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In this paper, Markov chain Monte Carlo sampling methods are exploited to provide a
unified, practical likelihood-based framework for the analysis of stochastic volatility models. A
highly effective method is developed that samples all the unobserved volatilities at once using an
approximating offset mixture model, followed by an importance reweighting procedure. This
approach is compared with several alternative methods using real data. The paper also develops
simulation-based methods for filtering, likelihood evaluation and model failure diagnostics. The
issue of model choice using non-nested likelihood ratios and Bayes factors is also investigated.
These methods are used to compare the fit of stochastic volatility and GARCH models. All the
procedures are illustrated in detail.

1. INTRODUCTION

The variance of returns on assets tends to change over time. One way of modelling this
feature of the data is to let the conditional variance be a function of the squares of
previous observations and past variances. This leads to the autoregressive conditional
heteroscedasticity (ARCH) based models developed by Engle (1982) and surveyed in
Bollerslev, Engle and Nelson (1994).

An alternative to the ARCH framework is a model in which the variance is specified
to follow some latent stochastic process. Such models, referred to as stochastic volatility
(SV) models, appear in the theoretical finance literature on option pricing (see, for example,
Hull and White (1987) in their work generalizing the Black-Scholes option pricing formula
to allow for stochastic volatility). Empirical versions of the SVmodel are typically formula
ted in discrete time. The canonical model in this class for regularly spaced data is

t~ 1,

(1)
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362 REVIEW OF ECONOMIC STUDIES

where YI is the mean corrected return on holding the asset at time t, h, is the log volatility
at time t which is assumed to follow a stationary process (I c/J I< I) with h, drawn from
the stationary distribution, CI and 1]1 are uncorrelated standard normal white noise shocks
and % ( . , . ) is the normal distribution. The parameter f3 or exp (JJ /2) plays the role of
the constant scaling factor and can be thought of as the modal instantaneous volatility,
c/J as the persistence in the volatility, and aT/the volatility of the log-volatility. For indenti
fiability reasons either f3 must be set to one or JJ to zero. We show later that the param
eterization with f3 equal to one in preferable and so we shall leave JJ unrestricted when
we estimate the model but report results for f3 = exp (JJ /2) as this parameter has more
economic interpretation.

This model has been used as an approximation to the stochastic volatility diffusion
by Hull and White (1987) and Chesney and Scott (1989). Its basic econometric properties
are discussed in Taylor (1986), the review papers by Taylor (1994), Shephard (1996) and
Ghysels, Harvey and Renault (1996) and the paper by Jacquier, Polson and Rossi (1994).
These papers also review the existing literature on the estimation of SV models.

In this paper we make advances in a number of different directions and provide the
first complete Markov chain Monte Carlo simulation-based analysis of the SV model (I)
that covers efficient methods for Bayesian inference, likelihood evaluation, computation
of filtered volatility estimates, diagnostics for model failure, and computation of statistics
for comparing non-nested volatility models. Our study reports on several interesting find
ings. We consider a very simple Bayesian method for estimating the SV model (based on
one-at-a-time updating of the volatilities). This sampler is shown to be quite inefficient
from a simulation perspective. An improved (multi-move) method that relies on an offset
mixture ofnormals approximation to a log-chi-square distribution coupled with an import
ance reweighting procedure is shown to be strikingly more effective. Additional refinements
of the latter method are developed to reduce the number of blocks in the Markov chain
sampling. We report on useful plots and diagnostics for detecting model failure in a
dynamic (filtering) context. The paper also develops formal tools for comparing the basic
SVand Gaussian and t-GARCH models. We find that the simple SV model typically fits
the data as well as more heavily parameterized GARCH models. Finally, we consider a
number of extensions of the SV model that can be fitted using our methodology.

The outline of this paper is as follows. Section 2 contains preliminaries. Section 3
details the new algorithms for fitting the SV model. Section 4 contains methods for simula
tion-based filtering, diagnostics and likelihood evaluations. The issue of comparing the
SV and GARCH models is considered in Section 5. Section 6 provides extensions while
Section 7 concludes. A description of software for fitting these models that is available
through the internet is provided in Section 8. Two algorithms used in the paper are
provided in the Appendix.

2. PRELIMINARIES

2.1. Quasi-likelihood method

A key feature of the basic SV model in (1) is that it can be transformed into a linear
model by taking the logarithm of the squares of observations

logy~=ht+ log ~, (2)
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KIM, SHEPHARD & CHIB STOCHASTIC VOLATILITY 363

where E(log e;) = -1·2704 and Var (log e;) =4,93. Harvey, Ruiz, and Shephard (1994)
have employed Kalman filtering to estimate the parameters (J= (4), CT~, Jl)E ( -1, I)
x 9t+x 9t by maximizing the quasi likelihood

n 1 n 1"n 2
log LQ(y 10) = -2 10g 2n -2 Lt = I log Ft - 2L.t=1 Vt / r;

where Y= (YI , ... ,Yn), u, is the one-step-ahead prediction error for the best linear estima
tor of log Y; and F, is the corresponding mean square error. I It turns out that this quasi
likelihood estimator is consistent and asymptotically normally distributed but is sub
optimal in finite samples because log e; is poorly approximated by the normal distribution,
as shown in Figure 1. As a consequence, the quasi-likelihood estimator under the assump
tion that log e; is normal has poor small sample properties, even though the usual quasi
likelihood asymptotic theory is correct.

Ratio of densities
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FIGURE 1

Log-normal approximation to Xr density. Left is the xidensity and the log-normal approximation which is used
in the quasi-likelihood approach. Right is the log of the ratio of the xidensity to the approximation

2.2. Markov chain Monte Carlo

An alternative, exact approach to inference in the SV model is based on Markov chain
Monte Carlo (MCMC) methods, namely the Metropolis-Hastings and Gibbs sampling
algorithms. These methods have had a widespread influence on the theory and practice
of Bayesian inference. Early work on these methods appears in Metropolis, Rosenbluth,
Rosenbluth, Teller and Teller (1953), Hastings (1970), Ripley (1977) and Geman and

1. The Kalman filter algorithms for computing v, and F, are given in the Appendix.
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364 REVIEW OF ECONOMIC STUDIES

Geman (1984) while some of the more recent developments, spurred by Tanner and Wong
(1987) and Gelfand and Smith (1990), are included in Chib and Greenberg (1996), Gilks,
Richardson and Spiegelhalter (1996) and Tanner (1996, Ch. 6). Chib and Greenberg
(1995) provide a detailed exposition of the Metropolis-Hastings algorithm and include a
derivation of the algorithm from the logic of reversibility.

The idea behind MCMC methods is to produce variates from a given multivariate
density (the posterior density in Bayesian applications) by repeatedly sampling a Markov
chain whose invariant distribution is the target density of interest. There are typically
many different ways of constructing a Markov chain with this property and one goal of
this paper is to isolate those that are simulation-efficient in the context of SV models. In
our problem, one key issue is that the likelihood function f(y I () = Jf (y Ih, () f (h I()dh
is intractable. This precludes the direct analysis of the posterior density n«() Iy) by MCMC
methods. This problem can be overcome by focusing instead on the density n«(), hIY),
where h = (hI, ... ,hn) is the vector of n latent volatilities. Markov chain Monte Carlo
procedures can be developed to sample this density without computation of the likelihood
functionf(y I (). It should be kept in mind that sample variates from a MCMC algorithm
are a high-dimensional (correlated) sample from the target density of interest. These draws
can be used as the basis for making inferences by appealing to suitable ergodic theorems for
Markov chains. For example, posterior moments and marginal densities can be estimated
(simulation consistently) by averaging the relevant function of interest over the sampled
variates. The posterior mean of () is simply estimated by the sample mean of the simulated
() values. These estimates can be made arbitrarily accurate by increasing the simulation
sample size. The accuracy of the resulting estimates (the so called numerical standard
error) can be assessed by standard time seriesmethods that correct for the serial correlation
in the draws. The serial correlation can be quite high for badly behaved algorithms.

2.2.1. An initial Gibbs sampling algorithm for the SV model

For the problem of simulating a multivariate density n( 'II Iy), the Gibbs sampler is defined
by a blocking scheme 'II = ( 'II I , ... , 'IId) and the associated full conditional distributions
'IIi I 'II \i, where 'II \i denotes 'II excluding the block 'IIi' The algorithm proceeds by sampling
each block from the full conditional distributions where the most recent values of the
conditioning blocks are used in the simulation. One cycle of the algorithm is called a
sweep or a scan. Under regularity conditions, as the sampler is repeatedly swept, the draws
from the sampler converge to draws from the target density at a geometric rate. For the
SV model the w vector becomes (h, (). To sample v from the posterior density, one
possibility (suggested by Jacquier, Polson and Rossi (1994) and Shephard (1993» is to
update each of the elements of the 'II vector one at a time.

1. Initialize hand ().
2. Sample h, from htl h\t, y, (), t= 1, ... , n.
3. Sample CT~ Iy, h, 4>, u, {3.
4. Sample 4> Ih, u, {3, CT~.

