−; the third equality

follows from (5). Therefore, (20) can be rewritten as
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∫
t∈(0,T ]

log
(

dP
dQ

)
Xt |F X

t−

= ∑
0<t≤T

∑
y∈Z\{0}

log

(
λ
(y),P
t− dt

λ
(y),Q
t− dt

)
1{∆Xt=y}

+
∫
{t∈(0,T ]:∆Xt=0}

log

(
1−∑y∈Z\{0}λ

(y),P
t− dt

1−∑y∈Z\{0}λ
(y),Q
t− dt

)

= ∑
0<t≤T

∑
y∈Z\{0}

log

(
λ
(y),P
t−

λ
(y),Q
t−

)
1{∆Xt=y}

−
∫

t∈(0,T ]
∑

y∈Z\{0}

(
λ
(y),P
t− −λ

(y),Q
t−

)
dt,

where the second equality follows from log(1− x)≈−x for small x and {t ∈ (0,T ] : ∆Xt 6= 0}
has Lebesgue measure 0.

6.2 Heuristic Proof of Theorem 2

6.2.1 Update by inactivity

We want to update pτ,τ (j) by incorporating the information F(τ,t),σ ({∆Ys = 0, τ < s < t})
using Bayes’ Theorem:

P(Ct− = j|Ft−) = P(Cτ = j|Ft−) = P
(

Cτ = j|Fτ ,F(τ,t)
)

∝ P
(
F(τ,t) |Fτ ,Cτ = j

)
P(Cτ = j|Fτ) ,

where the first equality holds because there is no activity of Ys for s ∈ (τ, t) and
hence the hidden state C must stay the same.

Using the prediction decomposition, we have

logP
(
F(τ,t) |Fτ ,Cτ = j

)
=
∫

s∈(τ,t)
logP

(
∆Ys = 0|Fτ ,F(τ,s),Cτ = j

)
=
∫

s∈(τ,t)
log

(
1− ∑

y∈Z\{0}
ν (y)ds− ∑

y∈Z\{0}
φ jyds

)
= − ∑

y∈Z\{0}
ν (y)(t− τ)−φ ‖j‖1 (t− τ) ,

where the second equality intuitively holds because we know the instantaneous de-
parture probability of a size y event at time s is φC(y)

s−ds but C(y)
s− = C(y)

τ = jy under
F(τ,s); the third equality follows from log(1− x)≈−x for small x. Therefore,

P(Ct− = j|Ft−) ∝ e−φ‖j‖1(t−τ)P(Cτ = j|Fτ) ,
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where we throw out the term exp
(
−∑y∈Z\{0} ν (y)(t− τ)

)
because it doesn’t de-

pend on j. Normalizing the equation above leads to the desired result.

6.2.2 Update by jump

We want to update pτ−,τ− (j) by incorporating the piece of information, ∆Yτ = y.
First note that

P(Cτ = j|Fτ) = P(Cτ = j|Fτ−,∆Yτ = y)

= P
(

Cτ = j,Cτ− = j−1(y)
∣∣∣Fτ−,∆Yτ = y

)
+P
(

Cτ = j,Cτ− = j+1(−y)
∣∣∣Fτ−,∆Yτ = y

)
,

which corresponds to the arrival of a new size y event and the departure of an old
size −y event.

For the first term,

P
(

Cτ = j,Cτ− = j−1(y)
∣∣∣Fτ−,∆Yτ = y

)
=

P
(

Cτ = j,Cτ− = j−1(y),∆Yτ = y
∣∣∣Fτ−

)
P(∆Yτ = y|Fτ−)

=
P
(

Cτ = j,∆Yτ = y
∣∣∣Cτ− = j−1(y),Fτ−

)
P
(

Cτ− = j−1(y)
∣∣∣Fτ−

)
P(∆Yτ = y|Fτ−)

=
P
(

∆Cτ = 1(y)
∣∣∣Cτ− = j−1(y),Fτ−

)
P
(

Cτ− = j−1(y)
∣∣∣Fτ−

)
P(∆Yτ = y|Fτ−)

=
ν (y)

λ
(y)
τ−

P
(

Cτ− = j−1(y)
∣∣∣Fτ−

)
,

where the fourth equality follows from (3) (using Cτ− ⊇Fτ−) and (5).
Using similar arguments, the second term is

P
(

Cτ = j,Cτ− = j+1(−y)
∣∣∣Fτ−,∆Yτ = y

)
=

φ ( j−y +1)

λ
(y)
τ−

P
(

Cτ− = j+1(−y)
∣∣∣Fτ−

)
.

