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a b s t r a c t 

We introduce diagnostic expectations into a standard setting of price formation in which 

investors learn about the fundamental value of an asset and trade it. We study the in- 

teraction of diagnostic expectations with learning from prices and speculation (buying for 

resale). With diagnostic (but not with rational) expectations, these mechanisms lead to 

price paths exhibiting three phases: initial underreaction, then overshooting (the bubble), 

and finally a crash. With learning from prices, the model generates price extrapolation as 

a by-product of beliefs about fundamentals, lasting only as the bubble builds up. When 

investors speculate, even mild diagnostic distortions generate substantial bubbles. 

© 2020 Elsevier B.V. All rights reserved. 
1. Introduction 

The financial crisis of 20 07–20 08 has revived academic 

interest in price bubbles. Shiller (2015) created a famous 

graph of home prices in the United States over the course 

of a century, which shows prices being relatively sta- 

ble during most of the 20th century and then doubling 

over the ten-year period after 1996, only to collapse in 

the crisis and begin recovering after 2011. There is also 

growing evidence of speculation such as buying for resale 

in the housing market ( DeFusco et al., 2018 ; Mian and 

Sufi, 2018 ) and of increasing leverage of both homeowners 
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and financial institutions tied to rapid home price ap- 

preciation. The collapse of the housing bubble is at the 

heart of every major narrative of the financial crisis and 

the Great Recession because it entailed massive losses for 

homeowners, holders of mortgage backed securities, and 

financial institutions ( Mian and Sufi, 2014 ). Nor is the US 

experience unique. Leverage expansions and subsequent 

crises are often tied to bubbles in housing and other 

markets ( Jorda et al., 2015 ). 

Despite the revival of academic interest, asset price 

bubbles remain controversial. Although economic histo- 

rians tend to see bubbles as self-evident ( Mackay, 1841 ; 

Bagehot, 1873 ; Galbraith, 1954 ; Kindleberger, 1978 ; 

Shiller, 20 0 0 ), Fama (2014) raised the critical question 

of whether they even exist in the sense of predictability 

of future negative returns after prices have increased 

substantially. Interestingly, since Smith et al. (1988) , 

predictably negative returns are commonly found in 

laboratory experiments even when markets have finite 

horizons. Greenwood et al. (2019) address Fama’s challenge 

in industry stock return data around the world and find 

that although past returns alone are very noisy indicators 
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of bubbles, other measures of overpricing do forecast poor

returns going forward. 1 

Early theoretical research has focused on rational price

bubbles that do not violate (some definitions of) mar-

ket efficiency ( Blanchard and Watson, 1982 ; Tirole, 1985 ;

Martin and Ventura, 2012 ), but these models are not con-

sistent with the available evidence on prices ( Giglio et al.,

2016 ). They are also rejected by the striking evidence

of excessively optimistic investor expectations in bub-

ble episodes ( Case et al., 2012 ; Greenwood et al.,

2019 ), which also shows up in experimental data (e.g.,

Haruvy et al., 2007 ). Because of such evidence, research

has moved to behavioral models of bubbles, which em-

phasize factors such as overconfidence and short sales

constraints ( Scheinkman and Xiong, 2003 ), neglect of en-

try ( Glaeser et al., 2008 ; Glaeser and Nathanson, 2017 ;

Greenwood and Hanson, 2014 ), and price extrapolation

(e.g., Cutler et al., 1990 ; DeLong et al., 1990b ; Barsky and

De Long, 1993 ; Hong and Stein, 1999 ; Barberis and

Shleifer, 2003 ; Hirshleifer et al., 2015 ; Greenwood and

Shleifer, 2014 ; Glaeser and Nathanson, 2017 ; Barberis et al.,

2015 ; Barberis et al., 2018 ). 

The focus on price extrapolation overlooks one fur-

ther potentially important driver of bubbles: excessively

optimistic beliefs about the fundamental value of an

asset. This mechanism features prominently in historical

accounts of bubbles, which note the euphoria accompa-

nying new technologies such as railroads, the internet,

etc. This paper explores the connection between excessive

optimism about fundamentals and asset price bubbles.

We introduce nonrational beliefs about fundamentals in

an otherwise standard asset pricing model and ask three

questions. First, when does excessive optimism arise and

how far can it go in accounting for inflated asset prices?

Second, can this mechanism create self-reinforcing price

growth when traders seek to learn fundamental values

from prices themselves? And third, how does optimism

about fundamentals interact with traders’ speculation for

quick resale in sustaining price growth? 

To address these questions, we introduce diagnos-

tic expectations (see Bordalo et al., 2018 , hereafter BGS,

2018; Bordalo et al., 2019 , hereafter BGLS, 2019; and

Bordalo et al., 2020 , hereafter BGMS, 2020), into a standard

finite horizon model of a market for one asset, in which

a continuum of investors receive noisy private information

every period about the termination value of that asset. The

asset is valuable (above the prior) so that traders, on av-

erage, receive good news about fundamentals every pe-

riod. Because traders receive different noisy signals, they

hold heterogeneous beliefs. This generates trading volume,

which is an important feature of bubbles ( Scheinkman and

Xiong, 2003 ; Hong and Stein, 2007 ). Unlike some pre-

vious models, such as Harrison and Kreps (1978) and

Scheinkman and Xiong (2003) , we do not need to assume

short sale constraints. In this setup, we assess how dis-

torted beliefs about fundamentals interact with two key
1 A closely related literature examines the overpricing of small growth 

stocks with extremely optimistic analyst forecasts of future growth, 

and predictably poor returns ( Lakonishok et al., 1994 ; La Porta, 1996 ; 

Bordalo et al., 2019 b). 
mechanisms: learning from prices and speculation. 2 With

rational expectations, in this model the average price path

rises from the prior to the fundamental value, without

overshooting. There are no price bubbles in equilibrium. 

Under diagnostic expectations, traders update their be-

liefs excessively in the direction of the states of the world

whose objective likelihood has increased the most in light

of recent news. After good news, right-tail outcomes be-

come representative and are overweighed in expectations,

while left-tail outcomes become nonrepresentative and are

neglected. But how does this affect the price of the asset

over time? 

We find that, in line with Kindleberger’s (1978) nar-

rative, the equilibrium price evolves over three stages.

The first stage is displacement. A beneficial economic

innovation (see, e.g., Pastor and Veronesi, 2006 ) entails

a sequence of good fundamental news. Such good news

eventually leads to excess optimism. As traders grow more

optimistic, the demand for the asset soars, creating a

sustained price increase. 

The second and crucial stage is the acceleration of price

growth. In this stage, price increases themselves encour-

age buying that leads to further price increases, and prices

reach levels substantially above fundamental values. This

second stage is not due to diagnostic expectations alone

but to their interaction with learning from prices and spec-

ulation. Consider learning from prices first. Because diag-

nostic traders update expectations excessively in the direc-

tion of information, they act more aggressively on their

private signals. This feature makes prices more informa-

tive than under the rational benchmark. As a consequence,

traders react even more aggressively to prices. As good

news arrives, prices rise and quickly swamp the less in-

formative private signals. Through rising prices, a public

signal, the overoptimism of some traders infects the en-

tire market. As all traders become excessively optimistic,

price growth accelerates, resulting in convex price paths.

It looks like investors are extrapolating price trends, even

though they are merely watching prices to learn about fun-

damentals: recent price increases lead traders to upgrade

(too much) their expectations of fundamental value and

thus of the future price. 

Speculation, when interacted with diagnostic expecta-

tions, adds fuel to the bubble. Buying for resale compounds

overreaction: traders are not only too optimistic about fun-

damentals, but they also exaggerate the possibility of re-

selling the asset to traders who are even more optimistic

than them. Following a beauty context logic, a trader who

believes that the asset is the next Google thinks that fu-

ture diagnostic traders will receive extremely positive sig-

nals and will thus be even more optimistic about the as-

set. The expectation of reselling the asset to very bullish

traders further inflates the price today. As a result, even a

small degree of diagnosticity compounds into strong price

extrapolation and large price dislocations. 
2 We do not examine leverage and other factors that link the col- 

lapses of bubbles to financial fragility and economic recessions (see, 

e.g., Gennaioli et al., 2012 ; Reinhart and Rogoff, 2009 ; Gennaioli and 

Shleifer, 2018 ). We leave the analysis of the role of leverage to future 

work. 
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3 According to Kahneman and Tversky (1972) , the reliance on repre- 

sentativeness as a proxy for likelihood is a central feature of probabilistic 

judgments. An outcome “is representative of a class if it’s very diagnos- 

tic ”; i.e., if its “relative frequency is much higher in that class than in the 

relevant reference class” ( Tversky and Kahneman, 1983 ). 
The third and final phase is the collapse of the bub- 

ble. Under diagnostic expectations, two mechanisms are 

responsible for the crash. First, because good news be- 

come increasingly marginal over time, they cannot sustain 

the extent of overreaction. The bubble collapses not be- 

cause of bad news but because traders’ over-reaction relies 

on recent good news and as such eventually runs out of 

steam. Second, as the terminal date approaches, there are 

fewer opportunities to resell to an overly optimistic trader. 

This reduces the current demand for the asset, causing the 

bubble to collapse today. 

Our analysis shows how diagnostic expectations inter- 

act with learning from prices and speculation to create 

fundamentals-based boom bust price dynamics. The 

spreading of optimism about fundamentals through the 

market endogenously generates, as a by-product, key pre- 

viously recognized features of bubbles, such as a form of 

time-varying price extrapolation, growing trading volume, 

and high price volatility near the peak. Throughout the 

paper, we discuss the central role of diagnostic expec- 

tations in generating these features when paired with 

learning from prices or with a speculative motive as well 

as its distinctive predictions relative to mechanical price 

extrapolation. 

The paper proceeds as follows. In Section 2 we present 

the model of diagnostic expectations and show its implica- 

tions for the dynamics of beliefs, absent any market mech- 

anism. In Section 3 we isolate the role of learning from 

prices by introducing diagnostic expectations into a stan- 

dard Grossman–Stiglitz setup in which traders there have 

no speculative motives. In Section 4 we isolate the role 

of speculation by introducing diagnostic expectations into 

a standard beauty contest model in which learning from 

prices is absent. In Section 5 we present and simulate 

the full model with diagnostic expectations, learning from 

prices, and speculation. Section 6 concludes. 

