Fitting Vast Dimensional Time-Varying
Covariance Models

Abstract

Estimation of time-varying covariances is a key input in risk management and
asset allocation. ARCH-type multivariate models are used widely for this purpose.
Estimation of such models is computationally costly and parameter estimates are
meaningfully biased when applied to a moderately large number of assets. Here we
propose a novel estimation approach that suffers from neither of these issues, even
when the number of assets is in the hundreds. The theory of this new method is
developed in some detail. The performance of the proposed method is investigated
using extensive simulation studies and empirical examples.
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1 Introduction

The estimation of conditional covariances between the returns on hundreds of assets is a
key input in modern risk management and asset allocation. A popular approach is to use
ARCH-type models (e.g., Bollerslev (1990), Engle and Kroner (1995) and Engle (2002)).
This literature has been quite successful in dealing with cases where the number of assets is
moderate, i.e., less than 25. However, estimation becomes computationally burdensome for
larger datasets. Moreover, the standard estimator is substantially biased when the number
of assets is not small, even with thousands of time-series observations.

The main cause of these issues is that most widely-used estimation methods rely on
a simple-to-implement estimator of the unconditional covariance/correlation matrix. This
involves estimation of O(L?) parameters using O(LT) data points, where T is the time-
series length and L is the number of assets. Unless T is substantially larger than L, this
will be subject to significant estimation error. Consequently, the likelihood function will
be contaminated, leading to biased estimates. In addition, estimation is also subject to
a computational issue: Gaussian (quasi-) likelihood estimation requires inversion of the
(L x L) conditional variance matrix. Since estimation relies on numerical optimisation,
many matrix inversions are needed until estimator convergence. As such, the computational
cost of fitting the model increases rapidly in L.

We propose a novel estimation approach that is computationally fast and does not suffer
from the aforementioned statistical issues, even when the number of assets is in the hun-
dreds. In particular, we utilise the composite likelihood approach, which uses the average
of bivariate log-likelihood functions for a large selection of asset-pairs as the objective func-
tion. This side-steps both of the discussed problems as each pairwise likelihood involves
inversion of a (2 x 2) conditional variance matrix only. Intuitively, each bivariate likelihood
contains some information on the full-dimensional problem; taking their average allows us
to pool information without having to invert large dimensional matrices. We investigate
the theory and application of our method for the BEKK and DCC models of Engle and
Kroner (1995) and Engle (2002). Our simulations confirm that the proposed method does
not suffer from bias as L increases; indeed, bias remains small even when L is of the same

order as T'. We demonstrate the usefulness of our method in a series of empirical examples.



The structure of the paper is as follows. Section 2 provides a brief overview of mul-
tivariate volatility modelling. Section 3 introduces the composite likelihood approach. In
Section 4, we focus on the specific cases of BEKK and DCC. Simulation and empirical
studies are conducted in Sections 5 and 6, respectively. Section 7 concludes. Proofs and

additional material are in the Supplementary Appendix.

2 Multivariate volatility modelling

2.1 Background

Throughout, we use the following notational convention: 0,xp, 0, and I, denote an (a X b)
matrix of zeros, an (a x 1) vector of zeros and an (a X a) identity matrix, respectively. For
any matrix A, ||A|| = \/tr(A’A) is the Euclidian norm. For any square matrix B, |B] is
the determinant. Furthermore, vec is the vectorisation operator.

Let 74, be the (log) return on asset i at time ¢, and let X; = (ry,...,r5¢)’, where
1=1,..,Land t=1,...,T. Let F; be the information set at time ¢, based on the history
of all returns. Also, let F;; be the information set at ¢ for asset i. We make the standard
simplifying assumption that F[X;|F;_;] = 0r, which is reasonable for daily returns. Let Z;
be some (L x 1) vector of independently and identically distributed (iid) random variables,
with F[Z;] = 0, and Cov(Z;) = Ir. Then, the standard structure for X; is given by
X, = Ht1 / 7, where H, = Cov(Xy|F;_1) is the conditional variance matrix.

The literature on models for H; is vast; for surveys, see Bauwens, Laurent, and Rom-
bouts (2006), Silvennoinen and Terédsvirta (2009) and Engle (2009). The typical approach
in this literature is to model H; parametrically where H; is indexed by some parameter
vector 6, the estimation of which relies on the (quasi-) maximum likelihood (ML) method.
Two of the most popular models are the BEKK and DCC/cDCC models.

The BEKK model (after Baba, Engle, Kraft, and Kroner) is due to Engle and Kroner

(1995). While there are different variants, a common version is

Ht . C —l— AXt_lXé_lAl + BHt_lB/, (1)



where A and B are (L x L) parameter matrices and C' is some positive definite uncondi-
tional covariance matrix. It is possible to add further lags of X;X] and H; but this greatly
increases the computational burden, which is already high for moderate values of L. A
computationally less demanding variant was proposed by Engle and Mezrich (1996) and
studied theoretically in Pedersen and Rahbek (2014) (referred to as PR henceforth). This is
based on the commonly-used “variance-tracking” approach (Francq, Horvath, and Zakoian
(2011)). Specifically, let I' = E [X; X]]. Then, it can be shown that I' = C' + AT A’ + BT'B’,

and the variance-tracking version of (1) is given by
H =T - ATA'— BI'B'+ AX, 1 X, A"+ BH, B (2)

This simplifies estimation by allowing sequential estimation of I' and (A, B). First I is
estimated by a computationally-simple moment estimator, =71 Zthl XX/, and then
(A, B) is estimated via ML, using (2) with T' replaced by I'. We will mainly focus on the

more parsimonious scalar version of (2):
Ht = F (1 — O — 6) + aXt,1X£_1 + 6Ht71 (3)

where a and 3 are scalar and I' is defined as before.
The Dynamic Conditional Correlation (DCC) model of Engle (2002) provides additional
flexibility for specifying the dynamics of the time-varying conditional covariance. Here, we

consider a recent version, the cDCC model, proposed by Aielli (2013). Specifically,
H, = D;*R,D}"*, (4)

where D, is an (L x L) diagonal matrix, with the diagonal entries given by hy; = Var (1| Fii-1)
which can be based on any univariate volatility model (the typical choice is the GARCH
model of Bollerslev (1986)). R;, on the other hand, is the time-varying conditional cor-
relation matrix. Notice that for the devolatilised returns ¢, = D, 1 2Xt, we also have

Cov (g|Fi—1) = Ry. Then, R; is modelled as follows:

R = Q@i ()



Q = (1—a—B8)S+aQ e, e, Q1 + BQi1, (6)

where ()} is a diagonal matrix containing the diagonal entries of ();. The parameters of
this model are (S, c«, ). This structure has the virtue that for ef = Q:l/ 2€t, we have
Cov (e}|Fis1) = Q'’RQM* = @y, so that T-'S°1 1y’ B S (see Aielli (2013) for
further details on the DCC and ¢cDCC models). This allows for the joint estimation of S and
(a, B) using a concentrated likelihood-like moment-based estimator. The computational

cost of this estimator is similar to the variance-tracking approach.

2.2 Issues in large-dimensional modelling

We now discuss some important issues in the estimation of large-scale multivariate volatility
models. The problems we point out here generally hold for moderately large (or larger)
numbers of assets. To illustrate, suppose Z; YN (0p,1r). Then, the (negative) log-
likelihood function for the scalar BEKK model in (3) is given by

1
T

] =

lT (77 )‘) = [log |Ht (77 /\)| + Xt/Ht_l (77 /\) Xt] ) (7>

t=1

where the dependence of H, on v = vec (I') and A = («, 8)" is made explicit. Using the
variance-tracking approach, plugging I' = 7" Zthl X, X] into (7) yields

1
T
t

] =

lT (,% )‘) = (log ’Ht (’3/7 /\)| + ‘Xrt,}[t_1 (,3/7 /\) Xt) : (8)

1

Then, the estimator of X is given by X\ = (&, 5) = argminy I7 (5, A). Obtaining X\ requires
numerical optimisation since the solution to the optimisation problem (independent of
whether I' is estimated in an initial step or not) does not exist in closed form. Evaluating
the likelihood requires inverting H; (7, A) for each t in every iteration until the numeri-
cal optimiser converges. The computational cost of this is O (L?), and so full likelihood
evaluation is slow even for moderate L.

While the computational issue is an important one, the salient problems are statistical.