5. Sample jJ Ih, 4>, CT~.
6. Goto 2.

Cycling through 2 to 5 is a complete sweep of this (single move) sampler. The Gibbs
sampler will require us to perform many thousands of sweeps to generate samples from
(),h\y.
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KIM, SHEPHARD & CHIB STOCHASTIC VOLATILITY 365

The most difficult part of this sampler is to effectively sample from h,Ih\t' Yt, 8 as
this operation has to be carried out n times for each sweep. However,

t= I, ... , n.

We sample this density by developing a simple accept/reject procedure.' Let fN(t1 a, b)
denote the normal density function with mean a and variance b. It can be shown (ignoring
end conditions to save space) that

f(h tIh\t, 8) = f(htIht- I, h.; I, 8) = fN(h tIh~ , v2
) ,

where

_ II + -,-l/J...:-{(_ht_-_I-......;..Jl_)_+--::-(h_t+_I_-_Jl.....:...)}
- r: (I + l/J2)

and

Next we note that exp (-ht ) is a convex function and can bebounded by a function linear
in ht. Let 10gf(Ytlhh 8)=const+logf*(Yt,ht, 8). Then

* - 1 Y;{ h}logf (Yt, ht, 8) - -- ht- - exp (- t)
2 2

;;;;-~ h,-~ {exp (-h~)(1+h~) -h, exp (-h~)}

=logg*(Yt, h., 8, h~).

Hence

The terms on the right-hand side can be combined and shown to be proportional to
fN(htIJlt, v2

) where

2

* V 2 h*Jlt=h t +- [Yt exp(- d-I].
2

(3)

2. Other MCMC algorithms for simulating from h,lh'-hh'+I'Y'; (J have been given in the literature by
Shephard (1993), Jacquier, Polson and Rossi (1994), Shephard and Kim (1994), Geweke (1994) and Shephard
and Pitt (1997). The closest to our suggestion is Geweke (1994) who also bounded log/*, but by -0·5h,. This
suffers from the property of having a high rejection rate for slightly unusual observations (for example, 0·9 for
Iy, I/ f3 exp (h, /2) > 3). Shephard and Pitt (1997), on the other hand, used a quadratic expansion of logj" about
hi. This increases the generality of the procedure but it involves a Metropolis rejection step and so is more
involved. Shephard (1993) approximated j" by a normal distribution with the same moments as log e:.

Geweke (1994) and Shephard and Kim (1994) independently suggested the use of the Gilks and Wild
(1992) procedure for sampling from log concave densities such as 10g/(h,lhv, (J, y). This is generalizable to
non-log-concave densities using the Gilks, Best and Tan (1995) sampler. Typically these routines need about 10
to 12 evaluations of 10g/(h,1 h., (J, y) to draw a single random variable. Hence they are about 10 times less
efficient than the simple accept/reject algorithm given above.

Jacquier, Polson and Rossi (1994)'s Metropolis algorithm uses a very different approach. They approximate
the density of h,lh\, and so use a non-Gaussian proposal based onf", Typically this procedure is considerably
slower than the use of the Gilks and Wild (1992) methods suggested above.
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366 REVIEW OF ECONOMIC STUDIES

(6)

With these results, the accept-reject procedure (Ripley (1987» to sample h, from
f(htl h\h 9, y) can now be implemented. First, propose a value h, from fN(htl J.lh v2).
Second, accept this value with probability r /g*; if rejected return to the first step and
make a new proposal. 3

Sampling~ and;. Sampling the O'~ and 4J one at a time is straightforward. If we
assume a conjugate prior O'~I4J, J.l ",Jf§(O'r/2, Su/2), then O'~ is sampled from

21 h At. {n+O'r Su+(hl-J.l)2(1-4J2)+L;:11«ht+l-J.l)-4J(ht-J.l»2}
0',., y, ,'I', J.l ",Jf§ --, , (4)

2 2

where Jf§ denotes the inverse-gamma distribution. Throughout we set O'r = 5 and Su=
0·01 x a..

For 4J, sampling from the full conditional density is also easy. Let q,=24J* -1 where
4J* is distributed as Beta with parameters (4J(l), 4J(2». Hence, our prior on 4J is

11"(4»oc {(I: 4» r{(1~ 4»r 4>(1), 4> (2) > ~, (5)

and has support on the interval (-1, 1) with a prior mean of {2q,(l)/(q,(1)+4J(2»-I}. In
our work we will select 4J(1) = 20 and 4J(2) = 1·5, implying a prior mean of 0-86. Alternative
priors could also be used. For example, the flat prior 11'(q,)oc 1 is attractive in that it leads
to an analytically tractable full conditional density. But this prior can cause problems
when the data are close to being non-stationary (Phillips (1991) and Schotman and Van
Dijk (1991». Chib and Greenberg (1994) and Marriott and Smith (1992) discuss other
priors (restricted to the stationary region) for autoregressive models. We feel that it is
important from a data-analytic view to impose stationarity in the SV model. Further, if
4J = 1 then the /1. terms cancel in (1) and so /1. becomes unidentified from the data. The
prior we select avoids these two problems rather well.

Under the specified prior, the full conditional density of 4J is proportional to

11'( 4J )f(h 1/1., 4J, O'~),

where

logf(h 1/1., 4J, O'~)OC - (h1- /1.)2~1-4J2) +! log (1- 4J2)
20',., 2

L;:ll {(ht+ 1- J.l) - 4J(ht- J.l) }2
20'2n

This function is concave in 4J for all values of 4J(l), 4J(2). This means that q,can be sampled
using an acceptance algorithm. Employ a first order Taylor expansion of the prior about

.... ~n-l h n:: h 24J= L.Jt=l (ht+1-J.l)( t-/1.) L.Jt=l ( t-J.l) ,

and combine withf(h Iu, 4J, 0'2). The resulting density provides a good suggestion density.
Alternatively, one can specializethe method ofChib and Greenberg (1994) (which is based

3. This proposal has an avera§e acceptance rate of approximately 1-y: exp (-h~)v:/(4p2). A typical
situation is where v:= 0·01. Usually y, exp (-h~)v:/ p2will not bevery large as h~ is the smoothed log-volatility
of y, and so reflects the variation in y., An extreme case is where y:exp (-h~)C1:/p2= 100, which leads to an
average acceptance rate of approximately 0·75. In our experience an average acceptance rate of over 0·995 seems
usual for real financial datasets.
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KIM, SHEPHARD & CHIB STOCHASTIC VOLATILITY 367

on the Metropolis-Hastings algorithm). Given the current value cfJ(i-I) at the (i -1)-st
iteration, sample a proposal value cfJ* from N (4', VI/l) where VI/l = O'~ {Ltn=-/ ih, - Jl)2} -I.
Then, provided cfJ* is in the stationary region, accept this proposal value as cfJ (i) with
probability exp {g(cfJ*)_g(cfJ(i-I»} where

g( cfJ ) = log 1r(cfJ) - (hI - Jl)2~1- cfJ2) +! log (1- cfJ2).
20'" 2

If the proposal value is rejected, set cfJ (i) to equal cfJ (i - I). Both these approaches can be
used with alternative priors on cfJ.

Sampling p. Suppose we work with a diffuse prior" on Jl, then Jl is sampled from
the full conditional density

JlI h, cfJ, O'~ '" % (P, O'~),

where

"= 2{(l -cfJ2) h + (l -cfJ) ~n - I (h _ A.h )}
Jl 0'J.l 2 I 2 L.t = I t + I 'I' t ,

0'" 0'"

and

O'~ = O'~ { (n - 1)( 1- cfJ)2+(1 - cfJ2) }-I .

In our work we sample Jl and record the value f3 = exp (Jl/2).

