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Abstract

Using an in-fill argument, the properties of the sample median of a sequence of events are established
both for the case of a fixed period of time and for a period which shrinks as the sample size grows. The
results are used to study the properties of the sample median of absolute returns under stochastic volatility.
This estimator is invariant, asymptotically pivotal and a 1/2 breakdown estimator. In practice it has deep
robustness to jump processes even when there are jumps of α-stable type.
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1 Introduction

What does a sample median of a heterogeneous sequence of events estimate?

The classical answer, which I will not use, is based on long span asymptotics, assuming a strictly stationary

process {Zi}i=1,2,... with marginal density fZ1
, where the sample median, written µ̂, is calculated on

Z1, ..., Zn.

The limit theory for µ̂ is given in Sen (1968) and has the form

√
n (µ̂− µ)√
V∞/fZ1

(µ)2
d→ N(0, 1), where V∞ =

1

4
+ 2

∞∑
l=1

{
FZ1,Z1+l

(µ, µ)− 1/4
}
,

assuming {1Zi≤m} is m-dependent, where µ = QZ1
(1/2), is the median of Z1. This statement deploys notation

used throughout this paper: for a generic random variable A and constants a and p ∈ (0, 1), the cumulative

distribution function, density function (if it exists) and p-quantile are written as FA(a), fA(a) and QA(p),

respectively.

My line of thought is based on in-fill asymptotics (this is sometimes called fixed-domain asymptotics in

statistics and sometimes continuous record asymptotics in econometrics). The asymptotic thought experiment

is that there are n data points per unit of time measured over the fixed interval 0 to T , and that n increases,

the data is written as

Z1, ..., ZnT
,

*The code for the results in this paper is in file: median20220902.r.
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where nT = ⌊nT ⌋ . I make the assumption that

Zi = µ(i−1)/n + σ(i−1)/nvi, i = 1, 2, ..., nT , (1)

where vi is i.i.d. with a zero median and independent from {µt, σt}t≥0, the µt is the time-t “spot median,” the

σt is the time-t “spot scale,” where t ≥ 0. Then I will show that the estimand, the “in-fill median”, for the

sample median of a sequence of events is

1
T

∫ T

0
(µu/σu) fv(z̃u)du

1
T

∫ T

0
(1/σu) fv(z̃u)du

,

where fv is the associated density of v1 and z̃t will be explained later. If the {µt, σt}t≥0 is a random

process, then the in-fill median is random. The structure of equation (1) means that the distribution of(
Zi − µ(i−1)/n

)
/σ(i−1)/n is time-invariant, which will turn out to be a natural assumption for some problems

in financial econometrics but is certainly a very strong assumption for general problems.

In practical applications it is often helpful to think of the length of time the data is recorded over as shrinking

to zero as n increases, and then computing the sample quantile µ̂t using data

Z⌊tn⌋−nT+1, ..., Z⌊tn⌋,

available just before time t. As n increases, then the unsurprising result

n
1/2
T (µ̂t − µt)√
σ2
t /4fv (0)

2

d→ N (0, 1) ,

holds, where nT = cn1/2+η, with the constants c > 0 and the small η > 0. The statistic µ̂t is a “median

filter,” in the sense introduced by Tukey (1971) for time series. An early survey of median filtering of time

series is provided by Justusson (1981), while more modern work is developed and discussed by Fried et al.

(2007). Related work on median filtering and smoothing on images is discussed in, for example, Koch (1996)

and Arisa-Castro and Donoho (2009).

In-fill arguments over fixed intervals of time are often used in the financial econometrics literature (e.g.

Barndorff-Nielsen and Shephard (2002) and Andersen et al. (2001) and the reviews by Andersen and Benzoni

(2009), Bollerslev (2022)), the discretization of stochastic processes (e.g. Kloeden and Platen (1992) and Jacod

and Protter (2012)), spatial statistics (e.g. Cressie (1993), Stein (1999), Gneiting et al. (2012) and Tang et al.

(2021)) and regression discontinuity (e.g. Carraneo and Titijunik (2022)). In our paper the assumed non-

parametric model will have a nugget or measurement error type feature, but the scale of the error changes

through time — which is important in financial applications.

My motivation for thinking about this type of estimator comes from a variety of problems in financial

econometrics where the robustness of sample medians is attractive due to (i) the famously heavy tailed nature

of the data, (ii) the need to have real time methods which can be automatically and reliably used in the context

of data feeds which occasionally have mistakes in them (e.g. a trade is delayed 30 minutes in the tape).
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Here my theory of the in-fill sample median is applied to stochastic volatility (e.g. Ch. 1 of Shephard (2005)

and Andersen and Benzoni (2011)) — a core model in modern financial econometrics. In the simplest Gaussian

stochastic volatility model, returns are models as Yi = c(i−1)/nvi, where vi is i.i.d. standard normal. Then set

Zi = |
√
nYi|

r
. Then the main properties of the sample median class of estimators

ĉrt = q−rmed(
∣∣√nY⌊nt⌋−dT+1

∣∣r , ..., ∣∣√nY⌊nt⌋∣∣r), r > 0, q = Q|N(0,1)|(1/2),

will be established when

nT = cn1/2+η,

with the constants c > 0 and the small η > 0. The ĉrt is invariant to r, that is ĉrt = ĉt
r, as well as being central

to an asymptotic pivot

√
nT

(
ĉrt − crt
crt

)
d→ N

(
0, b2r

)
, where b2r =

r2

16q2fχ2
1
(q2)2

,

and having a 1/2 (robustness) breakdown point (see section 2.2 of Hampel et al. (2005)) — I suggest in practice

taking nT =
⌈
2n0.44

⌉
and r = 2/3 to produce very good finite sample properties. Further ĉrt is robust to drift,

compound Poisson jumps and a pure α-stable process under very wide and simple conditions (consistency for crt

always holding while the CLT holds if α < 4/3). Hence the median based estimator is a plausible alternative

to the bipower type spot-volatility estimators introduced by Barndorff-Nielsen and Shephard (2004, 2006) —

which is the basis of most preliminary spot volatility estimators used in modern financial econometrics (often

to set the time-varying threshold for Mancini (2001, 2004, 2009) type volatility estimators). ĉrt is most like the

innovative estimator of Andersen et al. (2012) who look at the sample average of medians of the three most

recent data points — their estimator will be spelt out in Section 2.2.

The excellence of the small sample behaviour of the sample median when r = 2/3, suggests the practical use

of the “shrunk sample median” estimators

c̃t = ĉt/E
[(
1 + Ub2/3/

√
nT
)3/2]

, c̃2t = ĉ2t/E
[(
1 + Ub2/3/

√
nT
)3]

, where U ∼ N(0, 1), ĉt = ĉ
2/3
t

3/2

, ĉ2t = ĉ
2/3
t

3

,

of ct and c2t , respectively, the main estimands economists care about. The c̃t and c̃2t should have very good

small nT properties (obviously the shrinkage does not effect the asymptotic properties) — simulation studies

reported here suggest that this is true.

The structure of the rest of this paper is as follows. In Section 2 the properties of the sample median based

on data from time 0 to time T are formalized using an in-fill argument. In Section 3 the properties of the

sample median are established as the length of the interval, T , gets smaller as the sample size increases. In

both sections the results are applied to the special case of stochastic volatility. The important feature is that

the sample median is very robust to the presence of the contribution of jump processes. Section 4 concludes,

while the Appendix 5 contains the proofs of various results stated in the paper.
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2 The sample median of an in-fill sequence

The following theorem drives all the results in this paper.

