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A vast literature in psychology shows that individuals’ proba-
bilistic judgments are vulnerable to systematic errors (see Benja-
min, 2019 for a review). An important body of evidence, ranging
from base rate neglect to the disjunction fallacy, focuses on the
representativeness heuristic, the tendency to judge as likely events
that are merely representative. Representativeness captures “the
degree to which [an event] is similar in essential characteristics to
its parent population” (Kahneman & Tversky, 1972, p. 430). In a
well-known example, subjects are given a short description of an
introverted man and are asked to rank, in order of likelihood,

several different occupations (Tversky and Kahneman, 1974).
Subjects tend to state that the introverted man is more likely to be
a librarian than a salesman, even though there are vastly more
salesmen than librarians. Being an “introvert,” the reasoning goes,
makes the man more similar to a librarian than to a salesman,
which causes an inflated assessment of likelihood.

But why do subjects use similarity in making probability judg-
ments? Why should similarity sometimes cause them to think
about unlikely events, so that judgments are incorrect? Why
among introverted men do we think about the unlikely librarian
instead of the more likely salesman? Why do we exaggerate the
likelihood that an Irish person has red hair even though only 10%
of them do (Bordalo, Coffman, Gennaioli, & Shleifer, 2016)?

We address these questions starting from the idea that proba-
bility judgments are formed by selectively retrieving information
from memory, cued by the problem at hand. In our model, a
decision maker assesses the likelihood of different hypotheses in
light of data d. In line with memory research (Kahana, 2012),
recall of a hypothesis h is driven by its similarity with the data d,
and is subject to interference, so that hypotheses more similar to
the data prevent less similar ones from coming to mind. When told
someone is Irish—that is, when cued with the data d � Irish—the
decision maker selectively recalls the hair color h, in this case red,
that is most similar to this data, and overestimates its likelihood.

Our theoretical contribution is to formalize similarity between
the data-cue and the hypothesis assessed, which constitute differ-
ent yet overlapping sets. Our formulation of similarity is inspired
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by Tversky’s (1977) similarity metric, and captures the idea that
two sets are more similar when the statistical correlation among
their attributes is higher. In probabilistic judgments, this implies
that a hypothesis h is more easily recalled when it is more likely to
occur with the data d, but also when it is less likely to occur with
other data –d. Similarity-based recall is then context dependent, in
that recall about data d depends on the comparison data –d,
sometimes causing neglect of likely events. For instance, when
thinking about d � Irish, it is harder to recall the modal hair color
h � dark because it occurs very often in other nationalities –d,
which interferes with its recall in the Irish group. We refer to this
mechanism as contextual interference, since interference with hy-
pothesis h is determined by the context provided by the alternative
data –d.1

Our second contribution is to present a novel experimental
framework and a set of experimental results that provide evidence
for this mechanism. The model yields testable predictions for how
biases in probability judgments depend on the statistical associa-
tions between the data and hypotheses. To test these predictions,
we run three (main) experiments with the following basic struc-
ture. Participants observe a sequence of 25 numbers and 25 decoy
images (either shapes or words), which come in different colors.
Among numbers, 15 are blue and 10 are orange. In one treatment,
decoy images are all gray shapes so there is no color overlap with
numbers. In another treatment, decoys are all blue words, which is
also the modal color among numbers. Participants are then asked
to: (a) recall the numbers they saw, and (b) estimate the likelihood
of different colors among numbers. We think of data as d �
numbers, and the possible hypotheses, h � H, as the colors.

In Study 1 we test contextual interference: we predict that the
hypothesis h � orange is deemed more likely when the decoy data
–d are blue words than when they are gray shapes, because blue
words interfere with the recall of blue numbers. For the same
reason, fewer blue numbers should be recalled in this case. In
Study 2 we vary the strength of interference by adding orange
words to the decoy data –d. As blue words are replaced with
orange ones, retrieval of blue numbers is less interfered with and
retrieval of orange numbers is more interfered with. Our model
predicts that the assessed likelihood of hypothesis h � orange
should decrease with the number of orange words.