2. Learning from good shocks and diagnostic 

expectations 

Traders learn about the value of a new asset over a fi- 

nite number of periods t = 0 , . . . , T . The asset yields a pay- 

off V . The value of V is drawn from a normal distribution 

with mean 0 and variance σ 2 
V 

at t = 0 , but it is only re- 

vealed at the terminal date T . In line with Kindelberger’s 

(1978) description of a positive displacement as the trig- 

ger of bubble episodes, we focus on the case of a valu- 

able innovation, V > 0. Our model is entirely symmetric 

for V < 0, in which case negative bubbles arise. Symmetry 

naturally breaks down if one introduces short sales con- 

straints, which we abstract from here. 

In each period t , each trader i (in measure one) receives 

a private signal s it = V + εit of the asset’s value. Noise εit 

is independently and identically distributed across traders 

and over time and is normally distributed with mean 

zero and variance σ 2 
ε . Because the new asset is valuable, 

V > 0, traders are repeatedly exposed to good news, 

in that signals are, on average, positive relative to their 

priors, capturing the initial displacement. Moreover, the 

assumption of dispersed information generates variation 

in expectations and creates a motive for trading. 
In this section, we do not consider trading and de- 

scribe instead how diagnostic expectations about funda- 

mentals evolve solely based on the arrival of noisy private 

signals. This is useful for two reasons. First, in this set- 

ting with learning and dispersed information, diagnostic 

expectations behave differently than in prior finance ap- 

plications (BGS, 2018; BGLS, 2019). Second, by separately 

characterizing the dynamics of expectations about funda- 

mentals, we can better understand their interaction with 

market forces such as trading, learning from prices, and 

speculation, which we introduce in Sections 3 and 4 . 

A rational trader observing a history of signals 

( s i 1 , . . . , s it ) forms an expectation about V given by 

E it ( V ) = πt 

∑ t 
r=1 s ir 
t 

, 

where πt ≡ t/σ 2 
ε

t/σ 2 
ε +1 /σ 2 

V 

is the signal-to-noise ratio. The con- 

sensus expectation under rationality is given by ∫ 
E 

θ
it ( V ) di = πt V, (1) 

lower than the full information benchmark. The rational 

consensus has two important properties. First, it is always 

below the rational benchmark because π t ≤ 1. Rational 

traders discount their noisy signals, which implies that av- 

erage information, always equal to V , is also discounted. 

Second, the rational consensus gradually improves over 

time because the signal-to-noise ratio π t rises, in a con- 

cave way, toward one. As traders see more and more sig- 

nals, their uncertainty falls, inducing them to weigh their 

evidence more heavily. 

As in rational inattention models ( Woodford, 2003 ), op- 

timal information processing by individuals who observe 

noisy signals creates sluggishness in consensus expecta- 

tions: because individual expectations discount private sig- 

nals to account for noise, the consensus moves less than 

under the benchmark of full information. This sluggish- 

ness is central in thinking about price formation in ratio- 

nal expectations models. As we show in Sections 3 and 4 , 

even with learning from prices and speculation, rational 

updating causes the consensus expectation as well as the 

price of the asset to underreact to the fundamental value 

V , monotonically converging to it from below. 

Consider now updating under diagnostic expecta- 

tions (DE). This model of belief formation captures 

Kahneman and Tversky (1972) representativeness heuris- 

tic. 3 Representativeness refers to the notion that, in 

forming probabilistic assessments, decision makers put too 

much weight on outcomes that are likely not in absolute 

terms but rather relative to some reference or baseline 

level. For example, many people significantly overestimate 

the probability that a person’s hair is red when told that 

the person is Irish. The share of red-haired Irish, at 10%, 

is a small minority, but red hair is much more common 

among the Irish than among other Europeans, let alone 



P. Bordalo, N. Gennaioli and S.Y. Kwon et al. / Journal of Financial Economics 141 (2021) 1060–1077 1063 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in the world as a whole. The overestimation of the preva-

lence of representative types distorts beliefs and accounts

for many systematic errors in probabilistic judgments

documented experimentally ( Gennaioli and Shleifer, 2010 ).

It also delivers a theory of stereotypes consistent with

both field and experimental evidence, including gen-

der stereotypes in assessments of ability ( Bordalo et al.,

2016 ; Bordalo et al., 2019 ), racial stereotypes in decisions

about bail ( Arnold et al., 2018 ), and popular beliefs about

immigrants ( Alesina et al., 2018 ). 

In an intertemporal setting like the current one, DE

capture the idea that investors overweight the probability

of events that have become more likely in light of recent

news. For instance, after observing a period of positive

earnings growth, DE overweight the probability that the

firm may be the next Google. This event is highly unlikely

in absolute terms, but it has become more likely in light

of the strong earnings growth. As a consequence, the

perceived probability of such an event is inflated. 

To see this formally, consider an agent forecasting at t

random variable X t+1 . As shown in BGS (2018), if X t+1 is

conditionally normal, the diagnostic distribution of beliefs

is also normal. 4 Furthermore, if E s ( X t+1 ) is the rational ex-

pectation at time s , then the diagnostic expectation at time

t is 

E 

θ
t ( X t+1 ) = E t−k ( X t+1 ) + ( 1 + θ ) [ E t ( X t+1 ) − E t−k ( X t+1 ) ] , 

(2)

DE are forward-looking: they update in the correct di-

rection and nest rational expectations as a special case

for θ = 0 . Crucially, however, DE overreact to information

by exaggerating the difference between current conditions

E t ( X t+1 ) and normal conditions E t−k ( X t+1 ) by a factor of

( 1 + θ ) . As good news arrives, the right tail of X t+1 be-

comes fatter; while still unlikely, it is very representative

because its prior probability was so low. As a result, in-

vestors overweight the right tail and neglect the risk in the

left tail. For normal distributions, this reweighting results

in an excessive rightward shift of the believed mean. 

In Eq. (2) , lag k defines which recent news investors

overreact to. For k = 1 , investors only overreact to news

received in the current period. For k > 1, the investor

overreacts to the last k pieces of news. This captures a re-

alistic sluggishness in the perception of normal conditions:

new evidence becomes normal only after enough time has

passed. Put differently, the investor observing a sequence

of good news takes a while to adapt to them. 

BGLS (2019) show that in a setting where traders

learn from homogeneous information, DE obtained from

Eq. (2) account well for the link between listed firms’ per-
4 Following BGS (2018), in a Markov process with density f ( X t+1 | X t ) , 
after a particular current state ˆ X t is realized and in light of the past 

expectation for the current state E t−k ( X t ) , the distorted distribution is 

equal to 

f θ ( X t+1 | X t ) = f ( X t+1 | X t ) 
[

f ( X t+1 | ̂ X t ) 

f ( X t+1 | E t−k ( X t ) ) 

]θ

Z t , 

where both the target f ( X t+1 | ̂ X t ) and reference distribution 

f ( X t+1 | E t−k ( X t ) ) have equal variance. Roughly speaking, beliefs over- 

weigh states that have become more likely in light of the surprise 
ˆ X t − E t−k ( X t ) relative to k periods ago. 

 

 

 

formance and equity analysts’ expectations of their future

earnings growth as well as, crucially, for the link between

expectations and the predictability of their stock returns.

They estimate the model and find that, with quarterly data,

θ ≈ 1 and k ≈ 3 years. A similar value of θ has been esti-

mated using expectations of credit spreads by BGS (2018)

and using macroeconomic forecasts by BGMS (2020). Later,

we use k ≈ 3 years in our simulation exercises. 

The case k > 1 is not only quantitatively but also quali-

tatively different from the case k = 1 . When k = 1 , the law

of iterated expectations holds, in the sense that E 

θ
t ( X t+ s ) =

E 

θ
t [ E 

θ
t+1 

( X t+ s ) ] . When k > 1, the law of iterated expec-

tations fails, so it matters whether expectations are com-

puted following the “short route,” as a sequence of one

step diagnostic forecasts, or the “long route,” as a long-

term diagnostic forecast. We assume that expectations are

computed following the “long route” so that the expecta-

tion of terminal value at time t is computed as E 

θ
t (V ) . This

is intuitive and analytically convenient. We believe, how-

ever, that results are qualitatively similar if the short route

is followed. 

The assumption that k > 1 is important. It implies

that investors overreact to news accrued over several

periods and thus allows for persistent overvaluation of

the asset. When k = 1 investors over-react only to the

most recent news, overvaluation is temporary. 5 Persistent

overvaluation is consistent with the evidence on price

bubbles, which display a sustained buildup. It also squares

with the evidence from the cross section of stock returns

and beliefs about fundamentals (BGLS, 2019). Evidence

from both beliefs and asset prices also points to violations

of the law of iterated expectations. BGMS (2020) and

D’Arienzo (2020) show that analyst expectations about

long-term interest rates overreact more than their expecta-

tions about short-term rates. Giglio and Kelly (2018) show

that long term rates are excessively volatile relative to

short term rates. In a conventional affine term structure

model, D’Arienzo (2020) shows that these findings point

to a violation of the law of iterated expectations. Indeed,

because overreaction is stronger at long horizons, com-

puting expectations over the long-versus-short route will

typically yield different results. 

Relative to the earlier finance applications of DE, and

in particular relative to BGLS (2019), the current model in-

troduces two new ingredients. First, each trader observes

a different noisy signal of the truth V . Second, the state V

does not change over time, reflecting learning about, say,

the potential of a new technological innovation. This per-

spective is central to thinking about bubbles. 

Given the heterogeneity of information at time t , each

trader i has a different diagnostic expectation E 

θ
it 
(V ) . As

before, we focus on the consensus diagnostic expectation.

This is given by 

∫ 
E 

θ
it ( V ) di = 

{ 

( 1 + θ ) πt V f or t ≤ k 

[ πt + θ ( πt − πt−k ) ] V f or t > k 
. (3)
5 In particular, in the current setting overvaluation would be strongest 

in the first period, when the news is biggest and then monotonically de- 

cline over time. 
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Eq. (3) implies that, under DE, consensus expectations 

exhibit boom bust dynamics. 

Proposition 1 . If θ ∈ ( 1 
k 

σ 2 
ε

σ 2 
v 

, 
σ 2 
ε

σ 2 
v 
) , the consensus diagnostic ex- 

pectation E 

θ
t (V ) exhibits three phases: 

(1) Delayed overreaction: E 

θ
t (V ) starts below V and then 

increases to its peak E 

θ
t (V ) = ( 1 + θ ) πk V at t = k . 