In particular, " involves estimation of O(L?) parameters with O(LT) data points. There-



S&P 100 Components S&P 500 Components

Scalar BEKK cDCC Scalar BEKK cDCC

L « 15} « I} L « 15} « 153
5 .01890 .9794 | .0141 .9757 51.0261 .9715 | .0101 .9823
10 | .0125 .9865 | .0063 .9895 25 | .0080 .9909 | .0030 .9908
25 | .0081 .9909 | .0036 .9887 50 | .0055 .9932 | .0018 .9882
50 | .0056 .9926 | .0022 .9867 || 100 | .0034 .9934 | .0015 .9524
96 | .0041 .9932 | .0017 .9711 || 250 | .0015 .9842 | .0020 .5561
480 | .0032  .5630 | .0013 .2556

Table 1: Parameter estimates from a covariance tracking scalar BEKK and ¢cDCC using
the two-step maximum likelihood method outlined in Section 2. The left panel is based on
the daily returns for 95 companies plus the index from the S&P100, from 1997 until 2006.
The right panel is based on the same for 480 companies from the S&P 500.

fore, even for moderately large L, T' is a noisy estimator of I'. This is also reflected in the
eigenvalues of [, in the sense that the largest eigenvalues tend to be overestimated and,
more importantly, the smallest ones tend to be underestimated. In a simulation study in
Section 5.5 we further investigate this and show that the same occurs for the eigenvalues
of Hy(%,\), as well. Moreover, the discrepancy between the eigenvalues increases rapidly
with L. While this is not formally an issue for fixed L, the sample size required to achieve
approximately unbiased parameter estimates is larger than what is available for most em-
pirically realistic portfolio sizes. All these features combine to produce substantially biased
). Notice that the same story holds for the cDCC model in (4)-(6), where A = (a, 8)', while
7 consists of vec (S) and the parameters of the univariate volatility models (hiy, ..., hrt).
The relevant likelihood functions are, again, (7) and (8). Similar issues would arise in many
multivariate covariance models.

We finish this part with an empirical illustration of the outlined issues for the models
in (3) and (4)-(6). Table 1 presents estimates of («, ) for an expanding cross-section of
assets from S&P 100 (left panel) and S&P 500 (right panel); see Section 6 for details of
the dataset. Estimates of « fall dramatically with L. The same is not observed for  in
the first instance. However, when the analysis is extended to S&P 500, which allows for
larger L, we observe that estimates of both o and (8 are severely biased towards zero for the
largest values of L. Clearly, L has a systematic effect on the estimation of A, independent

of the model under consideration.



3 The composite likelihood method

In this part, we propose a method for estimating multivariate volatility models, which
does not suffer from the computational and statistical issues outlined in Section 2.2. To
achieve this aim, we use the composite likelihood (CL) method (Lindsay (1988), Cox and
Reid (2004), Varin and Vidoni (2005) and Varin, Reid, and Firth (2011)). This method is
based on approximating the full-dimensional joint likelihood function using combinations
of lower dimensional marginal densities. To give an example, let lzT() be the marginal

log-likelihood for the i** asset. Then, the most basic CL function is

which approximates the joint log-likelihood function using marginal univariate likelihoods
(this type of marginal analysis has appeared before outside the time-series literature, e.g.
Besag (1974) in spatial processes, LeCessie and van Houwelingen (1994) and Kuk and
Nott (2000) for correlated binary data, and deLeon (2005) on grouped data). It is also
possible to assign different weights to marginal likelihoods and/or consider higher dimen-
sional marginals such as bivariate or trivariate. The CL approach would be particularly
desirable if the full dimensional likelihood is difficult to work with (as in our case), or not
straightforward to specify or compute.

We will utilise CL functions constructed from bivariate densities (see also Wang, Iglesias,
and Wooldridge (2013) who propose a similar approach for estimation of spatial probit
models which they call the “partial maximum likelihood estimation”). Specifically, suppose
we pick N distinct asset-pairs from the initial collection of L assets. Let Xj, = (7,4, 7))
be the vector of returns on the j% pair at time ¢, where j = 1, ..., N, (j1,j2) € {1,2, ..., L}?
and ji # ja. Likewise, let Hj; (7, A) be the conditional variance for the j* pair, where the
definitions of 7; and A depend on the particular model at hand. Then, assuming Gaussian

innovations as before, the (negative) log-likelihood for pair j is given by

T
1 _
Lir (75, A) = T >~ log |Hyy (73, M) + X Hy' (73, 3) Xy (9)

t=1



Implicit in this structure is the assumption that A is common to all pairs, whereas -; is

allowed to be pair-specific. The CL function based on all pairwise likelihoods is given by
| N
INT (V150 INS A) = NZZjT (755 A) - (10)
j=1

Intuitively, (10) pools information on the common parameter \ across all pairs.
As before, 7, can be estimated separately and plugged into (10) to yield Inr (1, ..., Yn, A)-
The CL estimator for A is then given by

X:argm)%nlNT (Y15 - s A) - (11)

In Section 4, we will discuss the application of this method to BEKK and ¢cDCC in detalil.

Remark 1 In comparison to (7), the CL function (10) is free of (i) the computational bur-
den of inverting large matrices, and (ii) the statistical issue of estimating large dimensional
unconditional covariance/correlation matrices. In a closely related contribution, Engle,
Ledoit, and Wolf (2019) address the latter problem by shrinkage methods (see also Hafner
and Reznikova (2012)). In contrast, our approach is based on reducing the dimensionality

of the problem by considering many low-dimensional bivariate models.

Remark 2 Although numerical estimation of A by (11) involves inversion of a large number
of 2-dimensional Hj, (Y, \), the computational gains are still substantial. FEvaluation of
the objective function in (11) costs O(N) calculations. When CL is based on all pairs, this
means O(L?) calculations. This cost is favourable compared with the O(L?) calculations
required by the full likelihood in (7). One can also use a selection of pairs, e.q. the contiguous
pairs given by X1y = (r1e, 7o), Xor = (roe, 73¢)’, Xae = (raesrae)’s oo, Xve = (ro—14,70t)’; the
computational cost of this option is O(L). The simulation analysis of Section 5 indicates

that the contiguous- and all-pairs options perform similarly when L is moderately large.

Remark 3 The CL method is subject to efficiency loss, as it ignores potential dependence
between the bivariate likelihoods. The exact magnitude of this loss will depend on the model

under consideration; see, e.g., Mardia, Kent, Hughes, and Taylor (2009) and Kenne Pagusi,



Salvan, and Sartori (2015). While a theoretical analysis of this issue is beyond our scope,

our experiments not reported here indicate that the loss is almost negligible when N is large.

Remark 4 Our approach can also be used in the context of more structured models, which
impose stronger a priori constraints on the model. Factor models with time-varying volatility
are the leading examples of this, e.g. King, Sentana, and Wadhwani (1994), Fiorentini,
Sentana, and Shephard (2004) and Rangel and Engle (2012).

4 Examples

4.1 BEKK

We consider CL estimation based on the variance-tracking scalar BEKK model given in
(3). Let A = (a, B)" and v; = vec(I';), where a and /5 are scalar parameters, and I'; is a

(2 x 2) matrix. The conditional variance process for the j* pair is given by
Hj (7, \) =T (1 —a—B) +aX; X, + BHj 1 (7;,A) . (12)

Here X;; = H1/2th, where Z, is the (2 x 1) version of Z; defined in Section 2. Let the true

jt
parameter values be I'jo = F[X;;X},] and Ao = (o, fo)". Then for ljr(v;,A) as defined in

(9) and based on (12), the corresponding estimators are

T N

. 1 S 1 .

4 = vec (T E thX;»t) , and A\ =arg min — E Lir (5, A). (13)
=1

J=1

Let 0 = (7}, ... Ya X))y 00 = (Ygs s Yavos M) and 0 = (34, ..., 4%, ') The assumptions

and the main result are presented next.

Assumption 4.1 For all j, the distribution of Z;; is absolutely continuous with respect to

the Lebesque measure on R?, and zero is an interior point of the support of the distribution.
Assumption 4.2 The parameters a and 3 are such that o« >0, >0 and o+ 3 < 1.

Assumption 4.3 The process {X;,}1_, is strictly stationary and ergodic for all pairs.