Combining all of these gives us the required result.
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6.3 Heuristic Proof of Theorem 3

The case of updating smoothing distribution pτ−,T (j) due to inactivity is trivial
because the hidden configuration C must stay unchanged because of the inactivity
during the time period [t,τ).

6.3.1 Update by jump

We now consider the case of (backward) updating the smoothing distribution pτ,T (j)
due to the jump ∆Yτ = y. Then

P(Cτ− = j|FT ) = P
(

Cτ− = j,Cτ = j+1(y)
∣∣∣FT

)
+P

(
Cτ− = j,Cτ = j−1(−y)

∣∣∣FT

)
= P

(
Cτ− = j

∣∣∣FT ,Cτ = j+1(y)
)
P
(

Cτ = j+1(y)
∣∣∣FT

)
+P
(

Cτ− = j
∣∣∣FT ,Cτ = j−1(−y)

)
P
(

Cτ = j−1(−y)
∣∣∣FT

)
.

Note that

P(Cτ− = j |FT ,Cτ = k ) = P(Cτ− = j |Fτ ,Cτ = k ) (21)

=
P(Cτ = k|Cτ− = j,Fτ)P(Cτ− = j|Fτ)

P(Cτ = k|Fτ)

=

P(Cτ = k|Cτ− = j,Fτ)P(∆Yτ = y|Cτ− = j,Fτ−)
×P(Cτ− = j|Fτ−)

P(Cτ = k|Fτ)P(∆Yτ = y|Fτ−)

=
P(Cτ = k,∆Yτ = y|Cτ− = j,Fτ−)

λ
(y)
τ−dt

P(Cτ− = j|Fτ−)

P(Cτ = k|Fτ)
,

where the first equality holds due to the Markov property of Ct , a heuristic derivation
is given later; the second and third equalities follow from the Bayes’ Theorem. Since

P
(

Cτ = j+1(y),∆Yτ = y
∣∣∣Cτ− = j,Fτ−

)
= P

(
∆Cτ = 1(y)

∣∣∣Cτ− = j,Fτ−
)

= ν (y)dt,

P
(

Cτ = j−1(−y),∆Yτ = y
∣∣∣Cτ− = j,Fτ−

)
= P

(
∆Cτ =−1(−y)

∣∣∣Cτ− = j,Fτ−
)

= φ j−ydt,

combining all of these gives us the required result.
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6.3.2 Derivation of (21)

Let F(τ,T ] , σ
(
{Yt}τ<t≤T

)
and C(τ,T ] , σ

(
{Ct}τ<t≤T

)
. Note that heuristically the

Bayes’ Theorem implies

P(Cτ− = j |FT ,Cτ = k ) = P
(
Cτ− = j

∣∣Fτ ,F(τ,T ],Cτ = k
)

=

(
dP
dQ

)
F(τ,T ]|Fτ ,Cτ=k,Cτ−=j(

dP
dQ

)
F(τ,T ]|Fτ ,Cτ=k

P(Cτ− = j |Fτ ,Cτ = k ) .

Since F(τ,T ] ⊆ C(τ,T ] (each Yt = ∑y∈Z\{0}C
(y)
t ), the Markov property of Ct implies(

dP
dQ

)
F(τ,T ]|Fτ ,Cτ=k,Cτ−=j

=

(
dP
dQ

)
F(τ,T ]|Fτ ,Cτ=k

,

because given the current information Cτ the information in the past Cτ− is irrele-
vant. This then proves that

P(Cτ− = j |FT ,Cτ = k ) = P(Cτ− = j |Fτ ,Cτ = k ) .

