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a b s t r a c t 

We present an extrapolative model of bubbles. In the model, many investors form their 

demand for a risky asset by weighing two signals—an average of the asset’s past price 

changes and the asset’s degree of overvaluation—and “waver” over time in the relative 

weight they put on them. The model predicts that good news about fundamentals can 

trigger large price bubbles, that bubbles will be accompanied by high trading volume, and 

that volume increases with past asset returns. We present empirical evidence that bears 

on some of the model’s distinctive predictions. 
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1. Introduction 

In classical accounts of financial market bubbles, the

price of an asset rises dramatically over the course of

a few months or even years, reaching levels that ap-

pear to far exceed reasonable valuations of the asset’s fu-

ture cash flows. These price increases are accompanied

by widespread speculation and high trading volume. The

bubble eventually ends with a crash, in which prices col-

lapse even more quickly than they rose. Bubble episodes
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have fascinated economists and historians for centuries

(e.g., Mackay, 1841; Bagehot, 1873; Galbraith, 1954; Kindle-

berger, 1978; Shiller, 20 0 0 ), in part because human behav-

ior in bubbles is so hard to explain, and in part because of

the devastating side effects of the crash. 

At the heart of the standard historical narratives of

bubbles is the concept of extrapolation—the formation of

expected returns by investors based on past returns. In

these narratives, extrapolators buy assets whose prices

have risen because they expect them to keep rising. Ac-

cording to Bagehot (1873) , “owners of savings . . . rush into

anything that promises speciously, and when they find that

these specious investments can be disposed of at a high

profit, they rush into them more and more.” These histor-

ical narratives are supported by more recent research on

investor expectations, using both survey data and lab ex-

periments. Case et al. (2012) show that in the U.S. hous-

ing market, homebuyers’ expectations of future house price

appreciation are closely related to lagged house price ap-

preciation. Greenwood and Shleifer (2014) present survey
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evidence of expectations of stock market returns and find 

strong evidence of extrapolation, including during the In- 

ternet bubble. Extrapolation also shows up in data on ex- 

pectations of participants in experimental bubbles, where 

subjects can be explicitly asked about their expectations of 

returns. Both the classic study of Smith et al. (1988) and 

more recent experiments such as Haruvy et al. (2007) find 

direct evidence of extrapolative expectations during a well- 

defined experimental price bubble. 

In this paper, we present a new model of bubbles based 

on extrapolation. In doing so, we seek to shed light on 

two key features commonly associated with bubbles. The 

first is what Kindleberger (1978) called “displacement”—

the fact that nearly all bubbles from tulips to South Sea to 

the 1929 U.S. stock market to the late 1990s Internet occur 

on the back of good fundamental news. We would like to 

understand which patterns of news are likely to generate 

the largest bubbles, and whether a bubble can survive once 

the good news comes to an end. Second, we would like to 

explain the crucial fact that bubbles feature very high trad- 

ing volume ( Galbraith, 1954; Carlos et al., 2006; Hong and 

Stein, 2007 ). At first sight, it is not clear how extrapolation 

can explain this: if, during a bubble, all extrapolators hold 

similarly bullish views, they will not trade with each other. 

To address these questions, we present a model in the 

spirit of earlier work by Cutler et al. (1990) , De Long 

et al. (1990) , Hong and Stein (1999) , Barberis and Shleifer 

(2003) , and Barberis et al. (2015) , but with some signifi- 

cant new elements. 1 There is a risk-free asset and a risky 

asset that pays a liquidating cash flow at a fixed time in 

the future. Each period, news about the value of the fi- 

nal cash flow is publicly released. There are two types of 

investors. The first type is extrapolators, who form their 

share demand based on an extrapolative “growth signal,”

which is a weighted average of past price changes. In a 

departure from prior models, extrapolators also put some 

weight on a “value signal” which measures the difference 

between the price and a rational valuation of the final cash 

flow. The two signals, which can be interpreted as “greed”

and “fear,” give the extrapolator conflicting messages. If 

prices have been rising strongly and the asset is overval- 

ued, the growth signal encourages him to buy (“greed”) 

while the value signal encourages him to sell (“fear”). 

Our second departure from prior models is to assume 

that, at each date, and independently of other extrapo- 

lators, each extrapolator slightly but randomly shifts the 

relative weight he puts on the two signals. This assump- 

tion, which we refer to as “wavering,” reflects extrapola- 

tors’ ambivalence about how to balance the conflicting sig- 

nals they face. Such wavering has a biological foundation 

in partially random allocation of attention to various at- 

tributes of choice, which in our case are growth and value 

signals (see Fehr and Rangel, 2011 ). Importantly, the de- 

gree of wavering is constant over time. We show that wa- 
1 These earlier papers use models of return extrapolation to examine 

excess volatility, return predictability, and nonzero return autocorrela- 

tions. They do not discuss bubbles. Glaeser and Nathanson (2017) analyze 

housing bubbles using a return extrapolation framework, albeit one that 

is different from ours. 
vering can plausibly account for a good deal of evidence 

other models have trouble with. 

As in earlier models, extrapolators are met in the mar- 

ket by fundamental traders who lean against the wind, 

buying the asset when its price is low relative to their val- 

uation of the final cash flow and selling when its price 

is high. Both extrapolators and fundamental traders face 

short-sale constraints. 

In line with the Kindleberger (1978) notion of dis- 

placement, a bubble forms in our model after a sequence 

of large positive cash-flow shocks. The bubble evolves in 

three stages. In the first stage, the cash-flow news pushes 

up the price of the risky asset; extrapolators sharply in- 

crease their demand for the asset, buying from fundamen- 

tal traders. In the second stage, the asset becomes suffi- 

ciently overvalued that the fundamental traders exit the 

market, leaving the asset in the hands of the exuberant 

extrapolators who trade with each other because of waver- 

ing. Once the good cash-flow news subsides, prices stop 

rising as rapidly, extrapolator enthusiasm abates, and the 

bubble begins its collapse. In the third stage, prices fall far 

enough that fundamental traders re-enter the market, buy- 

ing from extrapolators. 

In our model, the largest bubbles arise from sequences 

of cash-flow shocks that first increase in magnitude, and 

then decrease. Wavering can significantly increase the size 

of a bubble through a novel mechanism that we call a 

“price spiral.” During a bubble, the asset can become so 

overvalued that even some extrapolators hit their short- 

sale constraints. The bubble selects only the most bullish 

investors as asset holders, which leads to an even greater 

overvaluation, causing even more extrapolators to leave. 

The bubble takes on a life of its own, persisting well af- 

ter the end of the positive cash-flow news. 

The model predicts substantial volume in the first and 

third stages of a bubble, as fundamental traders sell to ex- 

trapolators and vice versa. But it predicts particularly in- 

tense trading during the height of the bubble as extrapo- 

lators, as a consequence of wavering, trade among them- 

selves. During normal times, wavering has very little im- 

pact on trading volume because it is minor. During bub- 

bles, in contrast, the same small degree of wavering that 

generates little volume in normal times endogenously gen- 

erates intense volume: the growth and value signals that 

extrapolators attend to are now so large in magnitude that 

even tiny shifts in their relative weights lead to large port- 

folio adjustments. One manifestation of such adjustments, 

exemplified by Isaac Newton’s participation in the South 

Sea bubble, is extrapolators getting in, out, and back in the 

market. 

After presenting the model, we compare it to two stan- 

dard approaches to modeling bubbles: rational bubbles 

( Blanchard and Watson, 1982; Tirole, 1985 ) and disagree- 

ment ( Harrison and Kreps, 1978; Scheinkman and Xiong, 

2003 ). Models of rational bubbles assume homogeneous 

investors and therefore cannot explain any volume, let 

alone highly specific patterns of volume documented in 

the literature. In addition, direct tests of the key predic- 

tion of rational bubbles—that payoffs in the infinite future 

have positive present value—reject that prediction ( Giglio 

et al., 2016 ). Disagreement-based models can explain high 
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2 We assume, for simplicity, that fundamental traders’ estimate of the 

risk they are facing is given by fundamental risk σ 2 
ε rather than by the 

conditional variance of price changes. When fundamental traders are the 

only traders in the economy, this approximation is exact. 
3 The form of bounded rationality we have assumed for fundamental 
volume during bubbles with an exogenous increase in dis-

agreement. In our model, in contrast, the increase in vol-

ume is due to disagreement that grows endogenously over

the course of the bubble. Indeed, in our model, volume

during a bubble is predicted by past returns, a new pre-

diction that other bubble models do not share. Our frame-

work is also more successful at matching the extrapolative

expectations that many investors hold during bubble peri-

ods. 

We examine empirically some of the model’s predic-

tions. Using data from four historical bubbles, we docu-

ment that trading volume during a bubble is strongly pre-

dicted by the past return. For the technology bubble of the

late 1990s, we also show that, as the bubble progresses, a

larger fraction of trading volume is due to investors with

extrapolator-like characteristics. Finally, we present direct

evidence of wavering for both mutual funds and hedge

funds invested in technology stocks. 

Some recent research has questioned whether bubble-

like price episodes are actually irrational ( Pastor and

Veronesi, 2006 ) or whether bubbles in the sense of prices

undeniably and substantially exceeding fundamentals over

a period of time ever exist ( Fama, 2014 ). Although the ex-

istence of bubbles in this sense appears uncontroversial in

experimental ( Smith et al., 1988 ) or some unusual market

( Xiong and Yu, 2011 ) settings, our paper does not speak to

these controversies. Rather, we show how a simple model

of extrapolative bubbles explains a lot of evidence and

makes new predictions. 

In the next section, we present our model.

Sections 3 and 4 describe circumstances under which

bubbles occur and present our findings for price patterns

and volume. Section 5 considers the possibility of negative

bubbles. Section 6 compares our model to other models of

bubbles while Section 7 presents the empirical evidence.

Section 8 concludes. Appendix A contains all the proofs. 

2. A model of bubbles 

We consider an economy with T + 1 dates, t =
0 , 1 , . . . , T . There are two assets: one risk-free and one

risky. The risk-free asset earns a constant return which we

normalize to zero. The risky asset has a fixed supply of Q

shares, and each share is a claim to a dividend 

˜ D T paid at

the final date, T . The value of ˜ D T is given by ˜ D T = D 0 + ̃

 ε 1 + · · · + ̃

 ε T , (1)

where ˜ ε t ∼ N(0 , σ 2 
ε ) , i . i . d . over time . (2)

The value of D 0 is public information at time 0, while the

value of ˜ ε t is realized and becomes public information at

time t . The price of the risky asset, P t , is determined en-

dogenously. 

There are two types of traders in the economy: funda-

mental traders and extrapolators. The time t per capita de-

mand of fundamental traders for shares of the risky asset

is 

D t − γ σ 2 
ε (T − t − 1) Q − P t 

γ σ 2 
ε 

, (3)
where D t = D 0 + 

∑ t 
j=1 ε j and γ is fundamental traders’ co-

efficient of absolute risk aversion. 

In Appendix A , we show how this expression can be

derived from utility maximization. In brief, it is the de-

mand of an investor who, at each time, maximizes a con-

stant absolute risk aversion (CARA) utility function defined

over next period’s wealth, and who is boundedly rational:

he uses backward induction to determine his time t de-

mand, but, at each stage of the backward induction pro-

cess, he assumes that, in future periods, the other investors

in the economy will simply hold their per capita share of

the risky asset supply. In other words, he does not have a

detailed understanding of how other investors in the econ-

omy form their share demands. For this investor, the ex-

pression D t − γ σ 2 
ε (T − t − 1) Q in the numerator of (3) is

the expected price of the risky asset at the next date, date

t + 1 . The numerator is therefore the expected price change

over the next period, and the fundamental trader’s demand

is this expected price change scaled by the trader’s risk

aversion and by his estimate of the risk he is facing. If all

investors in the economy were fundamental traders, then,

setting the expression in (3) equal to the risky asset supply

of Q , the equilibrium price of the risky asset would be 

D t − γ σ 2 
ε (T − t) Q . (4)

We call this the “fundamental value” of the risky asset and

denote it by P F t . 
2 

Extrapolators are the second type of trader in the econ-

omy. There are I types of extrapolators, indexed by i ∈
{ 1 , 2 , . . . , I} ; we explain below how one type of extrapo-

lator differs from another. We build up our specification

of extrapolator demand for the risky asset in three steps.

An initial specification of per capita extrapolator share de-

mand at time t is 

X t 

γ σ 2 
ε 

, where X t ≡ (1 − θ ) 
t−1 ∑ 

k =1 

θ k −1 (P t−k − P t−k −1 ) 

+ θ t−1 X 1 , (5)

and where 0 < θ < 1. 

In Appendix A , we show that this is the demand of

an investor who, at each time, maximizes a CARA util-

ity function defined over next period’s wealth, and whose

belief about the expected price change of the risky asset

over the next period is a weighted average of past price

changes, with more recent price changes weighted more

heavily. The parameter X 1 is a constant that measures ex-

trapolator enthusiasm at time 1; in our numerical analysis,

we assign it a neutral, steady-state value. The specification

in (5) is similar to that in previous models of extrapola-

tive beliefs, which have been used to shed light on asset

pricing anomalies ( Cutler et al., 1990; De Long et al., 1990;

Hong and Stein, 1999; Barberis and Shleifer, 2003; Barberis

et al., 2015 ). 3 
traders means that these traders expect the price of the risky asset to 
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We modify the specification in (5) in two quantitatively 

small but conceptually significant ways. First, we make ex- 

trapolators pay at least some attention to how the price of 

the risky asset compares to its fundamental value. Specif- 

ically, we change the demand function in (5) so that the 

demand of extrapolator i takes the form 

w i 

(
D t − γ σ 2 

ε (T − t − 1) Q − P t 

γ σ 2 
ε 

)
+ (1 − w i ) 

(
X t 

γ σ 2 
ε 

)
. (6) 

Extrapolator i ’s demand is now a weighted average of two 

components. The second component is the expression we 

started with in (5) , while the first component is the fun- 

damental trader demand from (3) ; w i is the weight on 

the first component. Our framework accommodates any 

w i ∈ (0 , 1] , but we maintain w i < 0 . 5 for all i so that the

extrapolative component is weighted more heavily. In our 

numerical work, the value of w i is approximately 0.1. The 

motivation for (6) is that even extrapolators worry about 

how the price of the risky asset compares to its fundamen- 

tal value. A high price relative to fundamental value exerts 

some downward pressure on their demand, counteracting 

the extrapolative component. 