Assumption 4.4 For all j, vjo € ©, and Ao € ©) where ©., and ©) are compact subsets
of R* and R?, respectively.

Assumption 4.5 For X\ € Oy, if X # Ao then for all j we have H;i (o, \) # Hji(7V 0, Mo)

almost surely, for all t > 1.
Assumption 4.6 E[||X,/||°] < oo for all pairs.
Assumption 4.7 (o, \o) is in the interior of © = O, x Oy for all j.

Theorem 4.1 Suppose Assumptions 4.1-4.7 hold. Then, 0 — 6y L3 0, and

/

ﬁ(é Q)i)]\/' 0 ]4N O4N><2 0 I4N O4N><2
—0, , 0

—J5' (00) Kn(00) —J5" (60) —J5" (00) Kn(00) —J5" (60)
as T — oo, where Jy (00), Ky (00) and Qo are as defined in Sections B.1 and B.3 in the
Supplementary Appendix.

Remark 5 We focus on scalar BEKK here, to keep the simulation and empirical analysis

parts tractable. However, one can also consider the more flexible non-scalar BEKK, letting
Hjt(f)/j; )\) = Fj — AF]'A/ — BPJ’B/ + AXj,tflle',tflA/ + BHj’tfl(’}/j, /\)B/ (14)

Here A and B are some (2 x 2) matrices, and so X = (vec(A)',vec(B)")" while ; remains
the same as before. In Theorem C.1 in Section C of the Supplementary Appendiz, we prove

that the CL estimator is consistent and asymptotically normal in this case, as well.

Remark 6 The CL estimator of Theorem 4.1 requires the same set of assumptions as the
ML estimator of PR (see their Theorems 4.1 and 4.2), with the only additional requirement
that they hold for all pairs (the same holds for non-scalar BEKK as Theorem C.1 reveals).
This is not surprising since the CL and ML objective functions are closely related: the CL
objective function, N~} Zjvzl Lir (%5, N), is the average of bivariate BEKK objective functions
for ML estimation, Ljr(%;,\). We note that this relationship is not specific to BEKK; it
would apply to any volatility model with pair-specific (vy;) and common (X) parameters. We

10



therefore expect this pattern, where CL estimation requires the same set of assumptions as

ML, to hold for a range of multivariate volatility models.

Remark 7 Some of our assumptions follow directly if they already hold for the L-dimensional
model in (3). Specifically, Assumption 4.1 holds if the same conditions hold for Z;. Next,
using Theorem 3.835 of White (2001) it is straightforward to show that Assumption 4.3
holds if X; is stationary and ergodic. Moreover, Assumption 4.6 is trivially implied by
E[||X:|°] < oo. Assumptions 4.2, 4.4 and 4.7 would directly hold for ~; if the same as-
sumptions hold for ~ (this is because the entries of v; are contained in ). One exception in
this discussion is Assumption 4.5 which does not necessarily follow from the corresponding
condition for the conditional variance of the L-dimensional model. However, we note that
Assumption 4.5 is used in proving that E[0*N " Z;\le Lit (7vj0, o) JONON'] is non-singular

and it would be possible to obtain this result even if Assumption 4.5 fails for some pairs.

Remark 8 The asymptotic variance of A= (d,B) is usually of more interest, which is

provided in Section B.J of the Supplementary Appendiz.

Remark 9 We note that the dimension ofé — 0Oy exceeds the number of the unique pa-
rameters to be estimated. For instance, in the all-pairs case the dimension of o — Oy is
2(L* — L) + 2 although there are ((L*> + L)/2) + 2 unique parameters to be estimated: this
is because of our notation where each unconditional covariance appears twice whereas each
unconditional variance appears L — 1 times in 6. Note that, for example, the notation of

PR similarly includes all covariances twice (see also their Remark 3.2).

4.2 cDCC

We next consider CL estimation of the cDCC model (Aielli (2013)). Let hj, ;(n;,) and
h;,+ (nj,) be the univariate volatility models for assets j; and jo, where 7;, and 7;, are the

model parameters. For illustration we assume that the univariate volatility model for all

assets is GARCH(1,1), and so 7;, and n;, are both (3 x 1) for all (ji,J2). Let €, (0;) =

—-1/2 ..
(5j1,t(77j1)7€j2,t(77j2>>/ where ej = (7]3'1777;'2),7 €t (njl) = rjhthjl,t/ (nj1>7 and Slmﬂarly for

11



€irt (1j,). Letting ¢ = (a, B)’, the cDCC model for the j** pair is given by

Hio (0;,5;(05,0).6) = Dji” (6) Rye (05,5 (67, 9) . 8) Dji” (67).
Rj (05,85 (0;,0).0) = Q"2 (0;,6) Qe (05,5 (05, 0),0) Qi ' (0;,0) .
Qi (05,55 (0;,0),0) = (1—a—=7p)S;(6;,9)
+a{Q1Y (05, 0) a1 (05) )0y (0)) Q142 (0,00} + BQje1 (0, 0) .
S (05,0) = EQ5" (0, 0) 0 (0;) € (05) Q1% (85, 0)],

where Dj; (0;) is a (2 x 2) diagonal matrix with the diagonal entries h;, ; (n;,) and hj, ¢ (9}, ).
Q5 (05, 0) is a (2 x 2) matrix consisting of the diagonal entries of Q;; (6;,5;, ¢).

Estimation of cDCC using composite likelihood uses the same revolatilisation step as in
Aielli (2013) which allows the intercept to be targeted, conditional on the correlation dy-
namics. First, for each pair j we obtain éj = (1}, 7;,) = argmax,, ,. (L3, Ly (,)
where lzT() is the log-likelihood function for asset i. Next, we define l;7(6;,5;,¢) =
T 5 (0,55, 6) where 1;(0;,S;,0) = —log|H;e(0;,5;,¢) — Xi,H;'(0;,5;,¢)X
Then, the composite likelihood estimator of ¢ is given by

aS—argmax—Zl]Té Si(0;,),9),

where S;(0;,¢) = T7' S0, Q3/%(0;, 0)e0(0,),(0;)Q5 % (05, ¢). Finally, S;(6;,¢) is the
estimator of .S; (6,0, ¢0) :

Due to their considerably more complicated structure, a complete asymptotic theory
is still missing for the DCC and ¢cDCC models (important contributions in this direction
are due to Aielli (2013), Francq and Zakoian (2016), and Fermanian and Malongo (2017)).
However, a heuristic argument for cDCC is provided in Sections 3.2 and 3.3 of Aielli (2013),
and our asymptotic treatment here will follow along similar lines. In particular, in Section
D.1.1 of the Supplementary Appendix we provide a heuristic proof of Sj(éj, ngﬁ) LN S; (00, ¢o)
and ¢ 5 ¢g as T — oo (primitive conditions for éj N 0,0 are already generally available for

many univariate volatility models). Key conditions for consistency are supy, 4 115;(6;, ¢) —

Si(0;,0)]| =0, supy, s, 6 L7 (05, S5, @) — Ellyr(0;, S5, 9)]| 2 0, and the identification condi-

12



tion that ¢y uniquely maximises E[(NT)™! Zjvzl thl it (850, S;(0j0, @), ¢)]. We note that
similar conditions are also required for the arguments in Section 3.2 of Aielli (2013), and
the two estimators are identical at L = 2.

It is straightforward to adapt the same line of reasoning as in Section 3.3 of Aielli (2013)
and obtain the asymptotic distribution for the entire collection of parameters (él, ey éN),
(gl (él, é), S N(éN, é)) and ¢ . However, in applications the interest is often on the asymp-
totic distribution of ngS only. As such, in Section D.1.2 in the Supplementary Appendix we

provide a detailed argument for obtaining
VT (¢ — ¢) 4 N(0z, INEnTy) asT — oco. (15)

The terms Jy and X are defined in equations (D.16) and (D.17) in Section D.1.2. The non-
standard three-step estimation of the cDCC model requires careful definition of the estimat-
ing equations and the relevant notation. For space considerations, we do this in the Supple-
mentary Appendix. Nevertheless, to provide some detail, X is the asymptotic variance of
the vector that contains the estimating equations for (6y, ...,0x), (S1 (61,0) , ..., Sx (O, )
and ¢. Jy, on the other hand, is a (2 x (10N + 2)) matrix based on the derivatives of
the estimating equations for ¢ and (él, s 91\;) As usual, Xy can be estimated by a HAC
estimator (Newey and West (1987)), whereas Jy can be replaced by its sample counterpart.

