
Web Appendix 2: Proofs  
Proof of Proposition 1.  Proposition 1 is restricted to the case where hypotheses 1h  and 2h  

belong to class (7).   Note first that any finite state space can be represented as { }KX 1,0=  
generated by the product of K binary dimensions.  We assume that K>2 to allow for hypotheses, 
data and scenarios.   If 1h  and 2h  have the same set of feasible scenarios ( 21 SS = ) then they 
necessarily fix the same set of dimensions ( 21 II = ).  Since dimensions are binary, it follows that 

12 hh = .  For simplicity, focus on the class of problems where: i) the hypotheses 1h , 2h  fix the 
value of only one dimension  and ii) the data d fix the value of N-1 other dimensions, N<K.  The 
condition SSS == 21 still holds. 

To prove claim 1), apply Definition 1 and Assumption A2 to find that the 
representativeness of Ss∈  for 1h  is equal to 

[ ])Pr()Pr(/)Pr()Pr( 2111 sdhsdhsdhdsh ∩∩+∩∩∩∩=∩ . The representativeness of Ss∈  

for 2h  is equal to )Pr(1)Pr( 12 dshdsh ∩−=∩ . The representativeness of scenarios for the two 

hypotheses is thus perfectly inversely related, formally 1
21

+−= kMk ss  for k = 1,…,M. 

Consider now claim 2.i).  For any b < M, 1h  is represented with scenarios { } bk
ks ≤1 , while 

2h  is represented with { } bk
kMs ≤

−+1
1 . From (9), the odds of 1h  are (weakly) over-estimated if and 

only if: 
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Suppose that )Pr( 11 dhsk ∩  and )Pr( 21 dhs k ∩  strictly decrease in k.  It then follows that the 

above condition is met for every b < M.  To establish a contradiction, suppose that for a certain 
b* < M the above condition is not met, that is  
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Then, for some b** ≤ b* , it must be the case that )Pr()Pr( 2
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dhsdhs bMb ∩<∩ −+ .  But since 

)Pr( 11 dhsk ∩  and )Pr( 21 dhs k ∩  are strictly decreasing in k, it must also be the case that 
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111 dhsdhs bMb ∩<∩ −+  for all b > b*.  This implies that (26) holds for all b > b*, 

including b = M, but this is inconsistent with the fact that 
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The same logic allows us to show that if )Pr( 11 dhsk ∩  and )Pr( 21 dhs k ∩  are strictly increasing 

in k, the odds of 1h  are (weakly) underestimated for any b<M. 



To see how in the first case the overestimation of 1h  may be infinite, consider a 
probability distribution )(xπ  such that: 
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for all k≥1, where 0 < ε < 1.  Then, for all b ≤ M, we have that: 
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Inserting these expressions into (11), we see that as ε → 0 the extent of overestimation becomes 
arbitrarily large for any b < M. 

Finally, to prove claim 2.ii), recall that 1h  and 2h  are represented with scenarios 1
1s  and 

Ms1  respectively. If )(xπ  is such that )Pr( 11 dhsk ∩  decreases and )Pr( 21 dhs k ∩  increases in k, 

the two hypotheses are represented with their most likely scenarios.  Thus, the greatest 
overestimation of 1h  relative to 2h  is reached when 1h  is concentrated on its most likely scenario 

while the distribution of 2h  is fully dispersed among all scenarios, that is 1)Pr( 1
1
1 =∩ dhs  and 

Mdhs M /1)Pr( 21 =∩ .  In this case, the agent overestimates the odds of 1h  by a factor of 
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Proof of Proposition 2.   To prove the proposition, we explicitly focus on hypotheses of the 
form in (7), but all of the results are easily extended to the case where hypotheses take the 
general form (7’) by simply substituting hi with k

iIx ,  when scenario k
is  is used.  The central part 

of the argument amounts to proving that if φ≠∩ dsi
1  and φ=∩ dsi

1  for all i, then stereotypes 

do not change. Formally, dhshs idiii ∩∩=∩ 1
,

1  for all i, where 1
,dis  is the most representative 

scenario after data d is provided.  We prove this property by contradiction.  If 
dhshs idiii ∩∩≠∩ 1

,
1  for some i, then it must also be the case that dss dii ∩≠ 1

,
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Condition (27) follows from three considerations.  First, since φ≠∩ dsi
1  and φ=∩ dsi

1  

for all i, we have that )Pr()Pr( 11 dshsh iiii ∩∩=∩ , which implies the equality on the left hand 

side in (27).  Second, since φ≠∩ dsi
1 , then dsi ∩

1  contains a scenario for dhi ∩  [this scenario 

is identified by the sub-vector s of elements in 1
is  not fully pinned down by d].  This is because 

dhs ii ∩∩1  identifies an element in X.  Third, the scenario s identified in dsi ∩
1  must be less 

representative than 1
,dis  because the latter is defined as the most representative scenario for 



dhi ∩ .  But then, since ds di ∩1
,  is also a scenario for ih , the relationship between the first and 

third terms in condition (27) contradicts the fact that 1
is  is the most representative scenario for ih