(7)

rnustration. To illustrate this algorithm we analyse the daily observations ofweekday
close exchange rates for the U.K. Sterling/Ll.S. Dollar exchange rate from 1/10/81 to 28/
6/85. The sample size is n = 946. Later in the paper we will also use the corresponding
series for the German Deutschemark (DM), Japanese Yen and Swiss Franc (SwizF), all
against the U.S. Dollar. This data set has been previously analysed using quasi-likelihood
methods in Harvey, Ruiz and Shephard (1994). The mean-corrected returns will be com
puted as

(8)

where r, denotes the exchange rate at time t. The MCMC sampler was initialized by setting
all the ht=O and q,=0·95, 0'~=0·02 and Jl =0. We iterated the algorithm on the log
volatilities for 1000 iterations and then the parameters and log-volatilities for 50,000 more
iterations, before recording the draws from a subsequent 1,000,000 sweeps. The burn-in
period is thus much larger than what is customary in the literature and is intended to
ensure that the effect of the starting values becomes insignificant. As a result, there is
likely to be no additional information from running multiple chains from dispersed starting

4. Occasionally, for technical reasons, we take a slightly informative prior such as J.l - N(O, 10). In this
paper, this prior was used for the computation of Bayes factors.
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(a) c/JIJ' against iteration (b) o ,/1 y against iteration (c) fJ Iy against iteration
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FIGURE 2

Single move Gibbs sampler for the Sterling series. Graphs (a)-(c): simulations against iteration. Graphs (d)
(1): histograms of marginal distribution. Graphs (g)-(i): corresponding correlograms for simulation. In total

1,000,000 iterations were drawn, discarding the first 50,000

values. The complete 1,000,000 iterations" are graphed in Figure 2 and summarized in
Table 1.6

The summary statistics of Table 1 report the simulation inefficiency factors of the
sampler. These are estimated as the variance of the sample mean from the MCMC sampling
scheme (the square of the numerical standard error) divided by the variance of the sample
mean from a hypothetical sampler which draws independent random variables from the
posterior (the variance divided by the number of iterations). We think that the simulation
inefficiency statistic is a useful diagnostic (but by no means the only one) for measuring
how well the chain mixes. The numerical standard error of the sample mean is estimated

5. We have employed a 32 bit version of the modified Park and Miller (1988) uniform random number
as the basis of all our random numbers. This has a period of 231

- 1, which allows us to draw around 2.1 billion
random numbers. In these experiments we are drawing approximately n x 2 x 1·05 random numbers per sweep
of the sampler, where 5% is a very conservative estimate of the overall rejection rate. For this dataset this is
1984 draws per sweep. Given that we employ 1,000,000 sweeps, we are close, but not beyond, the period of our
random number generator.

6. Timings will be given for all the computations given in this paper. These are made using the authors
C++ code which has been linked to Ox. The single move algorithm is optimized to this special case and so is
about as fast as it is possible to make it. The latter algorithms are much more general and so it is not completely
fair to compare the computed time reported here to their times.
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TABLE 1.

Daily returns for Sterling: summaries of Figure 2. The Monte Carlo S.E. of simulation is computed using a
bandwidth, BM , of2000, 4000and 2000 respectively. Italics are correlations rather than covariances of the posterior.
Computer time is seconds on a Pentium Pro/200. The other time is the number of seconds to perform 100 sweeps

of the sampler

Mean MCS.E. Inefficiency Covariance and correlation

4>ly
u"ly
Ply

Time

0·97762
0·15820
0·64884

3829·5

0·00013754
0-00063273
0·00036464

0·58295

163·55
386·80

12·764

0·00011062
- 0·00022570

0·00021196

-0-684
0·00098303

- 0·00040183

0·203
-0,129

0·0098569

by time series methods (to account for the serial correlation in the draws) as

A _ 2BM "BM (i) A _RBM-I+--L.i=lK - pe,),
BM-l BM

where p(i) is an estimate of the autocorrelation at lag i of the MCMC sampler, BM

represents the bandwidth and K the Parzen kernel (see, for example, Priestley
(1981, Ch. 6)) given by

K(z) = 1-6z2+6z3
,

=2(1- Z)3,

=0,

ZErO, ~],

ZE[t 1],

elsewhere.

The correlogram (autocorrelation function) indicates important autocorrelations for
cf> and a" at large lag lengths. If we require the Monte Carlo error in estimating the mean
of the posterior to be no more than one percentage of the variation of the error due to
the data, then this Gibb sampler would have to be run for around 40,000 iterations. This
seems a reasonably typical result: see Table 2.

TABLE 2

Bandwidth BM was 2000, 4000 and 2000, respectively for the parameters, for all series. In all cases
1,000,000 sweeps were used

4>ly u'7IY Ply

Series Mean Inefficiency Mean Inefficiency Mean Inefficiency

OM 0-96496 122·77 1·15906 292·81 0·65041 15·762
Yen 0·98010 313·03 0·12412 676·35 0·53597 14·192
SwizF 0·95294 145·48 0·20728 231·15 0-70693 13·700

Parameterization. An alternative to this sampler is to replace the draw for
III h, cf>, a; with that resulting from the alternative parameterization fJ Iy, h. Such a move
would be a mistake. Table 3 reports the inefficiency factor for this sampler using 1,000,000

TABLE 3

Bandwidth BM was 4000,4000 and 15,000, respectively for the parameters. 1,000,000 sweeps were used

Series

4>ly

Mean Inefficiency Mean Inefficiency

Ply

Mean Inefficiency

Sterling 0·97793 465·30 0·15744 439·73 0·64280 5079·6
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370 REVIEW OF ECONOMIC STUDIES

draws of this sampler. There is a small deterioration in the sampler for q, Iy and a very
significant reduction in efficiency for /31 y. The theoretical explanation for the inadequacies
of the Pparameterization is provided by Pitt and Shephard (1998).

Reason for slow convergence. The intuition for the slow convergence reported in
Table 1 is that the components of hIy, () are highly correlated and in such cases sampling
each component from the full conditional distribution produces little movement in the
draws, and hence slowly decaying autocorrelations (Chib and Greenberg (1996)). For
analytical results, one can think of the Gaussian equivalent of this problem. Under the
Gaussian assumption and the linear approximation (2) and (1), the sampler in the simula
tion of h from hiy, () has an analytic convergence rate of (Pitt and Shephard (1998,
Theorem 1))

4q,2/{1 +q,2+u~/Var (log e:)}2,

where () is taken as fixed at the expected values given in the results for the Sterling series.
If Var (log e:) is set equal to 4,93, then this result implies a geometric convergence rate
of PA =0,9943 and an inefficiency factor of (1 + PA)/(l- PA) = 350 which is in the range
reported in Table 1.

In order to improve the above sampler it is necessary to try to sample the log
volatilities in a different way. One method is to sample groups ofconsecutive log volatilities
using a Metropolis algorithm. This is investigated in Shephard and Pitt (1997). In this
paper we detail a more ambitious model specific approach. This approach is described
next.

3. IMPROVED MCMC ALGORITHMS

In this section we design an offset mixture of normals distribution (defined below) to
accurately approximate the exact likelihood. This approximation helps in the production
of an efficient (adapted Gibbs sampler) Monte Carlo procedure that allows us to sample
all the log-volatilities at once. We then show how one can make the analysis exact by
correcting for the (minor) approximation error by reweighting the posterior output.

3.1. Offset mixture representation

Our approximating parametric model for the linear approximation (2) will be an offset
mixture time series model

y~=h,+z"

where y~ = log (y: + c) and

!(Z')=L~l qi!N(z,lmi-l·2704, v7),

(9)

is a mixture of K normal densitiesjv with component probabilities qi, means mi-l'2704,
and variances v;. The constants {qi' m., vn are selected to closely approximate the exact
density of log e:. The "offset" c was introduced into the SV literature by Fuller (1996,
pp.494-497) in order to robustify the QML estimator of the SV model to y: being very
small. Throughout we will set c=O.OOl (although it is possible to let c depend on the
actual value taken by y:). It should be noted that the mixture density can also be written
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(10)

in terms of a component indicator variable s, such that

Ztlst=i""Y(m;-1'2704, v;),

Pr (St= i) =q;.

This representation will be used below in the MCMC formulation.
We are now in a position to select K and {m;, q;, vf} (i~K) to make the mixture

approximation "sufficiently good". In our work, following for instance Titterington, Smith,
and Makov (1985, p. 133), we matched the first four moments of lexp (Z)(r) (the implied
log-normal distribution) and!(zt) to those ofaxi and log xirandom variable respectively,
and required that the approximating densities lie within a small distance of the true density.
This was carried out by using a non-linear least squares program to move the weights,
means and variances around until the answers were satisfactory. It is worth noting that
this nonlinear optimization incurs only a one-time cost, as there are no model-dependent
parameters involved. We found what we judged to be satisfactory answers by setting K=

TABLE 4

Selection of the mixing distribution to be logxr
m Pr (m=i) m; (1;
1 0·00730 -10·12999 5·79596
2 0·10556 - 3·97281 2·61369
3 0·00002 -8·56686 5·17950
4 0·04395 2·77786 0·16735
5 0·34001 0·61942 0·64009
6 0·24566 1·79518 0·34023
7 0·25750 -1,08819 1·26261

7. The implied weights, means and variances are given in Table 4, while the approximating
and the true density are drawn in Figure 3. It would be easy to improve the fit by increasing
the value ofK, however further experiments that we have conducted suggest that increasing
K has little discernible effect on our main results.

3.2. Mixture simulator

In the MCMC context, mixture models are best estimated by exploiting the representation
in (10). The general algorithm for state space models was suggested independently by
Shephard (1994) and Carter and Kohn (1994). The posterior density of interest is
nts, h, cP, (T~, III y*), where s = (s) , ... ,sn). In this case, both hand s can be sampled
separately in one block and the sampler takes the form:

1. Initialize s, cP, (T~ and u,
2. Sample h from hi y*, s, cP, (T~, u.
3. Sample s from sIy*, h.
4. Update cP, (T~, Il according to (6), (4) and (7).
5. Goto 2.