5 Monte Carlo experiments

5.1 Relative performance of estimators

We compare the CL method to ML estimation of the full dimensional model, which we call
2MLE (“2” stands here to denote the two-step structure where the first-step involves esti-
mation of a targeting matrix). We consider the CL estimator based on all pairs (2MCLE)
and on contiguous pairs (2MSCLE) as explained in Remark 2. We refer to the latter option
also as subset CL. Throughout we use the correctly specified volatility model for estimation
(e.g. if data are generated by scalar BEKK, then all estimators are based on scalar BEKK).

The first part of the Monte Carlo study is based on 2500 replications with T = 2000

13



Bias RMSE
2MLE 2MCLE 2MSCLE 2MLE 2MCLE 2MSCLE
L « I} ‘ « I} ‘ « I5) « B8 ‘ «a 8 ‘ «@ 15} ‘

a=.02,8=.97

3] .000 -.005] .000 -.005] .000 -.006 ]| .005 .009 | .005 .010 | .006 .012
10 [ -.001 -.003 | .000 -.004 | .000 -.004 || .002 .004 | .003 .006 | .003 .007
50 | -.005 -.000 | .000 -.004 | .000 -.004 || .005 .001 |.002 .005 |.002 .005
100 | -.009 -.001 | .000 -.004 | .000 -.004 || .009 .001 | .002 .005 | .002 .005

a=.058=.93
31-000 -.008]-.000 -.009] .000 -.010 || .008 .023 | .009 .025 ] .010 .029
10 | -.001 -.005 | -.000 -.007 | -.000 -.007 || .003 .009 | .005 .014 | .006 .015
50 | -.006 -.003 | -.000 -.006 | -.000 -.006 || .006 .004 | .003 .009 | .003 .009
100 | -.012 -.004 | -.000 -.006 | -.000 -.006 || .012 .004 | .003 .009 | .003 .009

a=.10,8 = .80
31-00l -.005]-001 -.006]-.001 -.006] .03 .028].014 .030 | .05 .033
10 | -.003 -.003 | -.001 -.005 | -.001 -.005 || .006 .011 | .009 .019 | .009 .019
50 | -.014 .001 | -.001 -.005 | -.001 -.005 || .015 .004 | .006 .012 | .006 .012
100 | -.026  .001 | -.001 -.005 | -.001 -.005 || .026 .003 | .006 .012 | .006 .012

Table 2: Bias and RMSE of the estimators of o and [ in the covariance tracking scalar
BEKK model. The estimators are: CL based on all pairs (2MCLE), CL based on a subset
of pairs (2MSCLE), and the full-dimensional likelihood (2MLE). Based on 2500 replications
with 7" = 2000.

while L € {3,10,50,100}. The returns are simulated using the scalar BEKK and ¢cDCC
models of Sections 4.1 and 4.2, respectively (for the cDCC part we fix the conditional
variance to be one, and so omit estimation of univariate GARCH model by setting h; = 1).
We consider three cases spanning a fair range of empirically relevant values of the temporal
dependence structure in multivariate volatilities, (o, 8) = (.02,.97), (.05,.93) or (.10,.80).
The long-run targets were constructed to have a strong factor structure and reflect typical
values found in the S&P 100. For BEKK, the unconditional covariance was generated
according to I' = w38 + Q where (i) w; = (0.2)%, (ii) the elements of § are given by
B; = v;/5 where v; ~ x2, and (iii) 2 is diagonal with each element generated according to
0.1 + 0.2u; /5 where u; ~ x2. Here i = 1,..., L. For ¢cDCC, the unconditional correlations
were generated from a single-factor model, ensuring that S, ; = mmy for i # " and S;; =1
for i = ¢/, where i,7/ = 1,..., L. We generate m; from a truncated normal with mean 0.5
and standard deviation 0.1, where the truncation occurs at £+4 standard deviations. This

means 7; € (0.1,0.9) and the average correlation in the cross section is 0.25. This choice
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Bias RMSE
2MLE 2MCLE 2MSCLE 2MLE 2MCLE 2MSCLE

L « B‘ « /6" « I} « B‘ « B‘ « 6‘

a=.02,8=.97

3] .00l -0l ] .00l -.012] .00l -.017 || .006 .033].007 .038 | .008 .059
10 | -.001 -.004 | -.000 -.005 | -.000 -.006 | .002 .005 | .002 .006 | .003 .009
50 | -.003 -.003 | -.000 -.005 | -.000 -.005 || .003 .003 | .001 .005 | .002 .006
100 | -.005 -.004 | -.000 -.005 | -.000 -.005 || .005 .004 | .001 .005 | .001 .005

a=.058=.93
31-000 -.005]-.000 -.006]-.000 -.007 || .008 .015 | .009 .016 | .01l .022
10 | -.002 -.001 | -.000 -.003 | -.000 -.004 || .003 .004 | .003 .006 | .005 .009
50 | -.009 .003 | -.001 -.003 | -.001 -.003 || .009 .003 | .002 .004 | .003 .005
100 | -.014  .002 | -.001 -.003 | -.001 -.003 || .014 .002 | .002 .004 | .002 .004

a=.10,8 = .80
37-00L -.007 [-.00l -.008 |-.001 -.010 ]| .016 .037|.017 .040 | .019 .051
10 | -.003 -.003 | -.001 -.005 | -.001 -.006 || .006 .011 | .007 .016 | .009 .022
50 | -.014  .000 | 001 -.004 | -.001 -.004 || .014 .004 | .004 .009 | .005 .011
100 | -.024 -.003 | -.001 -.004 | -.001 -.004 || .024 .004 | .004 .008 | .005 .010

Table 3: Bias and RMSE of the estimators of a and 8 in the cDCC model. The estimators
are: CL based on all pairs (2MCLE), CL based on a subset of pairs (2MSCLE), and the
full-dimensional likelihood (2MLE). Based on 2500 replications with 7" = 2000.

for S produces assets which are all positively correlated and ensures that the intercept is
positive definite for any cross-sectional dimension L. These results are not sensitive to the
choice of unconditional correlation as long as the target has a strong factor structure. In
both cases, estimation is subject to the constraints 0 < a<1,0< < l,anda+ <1
(nevertheless, none of the estimators in the simulations hit the parameter space boundary).

Results for BEKK and ¢cDCC are given in Tables 2 and 3, respectively, which contain
the bias and root mean square error (RMSE) of the estimates. For both BEKK and ¢cDCC
the full-dimensional 2MLE develops a significant bias in estimating « as L increases. This
is consistent with our earlier theoretical discussion. The same is not observed for 2MCLE
and 2MSCLE. These results confirm that our proposed approach is effective in estimating
the chosen volatility models for large collections of assets, without suffering from any bias.
We also note that the direction of the MLE bias observed in simulated data (Tables 2-3)
is in agreement with the results based on real data (Table 1), although the results differ

in their magnitudes. Misspecification is one possible cause for this difference, as the anal-
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Bias RMSE
2MLE 2MCLE 2MSCLE 2MLE 2MCLE 2MSCLE

T « B‘ « 6‘ « 15} « ﬁ‘ « /6" « B8

L =10
100 | -.021 -.161 | -.011 -.141 | -.009 -.218 || .025 .237 | .021 .221 | .028 .347
250 | -.006 -.018 | -.002 -.021 | -.002 -.026 || .008 .021 | .008 .026 | .012 .042
500 | -.003 -.005 | -.001 -.008 | -.001 -.009 || .005 .008 | .005 .011 | .007 .016

1000 | -.002 -.001 | -.001 -.003 | -.001 -.003 || .003 .004 | .004 .006 | .005 .009

2000 | -.001 -.000 | -.000 -.002 | -.000 -.002 || .002 .003 | .003 .004 | .004 .006

L =50
100 | -.060 -.915 | -.014 -.091 | -.013 -.108 || .050 .915 | .016 .103 | .018 .146
250 | -.022 -.034 | -.003 -.018 | -.003 -.019 || .022 .034 | .005 .020 | .006 .022
500 | -.013 -.004 | -.001 -.007 | -.001 -.007 || .013 .004 | .003 .009 | .004 .010

1000 | -.009  .003 | -.001 -.003 | -.001 -.003 || .009 .003 | .002 .004 | .003 .005