(2) Bust: There is a time t ∗ > k + 1 such that E 

θ
t (V ) drops 

from t = k + 1 to t ∗, reaching its minimum at E 

θ
t ∗ (V ) <

V . The length of the bust phase, t ∗ − k , is increasing in 

θ . 

(3) Recovery: E 

θ
t (V ) gradually recovers for t > t ∗, asymp- 

totically converging to the fundamental V. 

In a noisy environment, adding a modicum of overreac- 

tion θ to recent signals upsets the monotone convergence 

of prices that occurs under rational expectations, yielding 

rich beliefs dynamics. Early on, consensus opinion under- 

reacts to the fundamental displacement, E 

θ
t (V ) < V , so that 

in this range the behavior of DE is qualitatively similar to 

rational learning. Because diagnostic traders are forward- 

looking, they discount the noise in their signals. Initially, 

uncertainty about V is large, so this discounting is suf- 

ficiently strong that it counteracts the tendency of each 

individual to overreact (as long as overreaction is moder- 

ate; θ < 

σ 2 
ε

σ 2 
v 

). As a result, in early stages, consensus beliefs 

about V increase slowly, gradually incorporating the good 

signals of traders. 

The possibility that in a noisy environment individual 

overreaction is consistent with sluggishness of consensus 

expectations is not just theoretical. BGMS (2020) show this 

phenomenon in professional forecasts of macroeconomic 

variables. 

As traders receive good signals, however, they grow 

more confident about the value of the asset. As a result, 

they incorporate their signals more aggressively into their 

beliefs. At some point, their signal-to-noise ratio π t be- 

comes sufficiently high that, for a given amount of diag- 

nosticity θ we have 

( 1 + θ ) πt > 1 , 

which implies that consensus underreaction turns to over- 

reaction. The condition θ > 

1 
k 

σ 2 
ε

σ 2 
v 

ensures that this occurs at 

least at the peak, when t = k . Displacement causes traders 

to be so confident that beliefs overshoot the fundamental; 

E 

θ
t (V ) > V . Overshooting of fundamentals stands in stark 

contrast not only to the rational benchmark but also to any 

model of misspecified learning in which beliefs are a con- 

vex combination of priors and new information, including 

overconfidence ( Daniel et al., 1998 ). 6 This distinctive fea- 

ture reflects the fact that DE generate disproportional and 

asymmetric weight on tail events: if traders focus on the 

right tail and neglect the left tail, then in some sense “the 

sky is the limit”; sufficiently many good signals about V 
6 Overconfidence is a different form of overreaction to private news in 

which traders exaggerate the precision of their private signals. It implies 

an inflated signal-to-noise ratio relative to rational expectations. However, 

the relative weight on the signal still lies below one, so that any trader’s 

beliefs lie between his private signal and the public signal. 
bring to mind stratospheric values, above the new informa- 

tion itself. Each fast-growing firm is believed to be a new 

Google, and trees are expected to grow to the sky. This is 

in line with standard narratives of bubbles, in which dis- 

placement leads investors to believe in a “paradigm shift”

capturing the most optimistic scenarios that could result 

from the innovation. 7 

Beliefs revert after k periods, when overreaction to early 

signals wanes. After a while, traders view these signals as 

normal and focus on the information contained in the new, 

most recent, signals. Because these signals have a smaller 

and smaller incremental value ( V is finite), they cannot 

sustain the exorbitant optimism of the boom. As a result, 

beliefs start deflating. The bust here is due not to bad news 

but to the declining pace at which good news arrive, which 

causes optimism to run out of steam. After the bust, when 

expectations reach their trough and get close to rational 

beliefs, overreaction to good news is negligible (because 

good news are minor), and the consensus converges to V 

from below. 

The condition θ ∈ ( 1 
k 

σ 2 
ε

σ 2 
v 

, 
σ 2 
ε

σ 2 
v 
) entailing this path for con- 

sensus beliefs is intuitive. If diagnosticity is very strong, 

θ > 

σ 2 
ε

σ 2 
v 

, the consensus opinion is excessively optimistic 

from the start at t = 1 . Here the initial underreaction phase 

is absent, but boom bust dynamics are preserved. If instead 

diagnosticity is very weak, θ < 

1 
k 

σ 2 
ε

σ 2 
v 

, overshooting never 

occurs. In this case, the consensus belief never exhibits a 

bubble; it slowly converges to fundamentals from below 

(see the proof of Proposition 1 for details). 

In sum, by introducing some overreaction to recent 

news in an otherwise standard noisy information model, 

DE can account for initial rigidity of consensus expecta- 

tions, delayed overreaction of beliefs to fundamental news, 

and subsequent reversals as dramatic good news stop com- 

ing. This mechanism seems promising for thinking about 

bubbles. Insofar as prices reflect consensus beliefs, DE may 

account for sluggish boom-bust price dynamics that can- 

not be obtained under rationality. Still, some features of 

Eq. (3) are hard to reconcile with bubbles. First, expecta- 

tions of fundamentals improve in a concave way, which 

is hard to square with the observed convex price paths 

during bubbles ( Greenwood et al., 2019 ). Second, for real- 

istic parameter values, overoptimism about fundamentals 

is small relative to the price inflation observed in bubble 

episodes. Using θ = 1 as estimated using expectations of 

earnings growth (BGLS, 2019), and of macroeconomic time 

series (BGMS, 2020), suggests that valuation at the peak 

is bounded above by 2 V . In some historical episodes, such 

as the internet bubble, prices reached multiple times the 

plausible measures of fundamentals. 

The key question is whether the more realistic feature 

of price behavior during bubbles can be obtained once 

diagnostic beliefs are combined with standard market 

mechanisms such as learning from prices and speculative 
7 In Pastor and Veronesi (2009) , a successful innovation is not ini- 

tially overpriced but instead becomes central enough to the economy that 

the risk associated with it becomes systematic, which in turn depresses 

prices. 
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trading. In the rest of the paper we show that this is

indeed the case. Price growth becomes convex and dis-

connected from fundamentals, and the bubble can become

very large even for small degrees of diagnosticity θ . To

illustrate these results most clearly, we break down the

analysis. In Section 3 we consider learning from prices but

abstract from speculative motives. In Section 4 we consider

speculation without learning from prices. In Section 5 we

combine the two ingredients. 

3. Diagnostic learning from prices 

We now analyze trading and price formation. Learning

from prices enables traders to extract from price changes

the information that other traders have about fundamen-

tals. Starting with Grossman (1976) and Grossman and

Stiglitz (1980) , learning from prices plays an important role

in formal analyses of rational expectations equilibria in fi-

nancial markets. Here we study its consequences under DE.

At each t = 0 , 1 . . . , traders exchange the asset and de-

termine its price. They learn about the fundamental V from

current and past private signals as well as from all prices

observed up to the last period. 8 Traders are risk averse

with CARA utility u (c) = −e −γ c , and they have long hori-

zons, in that they value the asset by their assessment of

its fundamental value V . There is no time discounting. 

To determine the demand for the asset at time t , sup-

pose that trader i believes that V is normally distributed

with mean E 

θ
it 
(V ) and variance σ 2 

t (V ) , where θ denotes

DE. 9 With exponential utility and normal beliefs, his pref-

erences are described in terms of mean and variance.

Trader i ’s demand D it of the asset maximizes the mean-

variance objective function: 

D it = argmax 
ˆ D it 

[
E 

θ
it ( V ) − p t 

]
ˆ D it −

γ

2 

σ 2 
t ( V ) ̂  D 

2 
it , 

where γ captures risk aversion. Trader i ’s demand D it is

then given by 

D it = 

E 

θ
it ( V ) − p t 

γ σ 2 
t ( V ) 

, (4)

Intuitively, demand increases in the difference between

the trader’s valuation and the market price. 

To make learning from prices nondegenerate, we fol-

low the literature and assume that the supply S t of the

asset is random, i.i.d. normal with mean zero and vari-

ance σ 2 
S 

(without common supply shocks, V is learned

in one period by the law of large numbers). The classi-

cal justification here is the presence of noise or liquid-

ity traders who demand/supply the assets for nonfunda-

mental reasons ( Black, 1986 ; Grossman and Miller, 1988 ;

DeLong et al., 1990a ). The implication is that price is no
8 If investors learn also from the current price, the equilibrium may fail 

to exist for t > k . If the equilibrium exists, the model behaves very sim- 

ilarly to our benchmark case here. To study speculation, because we set 

k to be high, existence is guaranteed and so we allow investors to learn 

from the current price. 
9 As we discussed in Section 2 , diagnostic beliefs are normal. This is 

shown in the Online Appendix, where we also show that the variance 

σ 2 
t (V ) is not distorted under our specification. 
longer fully revealing: high price today may be due either

to a low unobserved supply S t shock or to a high average

private signal V . 

By aggregating individual demands in Eq. (4) and by

equating to supply we find 

p t = E 

θ
it ( V ) di − γ σ 2 

t ( V ) S t . (5)

To solve for the equilibrium in Eq. (5) , we must com-

pute the diagnostic consensus expectation at time t , rec-

ognizing that it depends on both private signals and past

prices. Because DE are forward-looking, it is possible to

amend the consensus beliefs in Eq. (3) to reflect diagnos-

tic learning from prices. As in rational expectations models

( Grossman and Stiglitz, 1980 ), we first conjecture that, at

each time t , price is a linear function of the state variables

of the economy, which include the fundamental V . Second,

we assume that traders use this linear rule to make infer-

ences about V in light of the current and past prices. Third,

we determine at each time t the coefficients of the pricing

function that equilibrate demand and supply so that the

resulting rule yields the equilibrium price. 

Denote by E ( V | P t ) the rational expectation of V based

solely on the history of prices up to t , formally P t ≡
( p 1 , . . . , p t−1 ) . Then, our conjectured pricing rule takes the

form 

10 

p t = a 1 t + a 2 t E ( V | P t ) + a 3 t E ( V | P t−k ) + b t 

(
V − c t 

b t 
S t 

)
. (6)

Eq. (6) is reminiscent of rational expectations models.

The current price reflects consensus expectations derived

from all prices up to date t as well as the average pri-

vate signal. Because DE combine current and lagged ratio-

nal forecasts, the lagged forecast is also added as a state

variable. 