Note that we are using y* = {log (yi +c), ... , log (y}+ c)} in the conditioning set
above as a pointer to the mixture model. The vectors y* and y, of course, contain the
same information.

The important improvement over the methods in Section 2 is that it is now possible
to efficiently sample from the highly multivariate Gaussian distribution hi y*, S, cP, (T,." J.l
because y* Is, cP, (T,." Il is a Gaussian time series which can be placed into the state-space
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FIGURE 3

Mixture approximation to xi density. Left: xi density and mixture approximation. Right: the log of the ratio
of the xi density to the mixture approximation

form associated with the Kalman filter. The time series literature calls such model:: partially
non-Gaussian or conditionally Gaussian. This particular model structure mears we can
sample from the entire hiy*, s, tP, a", jJ using the Gaussian simulation signal smoother
detailed in the Appendix. As for the sampling of s from s Iy*, h, this is done by indepen
dently sampling each s, using the probability mass function

Pr (st=iIY~, ht)ocqjfN{Y~ Iht+mj-I·2704, v;), i"?:.K.

The results from 750,000 sweeps of this mixture sampler are given in Talle 5 and
Figure 4. This sampler has less correlation than the single move sampler and sug :ests that
generating 20,000 simulations from this sampler would probably be sufficient for it ferential
purposes.

TABLE 5

Daily returnsfor Sterling against Dollar. Summaries of Figure 2. The Monte Carlo S.E. of simul uion is
computedusing a bandwidth, BM , of 2000, 2000 and 100 respectively. Italics are correlations rath ~r than
covariances of the posterior. Computer time is seconds on a PentiumPro/200. The other time is the lumber

of seconds to perform 100 completepasses of the sampler

Mean MC S.E. Inefficiency Covariance and correlation

Time

0·97779
0·15850
0·64733

15,374

6·6811e-005 29·776 0·00011093 -0·690 0·2£J
0·00046128 155·42 -0,00023141 0·0010131 -O·l~ 7
0·00024217 4·3264 0·00021441 -0·00040659 0·01 )031

2·0498
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(a) <PI y against iteration (b) a .,1 y against iteration (c) Ply agairist iteration
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FIGURE 4

Mixture sampler for Sterling series. Graphs (a)-(c): simulations against iteration. Graphs (d)-(f): histograms
of marginal distribution. Graphs (g)-(i): corresponding correlograms for simulation. In total 750,000 iterations

were drawn, discarding the first 10,000

3.3. Integrating out the log-volatilities

Although this mixture sampler improves the correlation behaviour of the simulations, the
gain is not very big as there is a great deal of correlation between the volatilities and
parameters. However, we can use the Gaussian structure of y* Is, 4>, O'~ to overcome this.
We can sample the joint distribution n(4), (1'~, h, J.lIY*, s) by sampling (4), (1'~) from
n( 4>, (1'~ Iy*, s) ocf(y* Is, 4>, (1'~)n( 4>, (1'~), and then sampling (h, J.l) from nth, J.l1 y*, s,
4>, (1'~) We are able to sample the former distribution because the density f(y* Is, 4>, (1'~)

can be evaluated using an augmented version of the Kalman filter (analytically integrating
out u and h).7 Then, writing J.lIY*, s, 4>, (1'~"'%(j1, O'~) we have that

( A. 21 *) (A.) ( 2)f( *I A. 2) = (A.) ( 2)f(y* Is, 4>, (1'~, J.l =O)n(J.l=0)n 0/, (1',., Y ,s o: n 0/ n (1',., Y s, 0/, 0',., n 0/ n (1',., * 2
n(J.l=Oly ,s, 4>, 0',.,)

OC1r(</l )1r(u~) n;_1 F;-I/2 exp (-~ L;-I v; IF,) exp (2U~ p2 p2)up ,

where u, is the one-step-ahead prediction error for the best mean square estimator of
yi, and F, is the corresponding mean square error. The quantities o., Ft , j1, (1'~ are

7. Augmented Kalman filters and simulation smoothers are discussed in the Appendix.
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computed from the augmented Kalman filter provided in the Appendix, conditional on s.
This implies that we can sample from 4>, (1~ Iy*, s directly by making the proposal

{4>(i), (1~(i)}, given the current value {4>(i-1), (1~(i-I)}, by drawing from some density
g( 4>, (1~) and then accepting them using the Metropolis-Hastings probability of move

(11)

If the proposal value is rejected, we then set {4> (I), (1~(I)} = {4> (i-I), (1~(i- I)}. We call this
an "integration sampler" as it integrates out the log-volatilities.

The structure of the integration sampler is then generically:

1. Initialize (s, 4>, (1", Jl).
2. Sample (4), (1~) from 1r(4>, (1~ Iy*, s) using a Metropolis-Hastings suggestion based

on g«1~, 4», accepting with probability (11).
3. Sample h, JlI y*, s, 4>, <T~ using the augmented simulation smoother given in the

Appendix.
4. Sample sIy*, h as in the previous algorithm.
5. Goto 2.

An important characteristic of this sampler is that the simulation smoother can jointly
draw hand u, The scheme allows a free choice of the proposal density g(4>, (1~). We have
employed a composite method which first draws 200 samples (discarding the first ten
samples) from the posterior density 1r(4), (1~ Iy) using a Metropolis-Hastings sampler
based on Gilks, Best and Tan (1995) which only requires the coding of the function
y* Is, 4>, (1~ and the prior. These 200 draws are used to estimate the posterior mean and
covariance. The mean and twice the covariance are then used to form a Gaussian proposal
density g(4), (1~) for the Metropolis-Hastings algorithm in (11). As an alternative, one
could also use a multivariate Student t proposal distribution instead of the Gaussian. See
Chib and Greenberg (1995) for further discussion on the issues involved in choosing a
proposal density for the Metropolis-Hastings algorithm.

The output from the resulting sampler is reported in Figure 5 and Table 6. These
suggest that 2000 samples from this generator would be sufficient for this problem. This
result seems reasonably robust to the data set.

3.4. Reweighting

The approach based on our (very accurate) offset mixture approximation provides a neat
connection to conditionally Gaussian state space models and leads to elegant and efficient
sampling procedures, as shown above. We now show that it is possible to correct for
the minor approximation error by appending a straightforward reweighting step at the
conclusion of the above procedures. This step then provides a sample from the exact
posterior density of the parameters and volatilities. The principle we describe is quite
general and may be used in other simulation problems as well.

First write the mixture approximation as making draws from k( 0, hi y*), and then
define

w(O, h) = log f(O, hi y) -log k(O, h Iy) =const + log f(yl h) -log k(y* Ih),
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(a) <Ply against iteration (b) cr,,!.1' against iteration (c) fJl y against iteration
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FIGURE 5

The integration sampler for Sterling series.Graphs (a)-(c): simulations against iteration. Graphs (d)-(f): histo
grams of marginal distribution. Graphs (g)-(i): corresponding correlograms for simulation. In total 250,000

iterations were drawn, discarding the first 250

TABLE 6

Daily returns for Sterling against Dollar. Summaries of Figure 5. The Monte Carlo S.E. of simulation is
computed using a bandwidth, BM , of 100, 100 and 100 respectively. Italics are correlations rather than
covariances of the posterior. Computer time is seconds on a Pentium Pro/200. The other time is the number

of seconds to perform 100 complete passes of the sampler

Time

where

and

Mean

0·97780
0·15832
0·64767

8635·2

MC S.E. Inefficiency Covariance and correlation

6·703Ie-005 9·9396 0·00011297 -0·699 0·205
O'00025965 16·160 - O'00023990 O'00I0426 - 0·131
0·00023753 1·4072 0·00021840 -0,00042465 0·010020

3·4541
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Both these functions involve Gaussian densities and are straightforward to evaluate for
any value of h. Then,

Eg(lI) Iy=fg(lI)f(lIl y)dll

= fg(lI) exp {w(lI, h)}k(lI, hIY*)dlldh!fexp {w(lI, h)}k(lI, hly*)dlldh.

Thus we can estimate functionals of the posterior by reweighting the MCMC draws
according to

where the weights are

(12)

As the mixture approximation is very good, we would expect that the weights ci would
have a small variance.