2000 | -.006 ~ .003 | -.000 -.001 | -.000 -.001 || .006 .003 | .001 .002 | .002 .003

L =100
100 - - |-.014 -.090 | -.014 -.098 - -1.016 .103 | .017 .121
250 | -.037 -.108 | -.003 -.019 | -.003 -.019 || .037 .109 | .004 .020 | .005 .021

500 | -.021 -.013 | -.001 -.007 | -.001 -.007 || .021 .013 | .003 .008 | .003 .009
1000 | -.014 .001 | -.001 -.003 | -.001 -.003 || .014 .002 | .002 .004 | .002 .004
2000 | -.010  .004 | -.000 -.001 | -.000 -.001 || .010 .004 | .001 .002 | .002 .003

L =200
100 - - |-.014 -.086 | -.013 -.082 - - 1.016 .092 | .016 .095
250 | -.050 -.913 | -.002 -.018 | -.003 -.018 || .050 .918 | .004 .019 | .005 .019
500 | -.033 -.053 | -.001 -.007 | -.001 -.007 || .033 .053 | .002 .008 | .003 .008

1000 | -.021 -.006 | -.000 -.003 | -.001 -.003 || .022 .006 | .002 .004 | .002 .004

2000 | -.015 .003 | -.000 -.002 | -.000 -.001 || .015 .003 | .001 .002 | .001 .002

Table 4: Bias and RMSE of o and /3 in the cDCC model, where the true values are oo = .05
and § = .93. The estimators are: CL based on all pairs (2MCLE), CL based on a subset of
pairs (2MSCLE), and the full-dimensional likelihood (2MLE). Based on 2500 replications.

ysis of Table 1 can be subject to misspecification of some type: the volatility model may
be misspecified and/or the volatility parameters a and  can be time-varying. It is also
possible that the severity of the effect of dimensionality depends on the type of misspeci-
fication. More generally, there may be other factors at play, beyond misspecification. An
investigation of this is beyond our scope, and is left for for future work.
Next, to obtain a broader picture, we consider the same analysis with L € {10, 50, 100,200}

and T € {100, 250, 500, 1000, 2000}, for the specific case of cDCC. The results are pre-
sented in Table 4 (for size considerations, we report the results for («, 5) = (.05,.93) only).

Not surprisingly, for any estimation method and any fixed L, bias decreases with 7. For
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Figure 1: Standard deviation for the CL estimator based on all pairs (2MCLE) and on a
subset of pairs (2MSCLE), as L varies from 2 to 100. Calculated from simulated data for
the cDCC model with o = .05, § = .93.

any given T, the bias of 2MLE clearly deteriorates with L; for example, at L = 200, «
is biased downward by 30% even when T" = 2000. The same is not observed for 2MCLE
and 2MSCLE; in fact, for 7" > 250 the CL methods are not subject to any serious bias.
Moreover, a systematic deterioration in bias as L increases is absent. Interestingly, when
T = 100, B seems to improve with L. Finally, simulation results reveal that 2MCLE and
2MSCLE are feasible even when 7' < L. On the other hand, results for 2MLE in the T' < L
case could not even be reported as the estimator failed to converge in most replications.
Overall, we observe that the full-dimensional 2MLE suffers from a non-vanishing bias
as L increases, but CL is immune to this problem. Moreover, 2MCLE and 2MSCLE have
better RMSE for all cross-section sizes and parameter configurations. Importantly, there
seems to be little difference between using all or only contiguous pairs. Hence, 2MSCLE

stands out as an attractive option for large dimensional problems.

5.2 Efficiency gains with increasing cross-section size

Clearly, the gap between the number of pairs used by 2MCLE and 2MSCLE widens quickly
with L. For example, when L = 50, 2MCLE is based on 1225 pairs while 2MSCLE uses
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49 pairs. Hence, an important question is whether the efficiency loss due to using only a
subset of all pairs is large enough to render 2MSCLE an unattractive option.

Figure 1 plots the square root of the average estimator variance against L, for the cDCC
model when estimated by 2MCLE and 2MSCLE. The standard deviations decline rapidly as
the cross-section dimension grows. Of course, as 2MCLE is always based on a larger number
of pairs, its standard deviation is also always below that of 2MSCLE. However, importantly,
the difference between the standard deviations drops very quickly and becomes negligible
by L = 100. The corresponding analysis for BEKK, which is reported in the Supplementary
Appendix, delivers the same results except that, interestingly, the efficiency loss is even less
(see Figure D.1 in Section D.2 in the Supplementary Appendix). This is a strong argument,
for exploiting the computational simplicity of 2MSCLE.

5.3 Performance of asymptotic standard errors

We now assess the accuracy of the asymptotic covariance estimator, using simulated data
for various («, 3). These simulations are based on 1000 replications with 7" = 2000. The
asymptotic variance estimator is based on (15) for cDCC and Theorem 4.1 for scalar BEKK.
For ¢DCC, we use the HAC variance estimator of Newey and West (1987) to estimate
Yy, while Jy is estimated by using its sample version evaluated at (é, §(é, (13),(;3) The
asymptotic variance for BEKK is estimated similarly. The results for the scalar BEKK
and ¢cDCC models are virtually identical, and so we only discuss those of the cDCC.

The results are presented in Table 5, which contains the square roots of (i) the average

1000 ~9

asymptotic variance, 02 = o5 >, 02, Where 62

-, is the estimated variance for & in

replication r and (ii) the sample variance of the parameter estimates across replications,
~2 1 1000 / ~ ~\ 2 . =~ 1 1000 ~ N . A . . .
02 = To55 Sorer (Gr — &) with & = 55 3,2} G where &, is & in replication r, and

similarly for 5. The results confirm that the asymptotic covariance specification in (15) is

accurate for L > 10, and therefore provides a sensible basis for inference.

5.4 Assessing CLT Accuracy

The asymptotic distribution for the CL estimator of BEKK was derived in Theorem 4.1,

which requires E[||X;:||°] < co. In this section we assess the quality of this CLT, and also
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Scalar BEKK cDCC
2MCLE 2MSCL 2MCLE 2MSCL

L Oa Ou ‘ o] 5,3 Oa Oa ‘ o 5’5 Oa Ou ‘ o (5’5 Oq Ga ‘ g 5’3
a =.02, § =97

3 .009 .008 | .121 .176 | .010 .009 | .139 .190 || .010 .008 | .261 .152 | .008 .007 | .052 .028

10 | .001 .001 | .004 .003 | .002 .002 | .005 .007 || .002 .002 | .004 .004 | .003 .003 | .008 .007

50 | .001 .001 | .002 .001 | .002 .002 | .002 .002 || .001 .001 | .002 .002 | .002 .002 | .003 .003

100 | .001 .000 | .001 .001 | .001 .002 | .001 .001 .001 .001 | .002 .001 | .001 .001 | .002 .002
a =.05,  =.93

3 .008 .007 | .013 .013 | .009 .010 | .018 .020 || .009 .009 | .016 .015 | .011 .010 | .021 .019

10 | .003 .004 | .006 .005 | .004 .006 | .006 .007 || .003 .003 | .006 .006 | .005 .005 | .009 .009

50 | .001 .002 | .003 .004 | .003 .003 | .004 .004 | .002 .002 | .003 .003 | .003 .003 | .004 .004

100 | .001 .002 | .003 .004 | .001 .001 | .003 .004 (| .002 .002 | .003 .003 | .002 .002 | .003 .003
a =.10, 5 =.80

3 .015 .019 | .032 .036 | .019 .021 | .047 .054 || .017 .016 | .041 .040 | .020 .019 | .052 .049

10 | .006 .006 | .013 .012 | .008 .008 | .020 .018 || .007 .006 | .015 .014 | .009 .010 | .022 .022

50 | .003 .004 | .006 .007 | .004 .005 | .008 .009 || .004 .004 | .008 .008 | .005 .005 | .011 .011

100 | .002 .002 | .006 .007 | .003 .004 | .008 .009 || .003 .003 | .007 .007 | .004 .004 | .009 .009

Table 5: Square root of average asymptotic variance, denoted o, and o3, and standard
deviation of the Monte Carlo estimated parameters, denoted ¢, and o3. Based on 2500
replications for the scalar BEKK and ¢cDCC models with 7" = 2000.

investigate its sensitivity to existence of moments. The baseline model is a scalar BEKK
with (o = .05, f = .93), which produces return series with more than 8 moments. We also
simulate data from scalar BEKK processes parameterised to have 6 to 4 moments. Our
theory applies to the case with 6 moments but not to the process with 4. The parameters
of these additional simulated returns were generated by restricting the persistence to be
a+ 3= .98 using a = .07 (E[X}] < o0) and a = .14 (E[X}}] < 00).