In what follows, we refer to the two components of 

the demand function in (6) as “signals”: the first compo- 

nent, the expression in (3) , is a “value” signal; the sec- 

ond component, the expression in (5) , is a “growth” signal. 

These signals typically point in opposite directions. If the 

price of the risky asset is well above fundamental value, it 

has usually also been rising recently. The value signal then 

takes a large negative value, telling the investor to reduce 

his position, while the growth signal takes a large posi- 

tive value, telling the investor to raise it. The signals can 

be informally interpreted in terms of “fear” and “greed.” If 

the price has recently been rising, the value signal captures 

extrapolators’ fear that it might fall back to fundamental 

value, while the growth signal captures greed, their excite- 

ment at the prospect of more price rises. If the price has 

recently been falling, the growth signal captures extrapo- 

lators’ fear of further price declines, and the value signal, 

their greed—their excitement at the thought of prices re- 

bounding toward fundamental value. 4 

Our second modification is to allow the weight w i to 

vary slightly over time, and independently so for each ex- 

trapolator type, so that the demand function for extrapola- 

tor i becomes 

w i,t 

(
D t − γ σ 2 

ε (T − t − 1) Q − P t 

γ σ 2 
ε 

)
+ (1 − w i,t ) 

(
X t 

γ σ 2 
ε 

)
, 

(7) 

where (7) differs from (6) only in the t subscript added to 

w i,t . Since the demand function in (6) is based on two sig- 
revert to fundamental value within one period. This, in turn, means that 

they trade aggressively against any mispricing—more aggressively than if 

they were fully rational. In the latter case, they would recognize that ex- 

trapolator demand is persistent and trade more conservatively against it, 

or even in the same direction as extrapolators ( De Long et al., 1990; Brun- 

nermeier and Nagel, 2004 ). 
4 We use the term “growth signal” both for X t /γ σ 2 

ε and for X t itself. 

When it is important to clarify which of the two quantities is being re- 

ferred to, we do so. 
nals that often point in opposite directions, the investor is 

likely to be unsure of what to do—and, in particular, un- 

sure about how to weight the signals at any point in time. 

As we model it, the weight an extrapolator puts on each 

signal shifts or “wavers” over time, to a small extent. Fehr 

and Rangel (2011) and Towal et al. (2013) argue that indi- 

vidual decisions are shaped by computations in the brain, 

which are mediated by the allocation of attention to var- 

ious attributes of choice that is in part random. We can 

think of wavering as resulting from such random allocation 

of extrapolators’ attention to growth and value signals. 
To model wavering, we set 

w i,t = w i + ̃

 u i,t ˜ u i,t ∼ N(0 , σ 2 
u ) , i . i . d . over time and across extrapolators . 

(8) 

Here, w i ∈ (0, 1] is the average weight that extrapolator i 

puts on the value signal; in our numerical analysis, we set 

w i = 0 . 1 for all extrapolator types. The actual weight that 

extrapolator i puts on the value signal at time t is the 

mean weight w i plus Normally-distributed noise. To ensure 

that w i,t stays in the (0,1] interval, we truncate the distri- 

bution of ˜ u i,t . 
5 Under our assumptions, the I types of ex- 

trapolator differ only in the weight w i,t that they put on 

the value signal in each period. The values of the two sig- 

nals themselves are identical across extrapolators. 6 

We also impose a short-sale constraint, so that the final 

risky asset share demand of the fundamental traders, N 

F 
t , 

and of extrapolator i ∈ { 1 , 2 , . . . , I} , N 

E,i 
t , are given by 

N 

F 
t = max 

[
D t − γ σ 2 

ε (T − t − 1) Q − P t 

γ σ 2 
ε 

, 0 

]
(9) 

and 

N 

E,i 
t = max 

[
w i,t 

(
D t − γ σ 2 

ε (T − t − 1) Q − P t 

γ σ 2 
ε 

)
+(1 − w i,t ) 

(
X t 

γ σ 2 
ε 

)
, 0 

]
. (10) 

As we explain in Section 4 , the short-sale constraint is 

not needed for our most important results. In contrast, 

the assumption that extrapolators waver slightly between 

a growth and a value signal is crucial. 

In the Online Appendix, we show that our principal 

results also hold in a model with fundamental traders 

who are more fully rational in that they understand how 

extrapolators form their demand. For tractability, we as- 

sume both in the main text and the Online Appendix that 

investors maximize the expected utility of next period’s 
5 Specifically, we truncate ˜ u i,t at ±0 . 9 min ( w i , 1 − w i ) , a formulation 

that allows the fundamental trader demand in (3) to be a special case of 

the more general demand function in (7) and (8) , namely, the case where 

w i = 1 . The exact form of truncation is not important for our results. 
6 We think of extrapolator i ’s beliefs at time t about the price change 

P t+1 − P t as being equal to w i,t (D t − γ σ 2 
ε (T − t − 1) Q − P t ) + (1 − w i,t ) X t , 

in other words, a weighted average of the beliefs of a fundamental trader 

and of a “pure” extrapolator. When coupled with a CARA utility function 

defined over next period’s wealth, these beliefs lead to the demand func- 

tion in Eq. (7) . 
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8 Specifically, θ = exp (−(0 . 5)(0 . 25)) ≈ 0 . 9 , where 0.5 is the Barberis 
wealth. Barberis et al. (2015) study asset prices in an econ-

omy where extrapolators and rational traders maximize

lifetime consumption utility. While they do not address

facts about bubbles, their predictions for prices are simi-

lar to ours, which suggests that our assumption of myopic

demand is innocuous. 

In Proposition 1 in Appendix A , we show that, in the

economy described above, a unique market-clearing price

always exists and is given by 

P t = D t + 

∑ 

i ∈ I ∗ μi (1 − w i,t ) ∑ 

i ∈ I ∗ μi w i,t 

X t 

−γ σ 2 
ε Q 

( 
∑ 

i ∈ I ∗ μi w i,t )(T − t − 1) + 1 ∑ 

i ∈ I ∗ μi w i,t 

, (11)

where μ0 and μi are the fraction of fundamental traders

and of extrapolators of type i in the population, respec-

tively, so that 
∑ I 

i =0 μi = 1 , and where I ∗ is the set of i ∈
{ 0 , 1 , . . . , I} such that trader i has strictly positive demand

for the risky asset at time t . The statement of Proposition

1 explains how I ∗ is determined at each time t . 7 

The first term on the right-hand side of (11) shows that

the price of the risky asset is anchored to the expected

value of the final cash flow. The second term reflects the

impact of extrapolator demand: if past price changes have

been high, so that X t is high, extrapolator demand at time

t is high, exerting upward pressure on the price. The third

term is a price discount that compensates the holders of

the risky asset for the risk they bear. 

We define the “steady state” of our economy as the

state to which the economy converges after many periods

in which the cash-flow shocks equal zero. It is straight-

forward to show that, in this steady state: the fundamen-

tal traders and all the extrapolators are in the market,

with each trader holding the risky asset in proportion to

his weight in the population; the price of the risky asset

equals the fundamental value in (4) ; the change in price

from one date to the next is constant and equal to γ σ 2 
ε Q;

and the growth signal X t , defined in (5) , is also equal to

γ σ 2 
ε Q . 

2.1. Parameter values 

In Sections 3 and 4 , we explore the predictions of our

model through both analytical propositions and numerical

analysis. We now discuss the parameter values that we use

in the numerical analysis. The asset-level parameters are

D 0 , Q , σε , and T . The investor-level parameters are I , μi

and w i for i ∈ { 0 , 1 , . . . , I} , γ , θ , and σ u . 

We begin with θ , which governs the weight extrapola-

tors put on recent as opposed to distant past price changes

when forming beliefs about future price changes; as such,

it determines the magnitude of the growth signal X t . In

setting θ , we are guided by the survey evidence analyzed

by Greenwood and Shleifer (2014) on the beliefs of actual
stock market investors about future returns. If we assume 

7 Here and elsewhere, we index fundamental traders by the number 

“0.” If i = 0 is in the set I ∗ , the expression in (11) requires the value of 

w 0 ,t , in other words, the weight fundamental traders put on the value 

signal. By definition, w 0 ,t = 1 . 
that the time period in our model is a quarter, the evi-

dence and the calculations in Barberis et al. (2015) imply

θ ≈ 0.9. 8 

We set μ0 , the fraction of fundamental traders in the

economy, to 0.3, so that fundamental traders make up

30% of the population, and extrapolators, 70%. The sur-

vey evidence in Greenwood and Shleifer (2014) suggests

that many investors in the economy are extrapolators. We

have I = 50 types of extrapolators, where each type has

the same population weight, so that μi = (1 − μ0 ) /I for

i = 1 , . . . , I. As discussed earlier, we set w i to the same low

value of 0.1 for all extrapolators. And we set γ to 0.1. We

do not have strong priors about the value of σ u , which

controls the degree of wavering. We assign it a low value—

specifically, 0.03—so as to show that even a small degree

of wavering can generate interesting results. This value of

σ u implies that, about two-thirds of the time, the weight

w i,t extrapolator i puts on the value signal is in the inter-

val (0.07,0.13), a very small amount of wavering relative to

the base weight w i = 0 . 1 . 

We set the initial expected dividend D 0 to 100, the

standard deviation of cash-flow shocks σε to 3, the risky

asset supply Q to 1, and the number of dates T to 50.

Since the interval between dates is a quarter, this value of

T means that the life span of the risky asset is 12.5 years. 

3. Asset prices in a bubble 

Our model can generate the most essential feature of

a bubble, namely, a large and growing overvaluation of

the risky asset, where, by overvaluation, we mean that the

price exceeds the fundamental value in (4) . In the model,

bubbles are initiated by a sequence of large, positive cash-

flow shocks, which here are news about the future liq-

uidating dividend. Fig. 1 illustrates this. It uses the pa-

rameter values from Section 2 and Eqs. (1) , (4) , (5) , and

(11) to plot the price (solid line) and fundamental value

(dashed line) of the risky asset for a particular 50-period

sequence of cash-flow shocks, in other words, for a par-

ticular set of values of ˜ ε 1 , ˜ ε 2 , ... , ̃  ε 50 . The first ten shocks,˜ ε 1 through 

˜ ε 10 , are all equal to zero. These are followed

by four positive shocks, namely, 2, 4, 6, and 6; these are

substantial shocks: the last two are two-standard devi-

ation shocks. These are followed by 36 more shocks of

zero. 9 

Once the positive shocks arrive, a large and sustained

overpricing follows. The positive cash-flow news pushes

prices up, which leads the extrapolators to sharply increase

their share demand in subsequent periods; this, in turn,

pushes prices well above fundamental value. Over the four

periods of positive cash-flow news, starting at date 11, the

expected final dividend increases by 18, the sum of 2, 4, 6,
et al. (2015) estimate of the extrapolation parameter in a continuous- 

time framework, and 0.25 corresponds to the one-quarter interval be- 

tween consecutive dates in our model. 
9 We set the growth signal at time 1, X 1 , equal to the steady-state value 

of X , namely, γ σ 2 
ε Q = 0 . 9 . This, together with the fact that the first ten 

cash-flow shocks are equal to zero, means that the price of the risky asset 

equals the asset’s fundamental value for the first ten periods. 
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Fig. 1. Prices in a bubble. The solid line plots the price of the risky asset for the following sequence of 50 cash-flow shocks: 10 shocks of zero, followed 

by shocks of 2, 4, 6, 6, followed by 36 shocks of zero. 30% of the investors are fundamental traders; the remainder are extrapolators with an extrapolation 

parameter θ of 0.9 and who also put a base weight w i = 0 . 1 on a value signal. The dashed line plots the fundamental value of the asset for the same 

cash-flow sequence. The other parameters are D 0 = 100 , T = 50 , σε = 3 , Q = 1 , γ = 0 . 1 , σu = 0 . 03 , and I = 50 . 

0 

10 The use of leverage can amplify the effects of extrapolation, leading 

to larger bubbles and more dramatic collapses. See Simsek (2013) and Jin 

(2015) for analyses of this idea. 
and 6. The figure shows, however, that between dates 11 

and 18, prices rise by more than double this amount. After 

the cash-flow shocks drop back to zero at date 15, prices 

stop rising as rapidly; this, in turn, cuts off the “fuel” driv- 

ing extrapolator demand. These investors eventually start 

reducing their demand and the bubble collapses. 

This bubble has three distinct stages defined by the 

composition of the investor base. In the first stage, the fun- 

damental traders are still in the market: even though the 

risky asset is overvalued, the overvaluation is sufficiently 

mild that the short-sale constraint does not bind for the 

fundamental traders. In our example, this first stage spans 

just one date, date 12. Fig. 1 shows that, during this stage, 

the overvaluation is small in magnitude: precisely because 

the fundamental traders are present in the market, they 

absorb much of the demand pressure from extrapolators 

by selling to them. 

The second stage of the bubble begins when the risky 

asset becomes so overvalued that the fundamental traders 

exit the market. In our example, this occurs at date 13. 

During this stage, extrapolators alone trade the risky asset, 

which becomes progressively more overvalued: the high 

past price changes make the extrapolators increasingly en- 

thusiastic, and there is no countering force from funda- 

mental traders. In the absence of cash-flow news, however, 

the price increases eventually decline in magnitude, extin- 

guishing extrapolator enthusiasm and causing the bubble 

to deflate. 