To see the dispersion of the weights, we recorded the weights from the sampler which
generated Figure 5 and plotted the resulting log-weights in Figure 6. The log-weights are
close to being normally distributed with a standard deviation of around one.

log-weights

.4 1- Normal approx

.35
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.2

.15
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.05

-8 -7 -6 -5 -4 -3 -2 -I o 2 3 4

FIGURE 6

Histogram of the log of the M x c' for 250,000 sweeps for the integration sampler and a corresponding approxim
ating normal density with fitted mean and standard deviation. All the weights around zero would indicate a

perfect sampler
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TABLE 7

Daily returns for Sterling against Dollar. Summaries ofreweighted sample of250,000 sweeps of the integra
tion sampler. The Monte Carlo S.E. of simulation is computed using a block one tenth of the size of the
simulation. Italics are correlations rather than covariances of the posterior. Computer time is seconds on a
Pentium Pro/2oo. The other time is the number of seconds to perform 100 complete passes of the sampler

Mean MC S.E. Inefficiency Covariance and correlation

<Ply 0·97752 7'0324e-005 11·20 0·00010973 -0,685 0·204
O''1IY 0·15815 0·00024573 14·81 -0,00022232 0·00096037 -0·129
Ply 0·64909 0·00025713 1·64 0·00021181 -0·00039768 0·0098312

Time 10,105 4·0423

To see the effectof the weights on the parameters estimates, we reweighted the 250,000
samples displayed in Figure 5. This produced the estimates which are given in Table 7.
These Monte Carlo estimates of the posterior means are statistically insignificantlydifferent
from Monte Carlo estimated values given in Table 1. However, the Monte Carlo precision
has improved dramatically. Further, the Monte Carlo standard errors indicate that this
data set could be routinely analysed using around 1500 sweeps.

This conclusion seems to hold up for some other exchange rate series. Table 8 reports
the estimates of the parameters and simulation inefficiency measures for the DM, Yen and
Swiss Franc series. This table is the exact analog of Table 2 for the single move algorithm.

4. FILTERING, DIAGNOSTICS AND LIKELIHOOD EVALUATION

4.1. Introduction

There has been considerable recent work on the development of simulation based methods
to perform filtering, that is computing features of h,IYt , (J, for each value of Yt =
(YI' ... ,Yt). Leading papers in this field include Gordon, Salmond and Smith (1993),
Kitagawa (1996), Isard and Blake (1996), Berzuini, Best, Gilks and Larizza (1997), West
(1993) and Muller (1991). We work with a simple approach which is a special case of a
suggestion made by Pitt and Shephard (1997). Throughout we will assume (J is known.
In practice (Jwill be set to some estimated value, such as the maximum likelihood estimator
or the Monte Carlo estimator of the posterior mean.

The objective is to obtain a sample of draws from h,IYt , (J given a sample of draws
h:- I, . . . ,h~1 from ht-II Yt- I , (J. Such an algorithm is called a particle filter in the litera
ture. We now show how this may be done. From Bayes theorem,

(13)

TABLE 8

Bandwidth, BM,for each parameter was 100 on all series. In all cases 250,000 sweepes were used

<Ply O''1IY Ply

Series Mean Inefficiency Mean Inefficiency Mean Inefficiency

DM 0·96529 8·31 0·15812 11·99 0·65071 9·73
Yen 0·97998 23·10 0·12503 35·66 0·53534 2·71
SwizF 0·95276 13·52 0·20738 15·33 0·70675 8·38
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where

REVIEW OF ECONOMIC STUDIES

f(h, I YH , II) = ff(h, IhH , II) f(h,- Ii Y,- I , lI)dh,- I ,

and [th, Iht- 1, 0) =fN(h tI/J + c/J (ht- 1- /J), O'~) is the normal evolution density. The latter
integral can be estimated from the sample h:- 1, ••• , h~ 1 leading to the approximations

1 M .
f(h tIYt- ., 0) ~ M Lj=1 f(htIh{-l , 0),

and

1 M .
f(htl Yt , O)ocf(Ytl ht, 0) MLj=l f(htl h{-l, 0). (14)

The question now is to sample h, from the latter density. The obvious importance sampling
procedure of producing a sample {h{} from fIh,Ih{-l, 0) and then resampling these
draws with weights proportional to {f(Yt Ih{, O)} is not efficient. An improved procedure
runs as follows. Let htlt-l=/J+c/J(M-ILh{-I-/J) and 10gf(Ytlht,O)=
const + 10gf*(Yt, h., 0). Now expand log f*(Yt, h., 0) in a Taylor series around the point
ht1t- 1 as

* 1 Y;{ }logf (Yt,ht,O)=--ht-- exp(-ht)
2 2

1 Y;
;£ - 2ht-2 {exp (-htlt-I)(l +htlt-I)-htexp (-htlt- I)}

= log g*(ht, ht1t- l, lJ).

Also, after some algebra it can be shown that

* j j 2g (ht, htlt- I, lJ) f(htl h t- I, O)oc 1Cj f N(htIh t1t- l, 0'11)'

where

and
2

. . 0'11{2 }h{lt-I=/J+c/J(h{-I-/J)+- Yt exp(-ht1t-I)-I .
2

(15)

Hence, the kernel of the target density in (14) can be bounded as

* 1 M . * 1 M .
f (Yt,ht, 0) MLj=lf(ht1h{-1, O)~g (ht,htlt-h 0) MLj=lf(ht1h{-I, 0),

where the right-hand side terms are proportional to 1/M L~ I 1CjfN(htIh{lt-" O'~) due
to (15).

These results suggest a simple accept-reject procedure for drawing h.. First, we draw
a proposal value h, from the mixture density L~ I 1Cj* fN(h tIh{,t-I, O'~), where
1Cj* = Trj/L·1Cj. Second, we accept this value with probabilityri». h., O)/g*(ht, htlt- I, 0).
If the valJe is rejected, we return to the first step and draw a new proposal.
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TABLE 9

Daily returns for Sterling series. Summaries of reweighted sample of 2500 sweeps of the integration sampler. The
Monte Carlo S.E. of simulation is computed using a block one tenth of the size of the simulation. Italics are
correlations rather than covariances of the posterior. Computer time is seconds on a Pentium Pro/200. The other

time is the number of seconds to perform 100 complete passes of the sampler

Mean MC S.E. Inefficiency Covariance and correlation

<Ply
cr"IY
Ply
Time

0·97611 0·0018015 11·636 0·00014783 -0,765
0-16571 0·0065029 17·657 -0'00033148 0·0012693
0·64979 0·0047495 1-4563 0·00030503 -0,00074971

97·230 3·8892

0·277
-0,232

0·008209

By selecting a large M this filtering sampler will become arbitrarily accurate.

4.1.1. Application

To illustrate this, we apply these methods to the Sterling/Dollar series, filtering the volatil
ity. Throughout we will employ M = 2500. Similar results were obtained when M fell to
1000, although reducing M below that figure created important biases. The results are
made conditional of the estimated parameters, which are taken from Table 9 and based
on 2500 sweeps of the integration sampler.

The resulting filtered and smoothed estimates of the volatility are given in Figure 7,
together with a graph of the absolute values of the returns. The graph shows the expected
feature of the filtered volatility lagging the smoothed volatility. Throughout the sample,

Filtered and smoothed volatility
[=- Filtering <3----() Smoothing]

1.5

.5

o
5

4

3

IYrl
I I

100 200 300 400 500 600 700 800 900

2

o 100 200 300 400 500 600 700 800 900

FIGURE 7

Top: filtered and smoothed estimate of the volatility exp (h,/2), computed using M =2000. Bottom: IY,I, the
absolute values of the returns
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the filtered volatility is slightly higher than the smoothed values due to the gradual fall in
volatility observed for these series during this period.

4.2. Diagnostics

Having designed a filtering algorithm it is a simple matter to sample from the one
step-ahead prediction density and distribution function. By definition the prediction
density is

f( Yt+ d Y" 0) = Jf(Yt +d Y" ht+" O)f(ht+ d Y" h" O)f(htIY" O)dht+ ,dht,

which can be sampled by the method of composition as follows. For each value
h{ (j= 1, 2, ... ,M) from the filtering algorithm, one samples h{+l from

.. . 2
h{+ll h{ ~ % {JJ + 4J(h{- JJ), (J ,,}.

Based on these M draws on h.; I from the prediction density, we can estimate the probabil
ity that Y:+ I will be less than the observed Y~~ I

For each t = 1, ... , n, under the null of a correctly specifiedmodel u~ converges in distribu
tion to independent and identically distributed uniform random variables as M -+ 00

(Rosenblatt (1952)). This provides a valid basis for diagnostic checking. These variables
can be mapped into the normal distribution, by using the inverse of the normal distribution
function n~= r:' (u~) to give a standard sequence of independent and identically distri
buted normal variables, which are then transformed one-step-ahead forecasts normed by
their correct standard errors. These can be used to cary out Box-Ljung, normality, and
heteroscedasticity tests, among others.

The computed forecast uniforms and resulting correlograms and QQ plots are given
in Figure 8. The results suggest that the model performs quite well, although it reveals
some outliers. However, closer inspection shows that the outliers correspond to small
values of y:. This suggests that the SV model fails to accommodate some of the data
values that have limited daily movements. On the other hand it appears to perform well
when the movements in the data are large. This will be made more formal in the next sub
section.