To solve for the diagnostic expectations equilibrium

(DEE), we must find the coefficients ( a 1 t , a 2 t , a 3 t , b t , c t ) t ≥ 1

that equate supply with demand when traders make diag-

nostic inferences from prices. We now sketch the logic of

the result and leave a fuller account to the proof in Online

Appendix A. 

First, consider how traders learn in light of the pric-

ing rule. Because diagnostic traders overreact to news, they

overreact also to the shared news coming from prices. To

compute the DE with learning from prices, we proceed

in two steps. We compute the rational expectations when

prices are generated by Eq. (6) , and then apply the diag-

nostic transformation of Eq. (2) . 11 

The rational news conveyed by price at time r is cap-

tured by the term p r − a 1 r − a 2 r E ( V | P r ) − a 3 r E ( V | P r−k ) as

well as by the coefficients b r and c r , which are known

by all (in equilibrium). That is, observing p r effectively
10 The price could equivalently be assumed to be linear in the diagnos- 

tic expectation E θ ( V | P t , s i 1 = . . . = s it = 0 ) held by traders based solely on 

the information from public prices (i.e., assuming that private signals are 

neutral). 
11 In the Online Appendix we show that the DE so obtained are equiv- 

alent to those obtained by applying the distorted distribution of footnote 

4 to the true distribution f ( V | s i 1 , s it , P t ) conditional on private signals and 

prices. 
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+ V z t

 t−k ) +
endows all traders with the following unbiased public 

signal of V : 

s p r = V −
(

c r 

b r 

)
S r . (7) 

The variance of the signal, which is the inverse of its 

precision, is equal to ( c r / b r ) 2 σ 2 
S 
. Intuitively, the price is 

more informative when it is more sensitive to the per- 

sistent fundamental than to the transient supply shock, 

namely when c r / b r is lower. This price sensitivity is an en- 

dogenous part of the equilibrium, and later we characterize 

it in terms of primitives. 

Since private and public signals s it and s 
p 
t are nor- 

mally distributed, conditional on a history of signals 

( s i 1 , . . . s it , s 
p 
1 
, . . . s 

p 
t ) , a rational trader’s beliefs about V are 

normal with mean 

E i,t ( V ) = s̄ i,t z t + E ( V | P t ) ( 1 − z t ) , (9) 

where s̄ i,t = 

1 
t 

∑ t 
r=1 s ir and E ( V | P t ) = ( 1 

σ 2 
V 

+ 

∑ t 
r=1 

1 

σ 2 
S 

( b r c r 
) 

2 
) −1 

∑ t 
r=1 

1 

σ 2 
S 

( b r c r 
) 2 s p r . The rational inference combines 

the private signals with the price signals embodied in 

E ( V | P t ) . The weight z t attached to the private signals is 

given by 12 

z t = 

t 

σ 2 
ε

[
t 

σ 2 
ε

+ 

1 

σ 2 
p, t ( V ) 

]−1 

, (10) 

where σ 2 
p, t (V ) is the variance of the fundamental condi- 

tional only on prices. The weight z t attached to private sig- 

nals is higher when the informativeness of prices is low 

(when σ 2 
p, t (V ) is high). 

To compute diagnostic consensus beliefs, we need to i) 

compute diagnostic beliefs by transforming rational beliefs 

in Eq. (10) according to Eq. (2) and ii) aggregate the re- 

sulting beliefs into the consensus. The implied consensus 

dynamics works as follows: 

∫ 
E 

θ
it ( V ) di = 

{ 

( 1 + θ ) [ ( 1 − z t ) E ( V | P t )
( 1 + θ ) ( 1 − z t ) E ( V | P t ) − θ ( 1 − z t−k ) E ( V | P

DE exaggerate the information revealed by prices, not 

only private information. This exaggeration comes from 

the amplification ( 1 + θ ) of the impact of the current 

price-based estimate E ( V | P t ) and from the reversal of past 

price inferences E ( V | P t−k ) . This is another difference from 

overconfidence, in which public information–including that 

coming from prices–is underweighted. Because a price in- 

crease says that positive information about fundamentals 

is dispersed in the economy, it renders the right tail repre- 

sentative, causing overreaction in beliefs. 

If prices become very informative over time, the weight 

z t attached to private signals falls and that attached to 

prices rises. All traders then overreact to the common 

market signals, the effects of information dispersion sub- 

side, so the dynamics of beliefs and prices may be very 
different from that in Section 2 . 

12 The variance of V is equal to σ 2 
t (V ) = [ t 

σ 2 
ε

+ 

1 
σ 2 

p, t (V ) 
] −1 . σ 2 

p, t (V ) de- 

creases in the precision of the public signals observed up to t . See the 

Online Appendix for details. 
 

] f or t ≤ k 

 [ ( 1 + θ ) z t − θz t−k ] V f or t > k 
. 

3.1. The boom phase 

To assess the consequences of learning from prices, we 

need to solve for the coefficient of price informativeness 

b r / c r . The key question is whether diagnosticity increases 

or reduces price informativeness, boosting or moderating 

the reaction to price signals. To understand this, we need 

to find a fixed point at which consensus beliefs are consis- 

tent with market equilibrium in Eq. (5) . Here the key re- 

sult comes from considering the equilibrium for the boom 

phase of the bubble, t ≤ k . 

Proposition 2 . With learning from prices and t ≤ k, the aver- 

age consensus belief about V is higher than the average con- 

sensus belief formed when investors learn from private infor- 

mation alone. The precision of the equilibrium price signal in- 

creases over time as 

b t 

c t 
= 

(
1 + θ

γ σ 2 
ε

)
t, (11) 

and the average equilibrium price path (for S 1 = S 2 = . . . = 

S t = 0 ) is given by 

p t = ( 1 + θ ) 

⎡ 

⎢ ⎣ 

t 
σ 2 

ε
+ 

(
1+ θ
σS σ 2 

ε

)2 
t ( t−1 ) ( 2 t−1 ) 

6 

t 
σ 2 

ε
+ 

1 
σ 2 

V 

+ 

(
1+ θ
σS σ 2 

ε

)2 
t ( t−1 ) ( 2 t−1 ) 

6 

⎤ 

⎥ ⎦ 

V. (12) 

As in the consensus expectations described in Section 2 , 

the equilibrium price grows in the boom phase t ≤ k , 

before investors adapt to the displacement. The price in 

Eq. (12) increases over time. If θ is in the range of 

Proposition 1 , the price starts below the fundamental V . 

This initial underreaction is due to the same reason that 

consensus beliefs underreact: traders discount the noise in 

their signals, so the good news they, on average, receive is 

not incorporated into prices. 

As time goes by, the price increases due to two forces. 

First, as traders accumulate private signals, they gain con- 

fidence about the innovation and revise their beliefs up- 

ward. This effect is captured by the term t/σ 2 
ε in Eq. (12) . 

Second, the observation of prices provides, on average, ad- 

ditional good news about displacement, which makes all 

traders more confident at the same time. As a result, the 

consensus estimate of V increases relative to the case in 

which only private signals are observed, and the price 

booms. The effect of learning from prices is captured by 

the second term in the numerator of Eq. (12) . At some 

point, traders become so confident that the price overre- 

acts, overshooting the fundamental V . 

How does diagnosticity interact with learning from 

prices in shaping beliefs about fundamentals? And how 

does learning from prices contribute to the price path? To 

answer the first question, consider Eq. (11) . Stronger diag- 

nosticity θ increases the informativeness of prices. When 
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13 In BGMS (2020), the estimated signal-to-noise ratio of the average 

macroeconomic series was between 3.5 and 4. In the current setting, 

this should be compared to the precision σε

V 
√ 

τ
of the signals received by 

the traders over some natural time scale τ . Picking this time scale to be 

around k , we get σ between 12 and 14. 
θ is higher, investors are aggressive in both revising their

beliefs and trading on the basis of their private signals.

Because these signals are informative about V , price in-

formativeness increases, which in turn implies that diag-

nostic traders over-react faster to the price signals, so the

bubble arises earlier. Unlike nonfundamental based behav-

ioral biases, such as mechanical extrapolation, which al-

ways disconnects prices from fundamentals, DE exaggerate

this link, creating faster, and accelerating, overreaction to

the initial displacement. 

To address the second question, and thus to see how

learning from prices influences the price path, consider

again Eq. (11) . It says that, for a given θ , the price signal

becomes more informative over time. As the i.i.d. supply

shocks average out over time, a path of consistent price

increases is highly informative of good fundamentals. Con-

sequently, learning from prices progressively gains ground

and swamps private signals as prices rise up to the peak

of the bubble. As shown in Eq. (12) , the precision of price

signals grows with the cubic power of t , which eventually

swamps the linear precision of private signals, t/σ 2 
ε . This

has the following implication. 

Proposition 3 . With learning from prices, there exists a σ 2 ∗
V 

>

0 such that for σ 2 
V 

< σ 2 ∗
V 

, there exists a t ∗ > 0 such the

average price path is convex for t < t ∗ and is concave for

t ∈ ( t ∗, k ) . When the supply shocks are so volatile ( σ S → ∞ )

that prices convey no information, the price path is concave:

σ 2 ∗
V 

→ 0 . 

When fundamental displacement is sufficiently large

relative to prior expectations ( V 
σV 

sufficiently high enough,

or normalizing V = 1 , σ V sufficiently low), learning from

prices generates a price path that is initially convex and

then slows down as the bubble reaches its peak. This oc-

curs because all traders, regardless of their private sig-

nals, aggressively infer fundamentals from the common

price signal, so the price informativeness increases at first.

After enough information gets incorporated into expecta-

tions and prices, the value of additional signals diminishes,

which causes a price growth slowdown. 

Under rational expectations, learning from prices would

also coordinate traders’ beliefs and generate convexity in

prices but would not lead to overvaluation. Under DE, con-

vex price growth eventually overshoots the fundamentals,

creating a bubble. As an endogenous signal observed by all

traders, the price spreads overly optimistic beliefs through

markets, supporting the convex growth path. 

3.2. Model simulation: boom, bust, and price extrapolation 

To explore the entire path of the bubble, we resort

to simulations because the model cannot be analytically

solved for t > k . This analysis shows that DE can produce

the boom and bust phases of bubbles and the dynamics

of investor disagreement (and hence trading). Most im-

portantly, DE can endogenously produce extrapolative ex-

pectations of prices but in a way that distinguishes them

from adaptive expectations or from alternative formula-

tions ( Hong and Stein, 1999 ; Glaeser and Nathanson, 2017 ).