Theorem 1 Assume that

Zi,n = µ(i−1)/n + σ(i−1)/nvi,n, i = 1, 2, ..., nT , nT = ⌊nT ⌋ , 1 ≥ T > 0,

where v1,n, ..., vnT ,n is, for each n, an i.i.d. sequence with the median of v1,n being 0, possessing a strictly

positive density function fv1,n which is bounded from above. The sequence {v1,n, ..., vnT ,n} is independent of

the {µt, σt}t≥0 processes and define the “in-fill median” µ∗
T,n which is the solution to

FT,n(µ
∗
T,n) = 1/2,

assuming {σt > c}t≥0, for the tiny constant c > 0, and defining, for all m ∈ R,

FT,n(m) =
1

T

∫ T

0

Fv1,n
{(m− µu)/σu} du.

As n→ ∞, writing Q̂Z(1/2) as the sample median of Z1,n, ..., ZnT ,n, then unconditionally

√
nT

{
Q̂Z(1/2)− µ∗

T,n

}
ωT,n(µ∗

T,n)/ϕT,n(µ∗
T,n)

d→ N(0, 1), (2)

where, assuming ϕT,n(m) exists,

ω2
T,n(µ

∗
T,n) =

1

T

∫ T

0

Fv1,n

{
(µ∗

T,n − µu)/σu
} [

1− Fv1,n

{
(µ∗

T,n − µu)/σu
}]

du,

ϕT,n(µ
∗
T,n) =

1

T

∫ T

0

σ−1
u fv1,n

{
(µ∗

T,n − µu)/σu
}
du.

Proof. Given in Appendix 5.2.

The Lemma 1 is an immediate consequence of Theorem 1. It is the form that is used in this paper.

Lemma 1 Assuming the same setup as Theorem 1, but additionally assume that as n increases, that v1,n
d→ v,

where v possesses a strictly positive density function fv which is bounded from above. Then conditioning on

{µt, σt}t≥0, the

FT,n(m) → FT (m) =
1

T

∫ T

0

Fv {(m− µu)/σu} du

and so µ∗
T,n → µ∗

T , where µ
∗
T solves FT (µ

∗
T ) = 1/2, while

ω2
T,n(µ

∗
T ) → ω2

T (µ
∗
T ) =

1

T

∫ T

0

Fv {(µ∗
T − µu)/σu} [1− Fv1 {(µ∗

T − µu)/σu}] du,

ϕT,n(µ
∗
T ) → ϕT (µ

∗
T ) =

1

T

∫ T

0

σ−1
u fv {(µ∗

T − µu)/σu} du.

Further, if additionally, v1,n − v = op(n
−1/2
T ), then

√
nT

{
Q̂Z(1/2)− µ∗

T

}
ωT (µ∗

T )/ϕT (µ
∗
T )

d→ N(0, 1). (3)

As this is an asymptotic pivot, this result also holds unconditionally.
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I refer to µ∗
T as the “in-fill median,” over the interval 0 to T .

Lemma 2 Assuming the same setup as Lemma 1, then conditioning on {µt, σt}t≥0

µ∗
T =

∫ T

0
(µu/σu) fv(z̃u)du∫ T

0
(1/σu) fv(z̃u)du

,

where {z̃t}t∈[0,T ] is a sequence where at time u, the z̃u is between (µ∗
T − µu)/σu and 0.

Proof. Given in Appendix 5.3.

In the special case where µt = µ for all u ∈ [0, T ], then µ∗
T = µ — that is it is not effected by changing

volatility. In the special case where σt = σ for all u ∈ [0, T ], then µ∗
T =

∫ T

0
µufv(z̃u)du/

∫ T

0
fv(z̃u)du.

Lemma 2 bridges between the in-fill median µ∗
T and the spot median process {µt}t≥0. This is a type of

Angrist et al. (2006) regression argument, who interpreted the traditional estimator of quantile linear regression

when an exact linear quantile regression does not hold. Lemma 2 shows µ∗
T is a weighted average of the

{µt}t∈[0,T ]. The weight
1
T (1/σt) fv(z̃t)

1
T

∫ T

0
(1/σl) fv(z̃l)dl

,

on the spot median µt is non-negative and integrates overtime to one.

2.1 Small {z̃t}t∈[0,T ] approximation

In the special case where {z̃t}t∈[0,T ] is small (e.g. σ is large compared to µ, which you would expect in some

applications in financial econometrics), then

µ∗
T ≃ µ+

T , µ+
T =

∫ T

0
(µu/σu) du∫ T

0
(1/σu) du

, (4)

ω2
T (µ

∗
T ) ≃ 1/4, ϕT (µ

∗
T ) ≃ fv1(0)

1

T

∫ T

0

(1/σu) du. (5)

The approximation µ+
T is typically quite accurate if v1 is symmetrically distributed about 0.

Under the small {z̃t}t∈[0,T ] approach, then

√
nT

{
Q̂Z(1/2)− µ+

T

}
√
HT

.∼ N (0, 1) , HT =
1

4f2v1(0)
{

1
T

∫ T

0
(1/σu) du

}2 .

To compare to standard results it is helpful to write

HT =
σ2

4f2v1(0)
{

1
T

∫ T

0
(σ/σu) du

}2 , σ2 =
1

T

∫ T

0

σ2
udu.

As
(
x2
)−1/2

is convex in x2, Jensen’s inequality implies σ−1 =
(
σ2
)−1/2 ≤ 1

T

∫ T

0
σ−1
u du, so

1 ≤ 1

T

∫ T

0

(σ/σu) du, implying σ2 ≥ σ2{
1
T

∫ T

0
(σ/σu) du

}2 .
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Hence time-varying volatility pushes HT down, with the sample median greatly benefitting from having periods

of very low σu.

The properties of the sample median under the small {z̃t}t∈[0,T ] approach, are comparable with a scaled

sample mean

Z/σ =
1
nT

∑n
i=1 Zi,n/σi,n

1
nT

∑n
i=1 1/σi,n

,

which has, assuming the data is symmetric, very similar properties (conditioning on the {σt}t≥0 process)

√
nT

(
Z/σ − µ+

T

)
√
H#

T

.∼ N

0,
σ2{

1
T

∫ T

0
(σ/σu) du

}2

 , H#
T =

σ2{
1
T

∫ T

0
(σ/σu) du

}2 .

From a financial perspective Z/σ is a risk parity sample mean (e.g. Roncalli (2014), Harvey et al. (2018) and

Dachraoui (2018)) — scaling the data through time to equalize time-varying risk over time. Of course the

difficulty with Z/σ is that it needs to know the volatilities.

2.2 Illustration: stochastic volatility

Think of Y1,n, ..., YnT ,n are high frequency financial returns over the interval [0, T ] — so each return is measured

over a period of the length of time 1/n. Then define

Zi,n =
∣∣√nYi,n∣∣ , i = 1, 2, ..., nT .

The sample median of Zr
1,n, ..., Z

r
nT ,n, written as

Q̂Zr (1/2) = median(Zr
1,n, ..., Z

r
nT ,n),

is invariant to r, that is

Q̂Z(1/2) =
{
Q̂Z1/r (1/2)

}r

,

(this is similar to the maximum likelihood estimator). This result follows as the function |x|r is monotonic, so

does not change the order of the data as r varies.