To see how the bubble in Fig. 1 bursts, note that, from 

Eq. (11) , the size of the bubble depends on the magnitude 

of the growth signal X t , itself a measure of extrapolator en- 

thusiasm. From Eq. (5) , this signal evolves as 

X t+1 = θX t + (1 − θ )(P t − P t−1 ) . (12) 
The first term on the right-hand side, θX t , indicates that 

the bubble has a natural tendency to deflate; recall that 

0 < θ < 1. As time passes, the sharply positive price changes 

that excited the extrapolators recede into the past; they 

are therefore downweighted, by an amount θ , reducing ex- 

trapolator enthusiasm. However, if the recent price change 

P t − P t−1 is sufficiently positive, both the growth signal and 

the bubble itself can maintain their size. Once the good 

cash-flow news comes to an end—after date 14 in our 

example—it becomes increasingly unlikely that the recent 

price change is large enough to offset the bubble’s ten- 

dency to deflate, in other words, that the second term on 

the right-hand side of (12) dominates the first. As a conse- 

quence, the price level starts falling, sharply reducing ex- 

trapolator enthusiasm and setting in motion the collapse 

of the bubble. 10 

The third stage of the bubble begins when the bub- 

ble has deflated to such an extent that the fundamental 

traders re-enter the market. In our example, this occurs at 

date 23. In this example, both the fundamental traders and 

the extrapolators are present in the market in this stage. 

For other cash-flow sequences, the price declines during 

the collapse of the bubble can be so severe as to cause the 

extrapolators to exit the market, leaving the asset in the 

hands of the fundamental traders for some period of time. 

Our prediction that, in the presence of extrapolators, a 

sequence of strongly positive cash-flow news leads to a 

large overvaluation holds for a wide range of parameter 

values. Fig. 2 illustrates this. The four graphs in the figure 

correspond to four important model parameters: μ , the 
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Fig. 2. Comparative statics. The four graphs correspond to four model parameters: μ0 , w , θ , and σ u . In each graph, the solid line plots the maximum 

overvaluation of the risky asset across the T = 50 dates for the same sequence of cash-flow shocks used in Fig. 1 . The dashed line plots trading volume on 

the date of peak overvaluation. The solid and dashed lines are computed by varying the value of the parameter on the horizontal axis while keeping the 

values of the other parameters at the benchmark levels specified in Section 2 . 
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fraction of fundamental traders in the population; w , the

average weight that each extrapolator puts on the value

signal; θ ; and σ u , the degree of wavering. In each graph,

the solid line plots the maximum overvaluation of the

risky asset across the 50 dates for the cash-flow sequence

used in Fig. 1 , where “overvaluation” means the difference

between price and fundamental value. The dashed line,

which we discuss in Section 4 , plots the volume of trad-

ing in the risky asset at the moment of peak overvaluation.

For each graph, we generate the solid and dashed lines by

varying the value of the parameter on the horizontal axis

while keeping all other parameter values at the benchmark

levels listed in Section 2 . 11 

The figure confirms that our model generates a large

overvaluation for a wide range of parameter values. Not

surprisingly, lower values of μ0 and w increase the magni-

tude of overvaluation. More interestingly, lower values of θ
also generate bubbles that are larger in size. To understand

this, suppose that there is good cash-flow news at time

 − 1 that pushes up the asset price. When θ is low, ex-

trapolators become much more bullish at time t , precisely

because they put a lot of weight on the most recent price
11 The unevenness in the lines in Fig. 2 is due to the randomness intro- 

duced by wavering. 

 

 

 

change. This means that P t − P t−1 is high, which, from (12) ,

means that X t+1 is high, and hence that X t+2 is also high.

Since the growth signal X is an important determinant of

bubble size, this explains why a low θ generates a large

bubble. However, the fact that X t in Eq. (12) is scaled by θ
also means that, when θ is low, the bubble deflates faster

after reaching its peak. A low θ therefore generates bub-

bles that are more “intense”—they feature a high degree of

overvaluation but are short-lived. 

Wavering does not play a significant role in the evo-

lution of the price path in Fig. 1 . If we replaced the ex-

trapolators in our model with extrapolators who all put

the same, invariant weight of 0.1 on the value signal, we

would obtain a price path almost identical to that in Fig. 1 .

The reason is that, for the particular sequence of cash-flow

shocks used in Fig. 1 , virtually all of the extrapolators are

present in the market during all three stages of the bub-

ble. By the law of large numbers, the aggregate demand

of I = 50 extrapolators whose weight on the value signal

equals 0.1 is approximately equal to the aggregate demand

of I = 50 extrapolators whose weight on the value signal is

drawn from a distribution with mean 0.1. As a result, the

pricing of the risky asset is very similar whether the ex-

trapolators are homogeneous or waver. 

The reasoning in the previous paragraph explains

why, in the bottom-right graph in Fig. 2 , the degree of
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Fig. 3. Price spiral. The solid line plots the price of the risky asset for the following sequence of 50 cash-flow shocks: 10 shocks of zero, followed by shocks 

of 2, 4, 6, 6, 12, 10, followed by 34 shocks of zero. 30% of the investors are fundamental traders; the remainder are extrapolators with an extrapolation 

parameter θ of 0.9 and who also put a base weight w i = 0 . 1 on a value signal. The dashed line plots the fundamental value of the asset for the same 

cash-flow sequence. The dash–dot line plots the price in an economy where the extrapolators are homogeneous, placing the same invariant weight of 

w i = 0 . 1 on the value signal. The other parameters are D 0 = 100 , T = 50 , σε = 3 , Q = 1 , γ = 0 . 1 , σu = 0 . 03 , and I = 50 . 

 

 

 

12 The price spiral we have just described can also result from a type 

of heterogeneity that is simpler than wavering, one where extrapolators 

differ in the weight they put on the value signal, but this weight is con- 

stant over time for each extrapolator, so that w i,s = w i,t for all s , t . While 

the stochasticity embedded in wavering is not required for price spirals 
overvaluation remains unchanged as we increase the level 

of wavering from zero to 0.03. However, the graph shows 

that additional increases in the level of wavering do lead to 

higher overvaluation. This is due to a novel bubble mech- 

anism that we call a “price spiral.” If the level of waver- 

ing is sufficiently high or the cash-flow shocks are suffi- 

ciently large, then, during the second stage of the bubble, 

when the fundamental traders are out of the market, the 

asset can become so overvalued that even some extrapola- 

tors exit the market—specifically, those who put the high- 

est weight w i,t on the value signal. Once these extrapola- 

tors leave the market, the asset is left in the hands of the 

more enthusiastic extrapolators, who put more weight on 

the growth signal. This generates an even larger overval- 

uation, causing yet more extrapolators to hit their short- 

sale constraints and leaving the asset in the hands of an 

even more enthusiastic group of extrapolators. Eventually, 

in the absence of positive cash-flow shocks, the price in- 

creases become less dramatic and extrapolator demand 

abates, causing the bubble to deflate. At this point, ex- 

trapolators who had previously exited the market begin to 

re-enter. 

Fig. 3 depicts a price spiral. The parameter values are 

the same as for Fig. 1 , but we now use the cash-flow se- 

quence 2, 4, 6, 6, 12, 10 in place of 2, 4, 6, 6. The dashed 

line plots the asset’s fundamental value, while the solid 

line plots its price. For comparison, the dash–dot line plots 

the price in an economy where the extrapolators are ho- 

mogeneous, placing the same, invariant weight of 0.1 on 

the value signal. For this cash-flow sequence, wavering sig- 

nificantly amplifies the degree of overpricing: the solid line 

rises well above the dash–dot line. As explained above, this 
is due to some extrapolators exiting the market, starting at 

date 15; at the peak of the price spiral around date 20, 

about half of the extrapolators are out of the market. 12 

Price spirals typically deflate within a few periods. In 

some cases, however—specifically, for sequences of very 

large, positive cash-flow shocks—the price spiral can lead 

to extremely high prices. We do not put much weight 

on this prediction. First, the cash-flow shocks required for 

such out-of-control spirals are so large as to be unlikely in 

reality. Second, factors absent from our model, such as eq- 

uity issuance by firms, are likely to prevent these extreme 

spirals from arising. 

In Proposition 2 in Appendix A , we show how the mag- 

nitude of the asset’s overvaluation at time t can be ex- 

pressed as a function of the cash-flow shocks that have 

been realized up until that time. Suppose that the econ- 

omy has been in its steady state up to time l − 1 and that

there is then a sequence of positive shocks εl , ε l+1 , . . . , εn 

that move the economy from the first stage of the bub- 

ble to the second stage of the bubble at some intermediate 

date j with l < j < n . Suppose also that the bubble remains

in the second stage through at least date N > n , and that all

the extrapolators are in the market in the second stage, so 

that there is no price spiral. The proposition shows that, in 

this case, the overvaluation at time t in the second stage, 
to occur, it is crucial for the volume predictions in Section 4 . 
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t  
where j ≤ t ≤ N , is approximately equal to 

t−1 ∑ 

m = j 
L 2 (t − m ) ε m 

, (13)

where the coefficients L 2 (t − m ) depend only on the

model parameters and not on the values of the shocks. In-

deed, the coefficients depend on just two parameters: θ ,

which governs the relative weight extrapolators put on re-

cent as opposed to distant past price changes when form-

ing beliefs, and w , the mean weight that extrapolators put

on the value signal. The “2” subscript in L 2 (·) indicates

that the coefficients are applied to cash-flow news that ar-

rives during the second stage of the bubble: the summa-

tion in (13) starts at time j , when the second stage be-

gins. 13 

The expression in (13) shows that, to a first approxima-

tion, the degree of overvaluation in the second stage has

a simple linear structure: it is approximately a weighted

sum of the cash-flow news in the second stage, where the

weights are constant. For example, if there have been eight

cash-flow shocks during the second stage of the bubble,

namely, ε t−8 , ε t−7 , . . . , ε t−1 , then, for the parameter val-

ues we are using, the degree of overvaluation at time t is

approximately 

L 2 (1) ε t−1 + L 2 (2) ε t−2 + · · · + L 2 (7) ε t−7 + L 2 (8) ε t−8 

= 0 . 9 ε t−1 + 1 . 62 ε t−2 + 2 . 11 ε t−3 + 2 . 33 ε t−4 + 2 . 3 ε t−5 

+2 . 05 ε t−6 + 1 . 61 ε t−7 + 1 . 06 ε t−8 . (14)

This expression shows that the cash-flow news that con-

tributes the most to time t overvaluation—the shock with

the largest coefficient—is the news from four periods

earlier, ε t−4 . This news causes a price increase at time

 − 4 , which increases extrapolator enthusiasm at time

 − 3 , thereby causing a large price increase at that time

as well; this, in turn, increases extrapolator enthusiasm at

time t − 2 , and so on. Through its accumulated effect on

prices over several periods, the cash-flow news ε t−4 has a

large impact on time t overvaluation. By contrast, the most

recent cash-flow news, ε t−1 , has a smaller effect on time

t overvaluation: much of its impact will come after time t .

The more distant cash-flow news ε t−8 also has a small ef-

fect on time t overvaluation. While that shock contributed

to price increases at time t − 8 and on a few subsequent

dates, those price increases are now so far in the past that

they have little impact on extrapolator beliefs at time t . 

The expression in (14) helps us understand what kinds

of cash-flow sequences generate the largest bubbles. More

concretely, which sequence { ε t−8 , . . . , ε t−1 } leads to the

largest overvaluation at time t ? To generate a large bub-

ble at time t , we want to associate the highest value of

ε with the highest value of L 2 (·) , namely, 2.33; the sec-

ond highest value of ε with the second highest value

of L 2 (·) , namely, 2.3, and so on. Since the highest val-

ues of the L 2 (·) coefficients are for lags that are tempo-

rally close—specifically, for lags 3, 4, 5, and 6—this means
13 The proposition presents analogous results for the first stage of the 

bubble and also for the second stage in the case of a price spiral. For 

tractability, it assumes a continuum of extrapolators rather than a finite 

number of them. 
that the largest bubbles occur when the biggest cash-flow

shocks are clumped together in time. More generally, since

the L 2 (·) coefficients rise to a peak and then decline, the

largest bubble is created by a sequence of cash-flow news

that itself rises to a peak and then declines. For example,

if ε t−8 through ε t−1 take the values 1, 2, 3, 4, 5, 6, 7, 8, in

some order, the above discussion suggests that the largest

time t overvaluation is generated by the ordering 2, 3, 5, 7,

8, 6, 4, 1—and this is indeed the case. 

To compute the frequency of large bubbles in our

model, we use the cash-flow process in (1) and the price

process in (11) to simulate a T = 40 , 0 0 0 -period price se-

quence and record the number of bubbles for which the

level of overvaluation exceeds a threshold such as 10 or

20, and also the length of time for which this threshold is

exceeded. To put these bubble sizes in context, recall that,

in non-bubble times, a one-standard deviation cash-flow

shock increases the asset’s price by approximately 3. 

In our model, large bubbles are rare. For our benchmark

parameter values, a bubble whose size exceeds 10 occurs

once every 17 years, on average, with the overvaluation

exceeding 10 for approximately one year. A bubble of size

20 occurs just once every 50 years, on average, and main-

tains this size for approximately three quarters. Bubbles

are rare for two reasons. First, for a sizable bubble to oc-

cur, the cash-flow shocks need to be large enough to cause

the fundamental traders to exit. Second, for a large bubble

to form, the cash-flow shocks need to be both large and

clumped together in time. The probability of this happen-

ing is low. Fig. 2 suggests that large bubbles arise more fre-

quently for lower values of μ0 and w , and, more interest-

ingly, for lower values of θ . Our simulations confirm this. 