.  This proves that dhshs idiii ∩∩=∩ 1
,

1 , which directly implies that assessments do not change, 

upon provision of d, even if d is informative.   If, in contrast, φ=∩ dsi
1  for some i, then the 

stereotype for the corresponding hypothesis must change.  Then assessments can change even if 
the data is barely informative, as Section 5.3 and Appendix 3.A show. Here we show that the 
local thinker may even react to completely uninformative data. Consider the example below: 

 

Data = d1 s1 s2

h1 ε1 π1 - ε1

h2 0 π2
 

Data = d2 s1 s2

h1 0 π1

h2 ε2 π2- ε2
 

Table A2.1 
 

The tables represent the distribution π(x) on hypotheses h1 and h2 such that the data d1, d2 
are completely uninformative (and ε1, ε2 are small positive numbers). When no data is provided, 
the local thinker represents h1 with (s1, d1) and h2 with (s1, d2), assessing PrL(h1) = ε1/(ε1 + ε2).  
After for instance d1 is provided, the representation for h1 does not change but the one for h2 
switches to (s2, d1). As a result, PrL(h1|d1) = ε1/(ε1 + π 2) << PrL(h1) even if the data is completely 
uninformative.  This example is obviously extreme, but it gives an idea of the forces towards 
over-reaction in our model. 
 
Generalization of Proposition 3 to the Class of Problems in (7’).  Since b=1, each hypothesis 
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representation for 1h . 
 
Proof of Proposition 4.  We assume the implicit disjunction hypothesis 2,11,11 hhh ∪=  specifies 

a range of values, as this more general setting simplifies the analysis of the car mechanic 
experiment.  In condition (15), the expression rr hs ∩1  should be read as )( 11

Irr xhs ∩  where 

)( 1
Ir xh  and 1

rs  satisfy (8’).  Note that representations follow a “revealed preference” logic: if the 



local thinker represents 1h  with { }1
1

1 , sxI , then he will always use the same representation for any 

hypothesis 10 hh ⊂  as long as 0
1 hxI ∈  and 1

1s  is a feasible scenario for 0h , in the sense that 0h  

and 1h  constrain the same set of dimensions I.  To see this, suppose that the representation of 0h  

is equal to some other element { }*
0

* , sxI , so that: 
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But this leads to a contradiction, since { }*
0

* , sxI  would then be a representation of 1h  with higher 

conditional probability (8’) than { }1
1

1 , sxI . Continuing the proof, recall that by assumption 1
1s  is a 

scenario for either 1,1h  or 2,1h , or both.  Therefore, { }1
1

1 , sxI  is the representation of the hypotheses 

for which 1
1s  is a scenario.  As a result, condition (15) holds and the disjunction fallacy follows.   

 
 
Web Appendix 3.  Additional Experiments 
 
A. Insensitivity to Predictability 

KT (1974) presented subjects with descriptions of the performance of a student-teacher 
during a particular practice lesson.  Some subjects were asked to evaluate the quality of the 
lesson, other subjects were asked to predict the standing of the student-teacher five years after 
the practice lesson.  The judgments made under the two conditions were identical, irrespective of 
subjects’ awareness of the limited predictability of teaching competence five years later on the 
basis of a single trial lesson. 

To explore the consequences of local thinking on insensitivity to predictability, consider 
a local thinker who assesses the quality of a candidate based on the latter’s job talk at a 
university department.  The state space has three dimensions: the candidate’ quality, which can 
be high (H) or low (L), the quality of his talk, which can be good (GT) or bad (BT), and his 
expressive ability, which can be articulate (A) or inarticulate (I).  The distribution of these 
characteristics is as follows:   
 
 

Good Talk (GT) Inarticulate (I) Articulate (A) 
High Quality (H) 0.005 0.25
Low Quality (L) 0.005 0.24

 

Table A3.1 
 

Bad Talk  (BT) Inarticulate (I) Articulate (A)
High Quality (H) 0.24 0.005
Low Quality (L) 0.25 0.005

 

Table A3.2 
 

 

In tables A.1 and A.2, the quality of the talk is highly correlated with expressive ability, 
but the latter dimension is only barely informative of the candidate’s quality. Still, the 
candidate’s expressive ability is always representative of his quality, i.e. after listening to the talk 



the local thinker represents low quality candidates as inarticulate, and high quality ones as 
articulate.  The tables are admittedly extreme, but they illustrate the point in the starkest manner.   
The local thinker then assesses: 
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The local thinker grossly over-estimates the quality of the candidate after a good talk and under-
estimates it after a bad talk.  Indeed, in this example a Bayesian would estimate 
Pr(H|GT)/Pr(L|GT) = 1.04 and Pr(H|BT)/Pr(L|BT) = 0.96 !! 