Looking at the median of some absolute returns is not novel. Most influentially, Andersen et al. (2012)

studied sample averages of medians of three data points n−1
T

∑nT

i=1 {median(Zi,n, Zi−1,n, Zi−2,n)}2, an inventive

alternative to bipower variation.

More broadly, Barndorff-Nielsen and Shephard (2002) and Andersen et al. (2001) formalized averaging the

squares of {Zi,n}i=1,2,..nT
in their work on realized volatility. Andersen and Benzoni (2009) and Bollerslev

(2022) review some of the large subsequent literature.

What does Q̂|Z|1/r (1/2) estimate? Applying Theorem 1 provides an answer.

I develop the answer in two stages. First by looking at a Gaussian stochastic volatility model (e.g. Ch. 1

of Shephard (2005), Andersen and Benzoni (2011)) with no drift. After that, second, looking at the impact of

adding drift, compound Poisson process jumps and a pure jump stable process. The bottom line is that the
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result derived under a Gaussian stochastic volatility process holds under the more general conditions plus some

extremely weak conditions.

Assumption 1 (Gaussian stochastic volatility) Let Yi,n = c(i−1)/n

(
Bi/n −B(i−1)/n

)
, where {Bt}t≥0 is Brow-

nian motion independent from {ct}t≥0, where ct > c > 0 for all t ≥ 0.

The following Corollary follows immediately as an application of Lemma 1 by writing

µt = qrcrt , σt = crt , v = |ε|r − qr, q = Q|ε|(1/2), ε
L∼ N(0, 1).

Corollary 1 Under Assumption 1, then

FT (m) =
1

T

∫ T

0

Fv(m/c
r
u − qr)du =

1

T

∫ T

0

F|ε|r (m/c
r
u)du

ω2
T (m) =

1

T

∫ T

0

F|ε|r (m/c
r
u)
{
1− F|ε|r (m/c

r
u)
}
du,

ϕT (m) =
1

T

∫ T

0

c−r
u f|ε|r (m/c

r
u) du, µ∗

T = qr
∫ T

0
f|ε|r (z̃u)du∫ T

0
1
cru
f|ε|r (z̃u)du

, µ+
T =

qr

T−1
∫ T

0
1
cru
du
.

Then as T/n→ 0 and nT → ∞,

Q̂Zr (1/2)
p→ µ∗

T , (6)

and √
nT

{
Q̂Zr (1/2)− µ∗

T

}
ωT (m)/ϕT (m)

d→ N(0, 1). (7)

Sometimes it is convenient to express the distribution and density of |ε|r in terms of the corresponding terms

for χ2
1, then obviously

F|ε|r (x) = Fχ2
1
(x2/r), f|ε|r (x) =

∂x2/r

∂x
fχ2

1
(x2/r) =

2

r
x2/r−1fχ2

1
(x2/r).

Example 1 In the homogenous case, where ct = c0 for all t ≥ 0, then µ∗
T = qrcr0, ω

2
T (m) = 1/4 and ϕT (µ

∗
T ) =

c−r
0 f|ε|r (q

r), so that

√
nT

{
Q̂Zr (1/2)− qrcr0

}
d→ N

(
0,

c2r0

4
{
f|ε|r (qr)

}2
)
.

As f|ε|r (x
r) = 2

rx
2−rfχ2

1
(x2), then

√
nT

{
q−rQ̂Zr (1/2)− cr0

}
d→ N

(
0,

r2

16q2fχ2
1
(q2)2

c2r0

)
,

so the denominator is invariant to r. Notice that q ≃ 0.6744898 and 16q2fχ2
1
(q2)2 ≃ 0.735. When r = 2/3 then

Z
2/3
1,n is close to being symmetrically distributed about cr0 (1− 2/9) (e.g. Wilson and Hilferty (1931) and Terrell

(2003)), implying Q̂Z2/3(1/2) is roughly unbiased and symmetrically distributed. When r = 2, then Z2
1,n = c20χ

2
1

and the asymptotic variance of the scaled median is 5.442c40 (recall RV has an asymptotic variance of 2c40, e.g.

Barndorff-Nielsen and Shephard (2002)). Finally, log
{
q−rQ̂Zr (1/2)

}
− log σr is an asymptotic pivot.
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no jumps α = .3 α = .6 α = .9 α = 1.2 α = 1.5 α = 1.8 no jumps
n E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) asy sd(ε)

Median
20 0.005 0.747 0.255 0.803 0.363 0.826 0.541 0.865 0.802 0.907 1.17 0.968 1.65 1.03 0.777

102 0.009 0.771 0.141 0.791 0.248 0.792 0.476 0.815 0.916 0.859 1.77 0.926 3.20 1.02 0.777
103 -0.008 0.774 0.063 0.781 0.155 0.780 0.406 0.782 1.15 0.807 3.22 0.868 8.33 0.991 0.777
104 -0.004 0.776 0.032 0.777 0.099 0.780 0.360 0.786 1.44 0.794 5.84 0.826 21.6 0.956 0.777
105 -0.002 0.781 0.018 0.769 0.064 0.775 0.320 0.777 1.81 0.782 10.4 0.802 55.8 0.925 0.777
106 -0.002 0.776 0.019 0.779 0.038 0.777 0.283 0.774 2.30 0.778 18.7 0.792 143 0.894 0.777

Table 1: Results from simulation experiments where ε =
√
nT

{
q−rQ̂Zr (1/2)− σr

}
and r = 2/3. When α < 1,

has a Gaussian limit law with mean 0 and variance of the stated asymptotic standard deviation. Examples of
this are to the left of the double line in the Table. When α ≥ 1 the estimator is consistent but the Gaussian
limit law does not hold.

2.2.1 Adding drift and jumps

How do the results change when there are jumps and drift? To start, define a more general process.

Assumption 2 Let

Yi,n = a(i−1)/n/n+ c(i−1)/n

(
Bi/n −B(i−1)/n

)
+
(
Ji/n − J(i−n)/n

)
+ λ(i−1)/n(Si/n − S(i−1)/n),

where {Bt}t≥0 is Brownian motion, {Jt}t≥0 is a compound Poisson process with finite intensity ψ < ∞ and

jumps {Cj}j=1,2,..., while {St}t≥0 is a α-stable process, where α ∈ (0, 2). Assume {Bt, Jt, St, a, c, λ}t≥0 are

independent processes, where ct > c > 0 for all t ≥ 0.

Again take

µt = qrcrt , σt = crt , v = |ε|r − qr, q = Q|ε|(1/2), ε
L∼ N(0, 1),

but now

v1,n =
∣∣ε1/n∣∣r − {Q|ε1/n|(1/2)

}r

, ε1/n = (a0/c0)n
−1/2 +

√
nB1/n +

√
n(1/c0)J1/n +

√
n (λ0/c0)S1/n.

Now apply Lemma 1, so what is left to show for the CLT to holds is give conditions that v1,n − v1 = op(n
−1/2
T ).

Corollary 2 (a) Under A2, T/n→ 0 and nT → ∞, then the consistency equation (6) still holds.

(b) Under A2, T/n→ 0, T 1/2n1−(1/α) → 0 and nT → ∞, the CLT equation (7) still holds.