To conclude our analysis of prices, we verify, again

through simulations, that the model also captures the ba-

sic asset pricing patterns that the previous generation of

extrapolation models was designed to explain. Specifically,

we confirm that the model generates excess volatility (the

standard deviation of price changes exceeds the standard

deviation of changes in fundamental value); predictabil-

ity (the difference between the price and the fundamen-

tal value at time t , P t − P F t , predicts the change in price

over the next 12 periods, P t+12 − P t , with a negative sign);

and positive (negative) autocorrelations in price changes at

short (long) lags. It is not surprising that our framework

can generate these patterns: while we modify the ear-

lier extrapolation models in qualitatively significant ways,

these modifications are quantitatively small. 

4. Volume in a bubble 

Bubbles feature very high trading volume ( Ofek and

Richardson, 2003; Hong and Stein, 2007 ). A central goal of

our paper is to propose a way of understanding this fact. 14

Fig. 4 plots the share demand N 

F 
t of the fundamental

traders (dashed line) and the share demands N 

E,i of the I
14 A small fraction of bubbles, often those associated with debt securi- 

ties, do not exhibit very high trading volume. Hong and Sraer (2013) ex- 

plain this by noting that, if investors are over-optimistic about the value 

of the asset underlying a debt security and also differ in how optimistic 

they are, they overvalue the debt security but do not disagree about its 
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Fig. 4. Share demands in a bubble. The solid lines plot the risky asset share demands of extrapolators for the following sequence of 50 cash-flow shocks: 

10 shocks of zero, followed by shocks of 2, 4, 6, 6, followed by 36 shocks of zero. The dashed line plots the share demand of the fundamental traders for 

the same cash-flow sequence. 30% of the investors are fundamental traders; the remainder are extrapolators with an extrapolation parameter θ of 0.9 and 

who also put a base weight w i = 0 . 1 on a value signal. The other parameters are D 0 = 100 , T = 50 , σε = 3 , Q = 1 , γ = 0 . 1 , σu = 0 . 03 , and I = 50 . 

 

 

types of extrapolator (solid lines) for the same 50-period 

cash-flow sequence that we used in Fig. 1 , namely, ten 

shocks of zero, followed by four positive shocks of 2, 4, 

6, and 6, followed by 36 more shocks of zero. Recall from 

Fig. 1 that this sequence of cash-flow shocks generates a 

large bubble between dates 15 and 21. 

Fig. 4 shows that, during the bubble, share demands of 

extrapolators become very volatile, suggesting a large in- 

crease in volume. Fig. 5 confirms this. The solid line in this 

figure plots total trading volume at each of the 50 dates, 

where volume at time t is defined as 

0 . 5 

( 

μ0 | N 

F 
t − N 

F 
t−1 | + 

I ∑ 

i =1 

μi | N 

E,i 
t − N 

E,i 
t−1 

| 
) 

. (15) 

The figure shows a dramatic increase in volume between 

dates 12 and 25. In particular, it shows that our model 

predicts three “peaks” in volume which correspond to the 

three bubble stages outlined in Section 3 : a small peak 

centered around date 13 in the first stage, a much wider 

peak centered around date 17 in the second stage, and a 

thin but tall peak centered around date 23 in the third 

stage. Total volume at each date is the sum of two compo- 

nents: trading that takes place within the set of I extrapo- 

lators, and trading that takes place between the extrapola- 

tors in aggregate and fundamental traders. The dashed line 

in Fig. 5 plots the first component—trading volume within 

the set of I extrapolators. 
value—its value does not depend on beliefs about right-tail outcomes for 

the underlying asset. Trading in the debt security is therefore muted. 
The first peak in Fig. 5 centered around date 13 arises 

during the first stage of the bubble and reflects trading 

between the extrapolators in aggregate and fundamental 

traders. Arrival of the good cash-flow news pushes prices 

up, which, in turn, leads extrapolators to buy and funda- 

mental traders to sell the asset. Before long, however, all 

the fundamental traders are out of the market and this 

first wave of trading subsides. 

During the second stage, the bubble keeps growing and 

trading volume rises again, as indicated by the wide sec- 

ond peak centered around date 17 in Fig. 5 . In this stage,

all of the trading takes place among the I extrapolators. 

This potentially large volume generated by our model is 

due to wavering. It is not surprising that, in general, wa- 

vering leads to trading volume. What is more interest- 

ing is that, even though the degree of wavering remains 

fixed over time—the value of σ u in Eq. (8) is constant—the 

model endogenously generates much greater volume dur- 

ing bubble periods than non-bubble periods. 

To understand this, we write the share demand of ex- 

trapolator i in Eq. (10) more simply as w i,t V t + (1 − w i,t ) G t ,

where V t and G t = X t /γ σ 2 
ε are the value and growth sig- 

nals, respectively, at time t . We ignore the short-sale con- 

straint because it is not important for the intuition. A unit 

change in the weight w i,t on the value signal changes 

the extrapolator’s share demand by V t − G t . In “normal”

times, when the cash-flow shocks are neither abnormally 

high nor abnormally low, the value and growth signals are 

both small in absolute magnitude: since the risky asset is 

neither particularly overvalued nor undervalued, the value 

signal V t is close to zero in absolute magnitude; and since 
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Fig. 5. Volume in a bubble. The solid line plots the total trading volume in the risky asset for the following sequence of 50 cash-flow shocks: 10 shocks 

of zero, followed by shocks of 2, 4, 6, 6, followed by 36 shocks of zero. The dashed line plots the trading volume between the extrapolators for the same 

cash-flow sequence. 30% of the investors are fundamental traders; the remainder are extrapolators with an extrapolation parameter θ of 0.9 and who also 

put a base weight w i = 0 . 1 on a value signal. The other parameters are D 0 = 100 , T = 50 , σε = 3 , Q = 1 , γ = 0 . 1 , σu = 0 . 03 , and I = 50 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

prices have not been rising or falling particularly sharply in

recent periods, the growth signal G t is also close to zero in

absolute magnitude. In this case, V t − G t is itself low in ab-

solute magnitude, implying that, in normal times, wavering

does not induce much variation in extrapolator demand. 15 

During a bubble, the situation is very different. At that

time, the value signal V t is large and negative (the asset

is highly overvalued), and the growth signal is large and

positive (the asset’s price has been rising sharply in recent

periods). As a result, V t − G t is very large in absolute value,

and the same degree of wavering that generates low trad-

ing volume in normal times now generates very high trad-

ing volume. This is the mechanism behind the high trad-

ing volume represented by the wide peak centered around

date 17 in Fig. 5 . 

To put this more simply, during the bubble, the extrap-

olators holding the risky asset are subject to two power-

ful but conflicting investment signals. On the one hand,

they see that prices are far above fundamental value; this

makes them fearful of a crash and encourages them to

sell. On the other hand, prices have recently been rising

sharply, which makes extrapolators expect continued price

appreciation and encourages them to buy. These two sig-

nals are so strong that even small shifts in their rela-

tive weight lead to large—and independent across traders—

portfolio adjustments, and hence trading volume. 
15 If the growth signal G t rises in value, this increases the aggregate de- 

mand for the risky asset. To counteract this increase and thus ensure that 

the market clears, the value signal V t must decline. The two signals are 

therefore related: the more positive one of them is, the more negative 

the other must be. 

 

 

 

 

Once the bubble starts collapsing, the second wave of

trading volume begins to subside: as the bubble deflates,

both the value and growth signals decline in absolute mag-

nitude; the quantity V t − G t then also declines in abso-

lute magnitude, and the impact of wavering on extrapo-

lator share demands is reduced. Fig. 5 shows that once

the bubble’s collapse is well under way, there is a third

wave of trading, represented by the thin third peak cen-

tered around date 23, between the selling extrapolators

and the fundamental traders who re-enter the market. The

third peak is taller than the first peak. The reason is that

the first peak consists of extrapolators shifting from mod-

erate holdings of the risky asset to large holdings of the

asset, while the third peak consists of extrapolators shift-

ing from large holdings of the risky asset to low holdings

of the asset as they extrapolate price declines into the fu-

ture and sell. This third volume peak thus represents more

intense trading than the first one. 

The central message in the discussion above is that

a fixed amount of wavering can endogenously gener-

ate much higher trading volume during bubble periods.

Proposition 3 below formalizes this idea in the following

way. The change in extrapolator i ’s share demand between

time t and time t + 1 has two components. The first is

unrelated to wavering; it is present even if w i,t+1 = w i,t .

Specifically, in the first stage of the bubble, the extrapo-

lator buys from fundamental traders as the bubble grows,

even in the absence of wavering; and as the bubble grows

further in its second stage, he buys from less bullish ex-

trapolators if he has a relatively low value of w i or sells

to more bullish extrapolators if his w i is relatively high—

again, even in the absence of wavering. 
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16 The quantity γ σ 2 
ε Q is the degree of overvaluation that causes fun- 

damental traders to exit the market. It is therefore a natural “unit” of 

overvaluation. 
17 In many bubble episodes, including two that we study in Section 7 , 

the peak in volume coincides with the peak in prices. This is the pattern 

predicted by our model so long as the degree of wavering, governed by 

σ u , is not too low. In the technology bubble of the late 1990s, the peak in 

volume precedes the peak in prices ( Hong and Stein, 2007 ). While we do 

not have a full theory of this phenomenon, even here, wavering is help- 

ful for understanding the evidence. Although volume at the price peak is 

lower than it was a few months earlier, it is still extremely high. In our 

model of extrapolators and fundamental traders, only wavering can gen- 

erate such intense trading. 
The second component of the change in the extrapola- 

tor’s share demand between time t and time t + 1 is driven 

by wavering: it reflects his buying at time t + 1 during the 

bubble if w i,t+1 shifts down at that time, or his selling if 

w i,t+1 shifts up. We sum the absolute value of this sec- 

ond component across all extrapolators and label the sum 

“wavering-induced trading volume,” V 

W ( X t ), a quantity that 

depends on X t . Proposition 3 shows that V 

W ( X t ) is typically 

increasing in X t , a measure of bubble size. This is the for- 

mal sense in which wavering leads to more trading volume 

as the bubble grows. 

Proposition 3 . Suppose that there is a continuum of extrap- 

olators and that each extrapolator draws an independent 

weight w i,t at time t from a bounded and continuous den- 

sity function g(w ) , w ∈ [ w l , w h ] , with mean w and with 0 <

w l < w h < 1 . The sensitivity of per capita wavering-induced 

trading volume V 

W ( X t ) to the growth signal X t , denoted by 

∂ V 

W ( X t )/ ∂ X t , is given by 

∂V 

W (X t ) 

∂X t 
= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

sign (X t − γ σ 2 
ε Q ) �0 

(μ0 + (1 − μ0 ) w ) γ σ 2 
ε 

for 

− w l γ σ 2 
ε Q 

μ0 (1 − w l ) + (1 − μ0 )( w − w l ) 

≤ X t < 

γ σ 2 
ε Q 

(1 − μ0 )(1 − w ) 

�0 

w γ σ 2 
ε 

for 

γ σ 2 
ε Q 

(1 − μ0 )(1 − w ) 
≤ X t 

≤ w h γ σ 2 
ε Q 

(w h − w )(1 − μ0 ) 

, 

(16) 

where 

�0 ≡
∫ w h 

w l 

∫ w h 

w l 

| w 1 − w 2 | g(w 1 ) g(w 2 ) dw 1 dw 2 . (17) 

If X t > w h γ σ 2 
ε Q/ ((w h − w )(1 − μ0 )) , ∂ V 

W ( X t )/ ∂ X t may be-

come smaller and even turn negative as extrapolators exit the 

market. 

The key part of Proposition 3 is the fourth row of (16) . 

It says that, in the less extreme part of the second stage of 

the bubble, when all extrapolators are in the market, wa- 

vering induces more trading volume, the larger the size of 

the bubble: �0 is a positive quantity. The same is true dur- 

ing the first stage of the bubble—see the first row of (16) —

although the relationship is weaker; moreover, wavering- 

induced volume is here a relatively small part of overall 

trading volume. If, during its second stage, the bubble be- 

comes so large that even some extrapolators exit the mar- 

ket, then wavering-induced volume increases more slowly 

as a function of X t , and can even decrease, simply because 

there are fewer extrapolators available to trade. 

The dashed lines in the four graphs in Fig. 2 show 

quantitatively how total trading volume at the peak of the 

bubble—the moment of maximum overvaluation—depends 
on four key model parameters: μ0 , w , θ , and σ u . Lower 

values of μ0 , w , and θ lead to significantly higher vol- 

ume. When these parameters have low values, the degree 

of overvaluation is higher. This means that the value and 

growth signals are larger in absolute magnitude, and this 

in turn interacts with wavering to generate more volume. 

As expected, higher values of σ u lead to higher volume. 

Indeed, increasing σ u leads to higher volume even if, as is 

the case for low values of σ u , the degree of overvaluation 

remains unchanged. 

Proposition 3 indicates that, during a bubble, wavering- 

induced volume is typically increasing in X t . Since X t is 

an average of past price changes, this suggests the follow- 

ing testable prediction: during a bubble, volume is strongly 

positively related to the asset’s past return. To verify that 

this is a prediction of our model, we simulate a 40,0 0 0- 

period price sequence from the model and extract three 

subsamples—the subsample where the asset price differs 

from fundamental value by less than γ σ 2 
ε Q = 0 . 9 ; the sub-

sample where the asset is overvalued by at least γ σ 2 
ε Q = 

0 . 9 ; and the subsample where it is overvalued by at least

10 γ σ 2 
ε Q = 9 . 16 We find that in these three subsamples, the 

correlation between volume at time t + 1 and the price 

change between t − 4 and t , a year-long interval, is −0.22, 

0.41, and 0.6, respectively. These monotonically increasing 

correlations confirm that, in our model, the relationship 

between trading volume and past return is stronger dur- 

ing bubble episodes. In Section 7.1 , we test this prediction 

for four historical bubbles. 