6.4 Proof of Theorem 4

Since each C(y)
t is independent for different y, the complete-data log-likelihood can

be written as

lCT (θ) = ∑
y∈Z\{0}

l
C

(y)
T |C

(y)
0
(θ)+ ∑

y∈Z\{0}
l
C(y)

0
(θ) ,

where we recall that C
(y)

t is the natural filtration generated by C(y)
t ,

l
C

(y)
T |C

(y)
0
(θ) = ∑

0<t≤T

(
log(ν (y))1{

∆C(y)
t =1

}+ log
(

φC(y)
t−

)
1{

∆C(y)
t =−1

})
−
∫

t∈(0,T ]

(
ν (y)+φC(y)

t−

)
dt

= log(ν (y))N(y),A
T −ν (y)T + log(φ)N(y),D

T −φ

∫
t∈(0,T ]

C(y)
t− dt,

where the first equality follows directly from Theorem 1 (ignoring the constant),
and

l
C(y)

0
(θ) =C(y)

0 (logν (y)− logφ)− ν (y)
φ
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because of C(y)
0 v Poisson(ν (y)/φ). Thus, collecting terms will give us the required

result (16). The derivations of the MCLE are elementary.
Let

‖ν‖,
∫

ν (dy) =
∞

∑
y=1

ν (y) .

The ergodicity of Dt− implies that as T → ∞

1
T

∫
t∈(0,T ]

Dt−dt→ E(Dt−) =
‖ν‖
φ

.

Since
ND

T
T
≈ NA

T
T
→‖ν‖, we have

ΞT

T
=

ND
T

T
−

D0 +T−1 ∫
t∈(0,T ] Dt−dt

T
→‖ν‖ , too.

Thus,

φ̂ MCLE =

ΞT

T
+

√(
ΞT

T

)2

+4T−1 NA
T +ND

T
T

T−1
∫

t∈(0,T ] Dt−dt

2T−1
∫

t∈(0,T ] Dt−dt

→
‖ν‖+

√
‖ν‖2 +0

2
‖ν‖
φ

= φ .

Finally, for any y ∈ Z\{0},
N(y)

T
T
→ ν (y) and φ̂

−1
MCLE→ φ

−1 < ∞, so we easily have

ν̂MCLE (y) =

N(y)
T
T

+
C(y)

0
T

1+
φ̂
−1
MCLE
T

→ ν (y) as well.

6.5 Proof of Proposition 1

As C(y)
t ≥ 0, (19) implies that

C(y)
0 ≥C(y),L

0,T = sup
t∈[0,T ]

(
N(−y)

t −N(y)
t

)
, y = 1,2, ...,

where we set N(y)
0 , 0 conventionally. Now
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C(y)
0 =

Y0−∑y′ 6=y y′C(y′)
0

y
≤

Y0−∑y′ 6=y y′C(y′),L
0,T

y

=C(y),U
0,T ,

so we have
C(y),U

0,T ≥C(y)
0 ≥C(y),L

0,T .

Let N(−y),∗
t be the counting process of −y jumps resulted from the departures

of those initial events of size y that constitute C(y)
0 . Let τ be the time when N(−y),∗

achieve C(y)
0 . Then we have

C(y),L
0,T = C(y),L

0,τ ∨ sup
t∈(τ,T ]

(
N(−y),∗

t −
(

N(y)
t −

(
N(−y)

t −N(−y),∗
t

)))
= C(y),L

0,τ ∨
(

C(y)
0 − inf

t∈(τ,T ]

(
N(y)

t −
(

N(−y)
t −N(−y),∗

t

)))
.

Observe that N(y)
t −

(
N(−y)

t −N(−y),∗
t

)
is a M/G/∞ queue initiated at state 0, so by

the ergodicity we must have with probability 1

lim
T→∞

inf
t∈(τ,T ]

(
N(y)

t −
(

N(−y)
t −N(−y),∗

t

))
= 0.

This then shows that actually

lim
T→∞

C(y),L
0,T =C(y),L

0,τ ∨C(y)
0 =C(y)

0 ,

where the last equality follows because C(y),L
0,τ ≤C(y)

0 . Correspondingly,

lim
T→∞

C(y),U
0,T =

⌊
Y0−∑y′ 6=y y′C(y)

0

y

⌋
=C(y)

0 .
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