Proof. Given in the Appendix.

The key practical result is that the CLT is always robust to finite activity jumps. For α-stable jumps and

T fixed, the CLT will still hold if α < 1 otherwise it fails and more sophisticated methods are needed.

Example 2 Results from a simulation experiment with n and α varying, and set r = 2/3 are recorded in Table

1. The Table prints the sample mean and sample standard deviation of û =
√
nT

{
q−rQ̂Zr (1/2)− cr0

}
under

A2 and homogeneity, over the 25,000 replications, with, T = 1, c0 = 1, λ0 = 1 and no drift or compound

Poisson process. The Table also states the asymptotic standard deviation. The results are in line with the

theory, with the asymptotics holding rapidly when there are no jumps. When there is a stable component the
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jumps cause û to have a positive bias which falls as n increases, while the pace of the fall becomes less sharp as α

rises. When α goes beyond 1 then the bias in û increases with n but at a slow rate in-line with the consistency

of q−rQ̂Zr (1/2) itself. When α is less than one but close to 1 the limit theory is not a faithful guide to the

finite sample behaviour.

The α < 1 condition also appears in Todorov and Tauchen (2011) in their analysis of the distribution of

realized power variation under jumps (see also Lépingle (1976), Barndorff-Nielsen and Shephard (2004), Jacod

(2007) and Jacod (2008), Todorov and Tauchen (2011))

P̂ V T,n = {E [|ε|r]}−1 1

nT

nT∑
j=1

Zr
j,n, r > 0,

but the Todorov and Tauchen (2011) CLT result also needs the additional condition that 1 > r > α/(2−α) > 0,

e.g. if α = 1/2 then r ∈ (1/3, 1) or for a specific r ∈ (0, 1) then α ∈
(

2r
r+1 , 1

)
. Why? Because

√
Tn
∣∣√nS1/n

∣∣r L
=

√
Tn1/2+r(1/2−1/α) |S1| .

This is frustrating in practice as it needs knowledge of α (which in practice might be time-varying and so in

practice unknowable) to select an appropriate r — while the sample median version is invariant to r. On the

other hand, consistency just needs r < 2 for any α ∈ (0, 2) — which is as simple to use as the median version.

A disadvantage of P̂ V T,n, is that the mean only exists if r < α, while its variance exists only if 2r < α. This

suggests the asymptotic results discussed above might be poor guides to finite sample behaviour. This turns

out turns out to be true.

Example 3 Results from a simulation experiment varying n and α, and set r = 2/3 are recorded in Table 2.

For this value of r, the CLT holds if α ∈ (4/5, 1), while consistency holds for all α < 2. The Table prints

the sample mean and sample standard deviation of û =
√
nT

{
P̂ V T,n − cr0

}
, under A2 and homogeneity, over

the 25, 000 replications, with T = 1, c0 = 1, λ0 = 1 and no drift or compound Poisson process. Table 2

also states the asymptotic standard deviation. The results are in line with the asymptotic guarantees but are

terrible in terms of providing a useful guide to statistical practice except for when there is no stable process

(α = 0). In the experiment, the coverage of a nominal 95% confidence interval based on the asymptotics were

also computed: they were extremely poor (when α ∈ (4/5, 1)) even with n being 100, 000 — there were signs of

very slow convergence to the 95% convergence but the nominal levels of coverage were still wildly off.

3 Small T and µt

Recall Q̂Z1
(1/2) estimates µ∗

T ? Suppose T is small, is Q̂Z1
(1/2) close to µ0? More generally, does the median

of a subsample of data around time t, which is called the median filter in the statistics literature, estimate µt?

I state results in terms of the former question, as the answer to the latter question trivially follows from the

former.

9



no jumps α = .3 α = .6 α = .9 α = 1.2 α = 1.5 α = 1.8 no jumps
n E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) asy sd(ε)

Power
20 -0.006 0.544 6×105 6×107 150 19088 2.17 11.3 1.57 2.80 1.59 1.27 1.81 0.919 0.539

102 -0.001 0.538 1×105 2×107 7.17 135 2.21 17.7 1.88 1.74 2.49 1.15 3.53 0.866 0.539
103 -0.014 0.538 3×104 2×106 10.9 486 1.96 13.8 2.47 1.61 4.64 0.937 9.27 0.828 0.539
104 -0.028 0.542 1×105 1×107 15.0 1×104 1.65 3.43 3.12 1.06 8.47 0.797 24.1 0.785 0.539
105 -0.080 0.540 9×104 1×107 3.11 78.9 1.39 2.22 3.90 0.94 15.2 0.701 62.5 0.744 0.539
106 -0.249 0.537 6255 3×105 1.43 22.1 1.08 1.41 4.77 0.687 27.2 0.637 161 0.709 0.539

Table 2: Results from simulation experiments where ε =
√
nT

{
P̂ V T,n − cr0

}
when r = 2/3. When α ∈ (4/5, 1),

then ε has a Gaussian limit law with mean 0 and variance of the stated asymptotic standard deviation. The
Example of this is bracketed by the double line in the Table. Otherwise the estimator is consistent but limit
law does not hold.

Theorem 2 Set T = dn−1/2−η, for small η > 0, then

n
1/2
T

{
Q̂Z1

(1/2)− µ0

}
√
σ2
0/4fv (0)

2

d→ N (0, 1) , (8)

if the conditions of Lemma 1 hold and that {µt, σt}t≥0 is a bivariate Ito semimartingale. If {µt, σt}t≥0 are

continuously differentiable with respect to time and set T = dn−1/3−η, for small η > 0, then the form (8) again

holds.

Proof. Given in Appendix 5.4.

The proof shows the need for a small η > 0 to asymptotically remove the contribution to the asymptotic

distribution of the difference between µ∗
T and µ0. Notice that now Q̂Z1

(1/2) directly estimates µ0, not integrals

involving the {σt}t≥0 process. The proof of this result includes the optimal mean square error choices for T ,

but their form is not very instructive for empirical work.

The above states the result in terms of estimating µ0, using data Z1, ..., ZnT
from the start of the sample.

The same results can also be phrased in terms of estimating µt, where t ∈ [0, T ], say, using nT datapoints — in

the past compared to time t, in the future, or using both the past and future.

For a sequence of events, in filtering µt is estimated using contemporaneous and past data. In smoothing

µt is estimated using contemporaneous, past and future data. Typically smoothing is more precise, but often

filtering is more useful as it can be used as an input into forecasting.

The smoother is likely to be less effected by systematic moves (e.g. diurnal features) in {µt}t≥0 as it balances

out the impact of bias caused by the first derivative of any continuously differentiable component of {µt}t≥0 —

which are important if n is only modestly large. For diffusive components the optimal choice of T = dn−1/2−η

does not change moving between filtering and smoothing.

Under the strong condition that {µt, σt}t≥0 are continuously differentiable then smoothing can be carried

out using T = dn−1/4−η, not the T = dn−1/3−η required for filtering.

10



3.1 Illustration: stochastic volatility

Focus on filtering to estimate crt , so define the sample median of

ĉrt = q−rmed(
∣∣√nY⌊nt⌋−dT+1

∣∣r , ..., ∣∣√nY⌊nt⌋∣∣r).
In the SV case, where {µt, σt}t≥0 are expected to be partially driven by diffusive components which suggests

taking T = dn−1/2−η, to map into the above theory by writing

µt = qrcrt , σt = crt , v = |ε|r − qr, q = Q|ε|(1/2), ε
L∼ N(0, 1).