We conclude our discussion of trading volume with two 

points. First, alternative sources of heterogeneity among 

extrapolators—sources other than wavering—do not gener- 

ate nearly as much trading volume during the bubble pe- 

riod. Specifically, if we turn off wavering by setting σ u in 

(8) to zero and instead allow the base weights w i and the 

weighting parameter θ to differ across extrapolators, we 

no longer obtain a large second volume peak like the one 

in Fig. 5 . The reason is that, after a sequence of price in-

creases, extrapolators who do not exhibit wavering would 

almost all like to increase their holdings of the risky asset, 

even if they differ in their values of w i and θ : regardless of 

the specific values of w i and θ , a high growth signal means 

that most extrapolators find the risky asset more attractive. 

Since most extrapolators want to trade in the same direc- 

tion, there is relatively little trading between them: prices, 

not quantities, adjust. In our model, the specific type of 

heterogeneity induced by wavering is uniquely able to gen- 

erate heavy trading. 17 
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Second, our predictions about prices and volume de-

pend primarily on the presence of extrapolators who wa-

ver between two signals; the short-sale constraint is not

nearly as important. We incorporate the short-sale con-

straint into our model because the fundamental traders are

boundedly rational. These traders do not attempt to fore-

cast extrapolator demand, but instead simply assume that

any mispricing will correct by the next date. As a conse-

quence, they trade aggressively against the extrapolators,

and this reduces the mispricing. To generate a substantial

overvaluation, we need a short-sale constraint: this forces

the fundamental traders out as the bubble starts to form,

allowing the bubble to grow. 

In an Online Appendix, we show that, in a model with

fully rational traders, we can dispense with the short-

sale constraint without substantially affecting our predic-

tions. Specifically, we analyze a model in which extrapola-

tors have the demand function in (7) and (8) and where

we replace the fundamental traders with fully rational

traders who are able to forecast future extrapolator de-

mand. Moreover, all investors can short. This model makes

predictions about bubbles that are similar to those of the

model in Section 2 . First, a sequence of strongly positive

cash-flow news leads to a large overvaluation. Since the ra-

tional traders can forecast extrapolator demand, they rec-

ognize that, when extrapolators are bullish, they are likely

to remain bullish for a while, and that it therefore does

not pay to trade aggressively against them. This, in turn,

allows a large overvaluation to build up. Second, there is

again high trading volume during the bubble. Since all in-

vestors can short, some of the trading volume, even at the

height of the bubble, is between extrapolators and rational

traders—but a lot of it is between wavering extrapolators. 18

In the model in the Online Appendix, the rational

traders maximize the expected utility of next period’s

wealth. We expect that the results will be similar if these

traders instead maximize the expected utility of time T

wealth, so long as they adjust their portfolios in a dy-

namically optimal way at each date. Indeed, Barberis et al.

(2015) show that, when rational dynamically optimizing

traders with long horizons interact with extrapolators,

there can be a substantial overvaluation even without a

short-sale constraint. The reason is that, when the risky

asset is overvalued, rational traders recognize that extrap-

olators are likely to remain optimistic for a while longer,

and that they can therefore improve their long-run wealth

prospects by not attacking the mispricing too aggressively. 

We focus on the model of Section 2 with boundedly ra-

tional traders and a short-sale constraint because it cap-

tures our main ideas in a simpler way than do mod-

els with fully rational traders. Another advantage of the

Section 2 model is that it makes more realistic predictions
18 We have also studied a model where we keep the boundedly ratio- 

nal traders, but add a third group of fully rational traders to the econ- 

omy. This model preserves the same essential predictions as the model in 

Section 2 : the asset becomes overvalued after a sequence of good cash- 

flow news and a large percentage of volume during the bubble is due to 

trading among extrapolators. But consistent with De Long et al. (1990) , 

Brunnermeier and Nagel (2004) , and others, it also captures the idea that 

rational traders ride the bubble: they buy the asset after good cash-flow 

news in the expectation of selling to extrapolators at a later date. 
about downturns. We discuss these predictions in the next

section. 

5. Negative bubbles 

The behavior of prices and volume after a sequence

of negative cash-flow shocks is not the “mirror image” of

those for the case of positive cash-flow shocks. First, our

model does not generate “negative” bubbles: while the

price of the risky asset falls when bad cash-flow news ar-

rives, it does not fall much below fundamental value. Af-

ter disappointing cash-flow news pushes the price of the

risky asset down, extrapolators reduce their holdings of

the risky asset. However, since the fundamental traders be-

lieve that any mispricing will correct by the next period,

they trade aggressively against any underpricing they per-

ceive. As a result, there is no significant undervaluation.

Still, there is some. After several periods of bad cash-flow

news, the risky asset is held only by fundamental traders:

the short-sale constraint forces the extrapolators out of the

market. For the fundamental traders to be willing to hold

the entire supply of the risky asset, the price has to be

lower than the fundamental value in (4) , and in particular

equals 

D t − γ σ 2 
ε (T − t − 1) Q − γ σ 2 

ε 

μ0 

Q, 

which differs from fundamental value by γ σ 2 
ε Q(1 −

μ0 ) /μ0 . For our parameter values, this wedge is approx-

imately two dollars. 19 

Our model predicts heavy trading during bubbles, but

little trading during severe downturns. When bad cash-

flow news arrives, there is some trading as extrapolators

sell to fundamental traders. Once the extrapolators leave

the market, however, the asset is held only by fundamen-

tal traders, a homogeneous group. There is no more trad-

ing until the market recovers and extrapolators re-enter.

More broadly, our model predicts higher trading volume

during bull than bear markets, a prediction consistent with

the available evidence ( Statman et al., 2006; Griffin et al.,

2007 ). 20 

6. Comparison with other bubble models 

It is impossible to do justice here to all the impor-

tant contributions in the literature on bubbles, recently

surveyed by Brunnermeier and Oehmke (2013) and Xiong

(2013) . Instead, we focus on two classes of models—

rational bubble models and disagreement-based models.

The former are notable for their simplicity and long tra-

dition; the latter, like us, deal with volume. 
19 For comparison, recall that a one-standard deviation cash-flow shock 

moves the risky asset price by approximately three dollars. 
20 This prediction holds even if fundamental traders waver—for example, 

even if they have the demand function in (7) and (8) with a base weight 

w 0 = 0 . 9 . Since the asset does not become very undervalued in a down- 

turn, the growth and value signals remain low in absolute magnitude. As 

a consequence, wavering induces little trading volume. 
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21 Wigmore ( 1985 , p. 42), describes the market for these stocks: “There 

is no gainsaying the enthusiasm of the financial markets for these pub- 
6.1. Rational bubble models 

In models of rational bubbles, the price of a risky asset 

is given by 

P t = P D,t + B t , (18) 

where P D , t is the present value of the asset’s future cash 

flows and where B t , the bubble component, satisfies 

B t = 

E (B t+1 ) 

1 + r 
, (19) 

where r is the expected return. We note four points. 

First, the rational bubble model does not explain how 

a bubble gets started in the first place. Under limited li- 

ability, the value of B must always be non-negative. Eq. 

(19) then implies that, if B is strictly positive in any future 

state of the world, it must be positive at the current time. 

Put simply, if a bubble exists, it must always have existed. 

In our framework, in contrast, bubbles are initiated in a 

much clearer way, as a consequence of what Kindleberger 

(1978) calls “displacement”: a sequence of good cash-flow 

news leads to price increases which, in turn, cause extrap- 

olators to raise their demand for the risky asset. 

Second, the rational bubble model has nothing to say 

about trading volume. In its usual form, agents are as- 

sumed to be homogeneous; trading volume is therefore 

zero. 

Third, the rational bubble model does not capture the 

extrapolative expectations that are often observed during 

bubbles. In the basic version of this framework, the return 

investors expect to earn on the risky asset is constant over 

time. 

Finally, direct tests of the key prediction of rational 

bubble models—that payoffs in the infinite future have 

positive present value—reject it ( Giglio et al., 2016 ). 

6.2. Disagreement-based models 

Building on Harrison and Kreps (1978) , Scheinkman and 

Xiong (2003) present a model in which two risk-neutral 

investors observe two signals about the fundamental value 

of a risky asset, but disagree about how useful each sig- 

nal is. Their disagreement leads to trading volume. With a 

short-sale constraint, disagreement also leads to overpric- 

ing: the price of the risky asset can be higher than the 

present value of its future cash flows, as perceived by the 

investor holding the asset. The reason is that the holder 

of the asset recognizes that, as more signals and cash-flow 

news are revealed over time, the other investor may be- 

come more optimistic than he is, allowing him to sell the 

asset on at an attractive price. 

Both in Scheinkman and Xiong (2003) and in our 

model, the increase in volume during a bubble is due to an 

increase in disagreement among investors. In Scheinkman 

and Xiong (2003) , this increase in disagreement is ex- 

ogenous. In our model, disagreement grows endogenously 

over the course of the bubble. As the bubble increases in 

size, the growth and value signals in Eq. (10) become very 

large in absolute magnitude. Extrapolators who, as a con- 

sequence of wavering, differ even very slightly in the rela- 

tive weight they put on the two signals disagree sharply 
about the expected price change on the risky asset and 

therefore trade in large quantities. Whereas in Scheinkman 

and Xiong (2003) an exogeneous increase in disagreement 

leads to both higher volume and overpricing, in our model, 

the causation is different: overpricing leads to endoge- 

nously higher disagreement and hence higher volume. 

Our model differs from disagreement models in other 

important ways. In our model, many investors hold ex- 

pectations that depend positively on past returns, consis- 

tent with survey evidence on the expectations of actual 

investors. In Scheinkman and Xiong (2003) , however, the 

holder of the asset has constant expectations about the as- 

set’s future return. Our framework also predicts a strongly 

positive correlation between volume and past returns dur- 

ing bubble episodes, a prediction that we confirm empiri- 

cally in the next section. Using simulations, we find that, 

in Scheinkman and Xiong (2003) , this correlation is close 

to zero: the exogeneous process that governs disagreement 

and hence volume is uncorrelated with the process for fun- 

damentals that is the main determinant of price move- 

ments. 

7. Some evidence 

We present empirical evidence bearing on some dis- 

tinctive predictions of the model. One prediction, outlined 

in Section 4 , is that the correlation between the trading 

volume in an asset and its return over the previous year 

is higher during a bubble episode than at other times. In 

Section 7.1 , we examine this prediction for four historical 

bubbles. In Section 7.2 , we evaluate another central predic- 

tion of the model: as a bubble develops, a growing fraction 

of trading volume is due to investors with extrapolator-like 

characteristics. In Section 7.3 , we look to see if these in- 

vestors also exhibit evidence of wavering. 

7.1. Volume and past returns 

For four bubble episodes—the U.S. stock market in 1929, 

technology stocks in 1998–20 0 0, U.S. housing in 2004–

2006, and commodities in 2007–2008—we check whether, 

as predicted by our model, the correlation between volume 

and past return for the asset in question is higher during 

the bubble period than during the two-year period that 

follows the bubble’s collapse. 

Accounts of the stock market boom of the late 1920s 

suggest that the bubble began in March 1928 ( Allen, 1931; 

Galbraith, 1954; White, 1990 ). White (1990) shows that 

new industries, especially utilities, led the stock market 

boom. Panel A of Fig. 6 confirms White’s account. It com- 

pares the value-weighted cumulative return of public util- 

ities listed in the Center for Research in Security Prices 

(CRSP) data (Standard Industrial Classification (SIC) codes 

4 900–4 990) with the cumulative return of the broader 

stock market. Utilities outperformed the broader stock 

market by more than 80% in the March 1928–September 

1929 period. 21 
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Fig. 6. Prices, past 12-month returns, and value-weighted turnover during four bubble episodes: utility stocks in 1929; technology stocks in 1998–20 0 0; 

house prices in 20 04–20 06 as measured by the Case–Shiller 20-City Index; and oil in 20 07–20 08 as proxied by the price of the USO ETF. All data are 

monthly and value-weighted across stocks. For housing, turnover is measured as the number of existing-home sales. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If we accept that utility stocks experienced a bubble

in 1928–1929, our model predicts that trading volume in

these stocks during this time will be positively related to

their past return. Panel B of Fig. 6 plots the value-weighted

monthly turnover of utility stocks over this period along-

side their value-weighted 12-month past return; turnover

is defined as volume divided by shares outstanding. Af-

ter a spike in April 1928, the turnover of utility stocks

closely tracks their 12-month past return. For example,

the second highest volume month in the series occurs in

June 1929, following a 12-month cumulative return of 86%.

From January 1927 to December 1930, the correlation be-

tween turnover and the 12-month past return is 0.59. Over
lic utility holding companies, however. [ . . . ] Their trading volume in 1929 

exceeded 100% of their outstanding shares. At the high point in the mar- 

ket, their stocks averaged prices 57 times earnings per share, with Electric 

Bond and Share, which was most prominent because of its size and its re- 

lationship with General Electric, selling at 96 times earnings per share.”

Following the collapse of the bubble, utilities were “held up by Franklin 

Roosevelt and others as spectacles of financial abuse and confusion.”

 

 

 

 

 

 

 

 

the two-year period after the bubble ends—from January

1931 to December 1932—the correlation is −0.03. 

The explosion of volume during the technology stock

bubble of 1998–20 0 0 is well-known ( Ofek and Richardson,

2003; Hong and Stein, 2007 ). In Panels C and D of Fig. 6 ,

we replicate and extend these findings. Panel C plots value-

weighted monthly cumulative returns for the sample of

.com stocks used by Ofek and Richardson (2003) and com-

pares them to the cumulative returns of the CRSP value-

weighted stock market index; returns for .com stocks are

from CRSP. Panel D shows that turnover, measured as be-

fore and value-weighted, increases steadily as the bubble

progresses, peaking in April 1999, the same point at which

technology stocks reach their highest 12-month return of

429%. Overall, the figure shows that turnover closely tracks

the past 12-month return, with a time-series correlation

between the two of 0.73 between January 1998 and De-

cember 2002. In the 24-month post-bubble period from

January 2003 to December 2004, the correlation is −0.14. 