The predictions may also suggest how to detect bubbles in

the data. 
We now describe our choice of parameters. We normal-

ize V to 1. To capture that displacement is a fairly rare

event, we assume σV = 0 . 5 , so V is two standard devia-

tions away from the mean. The dispersion of trader’s pri-

vate signals is set at σε = 12 . 5 , which is in the ballpark of

estimates obtained from the quarterly dispersion of pro-

fessional forecasts (BGMS, 2020). 13 We set θ = 0 . 8 , in line

with the quarterly estimates from macroeconomic and fi-

nancial survey data. For the model without speculation, we

take a time period to be a quarter, set the sluggishness of

diagnostic beliefs at k = 12 (in line with BGLS, 2019), and

run the model for T = 24 periods (i.e. 6 years). We set the

volatility of supply shocks at σS = 0 . 5 . 

Fig. 1 reports the actual price for the average path (no

supply shocks) both under DE ( θ = 0 . 8 ) and under ratio-

nal expectations ( θ = 0 ). Under DE, the equilibrium price

exhibits the typical boom bust pattern, where the boom is

driven by overreaction to private signals and prices, while

the bust is due to the reversal of expectations at t = k =
12 . In the rational model, by contrast, the price monotoni-

cally converges to V from below. 

As we discussed in Section 2 , rational expectations

cannot produce overreaction and price inflation because

they constrain assessed fundamentals to always stay be-

tween the prior of zero and the true value V . The same is

true for overconfidence (which generates bubbles only in

the presence of short sales constraints, e.g., Harrison and

Kreps, 1978 ). In our model, a displacement drives con-

tinued good news, resulting in a price boom. This leads

traders to focus on the right tail of V and think that the

innovation is truly exceptional, causing prices to overreact.

The bust occurs after time t = k + 1 , when investors

adapt to the displacement, starting to view the innovative

asset or technology as the new norm. Here the length k of

the boom phase is deterministic, but the model could be

made more realistic by having k stochastic (and even het-

erogeneous across investors). As in Proposition 1 , adapta-

tion to early news causes excess optimism to run out of

steam, generating the bust. Reversal of expectations and

prices due to disappointment of prior optimism can help

account for the slowdown of some bubbles, but it is not

the only mechanism behind a bust; other factors includ-

ing bad news (the housing bubble deflating from 2006

onward), as well as the proximity of a terminal trading

date (crucial in experimental findings), are surely signifi-

cant. We consider the latter mechanism in Section 4 . 

Because traders observe independent signals, they

have heterogeneous beliefs about the value of the as-

set. This creates room for disagreement and trading

( Scheinkman and Xiong, 2003 ). Barberis et al. (2018) show

that disagreement tends to rise in the boom phase. Our

model can create very similar effects. As time goes by,

traders become more confident in their information, which

causes them to place stronger weight on private signals.

This effect tends to foster disagreement. At some point, the
ε
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Fig. 1. Average price path. 

Plot of the price paths for the model in Section 3 . The x-axis is time, and the y-axis is the price in multiples of the fundamental value V . The red curve 

represents the diagnostic case, which lies above the blue curve representing the rational case. For both curves, we set the parameter values as follows: 

( σV = 0 . 5 , σε = 12 . 5 , k = 12 , T = 24 , σS = 0 . 5 ), and set the diagnostic parameter θ = 0 . 8 for the DE curve. 

Fig. 2. Model-implied belief dispersion. 

Plot of the dispersion of fundamental beliefs for the diagnostic model in Section 3 . The x-axis is time, and the y-axis is the standard deviation in E i, t V 

across the continuum of agents. Overlaid in the dotted blue curve is the DE price path from Fig. 1 . 
common price shock becomes so strong that disagreement 

declines. Fig. 2 plots the standard deviation of investor be- 

liefs: disagreement rises in the early part of the boom but 

falls as the public signal dominates the private information. 

We can also use simulations to describe the dynamics 

of expectations of future prices. Under mechanical extrap- 

olation, traders project past price increases into the future 

using the updating rule: 

E t ( p t+1 ) = p t + β( p t − p t−1 ) , (13) 

where β > 0 captures the fixed degree of price extrapola- 

tion. In our model, in contrast, traders watch prices to in- 

fer fundamentals. As a result, price extrapolation arises be- 

cause high past prices signal high fundamentals and hence 

even higher future expected prices. 
In Hong and Stein (1999) , extrapolation is due to under- 

reaction, which makes it optimal for momentum traders 

to chase the upward trend in prices. In that model, mo- 

mentum traders form expectations of future price changes 

by running simple univariate regressions of current prices 

on past price growth. In Glaeser and Nathanson (2017) , in- 

vestors believe that the price reflects fundamental value. 

An increase in price is then interpreted as stronger funda- 

mentals and leads to extrapolation of high prices into the 

future. In both models, as in adaptive expectations, extrap- 

olation is due to the use of simplified (or wrong) models. 

This logic suggests a testable difference between 

mechanical extrapolation and price learning under DE. 

Whereas mechanical extrapolation models impose β as a 

constant, price extrapolation arises endogenously in our 

model as a product of the distorted inference process. 
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Fig. 3. Model-implied extrapolation coefficient. 

Plots of the densities of the aggregate extrapolation coefficient β in the regression E t ( p t+1 ) = p t + β( p t − p t−1 ) . The blue density to the left centered near 

zero is the rational case, while the red density to the right is the diagnostic case. To obtain these densities, we simulate 50 0 0 price paths and expected 

future price paths averaged across the traders. 

Fig. 4. Time-dependent extrapolation. 

Plot of the time-varying extrapolation coefficient β in the regression E t ( p t+1 ) = p t + β( p t − p t−1 ) . We pool the aggregate time period into 6 consecutive 

buckets, simulate 50 0 0 price paths and expected future price paths averaged across the traders, and compute the confidence intervals of the resulting 

coefficients for each bucket. We also overlay in the dotted blue curve the average price path. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14 To build Figs. 3 and 4 , we simulate 50 0 0 price paths and ex- 

pected future price paths. We pool simulations and compute the re- 

gression E t ( p t+1 ) = p t + β( p t − p t−1 ) within buckets of four time periods. 

Fig. 3 reports the resulting βs and their confidence intervals (running re- 

gressions for individual paths and averaging the βs yields similar results). 
Thus, the degree of extrapolation depends on the degree

of fundamental uncertainty. In terms of Eq. (13) , our model

predicts that the updating coefficient β should be positive

at the early stages of the bubble when price movements

convey information about fundamentals, but should fall to

zero as learning accelerates. 

We evaluate these ideas by simulating the model. We

run regression (13) using a time series of the model sim-

ulated using the parameters above. We produce 20 0 0 such

time series and plot in Fig. 3 the histogram of estimated

coefficients for both the diagnostic and the rational model.

The coefficient of price extrapolation implied by the

model is positive, between 0.5 and 2.0. Even though our

investors are entirely forward-looking, they appear to me-

chanically extrapolate past prices. This is not the case un-

der rational expectations, where the coefficient is almost

0, slightly negative because of rational supply shock effects

that are dominated by extrapolation in the diagnostic case.

While DE entail a positive extrapolation coefficient β ,

on average, across the entire bubble episode (as does me-

chanical extrapolation), that coefficient is the highest when

prices are most informative, which in this case is at the

peak of the bubble. Fig. 4 reports the average estimates of

β in each of six buckets, capturing growth, overshooting,
and collapse. 14 The results confirm that price extrapolation

is strongest in the making of the bubble when learning is

rapid (the first phase highlighted in blue). This occurs be-

cause prices are most informative (relative to the private

signal) in that range, which induces diagnostic traders to

update upward more aggressively after a price rise. At the

peak of the bubble, expectations of future prices are signif-

icantly above actual prices. After the bubble bursts, traders

adjust their expectations downward significantly but not

fast enough to converge to the actual prices. Thus, in this

period extrapolation appears negative. Finally, as learning

subsides, extrapolation goes to zero, just as in the rational

case. 

As Figs. 3 and 4 show, this model can produce some

price convexity and moderate overvaluation. However,

this model precludes large bubbles because for reason-

able values of θ , prices are tethered to V . In contrast,

prices sometimes strongly overshoot sensible measures of
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15 Recall that in this Section we shut down the adaptation of diagnostic 

expectations by setting k > T . 
fundamentals. In addition, while learning from prices 

generates some convexity in the price path, it does not 

create enough acceleration to generate increasing growth 

rate of prices (accelerating returns) seen in the data 

( Greenwood et al., 2019 ). We next show that both features 

can be attained by adding speculation to our model. 

4. Speculation 

To introduce speculation, we assume that traders have 

short horizons in the sense that their objective function at 

each time t is to resell the asset at time t + 1 . In the model

of Section 5 we relax this assumption and allow traders 

to choose optimally whether to sell the asset or not. The 

trading game lasts for T rounds. The traders holding the 

asset in the terminal date receive V . We take T to be ex- 

ogenously given and deterministic, as in laboratory exper- 

iments of bubbles. In real markets, there is no such thing 

as a terminal date, but taking a fixed T is a convenient ap- 

proximation to a setting in which there is a certain prob- 

ability that at some point the “speculation game” ends in 

the sense that most traders attend to fundamentals. 

With speculation, DE generate price paths with sig- 

nificantly larger overvaluation than in the previous 

models, followed by a price collapse as the terminal date 

approaches. This occurs because speculators not only 

overreact to good fundamental news but also expect to 

resell to overreacting buyers in the future, which drives 

the price today higher. As T approaches, the prospects for 

re-trading fade and the bubble bursts. These dynamics are 

very different from those obtained under rationality. 

Traders continue to have mean-variance prefer- 

ences. Away from the terminal date, t < T , trader i 

chooses demand D it to maximize [ E it ( p t+1 ) − p t ] D it −
γ
2 V a r t ( p t+1 ) D 

2 
it 

, while his objective at time T is funda- 

mental based as before. Demand in each period is then 

given by 

D i,t = 

[
E 

θ
i,t ( p t+1 ) − p t 

]
γV a r t ( p t+1 ) 

, f or t = 1 , . . . , T − 1 , (14) 

D i,t = 

[
E 

θ
i,t ( V ) − p t 

]
γV a r t ( p t+1 ) 

, f or t = T . (15) 

With speculation, demand increases in the expected 

capital gain E 

θ
i,t 

( p t+1 ) − p t except in the last period t = T , 

in which traders buy the asset to hold it. 