The above implies immediately that when there are no jumps

√
nT

(
ĉrt − crt
crt

)
d→ N

(
0, b2r

)
, b2r =

r2

16q2fχ2
1
(q2)2

.

Further this CLT will hold when there are stable jumps and diffusion based volatility. What values of α are

allowed? When T = dn−1/2−η, so

(nT )
1/2

n1/2−1/α = T 1/2n1−1/α,

so the CLT needs α < 4/(3− 2η).

To assess the practical usefulness of the asymptotic arguments some simulation experiments were carried

out based on 100,000 replications. Throughout the data generating process will be governed by Assumption 3.

Assumption 3 Take the volatility

ct =

(
1

1.3

)
exp (Wt/2)

{
0.3 + cos(2.6t)2

}
, t ∈ [0, 1]. (9)

The returns are computed using

Yj,n = c(j−1)/n

(
Bj/n −B(j−1)/n

)
+ 1α>0

(
Sj/n − S(j−1)/n

)
, j = 1, 2, ..., nT ,

where {St}t≥0 is an α-stable process, independent from the independent Brownian motions {Bt,Wt}t≥0. Through-

out nT =
⌈
2n0.44

⌉
, that is T ≃ 1.4n−0.56, while r = 2/3.

Figure 3.1 shows three independently draw simulated paths of {ct}t∈[0,1] made under Assumption 3. The

cosine in (9) mimics a strong diurnal feature often seen in high frequency datasets. This makes this Monte

Carlo design challenging for filter based estimation. Focus will be on estimating c0, corresponding to a time

when volatility is sharply declining.

Throughout the sampling scheme the Monte Carlo experiments will be governed by Assumption 4.

Assumption 4 Set nT =
⌈
2n0.44

⌉
, that is T ≃ 1.4n−0.56, while r = 2/3.

Assumption 4 is interesting as statistical theory and our previous Monte Carlo results suggest selecting

r = 2/3 yields good small sample performance. As T ≃ 1.4n−0.56, under Assumption 3, the CLT to work needs

α ⪯ 1.39, while the estimator is always consistent.
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no jumps α = .3 α = .6 α = .9 α = 1.2 α = 1.5 α = 1.8 no jumps
n nT E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) asy sd(ε)
Median

200 21 -0.041 0.804 -0.004 0.812 0.032 0.818 0.102 0.833 0.284 0.862 0.675 0.924 1.38 1.01 0.777
103 42 -0.005 0.802 0.009 0.803 0.031 0.806 0.087 0.813 0.234 0.829 0.665 0.882 1.72 0.986 0.777
104 116 0.001 0.800 0.006 0.804 0.011 0.803 0.043 0.805 0.165 0.815 0.634 0.843 2.33 0.958 0.777
105 317 0.002 0.799 0.007 0.800 0.005 0.800 0.019 0.799 0.109 0.802 0.590 0.826 3.15 0.930 0.777
106 874 0.000 0.793 0.005 0.796 0.002 0.792 0.010 0.793 0.069 0.793 0.558 0.811 4.24 0.904 0.777

Table 3: Results from the spot volatility simulation experiments where ε =
√
nT

{
q−rQ̂Zr (1/2)− cr0

}
when

r = 2/3. When α ⪯ 1.39, then ε has a Gaussian limit law with mean 0 and variance of the stated asymptotic
standard deviation. When 1.39 ⪯ α < 2 the estimator is consistent but limit law does not hold.

Example 4 The Monte Carlo results using Assumptions 3 and 4, are given in Table 3. They are in-line with

the asymptotic theory, with the theory kicking in quite fast for α < 1. For high values of α the CLT is not a

useful guide, but of course the estimator is still consistent.

3.1.1 Comparison to power variation

In the literature P̂ V T,n for small T (or its bipower variation version) is often used to estimate cr0. Again, the

mean of P̂ V T,n will only exist if r < α. Now
√
nT
∣∣√nS1/n

∣∣r L
= n−1/4−η/2n1/2+r(1/2−1/α) |S1|r, so for the CLT

to be valid it needs that

0 > −1/4− η/2 + 1/2 + r(1/2− 1/α) = r

(
1 + 2r − 2η

4r
− 1/α

)
.

So for fixed r, the need is for α < 4r/ (1 + 2r − 2η), e.g. if r = 2/3 and η = 0.06, then α must be

between around 2/3 and 1.2. The same type of asymptotics holds for the corresponding bipower statis-

tic (Barndorff-Nielsen and Shephard (2004)), which is what is typically used in empirical practice, but now
√
nT
∣∣√nS1/n

∣∣r/2 ∣∣√n (S2/n − S1/n

)∣∣r/2 equals in law n−1/4−η/2n1/2+r/2(1/2−1/α) |S1|r/2 |S2 − S1|r/2 which means

that the mean will exist if r/2 < α, so if r = 2/3 and η = 0.06, then α must be between around 1/3 and 1.2.

Example 5 Table 4 has the same structure as that from the experiment in Example 4 but uses the realized power

variation estimator, using the same choice of nT . The results for P̂ V T,n are better than for q−rQ̂Zr (1/2) in

the no jump case, with around a 50% smaller standard deviation. But when there are jumps the realized power
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no jumps α = .3 α = .6 α = .9 α = 1.2 α = 1.5 α = 1.8 no jumps
n nT E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) asy sd(ε)
Power

200 21 -0.047 0.601 1×105 2×106 4.08 658 0.695 23.6 0.638 1.72 0.956 1.20 1.51 0.872 0.538
103 42 -0.010 0.594 1×104 2×106 18.3 4860 0.373 6.34 0.497 1.31 0.947 0.918 1.90 0.840 0.538
104 116 -0.003 0.580 7904 2×106 0.294 12.8 0.169 1.51 0.341 0.951 0.912 0.819 2.59 0.787 0.538
105 317 -0.003 0.574 32.3 7325 0.086 6.54 0.071 1.01 0.226 0.892 0.857 0.713 3.52 0.753 0.538
106 874 -0.008 0.563 1.75 334 0.023 2.07 0.031 0.732 0.141 0.782 0.811 0.659 4.76 0.719 0.538

Table 4: Results from the spot volatility simulation experiments where ε =
√
nT

{
P̂ V T,n − cr0

}
when r = 2/3.

When α is between around 2/3 and 1.2, then ε has a Gaussian limit law with mean 0 and variance of the stated
asymptotic standard deviation. Otherwise the estimator is consistent but limit law does not hold.

no jumps α = .3 α = .6 α = .9 α = 1.2 α = 1.5 α = 1.8 no jumps
n nT E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) asy sd(ε)
Bipower

200 21 -0.044 0.674 1.76 129 0.248 2.24 0.271 0.968 0.458 0.857 0.831 0.859 1.46 0.883 0.612
103 42 -0.008 0.664 0.886 90.2 0.146 4.15 0.183 0.779 0.365 0.762 0.828 0.793 1.83 0.846 0.612
104 116 0.000 0.649 0.301 50.3 0.044 0.728 0.089 0.681 0.253 0.692 0.796 0.726 2.50 0.804 0.612
105 317 0.004 0.643 0.039 2.73 0.017 0.655 0.041 0.647 0.169 0.658 0.750 0.685 3.38 0.771 0.612
106 874 0.004 0.633 0.015 0.82 0.011 0.635 0.025 0.636 0.112 0.637 0.713 0.661 4.58 0.741 0.612

Table 5: Results from the spot volatility simulation experiments where ε =
√
nT

{
B̂PV T,n − cr0

}
when r = 2/3.