The relationship between turnover and past returns also

appears during the U.S. housing bubble of the mid-20 0 0s.

In Panel E of Fig. 6 , we plot the Case–Shiller 20-City Com-
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Fig. 6. Continued 

 

posite Home Price Index. This index, based on repeat trans- 

actions, seeks to measure the value of residential real es- 

tate in the 20 largest U.S. metropolitan areas. 

The Case–Shiller Index rises from a base value of 100 in 

January 20 0 0 to a peak of 206.61 in April 2006. In Panel F, 

we show the relationship between 12-month past returns 

and volume for the U.S. housing market; we use existing- 

home sales by month as a measure of volume. 22 The fig- 

ure shows that, as for the two stock market bubbles, vol- 

ume closely tracks the 12-month past return; their time- 

series correlation in monthly data from January 2003 to 

December 2008 is 0.96. This is higher than the correlation 

in the two-year post-bubble period from January 2009 to 

December 2010, namely, 0.2. 

Whether the run-up in commodity prices in 2007 and 

2008 can be easily explained by fundamentals or was in- 

stead a bubble is subject to debate, with some authors 

suggesting that the “financialization” of derivatives mar- 
22 Existing-home sales are based on closing transactions of single-family 

homes, townhomes, condominiums, and cooperative homes and are pro- 

vided by the National Association of Realtors. 
kets instigated demand from institutional investors ( Irwin 

and Sanders, 2010; Cheng and Xiong, 2014; Hong et al., 

2015 ). Panel G of Fig. 6 shows the run-up in oil prices 

as reflected in the share price of United States Oil (USO) 

Fund, the largest exchange-traded fund (ETF) with expo- 

sure to oil. USO more than doubled between December 

2006 and June 2008. In Panel H of Fig. 6 , we plot the

monthly turnover and 12-month past return of this ETF, 

both obtained from CRSP. As in our other examples, the 

turnover of USO closely tracks the past return; their time- 

series correlation between April 2007 and December 2009 

is 0.83. During the two-year post-bubble period, the corre- 

lation is 0.15. 

7.2. The source of trading volume in a bubble 

Another prediction of our model is that, during a bub- 

ble, a larger fraction of trading volume will be due to ex- 

trapolative investors. We test this prediction for the tech- 

nology stock bubble of the late 1990s. 

We do not have data on the trading of all investors 

during this period, but we do have data on the trading 

of mutual funds. We therefore test whether, as the bub- 

ble develops, a larger fraction of trading volume is due 
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Fig. 7. Composition of volume during a bubble. In each quarter t from 1997 to 2002, and for each technology stock i , we compute Volume_Mom i , t , a 

measure of the extent to which trading in stock i in quarter t is due to mutual funds with extrapolator-like characteristics. To determine whether a fund 

is extrapolator-like, we look at its holdings six months earlier, in quarter t − 2 , and check whether these holdings earned high returns over the previous 

year. For each quarter, the figure plots the equal-weighted average of Volume _ Mom i,t across all technology stocks in that quarter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to extrapolator-like mutual funds. We again identify .com

stocks using the list of securities provided by Ofek and

Richardson (2003) and then match this list to quarterly

mutual fund holdings from the Thomson Reuters database.

For technology stock i in quarter t , we compute a measure

of extrapolator-weighted trading volume, namely, 

Volume _ Mom i,t 

= 

∑ 

j Buys i, j,t Fundmom j,t−2 + 

∑ 

j Sells i, j,t Fundmom j,t−2 ∑ 

j Buys i, j,t + 

∑ 

j Sells i, j,t 

, 

(20)

where j indexes the mutual funds trading stock i in quarter

t , so that Buys i , j , t and Sells i , j , t are the dollar buys and sells,

respectively, of stock i by fund j in quarter t . In expression

(20) , the Buys and Sells in the numerator are weighted by

the extent to which they were executed by extrapolator-

like mutual funds. To determine how extrapolator-like fund

j is, we look at its holdings six months prior to quar-

ter t —in other words, in quarter t − 2 —and compute the

“growthiness” of these holdings. Specifically, at time t − 2 ,

we sort all stocks—not only .com stocks—into NYSE deciles

based on their past 12-month return. The growthiness of

the fund’s portfolio at time t − 2 , Fundmom j,t−2 , is then

measured as the position-weighted past-return decile of

the stocks in the portfolio: 

Fundmom j,t−2 = 

∑ 

i 

w i, j,t−2 stockmom i,t−2 , (21)

where stockmom takes an integer value between 1 and 10.

A portfolio with a Fundmom score of 1, for example, con-

tains only stocks that performed poorly over the trailing 12

months, while a portfolio with a score of 10 contains only

stocks with high past returns. 

In summary, Volume _ Mom i,t measures the extent to

which a dollar of trading volume in stock i in quarter t
is associated with extrapolative investors. When it takes a

high value, the stock is being bought and sold primarily

by extrapolators; when it takes a low value, contrarian in-

vestors play a larger role in the trading. 

For each quarter t , we compute an equal-weighted av-

erage of Volume _ Mom i,t across all technology stocks at

that date. Fig. 7 plots the resulting time series between

1997 and 2002. The figure shows that, even at the begin-

ning of the bubble in 1997 and early 1998, there is sub-

stantial trading by extrapolative investors. As prices rise in

1998 and 1999, volume becomes increasingly dominated

by extrapolators. Then, as the bubble collapses in 20 0 0 and

2001, the average Volume _ Mom drops substantially, from a

peak of 8.45 in December 1999 to 5.75 in December 2001.

Overall, the figure provides support for our prediction that,

as the bubble grows, a larger fraction of volume is due to

trading by investors with extrapolator-like characteristics. 

7.3. Evidence of wavering 

In the previous section, we saw that, as the technol-

ogy stock bubble grew, a larger fraction of trading volume

was due to extrapolative mutual funds. We now show that

these funds also exhibited signs of wavering. 

To provide evidence of wavering, we look at fund -level

holdings: if, as our model assumes, wavering is indepen-

dent across funds, it will be undetectable in aggregate mu-

tual fund holdings. For each mutual fund in our sample,

we compute its maximum dollar exposure to the Internet

sector between 1996 and 20 0 0, and focus on the ten funds

with the highest maximum exposure. For each of these ten

funds, we measure the active changes in its exposure to

the Internet sector during the bubble period. Specifically,

for each of the fund’s positions in each quarter, we com-

pute the change in the value of the position due to trading

as a percentage of the total value of the fund’s long posi-
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Fig. 8. Wavering by mutual funds and hedge funds. The figure shows the active change in weight in Internet stocks, defined as the net purchases of 

Internet stocks in any quarter as a percentage of the total portfolio value. Panel A shows net purchases for the ten largest mutual fund holders of Internet 

stocks during the bubble. Panel B shows net purchases for the five largest hedge fund holders. Purchases and sales are based on split-adjusted holdings 

from the Thomson Reuters mutual fund and institutional ownership database. 
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tions that quarter; we denote this by �w. For a newly es-

tablished position, �w is simply the value of the position

scaled by the total value of all long positions. For positions

already held at the end of quarter t − 1 , �w at time t is

the change in shares held at time t multiplied by the time

t price, again scaled by the total value of all long positions.

In each quarter, we sum �w up over all Internet stocks

held by the fund, with positive values indicating an active

increase in exposure to these stocks and negative values an

active decrease in exposure. As before, we identify Internet

stocks using the Ofek and Richardson (2003) list. 

The top chart in Fig. 8 shows the time series of �w for

the ten funds. Several of the funds exhibit trading behavior

that is consistent with wavering: as the bubble forms, they

display substantial shifts in their enthusiasm for the Inter-

net sector. Moreover, and also consistent with our model,

the wavering appears largely uncorrelated across funds:

their enthusiasm waxes and wanes at different times. 

We conduct an analogous exercise for hedge funds.

Specifically, we take the five hedge funds in the

Brunnermeier and Nagel (2004) sample with the highest

maximum dollar exposure to the Internet sector between

1996 and 20 0 0. For each of the five funds, we compute

the time series of �w . The lower chart in Fig. 8 presents

the results. Zweig DiMenna’s trading behavior is best de-

scribed as extrapolative with little wavering. However, Tu-

dor exhibits behavior that is more consistent with waver-

ing: the fund moves in, out, and back into bubble stocks

as the bubble grows. Nicholas Applegate, Husic, and Soros’

trading is similar to Tudor’s: their enthusiasm for the In-

ternet sector also fluctuates substantially over time, albeit

less dramatically. While hedge fund behavior varies across

funds, the standard deviation of each fund’s time series of

�w during the January 1998–March 20 0 0 bubble period,

a rough measure of wavering-induced trading, greatly ex-

ceeds the standard deviation of this quantity both before

and after the bubble period. 23 

Other models may also be able to explain investors’ al-

ternately increasing and decreasing their exposure to an

overvalued asset. Abreu and Brunnermeier (2003) present

a model in which one hedge fund after another becomes

aware that an asset is overpriced. Each fund is unsure

how many other funds know about the overpricing, and

this creates a dilemma: if relatively few other funds know

about the mispricing, then it is better for the fund to ride

the bubble because there is unlikely to be enough sell-

ing pressure to burst it. However, if many other funds are

aware of the bubble, it is better for the fund to sell in or-

der to avoid a crash caused by other funds exiting. 

In the basic version of the Abreu and Brunnermeier

(2003) model, there is nothing that resembles wavering:

each fund sells the asset some time after learning that it

is overpriced, and then stays out of the market. However,

in an extension of the model that incorporates uninforma-
23 Mutual funds and hedge funds as a group do not correspond neatly to 

either the extrapolators or the fundamental traders in our model: some 

of these funds follow extrapolative strategies, while others behave more 

like fundamental traders. Given their large average exposure to the Inter- 

net sector in the late 1990s, the 15 mutual and hedge funds we study in 

Fig. 8 resemble extrapolators more than they do fundamental traders. 

 

 

 

 

 

 

 

tive synchronizing events, something reminiscent of waver-

ing emerges: funds sell when a synchronizing event occurs,

and, if the selling pressure fails to burst the bubble, re-

enter the market until the next such event, and so on. 

The Abreu and Brunnermeier (2003) predictions for in-

vestor behavior differ from ours in at least two important

ways. First, the Abreu and Brunnermeier model predicts

that the high volume we observe during bubble periods

will manifest itself in the form of occasional large spikes

in volume. In our model, however, volume is high during

bubbles on a more “continuous” basis. To our eyes, the ev-

idence on volume during bubble periods is more consistent

with the latter view. 

Second, in Abreu and Brunnermeier (2003) , hedge fund

trading is highly correlated: funds exit and re-enter the

market at the same time, namely, on the dates of the syn-

chronizing events. In our model, however, wavering is as-

sumed to be uncorrelated across investors: at each date

during the bubble period, some extrapolators increase their

exposure to the risky asset while others decrease it. This

assumption is important: if extrapolators’ trades are too

highly correlated, our model will not generate high volume

at the peak of the bubble. 

To distinguish the two models empirically, we com-

pute the average pairwise correlation of the times series

of �w —the quarterly change in a fund’s exposure to the

Internet sector—for the five hedge funds represented in

the lower panel of Fig. 8 . We find that this average is a

modest 0.19. In other words, consistent with our frame-

work, but less consistent with the Abreu and Brunnermeier

(2003) model, changes in hedge fund exposure to the In-

ternet sector are relatively uncorrelated. 

8. Conclusion 

Although historical accounts of price bubbles typically

emphasize extrapolative expectations ( Kindleberger, 1978;

Shiller, 20 0 0 ), recent models of bubbles have moved away

from this feature. In this paper, we embrace it. In our

model, some investors hold extrapolative expectations, but

also waver in their convictions in that they worry more

or less about the possible overvaluation of the asset. The

model generates occasional bubbles in asset prices. Such

bubbles occur in response to particular patterns of good

news, a phenomenon Kindleberger (1978) called displace-

ment. They are characterized by very high trading volume

documented in earlier literature, which to a significant ex-

tent comes from trading between the wavering extrapo-

lators. The model generates a new prediction that trad-

ing volume is driven by high past returns which distin-

guishes it from some popular recent models and appears

to be consistent with some historical evidence. 

Our analysis has left several important issues to fu-

ture work. First, we have not addressed the controversy

of whether bubbles actually exist, and whether investors

can tell in the middle of a rapid price increase of an as-

set that it is actually overpriced. Second, our model as-

sumes a simple and stabilizing form of arbitrage, and thus

does not consider the possibility of destabilizing arbitrage,

whereby rational investors buy an overpriced asset in the

hope of selling at an even higher price to extrapolators
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( De Long et al., 1990; Brunnermeier and Nagel, 2004 ). But 

we also have not considered other stabilizing forces, such 

as arbitrage by security issuers themselves through greater 

issuance or asset creation ( Galbraith, 1954 ). Perhaps most 

important, we have adopted a standard but ad hoc formu- 

lation of extrapolative beliefs by some investors. The fun- 

damental psychological mechanisms of extrapolation re- 

main to be understood. 

Appendix A. Proofs 

A.1. A micro-foundation for fundamental trader demand in 

Eq. (3) 

Consider an economy with the timing and asset struc- 

ture described at the start of Section 2 . There are two 

types of traders: one type, which makes up a fraction μX 

of the population, has time t per capita demand N 

X 
t for 

shares of the risky asset; the other type, which makes up 

a fraction μF = 1 − μX of the population, is a fundamental 

trader who, at time t , chooses his per capita share demand 

N 

F 
t by maximizing a utility function with constant abso- 

lute risk aversion γ and defined over next period’s wealth. 