We illustrate the key consequences of speculation this 

Section by ruling out learning from prices, which we then 

re-introduce in Section 5 along with dynamic optimization. 

We also simplify the analysis by assuming that the diag- 

nostic reference is very sluggish, k > T , so that information 

about the asset’s value is always assessed compared to the 

prior V = 0 . The reason is that, as we will see, speculation 

itself creates a reason for the bubble to deflate as the ter- 

minal date T approaches. 

Without learning from prices, we do not need a supply 

shock, so we assume that supply is equal to zero. Aggre- 

gating the individual demand functions, prices are pinned 

down by the conditions: 

p t = 

∫ 
E 

θ
i,t ( p t+1 ) di, f or t = 1 , . . . , T − 1 , (16) 
p T = E 

θ
i,T ( V ) di. (17) 

In the final period T , the consensus fundamental value 

is E 

θ
T 
(V ) = ( 1 + θ ) πT V , as per Eq. (3) , leading to the ter-

minal price p T = ( 1 + θ ) πT V . Under the assumption θ ∈ 

( 1 T 
σ 2 
ε

σ 2 
v 

, 
σ 2 
ε

σ 2 
v 
) of Proposition 1 , which we maintain, this price 

is above the fundamental, ( 1 + θ ) πT > 1 . 15 

Consider now the price at T − 1 . By Eq. (16) , this price

is the consensus expectation as of T − 1 of the terminal 

price p T . To compute this consensus, consider first the ex- 

pectation held at T − 1 by a generic trader j . When fore- 

casting the terminal price, this trader must make two as- 

sessments. First, he must assess the fundamental value V . 

Second, he must forecast how traders at T will react to 

noisy signals of the same fundamental value. Because the 

beliefs of future traders are a random variable, trader j 

forecasts them using the very same diagnostic formula of 

Eq. (2) . One can interpret this forecasting process in two 

ways. First, one can view trader j as placing himself in the 

shoes of future traders receiving different signals, predict- 

ing that these traders will behave the way he would be- 

have in light of the same signals. Alternatively, one can 

view trader j as forecasting the behavior of others with 

the understanding that they will update diagnostically. In 

both cases, we continue to rule out the possibility that any 

trader is sophisticated enough to be aware of his own di- 

agnosticity; otherwise he would de-bias his beliefs about 

himself and others. 

Consider how trader j forecasts the beliefs at T of a 

generic trader i who has observed an average signal 
∑ T 

r=1 s ir 
T 

from the initial date to the terminal period. Trader j knows 

that trader i overreacts to all signals received, forming a 

terminal estimate E 

θ
iT 

(V ) = ( 1 + θ ) πT 

∑ T 
r=1 s ir 

T . By averaging 

across all traders i , trader j knows that if the fundamental 

value is V , the consensus estimate, and hence the equilib- 

rium price at T , is equal to 

p T = ( 1 + θ ) πT V. 

This prediction is based on the fact that trader j knows 

that whichever signals are received by individual traders, 

they will average out to the true V . Of course, trader j does

not know the true value of V at T − 1 ; he only has an esti-

mate of it, based on the signals 
∑ T−1 

r=1 
s jr 

T −1 observed up to that 

period. This T − 1 estimate of fundamentals is of course di- 

agnostic and is equal to 

E 

θ
jT −1 ( V ) = ( 1 + θ ) πT −1 

∑ T −1 
r=1 s jr 

T − 1 

. 

The diagnostic expectation held at T − 1 by trader j 

about the terminal price is then given by 

E 

θ
jT −1 

[
E 

θ
T ( V ) 

]
= ( 1 + θ ) πT E 

θ
jT −1 ( V ) 

= ( 1 + θ ) 
2 πT πT −1 

∑ T −1 
r=1 s jr 

T − 1 

. 

Trader j at T − 1 uses his signals, but he compounds di- 

agnosticity twice. First, he diagnostically overreacts to his 
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signal, creating an inflated estimate of fundamentals. Sec-

ond, he expects future traders to overreact to signals gen-

erated by the inflated fundamentals. To see the intuition,

imagine that j overestimates the share of future Googles

in the population of tech firms to be 7%. He then expects

future traders to overreact relative to his assessment and

estimate the share of Googles to be, say, 10%. In this way,

overreaction to news compounds as the current forecast is

projected into the future. 

Because every trader j repeats the same logic, by av-

eraging across all of them, the consensus forecast held at

time T − 1 about the terminal price, and thus the equilib-

rium price at T − 1 , is given by 

p T −1 = ( 1 + θ ) 
2 πT πT −1 V. (18)

To gauge the role of DE, suppose that traders are ra-

tional, so θ = 0 . In this case, the price at T − 1 is equal

to p rat 
T −1 

= πT πT −1 V, while the price at T is equal to p rat 
T 

=
πT V . Critically, because πT −1 < 1 , the price at T − 1 is

lower than the terminal price; p rat 
T −1 

< p rat 
T 

. This captures

a broader and well-known point ( Allen et al., 2006 ): un-

der rationality, speculation leads the price to initially in-

crease slowly over time and then to increase faster as the

terminal date approaches. However, there is neither over-

valuation nor collapse. The intuition is that rational traders

discount their signals and expect future traders to do the

same. As a result, they do not expect to be able to resell

the asset for a very high price, which keeps the current

price low. As the terminal date approaches, this mecha-

nism becomes weaker, so the price increases faster to the

consensus terminal belief about V . 

Crucially, even a modicum of diagnosticity θ > 0 dra-

matically changes the calculus. To begin, note that when

θ > 0, it is entirely possible that the price drops at the

terminal date. This is true if and only if 

p T −1 > p T ⇔ ( 1 + θ ) πT −1 > 1 . 

If traders overestimate the fundamental value at time

T − 1 , i.e., ( 1 + θ ) πT −1 > 1 , then the price at T − 1 is above

both fundamentals and the terminal price. The intuition

goes as follows. By overestimating V , traders at T − 1 be-

lieve that future traders will overreact to this estimate,

compounding overreaction twice. But then, the expectation

to sell to these bullish traders in the future raises the price

of the asset in T − 1 itself. This leads to a first important

remark: in sharp contrast with the rational case, which

leads to a monotone rising price path, DE introduce the

opposite effect. By creating overreaction, they imply that

prices decline toward the terminal date, reflecting an ini-

tial strong overvaluation of the asset. 

To study the implications of θ > 0 fully, we need to it-

erate the same logic backward to earlier periods until the

initial date t = 1 . It is immediate to see that the full path

of equilibrium prices obtained by iterating Eq. (18) back-

wards is described by: 

p t = ( 1 + θ ) 
T −t+1 

[ 

T ∏ 

r= t 
πr 

] 

V, (19)

which implies the following result. 
Proposition 4 . Define the geometric average of all signal-

to-noise ratios ˆ π ≡ [ 
∏ T 

r=1 πr ] 
1 
T . Then, if θ ∈ ( 1 T 

σ 2 
ε

σ 2 
v 

, 1 − ˆ π
ˆ π

) ,

where 1 − ˆ π
ˆ π

< 

σ 2 
ε

σ 2 
v 

, the speculative price dynamics exhibit the

three bubble phases. In particular, 

1. The price starts below fundamental, p 1 < V, and gradu-

ally increases above fundamentals, reaching its maximum

at the smallest time ˆ t for which ( 1 + θ ) πˆ t > 1 . 

2. From t = ̂

 t onwards, the price monotonically declines to-

ward p T . 

With DE, speculative dynamics can generate both the

sluggish upward price adjustment typical of underreaction

(provided θ is not too large), the price inflation relative to

fundamentals typical of overreaction (provided θ is not too

small), and the bust phase in which prices collapse, which

here is driven by the reduction in the available rounds of

reselling. 

Because ( 1 + θ ) ̂  π T < 1 , individual traders underreact to

the aggregate information in the first period. The logic

is the same as before: individual uncertainty about V is

still very large. Traders are not only cautious in estimat-

ing V but also think that next period buyers will be cau-

tious as well. This effect curtails the expected resale price

and demand for the asset today, keeping its price low. As

time goes by, traders acquire more information, become

more confident, and start using it more aggressively. They

become more optimistic about the signals future buyers

will get more confident about future buyers’ overoptimism,

and the price starts increasing. As traders gain confidence,

the possibility of multiple rounds of reselling to overre-

acting traders dramatically boosts price, which overshoots

V . The price then starts declining as the terminal date T

approaches because there are fewer and fewer rounds of

trading and thus less scope for reselling to overreacting

buyers. Once again, the dynamics of speculation under ra-

tionality are very different: they display momentum but

not overshooting or reversal ( Allen et al., 2006 ). 

Another important consequence of speculation is that

it can greatly exacerbate the overshooting of funda-

mentals, relative to the benchmark model of Section 3 .

Eq. (19) shows how speculation fuels bubbles under DE

and can cause strong price inflation even with small diag-

nostic distortions θ . Consider the ratio of price under spec-

ulation to consensus expectations of fundamentals (which

equals price in the absence of speculation). At the peak of

the bubble, which occurs at ˆ t = 

1 
θ

σ 2 
ε

σ 2 
v 

, this ratio is inflated

relative to the rational benchmark as follows: 

p ˆ t ( θ ) 

E 

θ
ˆ t 
( V ) 

= ( 1 + θ ) 
T − 1 

θ

σ2 
ε

σ2 
v 

p ˆ t ( 0 ) 

E 

0 
ˆ t 
( V ) 

While under DE, beliefs about fundamentals are inflated

by a linear factor of θ , namely 
E 

θ
ˆ t 
(V ) 

E 
0 
ˆ t 
(V ) 

= 1 + θ , when spec-

ulation is included, the inflation of price relative to be-

liefs grows as a power of 1 + θ . Even a small departure θ
from rationality can fuel large bubbles. This much stronger

growth reflects the compounding effect of overoptimism

about selling to overreacting investors until the horizon T .