When α is between around 1/3 and 1.2, then ε has a Gaussian limit law with mean 0 and variance of the stated
asymptotic standard deviation. Otherwise the estimator is consistent but limit law does not hold.

variation statistic is extremely fragile, as the above theory indicates. Table 5 repeats the above but now reports

results from the corresponding realized bipower statistic

B̂PV n =
{
E
[
|ε|r/2

]}−2 1

nT − 1

nT∑
j=2

Z
r/2
j,n Z

r/2
j−1,n, r > 0

The results are better than for power variation when α > 0, particularly for small α, and very slightly less

accurate when there is no stable component. Overall the results are less widely reliable than the median case,

but the difference is much less stark. In practice the bipower variation statistic is usually used in empirical

work with r = 2 (in which case power variation is realized variance and so has a different estimand) in which

case the limit theory will be valid if 1 < α < 4/3.88 when η = 0.06, which is a very narrow range.

3.1.2 Spot variance and the sample median

Appendix 5.5 contains Table 6 which has the corresponding results for the sample median and for the bipower

case when r = 2, that is the focus is on estimating the spot variance c2t . Economists often have this as their

preferred estimand.

The results for bipower variation when their are α-stable jumps are terrible, while the sample median are

quite good but display some material biases when nT is small. Here we introduce a simple shrunk sample

median which has excellent finite sample properties.

Recall when r = 2/3, then when there are jumps |N(0, 1)|2/3 is roughly Gaussian using the ideas from Wilson

and Hilferty (1931) and Terrell (2003), so

ĉ
2/3
t /c

2/3
t

.∼ N(1, b22/3/nT ),
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should perform reasonably well for small nT . Simulation experiments in Example 4 strongly support the

accuracy of this approximation. By invariance

E
[
ĉt

2/c2t

]
= E

[(
ĉ
2/3
t /c

2/3
t

)3
]

≃ E
[(
1 + Ub2/3/

√
nT
)3]

= 1 + 3b22/3/nT , U ∼ N(0, 1),

so defining

c̃2t = ĉ
2/3
t

3

/(1 + 3b22/3/nT ),

then E
[
c̃2t |c2t

]
≃ c2t , is roughly conditionally unbiased for c2t . I call c̃2t a “shrunk sample median estimator”.

Obviously the shrinkage makes no difference to the asymptotic distribution, it is just a small sample correction.

Table 6 shows the shrunk sample median performs excellently for small samples both when there are, and are

not, jumps.

The same style of argument applies more generally to produce roughly unbiased estimators of cst for any

power s > 0. The second leading case is when s = 1, where the spot volatility ct is the estimand, then I suggest

using

c̃t = ĉ
2/3
t

3/2

/E
[(
1 + Ub2/3/

√
nT
)3/2]

.

The expectation in the denominator will have to be computed numerically, but it is time invariant, so this can

be carried out trivially to any degree of accuracy by simulation.

There has been an active econometric literature on producing inference methods for realized volatility and

other high frequency statistics for small nT . Most of this important work has focused on bootstrapping methods,

e.g. Goncalves and Meddahi (2009) and Dovonon et al. (2019), but there is also an interesting strand of work

on fixed nT methods, e.g. Bollerslev et al. (2021). That work is complementary to the innovations presented

in this paper.

Example 6 Figure 1 plots c̃t through time, together with the corresponding ct and the square root of the cor-

responding realized bipower variation statistic and the realized volatility statistic. The top line of pictures

highlights ct and c̃t, the bottom line has all four quantities against time. Throughout nT =
⌈
2n0.44

⌉
. The day

has a strong diurnal in the volatility — which is one of the reasons estimating the spot volatility is in practice

difficult. The returns include α-stable jumps where α = 0.8. Most of the time the median based statistic is

very close to the realized bipower estimator, but sometimes when there are large jumps the bipower statistic is

disrupted. Throughout the sample median type estimator provides sensible answers, even in this very challenging

environment.

4 Conclusion

This paper formalizes the sample median as an in-fill estimator under some strong conditions. These conditions

seem well setup to solve problems in financial econometrics. For fixed interval T the in-fill median µ∗
T is quite

14
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Figure 1: Three replications of estimating the same intra-day spot volatility, using different simulated returns
which include the presence of a α-stable component, where α = 0.8. Top row: thick black line is the path of
ct, thinner red line is the shrunk sample median estimator c̃t. Bottom row: true ct (black line) together with
spot realized volatility (blue), spot square root of realized bipower variation (green) and the sample median
estimator (red).

complicated, but can be estimated robustly to jumps. For T getting small as n increases the in-fill median

is the spot median µt and so has many practical applications. Throughout this paper all the concepts were

illustrated in the context of a stochastic volatility model. Some results were compared to various power and

bipower variation estimators.

5 Appendix

5.1 Proof of Lemma 2

By invariance, only study r = 1 case (note we could use the r = 2 case where the derivations are even easier) –

then the other results hold by the delta method. The reverse triangular inequality says that∣∣∣∣∣√nY1,n∣∣− ∣∣∣a0/n1/2 + c0
√
nB1/n

∣∣∣∣∣∣ ≤
∣∣√nJ1/n + λ0

√
nS1/n

∣∣
≤

∣∣√nJ1/n∣∣+ |λ0|
∣∣√nS1/n

∣∣ .
But jumps in the compound Poisson process only happen with probability of O(n−1) (the size of the jumps is

scaled up by nr/2 but it does not change the number of jumps) while the stable increments S1/n
L
= (1/n)

1/α
S1,
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so ∣∣√nS1/n

∣∣ L
= n{1/2−(1/α)} |S1| ,

while
√
nB1/n

L
= B1. As α < 2 and r > 0 the scaled stable increments become irrelevant for consistency.

For the CLT we have two tasks: (i) show the drift does not matter and (ii) give conditions for the scaled stable

increments do not matter. The former will be dealt with in a moment, focus first on the stable increments.

For the CLT to be not effected by the scaled increments we need that

√
nTn

{1/2−(1/α)}S1 =
√
Tn{1−(1/α)}S1,

not to matter, which needs
√
Tn1−(1/α) → 0

as stated in the Lemma.

Now focus on the drift. Now∣∣∣a0/n1/2 + c0
√
nB1/n

∣∣∣ L
= c0

∣∣∣(a0/c0) /n1/2 +B1

∣∣∣ = c0q + c0v1,n,

where

v1,n =
∣∣∣(a0/c0) /n1/2 +B1

∣∣∣− q

v = |B1| − q

What remains to show for the CLT is that

√
Tn
{
Fv1,n(x)− Fv(x)

}
→ 0.

Now

Fv1,n(x) = P
(∣∣∣(a0/c0) /n1/2 +B1

∣∣∣ ≤ x+ q
)

= P (−x− q ≤ (a0/c0) /n
1/2 +B1 ≤ x+ q)

= P (−a+ b ≤ B1 ≤ a+ b), a = x+ q, b = − (a0/c0) /n
1/2.