Specifically, his objective is 

max 
N F t 

E 

F 
t [ −e −γ (W t + N F t ( ̃  P t+1 −P t )) ] . (A.1) 

This trader is boundedly rational, in a way that we make 

precise in what follows. 

To determine his time t demand for the risky asset, the 

fundamental trader reasons as follows. At the final date, 

date T , the price of the risky asset P T must equal the cash 

flow realized on that date, so that P T = D T . At time T − 1 , 

the fundamental trader’s first-order condition implies that 

his share demand is 

N 

F 
T −1 = 

E 

F 
T −1 ( ̃

 P T ) − P T −1 

γ Var F T −1 ( ̃
 P T − P T −1 ) 

= 

D T −1 − P T −1 

γ σ 2 
ε 

, (A.2) 

where we have used the fact that E 

F 
T −1 

( ̃  P T ) = D T −1 , and 

have assumed that the fundamental trader takes the condi- 

tional distribution of the change in price to be Normal—an 

assumption that is confirmed in equilibrium—and that, for 

simplicity, he sets the conditional variance of price changes 

equal to the variance of cash-flow shocks. Market clearing 

implies 

μF 

(
D T −1 − P T −1 

γ σ 2 
ε 

)
+ μX N 

X 
T −1 = Q, (A.3) 

which, in turn, implies 

P T −1 = D T −1 − γ σ 2 
ε 

μF 
(Q − μX N 

X 
T −1 ) . (A.4) 

At time T − 2 , the fundamental trader’s demand is 

N 

F 
T −2 = 

E 

F 
T −2 ( ̃

 P T −1 ) − P T −2 

γ σ 2 
ε 

. (A.5) 

It is here that his bounded rationality comes into play. To 

compute E 

F 
T −2 ( ̃

 P T −1 ) , in other words, to compute the ex- 

pectation of the quantity in (A.4) , he needs a value for 

E 

F 
T −2 

(N 

X 
T −1 

) . We assume that the fundamental trader does 
not try to forecast the evolution of the other traders’ de- 

mand N 

X , but instead sets E 

F 
T −2 (N 

X 
T −1 ) = Q; in other words,

he assumes that the other traders will simply hold an 

amount of the risky asset that corresponds to their weight 

in the population. Under this assumption, E 

F 
T −2 ( ̃

 P T −1 ) = 

D T −2 − γ σ 2 
ε Q, so that 

N 

F 
T −2 = 

D T −2 − γ σ 2 
ε Q − P T −2 

γ σ 2 
ε 

. (A.6) 

We assume that the fundamental trader continues to rea- 

son in this way, working back from time T to the current 

time t , and, at each time, forecasting that the other traders’ 

per capita demand at the next date will simply equal Q . 

Under these assumptions, 

N 

F 
t = 

D t − γ σ 2 
ε (T − t − 1) Q − P t 

γ σ 2 
ε 

, (A.7) 

which is Eq. (3) . 

A.2. A micro-foundation for extrapolator demand in Eq. (5) 

Consider an economy with the timing and asset struc- 

ture described at the start of Section 2 . Now consider a 

trader who, at time t , maximizes a utility function with 

constant absolute risk aversion γ and defined over next 

period’s wealth. Specifically, his objective is 

max 
N X t 

E 

X 
t [ −e −γ (W t + N X t ( ̃

 P t+1 −P t )) ] . (A.8) 

From the first-order condition, optimal demand is 

N 

X 
t = 

E 

X 
t ( ̃

 P t+1 ) − P t 

γ Var X t ( ̃
 P t+1 − P t ) 

, (A.9) 

where, for simplicity, the investor takes the conditional 

distribution of the change in price to be Normal. Suppose 

that this investor forms beliefs about future price changes 

by extrapolating past price changes, so that 

E 

X 
t ( ̃

 P t+1 − P t ) = (1 − θ ) 
∞ ∑ 

k =1 

θ k −1 (P t−k − P t−k −1 ) ≡ X t , 

(A.10) 

which, for an economy that starts at time 0, can be written 

as 

E 

X 
t ( ̃

 P t+1 − P t ) = (1 − θ ) 
t−1 ∑ 

k =1 

θ k −1 (P t−k − P t−k −1 ) + θ t−1 X 1 . 

(A.11) 

Suppose also, for simplicity, that he sets the conditional 

variance of price changes equal to the variance of cash- 

flow shocks, namely, σ 2 
ε . His demand then becomes 

N 

X 
t = 

1 

γ σ 2 
ε 

( 

(1 − θ ) 
t−1 ∑ 

k =1 

θ k −1 (P t−k − P t−k −1 ) + θ t−1 X 1 

) 

, 

(A.12) 

as in (5) . 

Proposition 1 . In the economy described in Section 2 , a 

unique market-clearing price always exists and is determined 
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as follows. Let P i , i ∈ { 0 , 1 , . . . , I} , be the risky asset price at

which trader i’s short-sale constraint starts to bind. Let N 

P i 
be the aggregate risky asset share demand across all traders

when the price equals P i . If max i ∈{ 0 , 1 , ... ,I} N 

P i 
< Q, then, in

equilibrium, all traders have strictly positive demand for the

risky asset and the asset’s price equals 

P t = D t + 

∑ I 
i =1 μi (1 − w i,t ) 

μ0 + 

∑ I 
i =1 μi w i,t 

X t 

−γ σ 2 
ε Q 

(μ0 + 

∑ I 
i =1 μi w i,t )(T − t − 1) + 1 

μ0 + 

∑ I 
i =1 μi w i,t 

. (A.13)

Otherwise, let i ∗ be the value of i ∈ { 0 , 1 , . . . , I} for which N 

P i 
exceeds Q by the smallest amount, and let I ∗ be the set of

i ∈ { 0 , 1 , . . . , I} such that trader i has strictly positive demand

for the risky asset at price P i ∗ . In this case, in equilibrium,

only the traders in I ∗ have strictly positive demand for the

risky asset and the asset’s price equals 

P t = D t + 

∑ 

i ∈ I ∗ μi (1 − w i,t ) ∑ 

i ∈ I ∗ μi w i,t 

X t 

−γ σ 2 
ε Q 

( 
∑ 

i ∈ I ∗ μi w i,t )(T − t − 1) + 1 ∑ 

i ∈ I ∗ μi w i,t 

. (A.14)

Proof of Proposition 1 . From expressions (9) and (10) , we

see that aggregate demand for the risky asset, μ0 N 

F 
t +∑ I 

i =1 μi N 

E,i 
t , can take an arbitrarily high value if the price

P t is sufficiently low, and a value as low as zero if the price

is sufficiently high. Moreover, it is a continuous function of

P t and is strictly decreasing in P t until it falls to zero. Taken

together, these observations imply that there is a unique

price P t at which aggregate demand at time t equals the

risky asset supply Q . 

We find the market-clearing price in the following way.

As noted in the statement of the proposition, we define

P i to be the price at which trader i ’s short-sale constraint

binds, namely, 

P 0 = D t − γ σ 2 
ε (T − t − 1) Q 

P i = D t − γ σ 2 
ε (T − t − 1) Q + 

1 − w i,t 

w i,t 

X t , i ∈ { 1 , . . . , I} . 
(A.15)

We now order these I + 1 “cut-off” prices, so that 

P i (0) ≥ P i (1) ≥ . . . ≥ P i (I) , 

where i ( l ) indexes the trader i ∈ { 0 , 1 , . . . , I} with the (l +
1) th highest cut-off price. If N 

P i (l) 
is aggregate demand at

price P i (l) , we have 

0 = N P i (0) 
≤ N P i (1) 

≤ · · · ≤ N P i (I) 
. 

Finally, let I ( l ) be the set of traders i who have strictly pos-

itive demand at price P i (l) . Note that I (0) is the empty set

and that I ( l ) is a subset of I(l + 1) . 
We consider two cases. Suppose that N 

P i (I) 
< Q . This

indicates that the market-clearing price is below P i (I) ,

and that, in equilibrium, all traders in the economy have
strictly positive demand. Aggregate demand at the market-
clearing price P t therefore equals 

I ∑ 

i =0 

μi 

[
w i,t 

(
D t − γ σ 2 

ε (T − t − 1) Q − P t 

γ σ 2 
ε 

)
+ (1 − w i,t ) 

X t 

γ σ 2 
ε 

]
, 

where w 0 ,t ≡ 1 , indicating that fundamental traders put a

weight of 1 on the value signal. Setting this aggregate de-

mand equal to supply Q leads to the equilibrium price in

(A.13) . 

We now turn to the other case. Suppose that N 

P i (l) 
≤

Q ≤ N 

P i (l+1) 
. We then know that the market-clearing price

is somewhere between P i (l+1) and P i (l) , and that, in equi-

librium, only the traders in the set I(l + 1) , denoted I ∗ in

the statement of the proposition, have strictly positive de-

mand for the risky asset. Aggregate demand at the market-

clearing price P t therefore equals 

∑ 

i ∈ I(l+1) 

μi 

[
w i,t 

(
D t − γ σ 2 

ε (T − t − 1) Q − P t 

γ σ 2 
ε 

)
+(1 − w i,t ) 

X t 

γ σ 2 
ε 

]
. 

Setting this equal to supply Q , we obtain the equilibrium

price in (A.14) . �

Proposition 2 . Suppose that there is a continuum of extrap-

olators and that each extrapolator draws an independent

weight w i,t at time t from a bounded and continuous density

g(w ) , w ∈ [ w l , w h ] , with mean w and with 0 < w l < w h < 1 .

Suppose that the economy has been in its steady state up to

time l − 1 and that there is then a sequence of positive shocks

ε l , ε l+1 , . . . , ε n that move the economy from the first stage

of the bubble to the second stage at some intermediate date

j with l < j < n. Also suppose that the economy remains in its

second stage through at least date N > n. 

No price spiral. If all the extrapolators are in the mar-

ket at all dates—we specify the condition for this below—the

overpricing generated at time t by the cash-flow shocks εl ,

ε l+1 , . . . , εn is 

O t ≡ P t − P F t = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

t−1 ∑ 

m = l 
L 1 (t − m ) ε m 

l ≤ t < j 

t−1 ∑ 

m = j 
L 2 (t − m ) ε m 

+ O 

1 
t j ≤ t ≤ N 

, 

(A.16)

where O 

1 
t is the component of the time t overpricing gener-

ated by the shocks { ε i } j−1 

i = l that occurred during the first stage
of the bubble and is given by 

O 

1 
t = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

(α2 + θα2 α
−1 
1 

) O j−1 

−α2 O j−2 + α2 ε j−1 −
μ0 

w (1 − μ0 ) 
γ σ 2 

ε Q t = j 

(α2 + θ ) O 

1 
t−1 − α2 O 

1 
t−2 

− μ0 (1 − θ ) 

w (1 − μ0 ) 
γ σ 2 

ε Q j < t ≤ N 

, 

(A.17)
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where α1 ≡ (1 − θ )(1 − μ0 )(1 − w ) / (μ0 + (1 − μ0 ) w ) and 

α2 ≡ (1 − θ )(1 − w ) / w . The quantities {L i ( j) } j≥0 are deter- 

mined as follows. If αi < 2 − θ − 2 
√ 

1 − θ or αi > 2 − θ + 

2 
√ 

1 − θ, then 

L i ( j) = 2 − j αi ((αi + θ ) 2 − 4 αi ) 
−0 . 5 

×[(αi + θ + 

√ 

(αi + θ ) 2 − 4 αi ) 
j 

−(αi + θ −
√ 

(αi + θ ) 2 − 4 αi ) 
j ] . (A.18) 

If 2 − θ − 2 
√ 

1 − θ < αi < 2 − θ + 2 
√ 

1 − θ, then 

L i ( j) = 2 α0 . 5 j+1 
i 

(
4 αi − (αi + θ ) 2 

)−0 . 5 
sin ( jβ) , (A.19) 

where β = cos −1 (0 . 5(αi + θ ) α−0 . 5 
i 

) . If αi = 2 − θ + 2 
√ 

1 − θ

or αi = 2 − θ − 2 
√ 

1 − θ, then 

L i ( j) = jα0 . 5( j+1) 
i 

. (A.20) 

Price spiral. If, at some date j ′ , j ≤ j ′ ≤ N , the overpricing 

O j ′ computed using (A.16) is greater than Ō ≡ ((1 − w h ) + 

(1 − μ0 )(w h − w )) γ σ 2 
ε Q/ ((1 − μ0 )(w h − w )) , then a price 

spiral begins at j ′ . During the spiral, the time t overvaluation 

is 

O t = 

1 − w (X t ) 

w (X t ) 
X t + γ σ 2 

ε Q − γ σ 2 
ε Q 

(1 − μ0 ) η(X t ) w (X t ) 
, 

t ≥ j ′ , (A.21) 

where 

w (X t ) = 

∫ w 

∗

w l 

wg(w ) dw/ 

∫ w 

∗

w l 

g(w ) dw, η(X t ) = 

∫ w 

∗

w l 

g(w ) dw

(A.22) 

w 

∗(X t ) is determined by 

w 

∗γ σ 2 
ε Q = X t (1 − μ0 ) 

∫ w 

∗

w l 

(w 

∗ − w ) g(w ) dw, (A.23) 

and the growth signal X t evolves as 

X t = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

θ (μ0 + (1 − μ0 ) w )(O t−1 − γ σ 2 
ε Q ) + θγ σ 2 

ε Q 

(1 − μ0 )(1 − w ) 

+(1 − θ )(O t−1 − O t−2 + ε t−1 + γ σ 2 
ε Q ) 

for t = j ′ 

θX t−1 + (1 − θ )(O t−1 − O t−2 + ε t−1 + γ σ 2 
ε Q ) 

for t > j ′ 

. (A.24) 

At each time t , extrapolators with w i,t < w 

∗(X t ) stay in the 

market, while those with w i,t ≥ w 

∗(X t ) stay out of the mar- 

ket. If the price spiral ends before time N , Eqs. (A .21) , (A .22) ,

and (A.24) still apply but with w 

∗ set to w h . 