Figure 2 contains Q-Q plots of the normalised estimates by 2MCLE which have been
centered and scaled according to the distribution in the CLT, where L = 50 and T = 2000.
The CLT provides an accurate description of the distribution of the parameter errors when
the model parameters are chosen to produce 6 or more moments. When the model does
not have 6 moments, the bias in the estimated a and f is sufficient to push the distribution
away from the 45-degree line. The Supplementary Appendix contains results for other
configurations of L and T (see Figures D.2 and D.3). These reveal that increasing the
number of series has no impact on the quality of the CLT approximation. Decreasing

the sample size adversely affects the distribution due to a small increase in bias in 5. The
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Figure 2: Q-Q plots of estimates of o and 8 from Scalar BEKK models parameterized to
have 8, 6 and 4 finite moments. The normalized parameter errors are plotted along the
y-axis. All estimates were produced from models with L = 50 and T" = 2000 using all-pairs
2MCLE.
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appendix also contains Q-Q plots of the normalised parameters estimated by 2MLE (Figure
D.4). These estimates are so severely biased that the entire distribution is on one side of

the center — & is uniformly too small and B is always larger than the true value.

5.5 The role of covariance target uncertainty

Next, we investigate the effect of the dimensionality of the problem on estimating the long-
run target matrices I' (for BEKK) and S (for ¢cDCC). All methods we have considered
use the average outer-product of the returns to estimate these quantities. For the full-
dimensional case, it is well-known that this is subject to bias since the estimation problem
is O(L?) dimensional which exceeds O(T') even for moderate values of L. By definition,
no such issue exists for 2MCLE and 2MSCLE since I'; and S; are always (2 x 2). As
the estimates of these objects enter the likelihood function via the conditional variance
specification, significant bias in these estimates would have a substantial impact on Fljt
and H,, and consequently on the estimation of («, 3) .

We explore this issue for scalar BEKK, by examining the condition number of the con-
ditional covariance matrix for both 2MLE and 2MCLE. Eigenvalues, especially small eigen-
values, play an important role when inverting matrices or computing the log-determinant.
Conditioning numbers provide a simple way to express the relative accuracy of eigenvalue
estimates and the accuracy of a matrix inverse. Here we examine the accuracy of the long-
run target estimator of the 2MLE and 2MCLE methods. In particular, the ratio of the
condition numbers of H, and H, for 2MLE is given by

~ )\t’max/j\t,min
Ut = Y )
t’max/)‘t,min

where Apin ¢, A2ty -, AL—1, Amax,¢ are the ordered eigenvalues of H,, the conditional covari-

ance based on estimated parameter values. A;min and A\ max are defined similarly for H,
the conditional covariance based on the true parameter values. We also compute the same

for the bivariate conditional covariances for each unique pair j = (j1, j2),

A 5
R Jjt,max Ajt,min
Ui = W
Jt,max Ajt,min
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Figure 3: Sample distributions for the average ratio of realised (sample) condition number
to true condition number. Based on simulated data from the scalar BEKK model with o =
.05 and 5 = .93. The top panel contains the ratio for the 2MCLE for L € {50, 100, 250, 500}
for "= 1000 and T = 2500. The bottom panel contains the same for 2MLE.

Data are simulated for the scalar BEKK model using the same specification as described
in Section 5.1. In particular, we let o = .05 and = .93. To isolate the covariance matrix
estimation problem from estimation of («, 8), we compute 1y, and @;; using the true values
of a and (. Therefore, any difference stems from the use of I' or I.

Our results are summarised in Figure 3. The top panel plots the sample density of
Tepr = T~ maxi<j<y Uy, for L € {50, 100,250,500}, and T = 1000 and 2500 (we
consider all distinct pairs, so N = (L? — L) /2). The bottom panel plots the same for
Upp = T71 ZtT:1 irs. Sample distributions of %, reveal that the ratio of conditioning
numbers deteriorates rapidly for 2MLE as L increases, even when 7' = 2500. The worst
observed ratio for 2MLE is over 40, which occurs with L = 500 and T" = 1000. This contrasts
heavily with 2MCLE, the worst observed ratio for which is less than 1.8. Clearly the ratio
increases with L and decreases with T for both methods. However, the magnitude of these
effects is quite different. For example, an increase in L does not have the same dramatic
effect on 2MCLE. To further quantify this difference, in Section D.4 in the Supplementary

Appendix we back out the implied magnitudes of these effects from simulated data.
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EBEE 2MCLE

L « 15} Q 6]
10 | 0.0165 0.0545 | 0.0118 0.0190
251 0.0162 0.0515 | 0.0116 0.0185
50 [ 0.0163 0.0547 | 0.0114 0.0184

Table 6: RMSE of the EBEE and all-pairs CL (2MCLE) methods for diagonal BEKK
estimation. Columns 2-3 report the results for EBEE whereas the results for 2MCLE are
contained in the last two columns. The number of assets, L, is reported in the first column.
The true underlying model is scalar BEKK with a = .05 and $ = .93. In all cases T" = 1000.
Based on 1000 replications.

5.6 Comparison with the EBEE method

Francq and Zakoian (2016) have recently introduced a new method to estimate some mul-
tivariate models using only univariate estimators. This method is known as equation-by-
equation estimation (EBEE). In particular, it also encompasses the diagonal and semi-
diagonal BEKK models (the latter specification allows for spillovers through the shocks
but limits the model to include only lags of own variance or covariance). By this approach,
the parameters governing the dynamics in the model can be estimated using L univariate
augmented GARCH models. In this part, we conduct a small simulation study to com-
pare EBEE to composite likelihood estimation in the particular case of diagonal BEKK.
Although we fit a diagonal BEKK model in this study, to keep the analysis tractable we
use simulated data from a scalar BEKK model with o = .05, g = .93, for T' = 1000 and
L € {10,25,50}. The EBEE is implemented using L univariate GARCH(1,1) models which
produce consistent estimates of the 2L parameters in this model. The CL estimator is
based on the all-pairs specification (2MCLE) and jointly estimates the 2L parameters. Ta-
ble 6 contains the RMSE statistics for the two methods, based on 1000 replications. In all
specifications CL clearly outperforms the EBEE approach. We also note that the RMSE of
the model parameters in the EBEE is invariant to the cross-section size. This is a natural
consequence of estimating L univariate models since univariate time-series used in the esti-
mators are generated using the same parameters and shock distribution. The CL estimator
improves slightly as the number of assets increases despite the increase in the number of
parameters. This occurs since the number of component likelihoods is O(L?) and so there

are some small reductions in parameter estimation error in larger cross-sections.
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BEKK cDCC

2MLE 2MCLE 2MSCLE 2MLE 2MCLE 2MSCLE

L a B @ B8 « B Q B o B o B
5 | .0189 | .9794 | .0287 | .9692 | .0284 | .9696 || .0141 | 9757 | .0143 | .9829 | .0099 | .9885
(.0081) | (0002) | (.0083) | (:0094) (.0487) | ((0846) | (.0033) | (.0045)

10 | .0125 | .9865 | .0281 | .9699 | .0272 | .9709 || .0063 | .9895 | .0107 | .9881 | .0093 | .9886
(.0055) | (0063) | (.0054) | (:0062) (.0012) | (0016) | (.0016) | (.0018)

25 | .0081 | .9909 | .0308 | .9667 | .0307 | .9668 | .0036 | .9887 | .0100 | .9871 | .0089 | .9889
(.0047) | (:0055) | (.0049) | (.0056) (.0009) | (:0017) | (.0011) | (.0012)

50 | .0056 | .9926 | .0319 | .9645 | .0316 | .9647 | .0022 | .9867 | .0101 | .9856 | .0092 | .9869
(.0046) | ((0056) | (.0047) | (:0057) (.0008) | (0018) | (.0010) | (.0019)

96 | .0041 | .9932 | .0334 | .9636 | .0335 | .9634 || .0017 | .9711 | .0103 | .9846 | .0094 | .9860
(.0041) | (0049) | (.0043) | (:0051) (.0009) | (:0019) | (.0009) | (.0014)

Table 7: Parameter estimates for the scalar BEKK and ¢cDCC models, from the full-
dimensional likelihood method (2MLE), composite likelihood method based on all pairs
(2MCLE) and composite likelihood method based on only the contiguous pairs (2MSCLE).
The database is built from daily returns on 95 companies plus the index from the S&P100,
from January 1997 until December 2006. For 2MCLE and 2MSCLE, numbers in paren-
theses give the asymptotic standard errors.