So

Fv1,n(x) = P (B1 ≤ a+ b)− P (B1 ≤ −a+ b)

≃ P (B1 ≤ a)− P (B1 ≤ −a)

+b
{
fN(0,1)(a)− fN(0,1)(−a)

}
+
b2

2

{
f ′N(0,1)(a)− f ′N(0,1)(−a)

}
= {P (B1 ≤ a)− P (B1 ≤ −a)}+ b2f ′N(0,1)(a)

= Fv(x) +
(a0/c0)

2

n
f ′N(0,1)(x+ q).

So the result needs that
√
T/n→ 0.
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5.2 Proof of Theorem 1

Following, for example, p. 71 Koenker (2005) define

GnT
(m) =

1

nT

nT∑
i=1

(
1Zi,n≤m − 1/2

)
which is monotonically non-decreasing in m ∈ R, so by monotonicity

Q̂Z(1/2)−m > 0 ⇔ GnT
(m) < 0.

Thus

P
(√

nT

(
Q̂Z(1/2)−m

)
> δ
)
= P

(
Q̂Z(1/2) > m+ δ/

√
nT

)
= P (GnT

(m+ δ/
√
nT ) < 0) .

But what is the law of GnT
(m+ δ/

√
nT )?

Now, conditioning on {µu, σu}u∈[0,1], the

E[GnT
(µ∗

T + δ/
√
nT )] =

1

nT

nT∑
t=1

FZi,n
(µ∗

T + δ/
√
nT )− 1/2

=
1

nT

nT∑
t=1

Fv1,n((µ
∗
T + δ/

√
nT − µi/n)/σi/n)− 1/2

=
1

nT

nT∑
i=1

Fv1,n((µ
∗
T − µi/n)/σi/n)− 1/2

+ (δ/
√
nT )

1

nT

nT∑
t=1

1

σi/n
fv1,n((µ

∗
T − µi/n)/σi/n) +O(n−1

T ).

Think abstractly in terms of Riemann sums∣∣∣∣∣∣ 1

⌊nT ⌋

⌊nT⌋∑
i=1

g(i/n)− 1

T

∫ T

0

g(u)du

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1T
⌊nT⌋∑
i=1

{
1

n
g(i/n)−

∫ i/n

(i−1)/n

g(u)du

}∣∣∣∣∣∣+O(n−1
T )

∣∣∣∣∣∣ 1T
⌊nT⌋∑
i=1

{
1

n
g(i/n)−

∫ i/n

(i−1)/n

g(u)du

}∣∣∣∣∣∣ ≤ 1

T

⌊nT⌋∑
i=1

∣∣∣∣∣ 1ng(i/n)−
∫ i/n

(i−1)/n

g(u)du

∣∣∣∣∣ .
If g is continuous, let ε > 0. Then there exists a δ > 0 such that |g(x)− g(y)| < ε/(b − a) for all x, y ∈ [b, a]

such that |x− y| < δ.∣∣∣∣∣ 1ng(i/n)−
∫ i/n

(i−1)/n

g(u)du

∣∣∣∣∣ =
∣∣∣∣∣
∫ i/n

(i−1)/n

{g(i/n)− g(u)}du

∣∣∣∣∣ ≤ ε

n

∫ i/n

(i−1)/n

1du =
ε

n2

So ∣∣∣∣∣∣ 1

⌊nT ⌋

⌊nT⌋∑
i=1

g(i/n)− 1

T

∫ T

0

g(u)du

∣∣∣∣∣∣ ≤ ε

n
+O(1/ (Tn)).

Now

Fv1((µ
∗
T − µu)/σu)
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is continuous in u, so using the above properties of Riemann sums

1

nT

nT∑
i=1

Fv1,n
((µ∗

T − µi/n)/σi/n)− 1/2 =
1

T

∫ T

0

Fv1,n {(µ∗
T − µu)/σu}du− 1/2 +O(n−1) +O(n−1

T )

= FT,n(µ
∗
T,n)− 1/2 +O(n−1) +O(n−1

T )

= O(n−1) +O(n−1
T ),

where the first line is due to the properties of Riemann integrals. As σu > 0 and fv1((µ
∗
T − µu)/σu) is again

continuous in u, then

1

nT

nT∑
t=1

1

σ∆i
fv1,n((µ

∗
T − µi/n)/σi/n) =

1

T

∫ T

0

1

σu
fv1,n((µ

∗
T − µu)/σu)du+O(n−1) +O(n−1

T ),

so

E[Gn(µ
∗
T + δ/

√
nT )] = (δ/

√
nT )ϕT,n(µ

∗
T ) +O(n−1) +O(n−1

T ).

Now

nT ×Var[Gn(µ
∗
T + δ/

√
nT )] =

1

nT

nT∑
i=1

FZi,n
(µ∗

T + δ/
√
nT )

{
1− FZi,n

(µ∗
T + δ/

√
nT )

}
=

1

nT

nT∑
i=1

Fv1,n((µ
∗
T + δ/

√
nT − µi/n)/σi/n)

{
1− Fv1,n((µ

∗
T + δ/

√
nT − µi/n)/σi/n)

}
= ω2

T,n(µ
∗
T,n) +O(1/

√
nT )

Then the triangular array CLT applies as each term in the average is bounded. Thus

√
nT
{
Gn(µ

∗
T + δ/

√
nT )− E[Gn(µ

∗
T + δ/

√
nT )]

}√
n×Var[Gn(µ∗

T + δ/
√
nT )]

d→ N(0, 1).

So, conditioning on {µu, σu}u∈[0,1],

P
(√

n
(
Q̂Zn

(1/2)− µ∗
T

)
> δ
)

= P (Gn(µ
∗
T + δ/

√
nT ) < 0)

= P

(
Gn(µ

∗
T + δ/

√
nT )− E[Gn(µ

∗
T + δ/

√
nT )]√

nT ×Var[Gn(µ∗
T + δ/

√
nT )]

<
−E[Gn(µ

∗
T + δ/

√
nT )]√

nT ×Var[Gn(µ∗
T + δ/

√
nT )]

)

= FN(0,1)

(
−E[Gn(µ

∗
T + δ/

√
nT )]√

nT ×Var[Gn(µ∗
T + δ/

√
nT )]

)
+O(1/

√
nT )

= FN(0,1)

−δ
ϕT,n(µ

∗
T,n)√

ω2
T,n(µ

∗
T,n)

+O(1/
√
nT ).

Thus, conditionally
√
nT

(
Q̂Z(1/2)− µ∗

T,n

)
ωT,n(µ∗

T,n)/ϕT,n(µ∗
T )

d→ N(0, 1).

As the right hand side is a pivot, this result also holds unconditionally.
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5.3 Proof of Lemma 2

This follows as F (µ) = 1/2, then expanding out by mean value theorem

F (µ) =
1

T

∫ T

0

Fv1 {(µ− µu)/σu} du,

=
1

T

∫ T

0

Fv1 (0) du+
1

T

∫ T

0

{(µ− µu)/σu} fv1 (z̃u) du

= 1/2 +
1

T

∫ T

0

(µ/σu)fv1 (z̃u) du− 1

T

∫ T

0

(µu/σu)fv1 (z̃u) du,

so solving gives the stated representation.