In Study 3 we test a key implication of our model of memory-
based probabilistic judgments: descriptions of the judgment task
that shape perceptions of similarity affect memory retrieval and
thus probability judgments, even if they are normatively irrevelant.
Specifically, we keep the color distribution of numbers and words
fixed, but allow the images to differ along font size: either small or
large. Crucially, all blue numbers are small, while all other items
(orange numbers and blue words) are large. This ensures that,
given d � numbers, the hypothesis h � orange is equivalent to the
hypothesis h � large. However, our model predicts that partici-
pants should assess the size distribution of numbers differently
from its color distribution, even though the two coincide. The
reason is that when thinking about size, contextual interference by
the decoy data penalizes large numbers (which are orange), but
when thinking about color it penalizes blue numbers (which are
small).

We find strong and robust evidence consistent with these pre-
dictions. To assess our mechanism quantitatively, we use the data
from Study 1 and from a subset of treatments in Study 2 to

calibrate the model. We then use the calibrated model to predict,
out of sample, the other results in Studies 2 and 3, as well as the
results of additional experiments we ran. This exercise confirms
that contextual interference is a quantitatively important determi-
nant of beliefs and that our model offers a good quantitative fit.

In our approach, the representativeness heuristic derives from a
basic cognitive mechanism: context-dependent, similarity-based
recall. As such, it differs from existing models of faulty probability
judgments. One strand of the literature invokes limited memory,
including sampling models (Sanborn & Chater, 2016), the Minerva
MD model (Dougherty, Gettys, & Ogden, 1999) or the exemplar
PROBabilities from EXemplars (PROBEX) model (Nilsson, Ol-
sson, & Juslin, 2005). The first two models are based on noisy
recall, which yields some biases but not the overestimation of
unlikely events. In the PROBEX model, the exemplar hypothesis
of data d does not depend on different data –d, which makes this
model unsuitable to account for how probability judgments depend
on the decoy group.2

Bhatia (2017) shows that social stereotypes, such as introverted
male librarians and red-haired Irish, can be spread through the
media and personal interactions, through selective repetition of the
more representative cases. This semantic association and repetition
of unlikely traits improves accessibility in memory that may cause
their overestimation. While this mechanism contributes to biases in
social contexts, it does not explain the source of these biases (why
does media focus on these specific traits), and why biases are
widespread even in abstract judgments such as those in our exper-
iments.

Several papers explicitly engage with the representativeness
heuristic. Tenenbaum and Griffiths (2001) formalize representa-
tiveness based on Tversky and Kahneman (1983), but do not link

1 The literature on similarity usually focuses on judgments of similarity
between two objects of the same type, say, similarity between faces
(Kahana, 2012; Tversky, 1977). In contrast, we argue that to understand
probabilistic judgments we must consider similarity between two sets: the
data and the hypothesis. An example may help illustrate the difference.
Consider the data “things that fly.” A standard approach would consider the
similarity among two specific airplanes depending on their differences
along certain characteristics. This is the approach followed also in proba-
bilistic judgment models such as PROBEX. In our approach, instead, we
ask how similar is the broad set “airplanes” to the broad set things that fly,
which also includes birds and clouds, and thus how likely is “airplane” to
be retrieved when cued with things that fly.

2 Other models of memory are motivated not by biases in probabilistic
assessments but by evidence on recall, specifically by the fan effect
(Anderson, 1974) and a large body of evidence on interference going back
to the early 20th century (Jenkins and Dallenbach, 1924; Keppel, 1968;
McGeoch, 1932; Underwood, 1957; Whitely, 1927;). Anderson (1974)
shows that concepts associated with more items are more difficult to
remember in response to any specific cue, as evidenced by slower response
times and a larger error rate in a recognition task. Similarly, in word-pair
recall tasks, associating the same cue word with different target words in
different lists reduces recall of both the pair learned first and the pair
learned later (see Kahana, 2012 for a review). Two broad approaches to
this evidence have been proposed: associative models such as the adaptive
control of thought-rational (Anderson and Reder, 1999), and inhibition
models such as inhibitory control in retrieval (Anderson and Spellman,
1995). As in most existing models within the similarity framework, inter-
ference here occurs across types associated with a cue, which in our model
corresponds to interference across different hypotheses h associated with
data d. Instead, our model and experiments highlights the importance of
contextual interference, namely the association of hypothesis h with some
other data – d.
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it to similarity-based recall and interference. Relative to this work,
we offer a theory of representativeness based on interference in
recall. More broadly, we show that our mechanism generates
beliefs that amplify true differences between distributions, a prop-
erty introduced in Gennaioli and Shleifer (2010) and Bordalo et al.
(2016) that we refer to as the “kernel of truth.”