6 Empirical comparison

In this part, we analyse the performances of 2MLE, 2MCLE and 2MSCLE in several in- and
out-of-sample empirical exercises. Our dataset consists of all companies which were at one
point listed on the S&P 100, plus the index itself. The data cover the period from January
1, 1997, to December 31, 2006, and is taken from the CRSP database. This database has
124 companies although 29 have one or more periods of non-trading, (e.g. prior to IPO or
subsequent to an acquisition). Selecting only the companies that have returns throughout
the sample yields a panel of returns with 7" = 2516 and L = 96, including the market index.
We set the first asset as the market index and arrange the other assets alphabetically by
ticker (for stocks that changed tickers during the sample, the ticker on the first day of the
sample was used). In Section 6.3 we will extend our analysis to S&P 500 using the same

choice criteria as above, yielding a collection of 480 assets (including the index).

6.1 In-sample comparison

We start with a comparison of parameter estimates for the BEKK and ¢cDCC models
obtained by the ML and CL methods. The results are given in Table 7. The numbers in

parentheses are the standard errors. The results for the composite likelihood estimators
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Figure 4: To investigate the sensitivity to random selection of pairs, we look at the density
of the CL estimator based on L — 1 distinct but randomly chosen pairs. The top row gives
the density of estimators of the cDCC model, while the bottom row presents the same for
the scalar BEKK model. For each subfigure, the lower portion provides a scatter plot of
individual estimates, whereas the upper portion presents their sample distribution.

are reasonably stable with respect to L and they do not vary much as we move from using
all pairs to a subset of them. Estimates from 2MLE are markedly different. The most
important difference, of course, is that the CL method estimators are not subject to a bias
as L grows, whereas 2MLE estimators yield extreme values for & for large L — in this case
close to being non-responsive to the data.

It is interesting to see how sensitive the contiguous pairs estimator is to the selection
of the subset of pairs. To this end, we randomly select 1000 different sets of L — 1 pairs
and obtain parameter estimates for each selection. A scatter plot of these estimates, along
with their sample distributions, are provided in Figure 4. It is clear that the estimates are
hardly affected by the selection of pairs.

To examine the fit of the models, the conditional correlations with the market index

are calculated for each of the 95 individual stocks from S&P 100, using estimates by the
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Figure 5: How do the correlations with the market change over time? Plot of the median,
interquartile range, minimum, and maximum of the correlations of the 95 included S&P
100 components with the index return. For each day in the sample, these 95 correlations
are obtained and sorted, to produce the daily quantiles. The left panel produces the results
based on estimates by the CL method based on all pairs (2MCLE) whereas the right panel
presents the same for the full-dimensional likelihood method (2MLE).

2MCLE and 2MLE methods. Figure 5 contains the median, inter-quartile range, and the
maximum and minimum of these conditional correlations across the 95 stocks. The param-
eter estimates from the 2MCLE produce large, persistent shifts in conditional correlations
with the market, including a marked decrease in the conditional correlations near the peak
of the technology boom in 2001. The small estimated « for 2MLE produces conditional
correlations which are nearly constant and exhibit little variation even at the height of the

technology bubble in 2001.

6.2 Out of sample comparison of hedging performance

To examine the practical implications of using the different estimation methods at hand,
we examine the hedging errors of a conditional CAPM model (with the S&P 100 index

proxying for the market index). In particular, using one-step ahead forecasts, we compute
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the conditional time-varying market betas as @t = ﬁilt/ 2ﬁim7t /ﬁrlr{f where hy = Var(ry|Fi—1),
bt = Var(rpe| Fiz1)s pime = Corr(rig, rme| Fi—1) and ¢ = 1,2,..., L. We use the same
univariate models for h;; and h,,,; throughout. This ensures that the differences in hedging
errors are attributable to differences in correlation forecasts only, which in turn is solely
attributable to the estimation method employed. The corresponding hedging errors are
computed as v;; = 1, — ,/B\i’trm,t. Here 7 is the return on the i*" asset and 7, is the return
on the market. This exercise is conducted using the first 75% of the sample (January 2,
1997 - July 1, 2002) as the “in-sample” period for parameter estimation, and the remaining
part (July 2, 2002 - December 31, 2006) as the evaluation period.

We use the Giacomini and White (2006) (GW) test to examine the differences in hedging
errors. The GW test is designed to compare forecasting methods, which incorporate such
things as the forecasting model, sample period and, importantly for our purposes, the
estimation method employed. Let &t = {/V\it (ﬁ?tM CLE ) }2 — {ﬁit (ﬁ?tM LE ) }2 be the difference
in the squared hedging errors, where dependence on the estimation method is explicit.
If neither estimator is superior in forecasting correlations, this difference should have 0
expectation. If the difference is significantly different from zero and negative, 2MCLE
would be the preferred method, while significant positive results would indicate favor for
2MLE. The null of Hj : E[;S\lt] = 0 is tested using the statistic GW = &/1 [avar (\/T&),
where §; is the average of b over the out-of-sample period. Under mild regularity conditions
GW is asymptotically normal. See Giacomini and White (2006) for further details.

For a given comparison (e.g cDCC with 2MLE vs ¢cDCC with 2MCLE), the test of equal
hedging ability is conducted individually for each of the 95 assets. For each of these, there
are three outcomes: the test favours the first method, or the second method, or it remains
inconclusive. Results of these tests for all the comparisons considered here are produced
in Table 8. Rows 2 and 6 provide the results for cDCC and scalar BEKK, respectively.
In both cases, whenever the GW test is conclusive, it is clearly in favour of the composite
likelihood method. In the case of BEKK, the picture is slightly sharper where only 1 in 95
cases is in favour of 2MLE.

We also compare cDCC 2MCLE and BEKK 2MCLE to other possible approaches to

modelling multivariate volatility. First, we investigate the advantages of information pool-
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Model A | Favours A | No Decision | Favours B | Model B
c¢cDCC 2MCLE 24 63 8 c¢cDCC 2MLE
cDCC 2MCLE 92 3 0 DECO
cDCC 2MCLE 18 68 9 Bivariate cDCC
c¢cDCC 2MCLE 9 82 4 EWMA
BEKK 2MCLE 29 65 1 BEKK 2MLE
BEKK 2MCLE 50 44 1 Bivariate BEKK

Table 8: Which model and estimation strategy leads to smallest hedging errors? Giacomini-
White test results for the null of equal out-of-sample hedging performance, at 5% level of
significance. For any particular comparison, the test is conducted for each of the 95 assets.
The test can favour model A, model B or be indecisive. The Table records the number of
assets which fall in each of these three buckets.

ing: the CL approach is based on the assumption that all bivariate models have the same
(e, B), which makes information pooling attractive. So, a question of interest is whether
relaxation of this assumption leads to better hedging performance. We investigate this
by comparing hedging based on a single pooled estimator against that based on different
parameters for each pair. The results of this for cDCC and BEKK are reported on rows
4 and 7 of Table 8, respectively. For both models, our test results indicate that pooling
delivers better performance. In the case of BEKK, the difference is substantial: assuming
a common («, ) delivers better results in 50 cases, against only one win for no-pooling.
In order to understand why the restrictive assumption of parameter homogeneity across
pairs delivers better results, we look at the sample distribution of (&, BJ) for each pair j in
Figure 6, for the cDCC model. There is a significant scatter. In addition, although in some
cases &, + f; is quite small, in 22 cases this sum is at the unit boundary. Such unit root
models (often called EWMA models) can perform poorly in terms of hedging. A simple

and popular example is RiskMetrics, given by
Hy=ar,qr,_; + (1 —a)H_, (16)

where « is equal to 0.06 for daily and 0.03 for monthly returns.