4.2.1. Likelihood estimation

The one-step-ahead predictions can also be used to estimate the likelihood function since
the one-step-ahead prediction density, f(Yt+ II Yt) , can be estimated as

.. . 2
h{+ I Ih{ '" % {JJ + 4J (h{ - JJ), (J,,}, (17)

using drawings from the filtering simulator. The same argument gives a filtered estimate
of ht + I using the information up to time t.
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(a) Correlation of J',2 (b) Normalized innovations
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FIGURE 8

Diagnostic checks. Graph (a) : correlogram of y; .Graph (b) : normalized innovations. Graph (c) : the correspond
ing correlogram. Graph (d): associated QQ-plot

Table 10 shows the results from some standard diagnostic checks on the
nr, ... , n~ produced by the fitted model. Under the correctness of the model, the diag
nostics should indicate that the variables are Gaussian white noise. We report the skewness
and kurtosis coefficients,

nb,
Skew=

6 '

where b3 and b, denote the standardized estimators of the third and fourth moment of
{n~} about the mean, an overall Bowman and Shenton (1975) normality statistic which
combines these two measures and the Box-Ljung statistic using 30 lags. The table also
gives the simulation standard error for these statistics, based on repeating the simulation

TABLE lO

Diagnostics of the SV model using M = 2500. BL(l) denotes a Box-Ljung statistic on I lags. The figures in brackets
are simulation standard errors using lO replications. The two other models are fitted using ML. The estimated

degrees of the Student t model is given in brackets.

Skew Kurtosis Normality BL (30) Log-lik

SV 1·4509 0·54221 2·3992 18·555 -918,56
(0'057) (0'083) (0'295) (0'120) (0'558)

NID 11·505 21·640 600·65 401·20 -lOI8'2
tID(4'87) 1·2537 1·2156 3·0494 700·62 -964,56
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ten times with different random draws but with the data fixed. Finally, for comparison
the table gives the same diagnostics for the %(0, ( 2

) and scaled Student t iid models. The
results suggest that there are no straightforward failures in the way the model has been
fitted.

5. COMPARISON OF NON-NESTED MODELS VIA SIMULATION

5.1. GARCH model

In this section we compare the fit of basic SV models with the GARCH models commonly
used in the literature. Two approaches are used in this non-nested model comparison
one based on likelihood ratios and another based on ratios ofmarginal likelihoods resulting
in what are called Bayes factors.

The notation we use for the Gaussian GARCH(1, 1) model is

Ytl Yt- I '" % (0, u;), where U;= ao+ aIY;-1 +a2u;-I. (18)

while the equivalent Student-t model introduced by Bollerslev (1987) is denoted as t
GARCH with v as the notation for the positive degrees of freedom.

TABLE II

Diagnostics ofthe ML estimators ofthe Gaussian and Student t distributed GARCH models. BL(I) denotes a Box
Ljungstatisticon Ilags. Abovethe lineare theanswers oftherealdata, theonesbeloware thecorrectedobservations.

Figures in bracketsfor the t-GARCH modelare the estimateddegrees offreedom

ao a1+a2 Skew Kurt Normality BL (30) Log-lik

GARCH 0·0086817 0·98878 4·5399 4·3553 39·580 16·183 -928,13
t-GARCH (8'44) 0·00058463 0·99359 0·56281 0·31972 0·41897 22·515 -917,22

The diagnostic statistics given in Table 11 suggest that the Gaussian GARCH model
does not fit the data very well, suffering from positive skewness and excess kurtosis. This
suggests that the model cannot accommodate the extreme positive observations in the
data. The t-GARCH model is better, with much better distributional behaviour. Again
its diagnostics for serial dependence are satisfactory. The fitted likelihood is very slightly
better than the SV model, although it has one more parameter.

5.2. Likelihood ratio statistics

There is an extensive literature on the statistical comparison of non-nested models based
on likelihood ratio statistics. Much of the econometric literature on this topic is reviewed
in Gourieroux and Monfort (1994). The approach we suggest here relies on simulation
and is based on Atkinson (1986). Related ideas appear in, for instance, Pesaran and
Pesaran (1993) and Hinde (1992).

Let.,l(l denote the SV model and .,1(0 the GARCH model. Then, the likelihood ratio
test statistic for comparative fit that is investigated here is given by

LRy=2{logJ(YI.AI, OI)-logf(YI .Ao, Oon,

where 10gJ(yl .AI, Od and 10gf(YI .Ao, ( 0) denote the respective estimates of the log
likelihoods, the former estimated by simulation as described above," 01 is the estimated

8. The GARCH process has to be initialized by setting O'~. The choice of this term effects the likelihood
function. In our calculations we set O'~= ao/(I- a1- a2).
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posterior mean of SV model parameters and eo the MLE of the GARCH model param
eters. The sampling variation of LRy under the hypothesis that the SV model is true or
under the alternative that the GARCH model is true is approximated by simulation,
following Atkinson (1986). Clearly, analytical derivations of the sampling distribution are
difficult given the unconventional estimators of the log-likelihood.

Under the assumption that the SV model is true and the true values of its parameters
are (J~O) , we generate simulations l, i = 1, ... , M from the true model. For each simulated
series we estimate the parameters of the GARCH and SV models and record the value of
LRy , which we denote as LR ~. The resulting scatter ofvalues LR;, ... , LR~ are a sample
from the exact distribution of LRy under the SV null. The fact that we estimated the
likelihood and the parameters of the SV model for each / does not alter this result. Hence
we could use these simulations LR~ as inputs into a trivial Monte Carlo test (see, for
example, Ripley (1987, pp. 171-174)) of the hypothesis that the GARCH model is true.
Unfortunately (J~O) is unknown and so it is estimated from the data and chosen to be 91 •

This introduces an additional approximation error into the sampling calculation which
falls as the sample size n -+ 00.

The estimated approximate sampling distributions of LRy under each hypothesis
based on 99 simulations plus the realization from the data are given in Figure 9. This
figure shows that if the null of the SV model is true, then LRy can be expected to be

(a) null: SV, alternative: Gaussian GARCH (b) null: SV, alternative: t-GARCH
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FIGURE 9

Non-nested testing. Graphs (a)-(b) LRy computed when SV is true. Graph (a): SV against a GARCH model.
Graph (b): SV against a t-GARCH. The observed values are 19·14 and - 2·68 respectively,which are 80th and
29th out of the 100samples. Graphs (c)-(d): LRy computed when GARCH model is true. Graph (c): GARCH
against SV. Graph (d): GARCH against t-GARCH. The observed values are 19·14 and -2,68 respectively,

which ranks them 100th and 79th out of the 100 samples

 at R
adcliffe Science L

ibrary, B
odleian L

ibrary on A
pril 21, 2012

http://restud.oxfordjournals.org/
D

ow
nloaded from

 

http://restud.oxfordjournals.org/


384 REVIEW OF ECONOMIC STUDIES

positive when the alternative is a Gaussian GARCH, while it is expected to be around
zero when the alternative is a t-GARCH.

For the Sterling series the observed LRy is 19·14 for the SV model against GARCH
and - 2·68 for the SV model against t-GARCH. This suggests that the SV model fits the
data better than the GARCH model but slightly worse than the t-GARCH model (which
has one more parameter). These results are confirmed by looking at the simulated LRy •

Table 12 records the ranking of the observed LRy amongst the 99 simulations conducted
under the assumption that the SV model is true. Hence if the observed LRy is the 96th
largest, then it is ranked as being 96th. If the ranking is either close to zero or 100 then
this would provide evidence against the SV model.

The recorded rankings under the SV hypothesis are not very extreme, with about
200/0 of the simulations generating LR tests against the GARCH model which are higher
than that observed, while 30% of the simulations were lower than that observed for the
t-GARCH LR test. Although suggestive, neither of these tests are formally significant.
This implies that they are both consistent with the SV model being true.

A more decisive picture is generated when the Gaussian GARCH model is the null
hypothesis. No value is as extreme as the observed LR test against the SV model, rejecting
the Gaussian GARCH model for these data. The evidence of the test against the t-GARCH
model is less strong.

In summary, the observed non-nested LRy tests give strong evidence against the use
of Gaussian GARCH models. The two remaining models are the t-GARCH and SV
models. The statistics show a slight preference for the t-GARCH model, but this model
is less parsimonious than the SV model and so it would be fairer to argue for the statement
that they fit the data more or less equally well. These results carry over to the other three
exchange rates. The results from the non-nested tests are given in Table 12, although there
is a considerable evidence that the t-GARCH model is preferable to the SV model for the
Yen series.