Before we prove the proposition, we explain it in more 

detail. Eq. (A.16) gives the magnitude of overvaluation in 

the absence of a price spiral. To understand it, suppose 

that, up until time l − 1 , the economy has been in its 

steady state, and that, at time l , there is a unit cash-flow 

shock ε l = 1 , after which the cash-flow shocks revert to 

zero forever. The quantities L 1 (1) , L 1 (2) , L 1 (3) , . . . are 

equal to the overvaluation of the risky asset 1, 2, 3, . . . pe- 

riods after the shock, in other words, at dates l + 1 , l + 2 ,

l + 3 , . . . , conditional on the bubble staying in the first 
stage, so that fundamental traders and all extrapolators are 

in the market. The first row of Eq. (A.16) shows that our 

model has a linear structure, in the sense that, during the 

first stage of the bubble, the total overvaluation at time t 

caused by a sequence of shocks εl , ε l+1 , . . . , ε t−1 is given

by 

L 1 (1) ε t−1 + L 1 (2) ε t−2 + · · · + L 1 (t − l) ε l . 

Now suppose that the bubble is in the second stage, 

but with no price spiral, so that the fundamental traders 

are not in the market but all extrapolators are. Suppose 

that there is a unit cash-flow shock at time j , ε j = 1 , after

which the shocks equal zero forever. The quantities L 2 (1) , 

L 2 (2) , L 2 (3) , . . . measure how much additional overvalu- 

ation this shock creates 1, 2, 3, . . . periods later, in other 

words, at dates j + 1 , j + 2 , j + 3 , . . . , relative to the case

in which ε j = 0 , and conditional on all extrapolators stay- 

ing in the market. The second row of Eq. (A.16) shows that, 

in this second stage of the bubble, the total overvaluation 

at time t caused by a sequence of shocks εl , ε l+1 , . . . , ε n has

two components. The first is the overvaluation created by 

the cash-flow shocks that arise during the second stage of 

the bubble. This is again linear in structure and equals 

L 2 (1) ε t−1 + L 2 (2) ε t−2 + · · · + L 2 (t − j) ε j . 

The second component of the overvaluation, O 

1 
t , is typi- 

cally much smaller in magnitude. It is the overvaluation 

at time t caused by the lingering effect of the cash-flow 

shocks that occurred during the first stage of the bubble. 

Eqs. (A .18) –(A .20) provide explicit expressions for L 1 (·) 
and L 2 (·) . They show that L i ( j) can take one of four

shapes when plotted for j = 1 , 2 , . . . . The two most com-

mon shapes are a curve that rises and then falls mono- 

tonically and a curve that oscillates with decreasing ampli- 

tude. The other possibilities are a curve that oscillates with 

increasing amplitude and a curve that increases monoton- 

ically. 

Proof of Proposition 2 . Given the assumptions about extrap- 

olators in the statement of Proposition 2 and the results 

from Proposition 1 , the equilibrium price of the risky asset 

is 

P t = D t + α1 

∞ ∑ 

k =1 

θ k −1 (P t−k − P t−k −1 ) − (T − t − 1) γ σ 2 
ε Q 

− γ σ 2 
ε Q 

μ0 + (1 − μ0 ) w 

(A.25) 

in the first stage of the bubble, where α1 ≡
(1 −θ )(1 −μ0 )(1 −w ) 

μ0 +(1 −μ0 ) w 

. In the second stage of the bubble, 

so long as all the extrapolators are in the market, the 

equilibrium price is 

P t = D t + α2 

∞ ∑ 

k =1 

θ k −1 (P t−k − P t−k −1 ) − (T − t − 1) γ σ 2 
ε Q 

− γ σ 2 
ε Q 

(1 − μ0 ) w 

, (A.26) 

where α2 ≡ (1 −θ )(1 −w ) 
w 

> α1 . 

From (4) , (A.25) , and (A.26) , the level of overpricing O t ,

defined as the difference between the price of the risky 
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asset and its fundamental value, is 

O t = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 − w 

w 

X t − γ σ 2 
ε Q 

(1 − μ0 ) w 

+ γ σ 2 
ε Q 

for X t > 

γ σ 2 
ε Q 

(1 − μ0 )(1 − w ) 

(1 − μ0 )(1 − w ) 

μ0 + (1 − μ0 ) w 

X t − γ σ 2 
ε Q 

μ0 + (1 − μ0 ) w 

+ γ σ 2 
ε Q 

for X t ≤ γ σ 2 
ε Q 

(1 − μ0 )(1 − w ) 

.

(A.27)

Note that O t is continuous at the switching point be-

tween the first and second stages of the bubble; at this

point, O t = γ σ 2 
ε Q . Also note that, when the value of X t

equals its steady-state level of γ σ 2 
ε Q, the overpricing is

zero; in this case, the per capita demand of both extrapola-

tors and fundamental traders for the risky asset equals the

supply Q . 

From (A.25) and (A.26) it is apparent that, if the econ-

omy stays within stage one or within stage two with all

the extrapolators in the market, the model has a linear

structure: in stage i , a fundamental shock of ε t 1 at t 1 and

a fundamental shock of ε t 2 at t 2 generate, at a later time

t , a total overvaluation of L i (t − t 1 ) ε t 1 + L i (t − t 2 ) ε t 2 . It is

also straightforward to check that L 1 (·) and L 2 (·) can be

defined recursively as 

L i (0) = 0 , L i (1) = αi , 

L i (l) = (αi + θ ) L i (l − 1) − αi L i (l − 2) , 

l ≥ 2 for i = 1 , 2 . (A.28)

This is a standard difference equation with the general so-

lution 

L i ( j) = A 1 (K 1 ) 
j + A 2 (K 2 ) 

j , (A.29)

where K 1 and K 2 are the roots of the quadratic equation 

K 

2 − (αi + θ ) K + αi = 0 (A.30)

and where A 1 and A 2 can be obtained from the bound-

ary conditions L i (0) = 0 and L i (1) = αi . When (αi + θ ) 2 >

4 αi , (A.30) has two real roots; matching (A.29) with

the boundary conditions gives (A.18) . When (αi + θ ) 2 <

4 αi , (A.30) has two complex roots with nonzero imag-

inary components; matching (A.29) with the boundary

conditions gives (A.19) . When (αi + θ ) 2 = 4 αi , applying

L’Hôpital’s rule to either (A.18) or (A.19) gives (A.20) . 

The linear structure implies that, at time t with l ≤ t < j ,

the overpricing generated by { ε i } t−1 
i = l is 

∑ t−1 
m = l L 1 (t − m ) ε m 

;

and that, at time t with j ≤ t ≤ N , the additional overpricing

generated by { ε i } t−1 
i = j is 

∑ t−1 
m = j L 2 (t − m ) ε m 

. 

We now derive O 

1 
t at time t ≥ j . For t = j, 

X j = (1 − θ )(P j−1 − P j−2 ) + θX j−1 . (A.31)

From (A.16) we know 

P j−1 − P j−2 = O j−1 − O j−2 + ε j−1 + γ σ 2 
ε Q (A.32)

and 

X j−1 = 

μ0 + (1 − μ0 ) w 

(1 − μ0 )(1 − w ) 

(
O j−1 + 

γ σ 2 
ε Q 

μ0 + (1 − μ0 ) w 

− γ σ 2 
ε Q 

)
.

(A.33)

Substituting (A.32) and (A.33) into (A.31) , and then sub-

stituting (A.31) back into (A.27) gives O 

1 
j 

in (A.17) . For

j < t ≤ N , similar steps lead to O 

1 
t in (A.17) . 

Substituting Eq. (A.26) into the extrapolator share de-

mand in (10) shows that, whenever X t > w h γ σ 2 
ε Q/ ((1 −

μ0 )(w h − w )) , the extrapolator with w i,t = w h exits the

market and a price spiral occurs. Eq. (A.27) shows that this

condition is equivalent to O t > Ō . Applying (A.27) at time

j ′ − 1 gives X j ′ −1 as a function of O j ′ −1 , and further apply-

ing (A.31) and (A.32) gives (A.24) . 

Assume that, at time t , extrapolators with w i,t ∈
[ w l , w 

∗) are in the market. Integrating the share demands

of these extrapolators in (10) and equating the result to

the aggregate per-extrapolator supply of Q/ (1 − μ0 ) gives

(A.21) and (A.22) . Setting the share demand of the ex-

trapolator with w i,t = w 

∗ to zero then gives (A.23) . Given

that X t > w h γ σ 2 
ε Q/ ((1 − μ0 )(w h − w )) , the left-hand side

of (A.23) is smaller than the right-hand side when w 

∗ =
w h ; however, the left-hand side of (A.23) is greater than

the right-hand side when w 

∗ = w l . As a result, there must

exist a w 

∗ that solves (A.23) . �

Proof of Proposition 3 . Substituting the equilibrium asset

price in (A.25) and (A.26) into extrapolator i ’s share de-

mand in (10) gives 

N 

E,i 
t = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

max 

[
w − w i,t 

w γ σ 2 
ε 

X t + 

w i,t Q 

(1 − μ0 ) w 

, 0 

]
for X t > 

γ σ 2 
ε Q 

(1 − μ0 )(1 − w ) 

max 

[
μ0 (1 − w i,t ) + (1 − μ0 )( w − w i,t ) 

(μ0 + (1 − μ0 ) w ) γ σ 2 
ε 

X t 

+ 

w i,t Q 

μ0 + (1 − μ0 ) w 

, 0 

] 
for X t ≤ γ σ 2 

ε Q 

(1 − μ0 )(1 − w ) 

. (A.34)

Suppose that the fundamental traders and all extrapola-

tors are in the market; from (A.34) we know that this is

true when −w l γ σ 2 
ε Q/ (μ0 (1 − w l ) + (1 − μ0 )( w − w l )) ≤

X t < γ σ 2 
ε Q/ ((1 − μ0 )(1 − w )) . In this case, the component

of the change in extrapolator i ’s share demand between

time t and t + 1 that is due to wavering is 

(w i,t+1 − w i,t )(γ σ 2 
ε Q − X t+1 ) 

(μ0 + (1 − μ0 ) w ) γ σ 2 
ε 

. (A.35)

Taking the absolute value of this quantity—conditional, for

simplicity, on X t+1 = X t —and integrating over w i,t+1 and

w i,t shows that wavering-induced trading volume is equal

to 

| X t − γ σ 2 
ε Q| �0 

(μ0 + (1 − μ0 ) w ) γ σ 2 
ε 

, (A.36)

where �0 is defined in (17) . Now suppose that the funda-

mental traders are out of the market but all extrapolators

are in; this is true when γ σ 2 
ε Q/ ((1 − μ0 )(1 − w )) ≤ X t ≤

w h γ σ 2 
ε Q/ ((w h − w )(1 − μ0 )) . In this case, the component

of the change in extrapolator i ’s share demand between t
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and t + 1 that is due to wavering is 

(w i,t+1 − w i,t )(γ σ 2 
ε Q − (1 − μ0 ) X t+1 ) 

(1 − μ0 ) w γ σ 2 
ε 

. (A.37) 

A similar calculation to that used to obtain (A.36) shows 

that, in this case, wavering-induced trading volume is 

given by 

((1 − μ0 ) X t − γ σ 2 
ε Q ) �0 

(1 − μ0 ) w γ σ 2 
ε 

. (A.38) 

When X t > w h γ σ 2 
ε Q/ ((w h − w )(1 − μ0 )) , extrapolators 

with a sufficiently high level of w stay out of the market 

but may re-enter in the next period. For those extrapola- 

tors who stay in for both periods, replace w , 1 − μ0 , and 

�0 in (A.38) by w (X t ) , (1 − μ0 ) η(X t ) , and �(X t ) , respec- 

tively, where 

w (X t ) ≡ (η(X t )) 
−1 

∫ w η(X t ) 

w l 

wg(w ) dw 

η(X t ) ≡
∫ w η(X t ) 

w l 

g(w ) dw 

�(X t ) ≡
∫ w η(X t ) 

w l 

∫ w η(X t ) 

w l 

| w 1 − w 2 | g(w 1 ) g(w 2 ) dw 1 dw 2 , 

and where w η(X t ) is the implicit solution to 

(1 − μ0 ) w η

(∫ w η

w l 

g(w ) dw 

)
X t − w ηγ σ 2 

ε Q 

= (1 − μ0 ) 

(∫ w η

w l 

wg(w ) dw 

)
X t . (A.39) 

For those extrapolators who are in at time t but out at time 

t + 1 , their change in share demand is 

X t 

γ σ 2 
ε 

− w i,t ((1 − μ0 ) η(X t ) X t − γ σ 2 
ε Q ) 

(1 − μ0 ) η(X t ) γ σ 2 
ε w (X t ) 

≥ 0 (A.40) 

for w i,t ≤ w η(X t ) . Integrating (A.40) over w i,t from w l to 

w η(X t ) and then further integrating it over w i,t+1 from 

w η(X t ) to w h gives (1 − η(X t )) Q/ (1 − μ0 ) . The trading vol- 

ume generated by extrapolators who are out at time t 

but in at time t + 1 can be computed in a similar way; 

it also equals (1 − η(X t )) Q/ (1 − μ0 ) . Overall, wavering- 

induced trading volume in this case equals 

(η(X t ) X t − γ σ 2 
ε Q(1 − μ0 ) 

−1 ) �(X t ) 

η(X t ) w (X t ) γ σ 2 
ε 

+ 

2(1 − η(X t )) Q 

1 − μ0 

. 

(A.41) 

Taking the derivative of expressions (A .36) , (A .38) , and 

(A.41) gives the results in Proposition 3 . �
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