Increasing θ increases optimism, which also implies that
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16 Similarly to Section 3 , the full model is characterized by the 

equilibrium-price coefficients ( a t , b t , c t ) for t = 1 , 2 , . . . T, where p t = 

a t E ( V | P t ) + b t ( V − c t 
b t 

S t ) . As shown in the Online Appendix, one can re- 

cursively solve for the equilibrium coefficients given a guess for the fi- 

nal precision of the public signals 1 
σ 2 

p,T 

= 

1 
σ 2 

V 

+ 

1 
σ 2 

S 

∑ T 
r=1 ( 

b r 
c r 

) 2 . The equilib- 

rium is then numerically pinned down by the final precision that implies 
1 

σ 2 
p, 0 

= 

1 
σ 2 

V 

. 

17 The myopic problem is a special case of Eq. (2) in which, instead of 

optimizing E 
θ
it 
{ J( W 

i 
t+1 , 	

i 
t+1 ) } = E 

θ
it 
{ − exp [ −γW 

i 
t+1 − 1 

2 
( 	 i 

t+1 ) 
′ 
U t+1 	

i 
t+1 ] } , 

the individual optimizes E 
θ
it 
{ J myop ( W 

i 
t+1 , 	

i 
t+1 ) } = E 

θ
it 
{ − exp [ −γW 

i 
t+1 ] } , 

or equivalently myopically maximizes next period wealth assuming 

immediate resale of asset. 
the peak of the bubble is reached earlier, which in turn im- 

plies a stronger compound effect of DE. A small amount of 

diagnostic distortions can be amplified by forward-looking 

speculators into large bubbles. 

5. The full model: forward-looking speculation and 

learning from prices 

We now combine all the ingredients by introducing DE 

into the dynamic trading model of He and Wang (1995) . 

In this setting, at each time t , each investor i chooses how 

many units of the asset to buy or sell so as to maximize 

the expected utility of final consumption: 

max 
s.t. W 

i 
t+1 

= W 

i 
t + X i t ( p t+1 −p t ) 

E 

θ
it 

[ 
−e −γW 

i 
T 

] 
, (20) 

where the law of motion of individual wealth W 

i 
t depends 

on X i t , the holdings of the risky asset optimally chosen by 

the investor at time t , and on ( p t+1 − p t ) , which is next 

period’s capital gain on this asset (remember that the div- 

idend is paid at the end and p T = V ). 

The diagnostic expectation E 

θ
it 
(. ) is formed on the basis 

of the private signals described in Section 2 and on the 

public signals obtained from price movements as shown in 

Section 3 (again, to obtain gradual learning from prices, we 

allow for i.i.d. supply shocks S t ). The trader’s speculative 

motive comes from his individual expectations of capital 

gains and capital losses, which affects the evolution of his 

wealth. Critically, the trader is not forced to sell all of the 

risky asset at t + 1 . This flexibility is valuable. For instance, 

it allows a trader expecting strong price increases in the 

distant future to buy now and sell then. 

To solve this model under DE, we follow the methodol- 

ogy of He and Wang, adapting it only to the fact that in our 

model expectations are diagnostic. To quickly review, He 

and Wang show that under rational expectations, solving 

Eq. (20) entails maximizing the expectation of the value 

function: 

J 
(
W 

i 
t+1 , 	

i 
t+1 

)
= − exp 

[ 
−γW 

i 
t+1 −

1 

2 

(
	 i 

t+1 

)′ 
U t+1 	

i 
t+1 

] 
, 

(21) 

which depends on the trader’s current wealth W 

i 
t+1 

and on 

the vector of trader-specific beliefs: 

	 i 
t+1 = 

[
1 , E i,t+1 ( V ) , E p,t+1 ( V ) , E pt ( V ) 

]
, 

which include the trader’s rational expectation of funda- 

mentals computed solely on the basis of his private sig- 

nals, E i,t+1 (V ) , the trader’s as well as the market rational 

expectation of fundamental computed solely on the basis 

of public price signals E p,t+1 (V ) , and the past value of such 

public expectation E pt (V ) . 

The term ( 	 i 
t+1 

) ′ U t+1 	
i 
t+1 

in Eq. (21) captures dynamic 

trading motives. When the trader is much more opti- 

mistic than the market, E i,t+1 (V ) 
 E p,t+1 (V ) , the term 

( 	 i 
t+1 

) ′ U t+1 	
i 
t+1 

is high. As a result, the trader’s marginal 

utility of current wealth is low, which makes it opti- 

mal for him to buy the asset. When instead the trader 

is much more pessimistic than the market, the term 

( 	 i 
t+1 

) ′ U t+1 	
i 
t+1 

is low. Here the marginal utility of cur- 

rent wealth is high, which causes the trader to sell the 
asset. He and Wang further show that the matrix of co- 

efficients U t+1 regulating dynamic incentives can be recur- 

sively determined. 

Here we follow the same approach but allow expec- 

tations to be diagnostic. Specifically, we assume that the 

generic trader maximizes the objective: 

E 

θ
it 

{
J 
(
W 

i 
t+1 , 	

i 
t+1 

)}
= E 

θ
it 

{ 

− exp 

[ 
−γW 

i 
t+1 −

1 

2 

(
	 i 

t+1 

)′ 
U t+1 	

i 
t+1 

] } 

, (22) 

where DE are, for simplicity, specified for the case in which 

k > T . To solve the problem, we use the values U t+1 com- 

puted in the rational expectations solution and diagnosti- 

cally distort only the random variables, in particular, future 

wealth and beliefs. This approach greatly simplifies compu- 

tation and can be interpreted as a diagnostic perturbation 

of the dynamic rational expectations equilibrium. 

Online Appendix B describes the implementation of this 

approach in detail, including the trader’s optimal portfo- 

lio choice, the market clearing condition, and the recursive 

definition for U t+1 . The model is complex and the resulting 

equilibrium can only be solved numerically. 16 To character- 

ize its properties, we simulate it at the benchmark param- 

eter values σV = 0 . 5 , σS = 0 . 2 , σε = 9 . 5 , γ = 0 . 12 , θ = 0 . 8 ,

and T = 15 . These parameter values are very close to those 

used in Section 3 , except that we have increased the infor- 

mativeness of private signals and lowered the volatility of 

supply shocks. This allows us to bolster the effect of dy- 

namic trading, which would otherwise matter very little 

for high σε . We examine the following key outcomes: the 

average price path, price volatility, investor disagreement, 

trading volume, and time-varying average price extrapola- 

tion. For the average price and disagreement, we derive the 

values directly from the equilibrium coefficients, whereas 

we simulate 10 0 0 price paths to compute the time-varying 

volatility, volume, and extrapolation. 

Consider first the key outcome: the average price path, 

which is the price path for the case in which the supply 

shock S t is zero in all periods. As our equilibrium is lin- 

ear in supply, this also is the unconditional expected price 

path E ( p t ) for t = 1 , 2 , . . . T . To assess the role of dy-

namic trading in isolation, we also evaluate and report the 

price path in a model in which traders are myopic, as in 

Section 4 , but learn from prices. 17 To assess the role of di- 

agnostic beliefs, we report the price path under rational 

expectations (with and without dynamic trading). The sim- 

ulation results are presented in Fig. 5 . 

Panel A reports the outcome under DE, plotting the 

dynamic trading case with the dashed line and the my- 
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Fig. 5. Average price paths. 

In Panel A, we plot the average price paths for the full DE model. The solid line corresponds to myopic speculators who sell the asset immediately in the 

subsequent period, while the dotted line corresponds to the case in which speculators trade dynamically. Panel B shows the analogous plot for the rational 

case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18 Given the precision of prices ζt = 

1 

( σ t 
p ) 

2 , standard Bayesian analysis 

implies that the dispersion of diagnostic beliefs about V is ( 1+ θ ) σε√ 
t 

·
t 

σ2 
ε

t 

σ2 
ε

+ ζt 
. 
opic case with the solid line. With both dynamic and

myopic trading, the price path displays the three Kindle-

berger phases: a price growth phase, an acceleration and

overshooting phase, and then a collapse. Dynamic trading

changes matters a bit and in particular causes the bubble

to occur slightly faster and to reach a peak that is slightly

higher (by roughly 20% of the fundamental). Intuitively, as

traders expect the future price to go up, they buy more ag-

gressively today, which pushes up prices earlier and more.

The convexity of the price path is due to the interaction of

DE with speculation and learning from prices, in line with

the analyses of Sections 3 and 4 . On the one hand, over-

reaction to news causes prices to be more informative, fu-

eling common overreaction by traders. On the other hand,

traders expect future buyers to over-react even more, caus-

ing high speculative demand and hence a high price today.

As we saw in Section 3 and 4 , under rational expecta-

tions, these boom bust patterns do not emerge. The price

gradually converges to the truth from below. Under DE,

in contrast, even a modest departure from rationality cre-

ates substantial bubbles. A degree of distortions of θ = 0 . 8

generates in the above simulation a price peak that is 5.3

times the fundamental and about 3 times higher than the

price peak in the absence of speculation. Mechanical price

extrapolation is not necessary to generate such overpricing.

The roles of Kindelberger’s fundamental displacement and

the resulting belief distortions in generating bubbles may

be larger than usually thought. 

To assess price volatility, we simulate the model for

many different realizations of the supply shocks S t . We

present the fan plot of the resulting price paths and

the simulated standard deviation of the price innovations

p t+1 − p t . The result is reported in Fig. 6 . 
Intuitively, the price of the asset is most volatile in pe-

riods leading up to the peak of the bubble, and it be-

comes extremely stable as we converge to the final period.

Around the peak of the bubble, in fact, prices are most in-

formative, and even a slight supply shock may lead to a

dramatic change in beliefs, trading strategies, and prices.

This outcome underscores the fragility of bubbles in our

model and how–through sudden changes in expectations–

they can turn into busts even with small changes in market

conditions. 

Consider next disagreement. We compute the disper-

sion of traders’ beliefs from the equilibrium coefficients

directly. 18 There are two relevant types of disagreement.

First, individuals may disagree about fundamentals. Sec-

ond, this disagreement translates to a disagreement about

next period prices, which is more directly relevant for trad-

ing. The two measures are not redundant: disagreement

about next period prices depends on both disagreement

about fundamentals as well as how much this disagree-

ment is amplified into next period prices. Fig. 7 reports the

result on both fundamental and next period price disagree-

ment. 