5.3. Bayes factors

An alternative to likelihood ratio statistics is the use of Bayes factors, which are symmetric
in the models and extremely easy to. interpret. The approach adopted here for the com
putation of Bayes factors relies on the method developed by Chib (1995). From the
basic marginal likelihood identity in Chib (1995), the log of the Bayes factor can be written
as

logf(yl Jlt)-logf(yl Ato)

= {log f(y IvUI, () n+log f( eTIAt) -log f( 0 TIJ( ) ,y)}

- {log f(y 1 Ato, (}6) +log f«()6) -log f(061 Ato, y)},

for any values of (J6 and ()T. Here f( ()6) is the GARCH prior density, while
f«()r IJl1) is the prior for the SV parameters. The likelihood for the GARCH model is
known, while that of the SV model is estimated via simulation as described above. Next,
the posterior densities f( ()61 At0, y) and f( ()rIJt), y) are estimated at the single points
() 6 and (Jr using a Gaussian kernel applied to the posterior sample of the parameters.
We follow the suggestion in Chib (1995) and use the posterior means of the parameters
as (J6and ()Tsince the choice of these points is arbitrary.
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TABLE 12

Non-nested LR tests of the SV model against the ARCH models. In each case the 99 simulations
were added to the observed LRy to form the histograms. The reported r-th rankings are the r-th

largest of the observed LR test out of the 100 LR y tests conducted under SV or GARCH model

SV versus GARCH SV against t-GARCH

Series Observed Rank SV Rank GARCH Observed Rank SV Rank GARCH

Sterling
DM
Yen
SwizF

19·14
11·00
19·84
53·12

81st
61st
99th

100th

100th
100th
100th
looth

-2'68
-3,84
-30,50
-3·62

29th
9th
1st

20th

79th
87th

1st
98th

To perform a Bayes estimation of the GARCH model we have to write down some
priors for the GARCH parameters. This is most easily done by representing the model in
its ARMA( I, I) form for squared data

Vt = (E; - I) 0'; .

(19)

Hence al + a2 is the persistence parameter, a: (which has to be positive) is the negative
of the moving average coefficient, while ao/(l- al - a2) is the unconditional expected
value of y;. We will place the same prior on at + a 2 as was placed on the persistence
parameter 4> in the SV model (see (5)). This will force the GARCH process to be covariance
stationary. The prior specification is completed by assuming that a2/(a 1+ a2)Iat + a2=
ra follows a Beta distribution with

logf{a2/(at + a2) Iat + a: =ra }

=const+ {4>(I) -I} logtJ+ {4>(2) -I} log {To ~oa2}.

Since we would expect that a2/(a t + a2) to be closer to one than zero, we will take 4>(1) =
45 and let 4>(2) = 2. This gives a mean of 0·957. The scale parameter ao/(I- at - a2) Iat, a2
are given a standard diffuse inverse chi-squared prior distribution. Finally, for the t
GARCH model, v - 2 was given in chi-squared prior with a mean of ten.

In order to carry out the MCMC sampling we used the Gilks, Best, and Tan (1995)
procedure which just requires the programming of the priors and the GARCH likelihood.

The results of the calculations are given in Table 13. They are very much in line with
the likelihood ratio analysis given in Table 12. Again the SV model dominates the Gaussian
GARCH model, while it suffers in comparison with the t-GARCH model, especially for
the Yen data series. It should be mentioned, however, that these conclusions are in relation
to the simplest possible SV model. The performance of the SV model can be improved
by considering other versions of the model, for example, one that relaxes the Gaussian
assumption. We discuss this and other extensions next.

6. EXTENSIONS

6.1. More complicated dynamics

This paper has suggested three ways of performing Bayesian analysis of the SV model:
single move, offset mixture and integration sampling. All three extend to the problem
where the volatility follows a more complicated stochastic process than an AR(l). A useful
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TABLE 13

Estimated Bayes factors for SV model against GARCH model and t-GARCH. All the densities were evaluated at
the estimated posterior mean

GARCH t-GARCH

Series a\+az logfGARCH Log Bayes a\+a2 v logfGARCH Log Bayes

Sterling 0·9802 -928,64 9·14 0·9822 9·71 -918,13 -3,512
OM 0·9634 -952'88 6·52 0·9712 12·82 -945,63 -2'688
Yen 0·9850 -798'79 13·22 0·9939 6·86 -774,8 -1l·28
SwizF 0·9153 -1067·2 27·86 0·9538 7·57 -1039,0 -0·84

framework is

where u,~ % (0, I), c, and d, are assumed to be strictly exogenous, and Zt, T, and H, are
selected to represent the log-volatility appropriately. With this framework the log volatility
process can be specified to follow an ARMA process.

In the single move Gibbs algorithm, it is tempting to work with the r t as

(20)

has a simple structure. However, this would suffer from the problems of large MCMC
simulation inefficiency documented above especially if rt is high dimensional or if the {rt }
process displayed considerable memory (akin to the example given in Carter and Kohn
(1994». Alternatively, one could sample h, using

f(h tIh\t, y) «It». Iht)f(ht Ih\t),

as we can evaluate h,Ih., using the de long (1998) scan sampler. This is uniformly superior
to the algorithms built using (20). Neither of these choices would be competitive, however,
with versions of the multi-move and integration sampler which rely on the state space
form and can thus be trivially extended to cover these models.

More sophisticated dynamics for the volatility could be modelled by exploiting factor
type models. An example of this is

where cPl > cP2 and 1]lt, 1]2t are independent Gaussian white noise processes. Here hs, and
h2t would represent the longer-term and shorter-term fluctuations in log-volatility. The
introduction of such components, appropriately parameterized, produce volatility versions
of the long memory models advocated by Cox (1991).

6.2. Missing observations

The framework described above can also be extended to handle missing data. Suppose
that the exchange rate r34 at time 34 is missing. Then the returns Y34 and Y35 would be
missing. We could complete the data by adding in r34 to the list of unknowns in the
sampling. Given r34 we could generate Y and then sweep h, (JIy. Having carried this out
we could update r34 by drawing it given h, (J and y. Iterating this procedure gives a valid
MCMC algorithm and so would efficiently estimate (J from the non-missing data.

This argument generalizes to any amount of missing data. Hence this argument also
generalizes to the experiment where we think of the SV model (1) holding at a much finer

 at R
adcliffe Science L

ibrary, B
odleian L

ibrary on A
pril 21, 2012

http://restud.oxfordjournals.org/
D

ow
nloaded from

 

http://restud.oxfordjournals.org/


KIM, SHEPHARD & CHIB STOCHASTIC VOLATILITY 387

discretization than the observed data. Think of the model holding at intervals of l/d-th
of a day, while suppose that the exchange rate r, is available daily. Then we can augment
the "missing" intra-daily data ;t= (rtl' ... , rtd-I) to the volatilities ht= ih«, ... , htd- I' ht )
and design a simple MCMC algorithm to sample from

;1 , ... , ;n, hi , ... ,hn , 8 Iro, ... , rn»

This will again allow efficient estimation of 8 from the "coarse" daily data even though
the model is true at the intra-daily level. This type of argument is reminiscent of the
indirect inference methods which have recently been developed for diffusions by Gourier
oux, Monfort and Renault (1993) and Gallant and Tauchen (1996), however our approach
has the advantage of not depending on the ad hoc choice of an auxiliary model and is
automatically fully efficient.

6.3. Heavy-tailed SV models

The discrete time SV model can be extended to allow e, in (1) to be more heavy-tailed
than the normal distribution. This would help in overcoming the comparative lack of fit
indicated by Table 12 for the Yen series. One approach, suggested in Harvey, Ruiz and
Shephard (1994) amongst others, is to use an ad hoc scaled Student t distribution, so that

iid 2 iid 2
(t '" %(0, 1), Xt,v '" Xv,whereE,= JV:2 ',I Jx~./v,

and the (t and X;'v are independent of one another. The single move and offset mixture
algorithms immediately carry over to this problem if we design a Gibbs sampler for
xtv, ... ,X~,v, h, 8 Iy or xtv, ... ,X~,v, h, 8, OJIy respectively.

An alternative to this, which can be carried out in the single move algorithm, would
be to directly integrate out the X;'v, which would mean f(Yt Iht, 8) would be a scaled
Student t distribution. This has the advantage of reducing the dimension of the resulting
simulation. However, the conditional sampling becomes more difficult. This is because
It», Ih., (J) is no longer log-concave in h, and the simple accept/reject algorithm will no
longer work. However, one could adopt the pseudo-dominating accept/reject procedure
that is discussed in Tierney (1994) and Chib and Greenberg (1995). This version of the
algorithm incorporates a Metropolis step in the accept/reject method and does not require
a bounding function. The same ideas can also be extended for multivariate models and
models with correlated e., n, errors.

6.4. Semi-parametric SV

The offset mixture representation of the SV model naturally leads to a semi-parametric
version of the SV model. Suppose we select the "parameters" m, , ... , mx.
v~, ... , vi, ql, ... , qK freely from the data. Then, this procedure is tantamount to the
estimation of the density of the shocks e.. The constraint that Var (s.) = 1 is automatically
imposed if JJ is incorporated into these mixture weights.

This generic approach to semi-parametric density estimation along with MCMC type
algorithms for the updating of the mixture parameters has been suggested by Escobar and
West (1995) and Richardson and Green (1997). Mahieu and Schotman (1997) use a
simulated EM approach to estimate a small number of mixtures inside an SV model.
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6.5. Prior sensitivity

The methods developed above can be easily modified to assess the consequences of chang
ing the prior. Instead of rerunning the entire samplers with the alternative prior, one can
reweight the simulation output so that it corresponds to the new prior-in much the same
way as the simulation was reweighted to overcome the bias caused by the offset mixture.
Since the posterior is

f(O,hly)ocf(ylh, 8)f(hI8)f(0)=f(ylh, 0)f(h/0)f*(8) ~(O) ,
f (0)

wheref(O) denotes the new prior andf*(O) the prior used in the simulations, the reweight
ing follows the form of (12) where wj=log f( OJ) -log f*( oj). This is particularly attrac
tive as the reweighting is a smooth function of the difference between the old prior f* and
the new prior f Rerunning the sampler will not have this property.