Over-reaction here is due to the fact that the data (quality of the talk) are scarcely 
informative about the target attribute (quality of the candidate), but very informative about an 
attribute defining the stereotype for different hypotheses (expressive ability). As in the Linda 
example, Tables A.1 and A.2 exploit the divergence between representativeness and likelihood 
to illustrate this phenomenon in the starkest manner, but over-reaction to data is a natural and 
general consequence of the use of stereotypes. 
 
B. Conjunction Fallacy in the Bjorn Borg Experiment 

Suppose that a local thinker is given d = “Bjorn Borg is in the Wimbledon Final” and 
asked to assess Pr(Borg wins 1st set), Pr(Borg loses 1st set), Pr(Borg loses 1st and wins the 
match). The first hypothesis ensures exhaustivity, but it is not necessary to obtain the result.  
When prompted to assess these hypotheses, the agent fits an overall evaluation of Borg’s game 
which can take two values: Borg loses the match (LM), Borg wins the match (WM).  Suppose 
that the distribution of these characteristics is as follows:   
 
 

Borg is in Wimbledon Final Loses the Match (LM) Wins the Match (WM) 
Loses First Set (LS) 3/16 4/16 
Wins First Set (WS) 2/16 7/16 

 

Table A3.3 
The Table above reports the actual fraction of each possible outcome observed in the 16 

Grand Slam finals that Borg played between 1974 and 1981.  The table reveals that the 
probability that Borg wins the final is large (equal to 11/16) irrespective of what happens in the 
first set, but losing the first set is relatively more likely if Borg loses the match (3 out of 5 rather 
than 4 out of 11). Crucially, the latter property implies that the agent represents the event WS 
with scenario WM and the event LS with scenario LM.  By contrast, the hypothesis “Borg loses 
1st set and wins the match” leaves no gap and is perfectly represented by (LS, WM).  In this sate 
space it is easy to calculate that: 
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Thus, the conjunction rule is violated.  Intuitively, the stereotypical condition in which the first 
set is lost is when the match is also lost.  In computing Pr(LS) the local thinker overlooks the fact 
that Borg could lose the first set but actually win the match. The source of the conjunction 
fallacy here is that it is very unlikely for Borg to lose a Grand Slam (and thus Wimbledon final), 
even if he loses the first match.   
 
C. Conjunction Fallacy Without Data Provision: Floods in California 

Let the state space have the following three dimensions: the type of flood, which can 
either be severe (S) or disastrous (D), the cause of flood, which can either be an earthquake (E) 
or a rainstorm (R), and the location of the flood, which can either be California (C) or the rest of 
North America (NC).  The distribution of outcomes is as follows: 
 

S 
D

E R

C (1-x)eC

xeC

rC/2
rC/2

NC eNC/2
eNC/2

(1-z)rNC

zrNC
 

Table A3.4 
eL and rL capture the probabilities of an earthquake and a rainstorm in location L = C, NC, 

while x > 1/2 and z > 1/2 are respectively the share of earthquakes causing disastrous floods in 
California and of rainstorms causing disastrous floods in the rest of North America.  Probabilities 
must add up to 1.  Table B captures two features of a subject’s beliefs: i) earthquakes are milder 
in the rest of North America than in California so that they cause fewer disastrous floods (only 
1/2 of earthquakes cause disastrous floods in North America, x >1/2 earthquakes cause disastrous 
floods in California), and ii) rainstorms are milder in California than in the rest of North America 
so that they cause fewer disastrous floods (only 1/2 of rainstorms cause disastrous floods in 
California, z > 1/2 rainstorms cause disastrous floods in the rest of North America).  We make 
the natural assumption that z > x, so that rainstorms are more likely to cause disastrous floods 
than earthquakes.   

Table A.3 and equation (8) imply that a disastrous flood (D) is represented with scenario 
(R,NC), namely as a disastrous flood caused by a rainstorm in the rest of North America 

zNCRD =),Pr(  > xCED =),Pr(  > =),Pr( CRD 2/1),Pr( =NCED . The event “Disastrous 

flood caused by an earthquake in California” instead uniquely identifies the scenario (D, C, E).  
Given these representations, the assessed odds of (D,C,E) relative to (D) are: 
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If the probability of disastrous earthquakes in California is sufficiently high relative to that of 
disastrous rainstorm in North America, (i.e., NCC zrxe > ), the conjunction fallacy arises without 
data.  Intuitively, although rainstorms mainly cause mild floods, they are a stereotypical cause of 
floods.  Hence, disastrous floods are represented as being caused by rainstorms, even though 



agents hold the belief that earthquakes in California can be so severe as to cause more disastrous 
floods.  The problem, though, is that agents retrieve this belief only if earthquakes and California 
are explicitly mentioned. 