Disagreement about both fundamentals and next pe-

riod prices peaks near the peak of the bubble and drops

toward zero as traders progressively learn. This is due

to two counteracting forces. On the one hand, as traders

acquire information, their uncertainty falls. As a result,

they update more aggressively on their private signals and
We can then feed this into expectations of next period prices. 
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Fig. 6. Price volatility. 

Left: the fan plot of 10 0 0 simulated price paths. The quantiles and the average of the price paths are indicated by the red and black curves, respectively. 

Right: a plot of price volatility σ ( p t+1 − p t ) for t = 1 , 2 , . . . T . 

Fig. 7. Disagreement. 

Plots, in solid dots, of the average belief dispersion across traders i across t = 1 , 2 , . . . T. For simplicity, we look at the case of myopic traders. In both 

plots, we overlay the price path in the solid curve. Left: the standard deviation of fundamentals beliefs E θ
it 

[ V ] across traders i . Right: the standard deviation 

of next-period price beliefs E θ
it 

[ p t+1 ] across traders i . 
disagreement increases. On the other hand, information 

becomes more common across traders, also because more 

price signals are observed over time. This causes dis- 

agreement to fall and to eventually disappear altogether. 

Interestingly, whereas disagreement on fundamentals rise 

relatively quickly, disagreement on prices rises with a lag, 

as fundamentals are weakly reflected into prices at the 
beginning of the bubble. Thus, disagreement about prices 

is decoupled from disagreement about fundamentals. 

We next investigate trading volume. As our equilibrium 

is linear, market clearing implies that the portfolio holding 

of individual i is given by X i t = g t ( ̄s 
i 
t − V ) + S t , where g t 

captures the strength of the strategic trading motives, 

which is endogenously determined in equilibrium. This 
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Fig. 8. Trading volume. 

Plot of the trading volume across t = 1 , 2 , . . . T. We define volume as 

half of the average absolute position across the population, Volum e t = 

1 
2 

E | �X t | , and numerically compute the volume by simulating the sup- 

ply shocks and the average signals in Eq. (23) . We overlay the price path 

in the solid curve. 
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20 While volume rising at the end of the bubble seems counterfactual, 

there is also documentation of elevated volume during market crashes 

( Galbraith 1954 , Kindleberger 1978 ). 
21 We rely on simulations to compute the extrapolation coefficients, 

generating 1,0 0 0 sample paths. There are two main approaches to com- 
n n θ n n 
implies that the individual portfolio adjustment �X i 
t+1 

can

be broken down into three components: 

�X 

i 
t+1 = X 

i 
t+1 − X 

i 
t 

= S t+1 − S t ︸ ︷︷ ︸ 
supply adjustment 

+ g t+1 

(
s̄ i t+1 − s̄ i t 

)︸ ︷︷ ︸ 
learning adjustment 

+ ( g t+1 − g t ) 
(
s̄ i t − V 

)︸ ︷︷ ︸ 
strategic adjustment 

. (23)

The first component is due to an overall shift in port-

folio holdings due to supply adjustment. The second learn-

ing component captures the standard trading motives ex-

plained directly by the change in a trader’s beliefs. The fi-

nal term captures strategic adjustment motives: controlling

for relative optimism/pessimism, the trader faces time-

varying incentives to trade that depend on expectations of

risk and return of speculation. Fig. 8 reports the evolution

of aggregate trading volume over time. 19 

Trading volume monotonically increases over time. This

is due to two forces. First, and crucially, disagreement in-

creases as we approach the peak of the bubble. Greater

disagreement induces pessimistic traders to sell and op-

timistic traders to buy, raising the volume. Furthermore,

the upward price path increases the returns to speculation,

which contributes to the strategic adjustment component

of Eq. (22) , also creating a stronger incentive to trade. This

mechanism continues for a while. Eventually, however, one
19 We directly compute g t from equilibrium coefficients and estimate 

olum e t = 

1 
2 

E | �X t | by simulating the supply shocks and the average 

signals in Eq. (23) . 
would expect trading volume to fall due to falling disagree-

ment after the peak of the bubble (see Fig. 7 ). 

This is not what is shown in Fig. 8 , in which trad-

ing volume monotonically increases, even after the col-

lapse of the bubble. This is due to a countervailing effect:

price volatility. After the peak of the bubble, price volatil-

ity swiftly drops, as shown in Fig. 8 . This reduction in price

risk encourages risk-averse traders to aggressively trade on

the basis of their heterogeneous beliefs. In other words,

lower price volatility has reduced the risk of speculation,

which raises the strategic adjustment term. It is true that

disagreement has fallen, but in our simulation the reduc-

tion in price volatility dominates, leading to monotonically

increasing trading volume over time. 

Due to this second force, the current simulation of the

model does not yield the decline in trading volume ob-

served after bubbles collapse ( Barberis et al., 2018 ). 20 One

solution to this problem would be to introduce traders

with heterogenous risk aversion: the drop in the price of

the bubble can reduce the wealth of risk-seeking traders,

thereby reducing their ability to aggressively trade. Pro-

gressive entry of more risk-seeking and less informed mar-

ket participants seems relevant in several bubble episodes,

as narratively documented ( Galbraith, 1954 ), and it may

help our model generate richer dynamics of trading vol-

ume. 

Finally, consider time-varying extrapolation. We simu-

late coefficient β t in Eq. (13) for the full model. 21 Fig. 9

below shows the coefficients for both models. 

As in Section 3 , the model generates positive extrapo-

lation in the early stages of the bubble. Forward-looking

traders react strongly to their private signals, as they fore-

see large opportunities to speculate in the future. Hence,

price informativeness increases, causing diagnostic traders

to expect a large future price increase after observing a

current price increase. This mechanism, which creates a

semblance of price extrapolation, becomes weaker over

time because learning slows down. Furthermore, unlike

Section 3 , extrapolation is strongest at the early stages

of the bubble. This is because as we approach the peak,

speculation causes prices to adjust contemporaneously to

expectations of future prices (see Section 4 ), causing the

difference between the two to be less predictable by re-

cent price innovation. In contrast with mechanical price

extrapolation models, our model demonstrates that ap-

parent price extrapolation can arise endogenously from

an inference of fundamentals and the exact dynamics of

price extrapolation may depend on the horizon and trading

behavior of the speculators. 
pute β t . First, one could pool ( p t − p t−1 , E t [ p t+1 ] − p t ) over n for 

each t and compute the regression coefficients (pooling). Alternatively, 

one can subdivide { 1 , 2 , . . . T } into contiguous buckets b 1 , . . . b K , com- 

pute the regression coefficients βn 
k 

, and average over n to obtain βk = 

1 
10 0 0 

∑ 

n β
n 
k 

(averaging). The two approaches produce mostly similar coef- 

ficients. We report the results from the first approach. 
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Fig. 9. Time-varying extrapolation. 

Plot of the time-varying extrapolation coefficient β in the regres- 

sion E t ( p t+1 ) = p t + β( p t − p t−1 ) . We rely on simulations to compute 

the extrapolation coefficients, generating 10 0 0 sample paths. We pool 

( p n t − p n t−1 , E 
θ
t [ p 

n 
t+1 ] − p n t ) over n for each t and compute the regression 

coefficients. We overlay the average price path in the solid curve. 

 

 

 

 

 

 

 

 

 

To summarize, we have examined the implications of 

our model on a rich set of observables, including aver- 

age prices, volatility, trading, disagreement, and extrapo- 

lation. By combining DE of fundamentals with standard 

mechanisms such as learning from prices and speculation, 

our model generates some salient aspects of the Kindle- 

berger narrative and other empirically realistic features of 

bubbles. 

6. Conclusion 

In this paper, we brought a micro-founded model of 

beliefs, diagnostic expectations, to the problem of model- 

ing bubbles. We have considered two formulations: belief 

formation about fundamentals with learning from prices 

and also speculation, whereby investors focus on reselling 

the asset next period. We showed that both of these for- 

mulations exhibit the central features of bubbles as con- 

ceived by Kindleberger (1978) : displacement, price acceler- 

ation, and a crash. Moreover, these models deliver extrap- 

olative beliefs and overreaction to information during the 

later stages of the bubble that are so central both to the 

Kindleberger narrative and empirical facts about bubbles. 

Our micro-founded model of beliefs, based on expec- 

tations about fundamentals, delivers two further insights 

into the anatomy of bubbles. First, it connects overreac- 

tion to fundamental news, which is the central implication 

of diagnostic expectations, to price extrapolation, which 

has been increasingly seen as a key feature of bubbles 

(see Barberis et al., 2018 ). In our model, price extrapola- 

tion is far from constant over the course of the bubble, 

as in mechanical models of adaptive expectations, but in 

fact emerges as a by-product of DE during the rapid price 
growth stage of the bubble. In fact, the bubble collapses 

in part because the psychological mechanisms that entail 

price extrapolation run out of steam. 

Second, our model illustrates the centrality of specu- 

lation for bubbles. Bubbles exist in specifications where 

traders focus on the final liquidation value of the asset. 

But bubbles are much more dramatic when traders fo- 

cus on the resale next period because their valuations are 

no longer tethered to liquidation values, and they bid up 

the asset’s price based on the expectation of other traders’ 

optimism next period. Indeed, we show that in a model 

with speculation, but not otherwise, even a small amount 

of diagnosticity in belief formation can lead to extremely 

large overvaluation during the rapid growth stage of the 

bubble. Even a mild departure from rational expecta- 

tions, when combined with speculation, can entail extreme 

overvaluation. 

These insights into the structure of asset price bubbles 

would not be obtained without modeling beliefs explic- 

itly from fundamental psychological assumptions and com- 

bining this with standard neoclassical mechanisms, such 

as learning from prices and speculation. But while this 

approach advances our understanding of the anatomy of 

price bubbles, it is only a first step. On the one hand, our 

theoretical setup is quite simple, and we did not perform 

a full quantitative assessment of our mechanism. Further- 

more, we have not considered further critical features of 

price bubbles, emphasized by Kindleberger but also obvi- 

ously critical to the financial crisis of 2008 as well as to 

other crises ( Gennaioli and Shleifer, 2018 ). These include 

leverage as well as the central involvement of banks and 

other financial institutions in the bubble episode. Intro- 

ducing these elements into a model of bubbles with di- 

agnostic expectations would get us closer to understand- 

ing the structure of financial fragility, beginning with basic 

features of expectations. 
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