5.4 Proof of Theorem 2

Recall µ∗
T solves FT (µ

∗
T ) = 1/2, where

FT (m) =
1

T

∫ T

0

Fv(m,xu)du, Fv(m,x) = Fv((m− x1)/x2),

where xu = (µu, σu)
T. Let

F (x)(m,x) =
∂Fv(m,x)

∂x
=

(
∂(m−x1)/x2

∂x1
∂(m−x1)/x2

∂x2

)
fv1(m,x) = −c(x) 1

x2
fv1(m,x),

F (m)(m,x) =
∂Fv(m,x)

∂m
=

1

x2
fv1(m,x), c(x) =

(
1
x1

x2

)
.

Notice that for all vectors γ,
F (x)(m,x)Tγ

F (m)(m,x)
= −c(x)Tγ,

which is invariance to Fv and m.

Now

Gt(m) = F (m,X0)− 1/2 +
1

t

∫ t

0

{F (m,Xu)− F (m,X0)} du

= F (m,X0)− F (m0, X0) +
1

t

∫ t

0

{F (m,Xu)− F (m,X0)}du,

as F (m0, X0) = 1/2. Now, by Ito’s lemma,

dF (m,Xt) = F (x)(m,Xt)
TdXt +

1

2
ιTF (x,x)(m,Xt)ιdt

= F (x)(m,Xt)
TΣ

1/2
X,0dWX,t + µF,tdt, µF,t = F (x)(m,Xt)

TµX,t +
1

2
ιTF (x,x)(m,Xt)ι.

So for small t,

1

t

∫ t

0

{F (m,Xu)− F (m,X0)}du ≃ F (x)(m,X0)Σ
1/2
X,0

1

t

∫ t

0

dWX,u + µF,0
1

t

∫ t

0

udu

∼ N(tµF,0/2, tF
(x)(m,Xt)

TΣX,0F
(x)(m,Xt)/3),

as
∫ t

0
dWX,u ∼ N(0, t3/3). Likewise

F (mt, X0) = F (m0, X0) + (mt −m0)F
(m)(m0, X0),

19



so, for small t,

{µ∗
T − µ0} |X0, µ0

.∼ N

(
−
t
{
F (x)(µ0, X0)

TµX,0 +
1
2 ι

TF (x,x)(µ0, X0)ι
}
/2

F (m)(µ0, X0)
, t
F (x)(µ0, X0)

TΣX,0F
(x)(µ0, X0)

3F (m)(µ0, X0)2

)
.

In the diffusion case, the mean square error (MSE) of Q̂Z1
(1/2)− µ0 is roughly

c2T +
1

nT

1

4
{
σ−1
0 fv (0)

}2 ,
which is minimized at

T = d2n
−1/2, d2 =

1
√
c22σ

−1
0 fv (0)

.

In the differentiable case, the MSE roughly

c3T
2 +

1

nT

1

4
{
σ−1
0 fv (0)

}2 ,
which is minimized at

T = d3n
−1/3, d3 =

1[
8c3
{
σ−1
0 fv (0)

}2]1/3 .
In the differentiable case where smoothing is carried out, then MSE is

c4T
4 +

1

nT

1

4
{
σ−1
0 fv (0)

}2 ,
which is minimized at T = d4n

−1/5. In the diffusion case then the filter and the smoother have the same

bandwidth, although in finite samples the smoother case will likely perform better as it removes drift type

terms.

5.5 Simulation results for stochastic volatility when r = 2

Economists typically focus on the r = 2, that is σ2
t is the estimand. Table 6 contains the results from the

experiment results reported in Examples 1 and 5 but now when r = 2, not r = 2/3. Only results for the sample

median and realized bipower statistics are reported as the realized power variation statistic has a different

estimand when r = 2.

The results for bipower variation are terrific when there are no jumps, but the CLT result is simply not a

helpful guide when there are stable jumps for any value of α.

The results for the sample median based estimator, ĉt
2, are in line with the theory again, but their finite

sample behaviour is quite weak. The reason of course is that the sample median is based on scaled χ2
1 variables

and so the sample median is quite biased for small sample sizes.

The shrunk sample median c̃2t = ĉt
2/(1 + 3b22/3/nT ) has much better finite properties — of course the

shrinkage factor makes no difference to the limit theory. The results in Table 6 show quite good results for

α < 1, but
√
nT times the bias increasing as α increases.
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no jumps α = 0.3 α = 0.6 α = 0.9 α = 1.2 α = 1.5 α = 1.8 no jumps
n nT E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) E(ε) sd(ε) asy sd(ε)
Median

200 21 0.300 2.61 0.425 2.68 0.545 2.75 0.786 2.88 1.43 3.21 2.98 4.01 6.41 5.61 2.33
103 42 0.296 2.52 0.342 2.53 0.410 2.55 0.592 2.62 1.07 2.80 2.62 3.37 7.27 4.94 2.33
104 116 0.187 2.43 0.203 2.45 0.216 2.45 0.316 2.47 0.696 2.56 2.23 2.88 8.95 4.31 2.33
105 317 0.116 2.41 0.130 2.41 0.123 2.41 0.165 2.41 0.439 2.44 1.95 2.66 11.3 3.89 2.33
106 874 0.065 2.38 0.079 2.39 0.072 2.38 0.095 2.38 0.273 2.39 1.77 2.53 14.7 3.55 2.33

Bipower
200 21 -0.061 1.85 1×109 5×1011 5299 1×106 31.4 4207 4.69 78.8 5.00 82.1 6.79 8.90 1.61
103 42 0.020 1.81 9×108 2×1011 1×105 3×107 13.3 2771 3.22 43.4 4.26 11.1 8.21 8.16 1.61
104 116 0.014 1.75 6×108 2×1011 31.0 3×103 2.27 83.8 2.05 23.7 4.15 54.2 10.6 5.81 1.61
105 317 0.017 1.72 2×105 7×107 5.91 644 1.08 62.7 1.53 66.6 3.52 11.0 13.8 6.60 1.61
106 874 0.007 1.69 4098 9×105 3.20 439 0.51 27.6 0.962 36.7 3.31 6.90 18.1 5.74 1.61
Shrunk Median
200 21 -0.088 2.40 0.026 2.46 0.136 2.53 0.358 2.65 0.951 2.96 2.38 3.69 5.5 5.16 2.33
103 42 0.003 2.41 0.047 2.42 0.112 2.45 0.286 2.51 0.749 2.68 2.23 3.22 6.6 4.73 2.33
104 116 0.015 2.40 0.031 2.41 0.044 2.41 0.142 2.43 0.517 2.52 2.02 2.83 8.6 4.24 2.33
105 317 0.014 2.40 0.028 2.40 0.021 2.40 0.062 2.40 0.335 2.43 1.83 2.64 11.2 3.87 2.33
106 874 0.003 2.38 0.018 2.39 0.010 2.37 0.033 2.38 0.211 2.39 1.70 2.52 14.6 3.54 2.33

Table 6: Results from the spot volatility simulation experiments where ε =
√
nT

(
ĉ20T,n − c20

)
, for three estima-

tors: the sample median, realized bipower variation and the shrunk sample median. When α is less than around
1.2 then ε has a Gaussian limit law with mean 0 and variance of the stated asymptotic standard deviation in
the median and the shrunk median case. Otherwise these estimators are consistent but limit law does not hold.
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