6.6. Multivariate factor SV models

The basis of the N dimensional factor SV model will be

where

(;, ) - % <0, diag {exp(hit), ... , exp (hNt) , exp (hN + It), ... , exp (hN + Kt) } >,

where fr is K dimensional and

As it stands the model is highly overparameterized. This basic structure was suggested in
the factor ARCH models analysed" by Diebold and Nerlove (1989) and refined by King,
Sentana and Wadhwani (1994), but replaces the unobserved ARCH process for fr by SV
processes. It was mentioned as a possible multivariate model by Shephard (1996) and
discussed by Jacquier, Polson and Rossi (1995).

Jacquier, Polson and Rossi (1995) discussed using MCMC methods on a simplified
version10 of this model, by exploiting the conditional independence structure of the model
to allow the repeated use of univariate MCMC methods to analyse the multivariate model.
This method requires the diagonality of cPE' cPt' I. El1 and I.t l1 to be successful. However,
their argument can be generalized in the following way for our offset mixture approach.

Augment the unknown h, 0 with the factors f, for then hi f, y, 0 has a very simple
structure. In our case we can transform each Jjt using

log (f;t+c)=hN+jt+Zjt, Zjtlsjt=i'" %(m;-1'2704, vD,

noting that given the mixtures the Zjt are independent over j as well as t. Hence we can
draw from all at once hIf, s, y, O. This can then be added to routines which draw from
fly, h, 0 and 0 Iy, h, f to complete the sampler.

9. Using approximate likelihood methods. Exact likelihood methods are very difficult to construct for
factor ARCH models.

10. Their model sets 12, '" NID(O, 12&), rather than allowing the elements to be stochastic volatility models.
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7. CONCLUSION

In this paper we have described a variety of new simulation-based strategies for estimating
general specifications of stochastic volatility models. The single move accept/reject algo
rithm is a natural extension of the previous work in the literature. It is very simple to
implement, reliable and is easily generalizable. However, it can have poor convergence
properties which has prompted us to develop other samplers which exploit the time series
structure of the model.

The key element of our preferred sampler is the linearization made possible by a log
square transformation of the measurement equation and the approximation of a log X2

random variable by a mixture of normal variables. This, coupled with the Bayesian re
weighting procedure to correct for the linearization error, enables the analysis of complex
models using the well-established methods for working withconditionally Gaussian state
space models. The simulation conducted in this paper shows that our proposed methods
can achieve significant efficiency gains over previously proposed methods for estimating
stochastic volatility models. Furthermore, this approach will continue to perform reliably
as we move to models with more complicated dynamics.

The paper also discusses the computation of the likelihood function of SV models
which is required in the computation of likelihood ratio statistics and Bayes factors. A
formal comparison of the SV model in relation to the popular heavy tailed version of
GARCH model is also provided for the first time. An interesting set of methods for
filtering the volatilities and obtaining diagnostics for model adequacy are also developed.
The question of missing data is also taken up in the analysis. The results in this paper,
therefore, provide a unified set of tools for a complete analysis of SV models that includes
estimation, likelihood evaluation, filtering, diagnostics for model failure, and computation
of statistics for comparing non-nested models. Work continues to refine these results, with
the fitting of ever more sophisticated stochastic volatility models.

8. AVAILABLE SOFTWARE

All the software used in this paper can be downloaded from the World Wide Web at the
URL:

http://www.nuff.ox.ac.uk/users/shephard/ox/

The software is fully documented. We have linked raw c++ code to the graphics and
matrix programming language Ox of Doornik (1996) so that these procedures can be
easily used by non-experts.

In the case of the single move Gibbs sampler and the diagnostics routines the software
is unfortunately specialized to the SV model with AR(I) log-volatility. However, the other
procedures for sampling hiy, S, f) and the resampling weights are general.

APPENDIX

This appendix contains various algorithms which allow the efficient computations of some of the quantities
required in the paper.
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I. Basic Gaussian state spaceresults

We discuss general filtering and simulation smoothing results which are useful for a general Gaussian state space
model. We analyse the multivariate model

Y, =c,+Z,r,+G,u"

r,+1 =d,+T,r,+H,u"
iid

u, "" %(0, I). (21)

rll Yo- N(aljo, PliO)'

For simplicity we assume that G,H~=O and we write the non-zero rows of H, as M" G,G~=:E, and
H,H~ = :EI/" Throughout c, and d, are assumed known.

In the context of our paper we have mostly worked with the simplest of models where, putting {3 = I and
letting r'{denote daily returns computed as (8),

log (r'{2+const)=h,+ e,

and

where we condition on the mixture s, such that

s,ls,=i - %(mj, vf)

and

11, - % (0, O'~).

So this puts y,=log (r~2+const),c,=mj, G'=(O'j, 0), r,=h, and Z,= I. Likewise d,=p(l-q,), T,=q, and H,=
(0,0'1/)' Finally, for a stationary initial condition, allO=p and PIIO=0'~/(l_q,2). This means that E,=G,u" 11,=
H,u, and u, is a bivariate standard normal.

The Kalman filter is run for I = I, ... , n,

r'+II,=d,+ T,rl,-I +K,»,

F,=Z,P'I,_I Z~+ :E"

P,+11'= T,P'I,_I L~+ ~I/"

K, = T,P'I,_I Z~F;I ,

V, =y,-Z,r'I,-I-c"

L,=T,-K,Z,.
(22)

Here r,+II'= E(rt+J!yt. ... ,y,) while P,+II' is the corresponding mean square error. More detailed discussion
of the state space form and the Kalman filter is given in Harvey (1989).

The simulation signal smoother (de long and Shephard (1995» draws from the multivariate normal
posterior

(CI +Zlrh ... , cn+Znrn)IY, 9,

where 9 denotes the parameters of the model. Setting rn=O and Nn=O, and writing D,=F;I+K~N,K"

n,=F;lv,- K'r, we run for t v n, ... , I,

Cr=:E,- :E, D,:Et ,

r'_1=Z~F;IV,+ L~r,- V~C;I1("

N,_I =Z~F;IZ,+ L~N,L,+ V~C;I V,.

1(, - % (0, Ct ) ,

V'=L,(D,Z,- K~N,T,), (23)

Then y,-:E,n,-1(, is a draw from the signal c,+Z,r,IY, 9, C,+I +Z'+lr,+h ... , cn+Znrn.
The freeware package SSFPack, due to Koopman, Shephard and Doomik (1996), provides easy to use

functions which perform Kalman filtering and the simulation signal smoothing for an arbitrary state space
model.

2. Augmentedstate space

Suppose that we write

c,=X,{3, d,= W,{3, {3 '" %(0, A),

where {3 is independent of the u, process. Then we can estimate the states and the regression parameter {3 at the
same time using the augmented Kalman filter and simulation smoother. The first of these ideas is due to de
long (1991), the second to de long and Shephard (1995).
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The augmented Kalman filter adds two equations to the Kalman filter (22) which is run with c,= 0, d,=
0, additionally computing

v~=-Z,r~'-l-X"

where r~lo = WI. Here V~ is a dim (y,) x dim (fJ) matrix. The augmented innovations V~ are the innovations
resulting from running -X, through the Kalman filter (22) with d,= W,. Hence we can compute the posterior
of fJ Iy by looking at the weighted least squares regression of u, on V~ fJ with prior information fJ '" % (0, A)
and variances F,. If we set S\=A- 1 and s,=O (the notation of s, is local to this discussion) then recursively
calculating

we have that fJlY, 9", %(-S;IS" , S;I), where 9 now denotes the remaining parameters in the model.
The random regression effect fJ can be analytically integrated out of the joint density of y and fJ (given

9) as

fey I9) = ffey I fJ, 9)tr(fJ)dfJ fey I~(;~ ~:;,(~ = 0)

ix: D" F- I/2exp (_!""" V
2/F) IAI-I/2 exp (!Sl S-IS)'s-III/2

1= 1 ' 2 ,-,=1 t , 2 " "" n ,
(24)

using the terms from the augmented Kalman filter. This result is due to de Jong (1991).
Ifwe draw from b '" fJ Iy, 9 we can calculate a new set of innovations if,= u,+ V~b, which are the innovations

from running the Kalman filter on a state space with known fJ = b. Hence we can use the simulation signal
smoother which draws CI +Zlrl,"" c"+Z"r,,ly, fJ=b, 9 using the simulation signal smoother (23) just by
plugging in the if, instead of the v,. By using both of these draws we are actually sampling directly from the
distribution of

(fJ, CI +ZI rl, ... , c; +Z"r,,) Iy, 9.
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