Figure 7 shows four examples of estimated time varying correlations between a specific
asset and the market, drawn for 4 pairs of returns we have chosen to reflect the variety we
see in practice. The vertical dotted line indicates where we move from in-sample to out-of-

sample. Top right shows a case where the estimated bivariate model and the fit from the
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Figure 6: Should the data be pooled across pairs? Separately estimated o; and f; for each
bivariate (¢cDCC) submodel for the beta-pair of the market and an individual asset. The
broken vertical line marks the CL estimator obtained under the assumption of parameter
homogeneity — which acts as a pooling device. For each subfigure, the lower portion
presents the scatter plot of the estimates for each pair while the upper portion provides
the sample distribution of these.

multivariate model are indistinguishable, both in- and out-of-sample. The top left shows
a case where the fitted bivariate model has the correct dependence but the estimated « is
relatively large, and so the fitted correlation is very noisy. The bottom left is the flip side
of this, where the bivariate model estimates & = 0 and so produces a constant correlation.
The bottom right is an example where the EWMA model in (16) is in effect imposed in the
bivariate case, which produces a poor out-of-sample fit. Indeed, as the results in row 5 of
Table 8 reveal, cDCC outperforms RiskMetrics in terms of out-of-sample hedging errors.
Finally, we consider the linear equicorrelation model of Engle and Kelly (2012), also
known as DECO. This model has a similar structure to the DCC-type models, with each
asset price process having its own ARCH model. However, this model assumes that asset

returns have equicorrelation, in the sense that the time-changing correlation amongst assets
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Figure 7: Comparison of estimated conditional correlations and out-of-sample projections
for different selections of pairs. The comparison is between the high dimensional model
(2MCLE) which assumes parameter homogeneity across pairs, and the bivariate model
which allows for parameter heterogeneity. All results are based on the cDCC model. Top
left suggests that the bivariate model is overly noisy. Top right presents a case where both
approaches yield basically the same result. Bottom left estimates a constant correlation
for the bivariate model, while the multivariate model is more responsive. Bottom right is
a key example as we see it quite often. Here the bivariate model is basically estimated to
be an EWMA, which has very poor out-of-sample fit.

is common across the cross-section of assets. In particular, the correlation matrix is given
by Ry = pyt/ + (1 — py) I, with p, = w+~yu;_1+ Bpi_1, where u,_q is new information about
the correlation in the devolatilised r;_;. A simple approach would be to take u;_; as the
cross-sectional MLE of the correlation based on this simple equicorrelation model. Row 3
of Table 8 compares the hedging performance of this method with the ¢cDCC fit. We can
see that ¢cDCC is clearly uniformly superior.

We finish this part by noting that one can find other interesting out-of-sample compar-
isons. One example would be to focus on estimating the minimum variance portfolio, along

the same lines as in Section 6.2 of Engle, Ledoit, and Wolf (2019). In the interest of space,
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BEKK cDCC

2MLE 2MCLE 2MSCLE 2MLE 2MCLE 2MSCLE

L Q@ B e 15} Q@ B8 Q B8 e B Q@ I}
51.0261 .9715 | .0369 .9603 | .0312 .9664 | .0101 .9823 | .0133 .9794 | .0070 .9912
(.0057)  (.0065) | (.0053)  (.0061) (.0041)  (.0081) | (.0033)  (.0038)

25 | .0080 .9909 | .0300 .9670 | .0289 .9682 || .0030 .9908 | .0083 .9885 | .0071 .9911
(.0062)  (.0075) | (.0055)  (.0067) (.0015)  (.0031) | (.0011)  (.0016)

50 | .0055 .9932 | .0282 .9692 | .0277 .9698 || .0018 .9882 | .0078 .9887 | .0073  .9901
(.0051)  (.0062) | (.0049)  (.0059) (.0010)  (.0021) | (.0010)  (.0019)

100 | .0034 .9934 | .0296 .9670 | .0292 .9674 | .0015 .9524 | .0073 .9881 | .0076 .9866
(.0046)  (.0057) | (.0045)  (.0056) (.0007)  (.0015) | (.0010)  (.0028)

250 | .0015 .9842 | .0322 .9633 | .0322 .9633 || .0020 .5561 | .0076 .9872 | .0080  .9858
(.0049)  (.0064) | (.0048)  (.0063) (.0007)  (.0015) | (.0016)  (.0039)

480 | .0032 .5630 | .0290 .9672 | .0290 .9672 | .0013 .2556 | .0073  .9874 | .0079  .9863
(.0041)  (.0054) | (.0040)  (.0053) (.0007)  (.0016) | (.0008)  (.0020)

Table 9: Parameter estimates for the scalar BEKK and ¢cDCC models, from the full-
dimensional likelihood method (2MLE), composite likelihood method based on all pairs
(2MCLE) and composite likelihood method based on only the contiguous pairs (2MSCLE).
The database is built from daily returns on 480 companies of the S&P 500, from January
1997 until December 2006. For 2MCLE and 2MSCLE, numbers in parentheses give the
asymptotic standard errors.

we leave the investigation of this and other relevant examples to future work.

6.3 Extending the empirical analysis

In this part we extend the analysis of Section 6.1 to up to L = 480. Our database consists
of the returns of all equities in the S&P 500 that were continuously available from January
1, 1997 to December 31, 2006. This results in 480 unique assets, including the S&P 500
index, with 2516 observations for each. The data were extracted from CRSP and series
were ordered alphabetically according to their ticker on the first day of the sample. Results
are presented in Table 9.

Considering BEKK, 2MLE shows signs of bias as the cross-sectional dimension increases;
indeed, for the two largest panel sizes the fitted volatilities would be virtually constant.
When L = 480, [ also shows a large downward bias. The CL estimates are very similar,
all with & ~ .03, B ~ .96, and the standard errors decline modestly as L increases. For
large L the difference between the contiguous- and all-pairs estimators is negligible.

We next turn to cDCC. For this wider set of data the best performing volatility model
was the GJR-GARCH(1,1), where hy; = w; + 6irz'2,t—1 + /yirzt—ll[ri,t—l<o] + K;hiy— for i =

1,..., L. The 2MLE estimate of a exhibits strong bias as the sample size increases and for
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L | 2MLE | 2MCLE | 2MSCLE

5 248 0.1s 0.2s
25 46s 2.1s 0.2s
50 2m 10s 10s 0.5s

100 | 1h 50m 39s 0.8s
250 | 15h 11m 4m Ts 1.6s
480 | 85h 33m | 18m 6s 4.5s

Table 10: CPU time required to estimate a covariance tracking scalar BEKK on the assets
of the S&P 500. All models were estimated on a 2.5GHz Intel Core 2 Quad.

L > 250 the ( estimate is also badly affected. This contrasts with the estimates by 2MCLE
and 2MSCLE, where & ~ .008 and & + 3 ~ .995.

Finally, Table 10 presents the computation times for each method, for the specific case
of scalar BEKK. The 2MLE method takes around 3.5 days on the L = 480 problem, while
for L = 25 the time is quite modest being under a minute. This shows the impact of the
O(L?) computational load. The composite methods are much more rapid than 2MLE, with
2MCLE still being quite fast for L = 100 - about 200 times faster than 2MLE. 2MSCLE
is fast even when L = 480, just taking a small handful of seconds. This means it is around

68, 000 times faster than 2MLE in this vast dimensional case.

7 Conclusion

This paper has introduced a new method for estimating large dimensional time-varying
covariance models, which is easy to implement, computationally fast, and free of the bias
that troubles standard estimation approaches. Importantly, the proposed method works
well even when the number of assets is much larger than the time dimension. We have
investigated the theoretical and empirical properties of this approach in detail for BEKK
and ¢cDCC. Nevertheless, the proposed approach is generally applicable to other ARCH-
type multivariate models.

Recent interest in high-dimensional multivariate volatility modelling has led to a flour-
ishing literature (e.g. Hafner and Reznikova (2012), Bauwens, Braione, and Storti (2017)
and Engle, Ledoit, and Wolf (2019)). It would be both interesting and timely to undertake
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a comprehensive comparison of alternative approaches, using detailed simulation studies

and relevant empirical applications. We leave this idea to future work.

SUPPLEMENTARY MATERIAL

Supplementary Appendix: The Supplementary Appendix consists of four sections, A
through D. Section A contains notation and general results, Sections B and C contain
the proofs for the scalar- and non-scalar BEKK models, respectively, whereas Section

D contains other additional material. (.pdf file)
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