Our recent work shows that the kernel of truth helps account for
a wide range of experimental and field evidence on beliefs in
several domains: Gennaioli and Shleifer (2010) illustrate its ex-
planatory power for several puzzles in probabilistic judgments,
such as the conjunction fallacy and base rate neglect, that were
originally attributed to representativeness (Kahneman & Tversky,
1972). Bordalo et al. (2016) show that the same principle helps
explain measured beliefs about political groups as well as social
stereotypes, while Bordalo, Coffman, Gennaioli, and Shleifer
(2019) show that its predictive power extends to beliefs about own
ability, tainted by group stereotypes. The kernel of truth also helps
account both qualitatively and quantitatively for measured expec-
tations of market participants in macroeconomics and finance
(Bordalo, Gennaioli, La Porta, Shleifer, 2019; Bordalo, Gennaioli,
Ma, & Shleifer, in press; Bordalo, Gennaioli, & Shleifer, 2018).

The results in this paper link the kernel of truth to memory
mechanisms, deepen our understanding of these biases, and shed
light on how beliefs are shaped by contextual cues. The model
does not explain several other judgment biases that have been
documented by Kahneman & Tversky (1972) and others, such as
the law of small numbers or biases due to the anchoring and the
availability heuristics. We return to these in the conclusion.3

The paper is organized as follows. The Model and Experimental
Framework section describes the model and the experimental
framework. The Representativeness and Selective Recall section
describes our first set of experiments in which is controlled by
varying the comparison group. The Study 3: Modulating Recall
Through Cues section presents the experiment in which the data-
base is the same for all participants but recall is cued along
different dimensions. The Model Calibration and Assessment sec-
tion discusses our findings and the Discussion section concludes
the article.

Model and Experimental Framework

The Model

Our model captures the idea that probability judgments, such as
assessing the probability distribution of hair color among the Irish,
are formed by selectively retrieving relevant instances from mem-
ory. Retrieval of different hypotheses (hair colors) is cued by the
data (the Irish), and is driven by their similarity. We show that
Tversky’s (1977) model of similarity among sets yields a form of
interference in recall that is critical to generating representative-
ness effects and several other predictions explored below.4

The memory database is described by a probability space with
event space � and probability measure P, which summarizes a
person’s experiences including their frequencies. Two random
variables are defined on this space: H, which we think of as the
hypotheses the Decision maker (DM) seeks to assess, and D,
which we think of as data. The task of the decision maker is to
assess the probability of hypothesis h � H given data d � D. In our

running example, � is the universe of people, D � nationalities
and H � {dark, light, red} are different hair colors.

A Bayesian retrieves all possible hypotheses h given d and
computes the true conditional probability P(h | d) using the mea-
sure P.5 Relative to this benchmark, in our model the data d cues
retrieval of more similar hypotheses from memory, facilitating
recall of certain hypotheses relative to others, and causing their
probability in d to be inflated.

To formalize the similarity between data d and a hypothesis h
we rely on Tversky’s (1977) similarity metric, which applies to
objects characterized as collections of features. Given two objects
a and b with sets of features A and B, respectively, the similarity
of a to b is defined as:

S(a, b) � �f(A � B) � �f(A ⁄ B) � �f(B ⁄ A), (1)

where A � B is the subset of features that are common to both
objects, A/B and B/A are the features that are present in one object
but not in the other, f(.) is an increasing function, and �, �, � are
nonnegative coefficients. According to Equation 1, the similarity
between a and b is ceteris paribus higher when they have more
features in common, and when each set has fewer distinct features
not shared with the other.

Equation 1 can be applied to the context of probabilistic assess-
ments by noting that data d and each possible hypothesis h are also
characterized by features, namely the different possible values of
the random variables under consideration. For instance, d � Irish
is the set of people who are Irish but can have different hair color
(red, light, dark), while h � red is the set of people who have red
hair and may have different nationalities (Irish, Spanish . . .).

In this interpretation of Equation 1, the similarity between the
set of red haired people and the set of Irish people depends on the
size of three subsets. Similarity S(d, h) between d and h increases
in the size P(d, h) of the set of people who are both Irish and have

3 Growing literatures in both neuroscience and economics explore the
role of memory for valuation and decision making, particularly the role of
cues in selectively retrieving information. Bornstein and Norman (2017)
find that choices among risky alternatives can be altered by showing
subjects images that co-occurred with payoffs in the past, even if these
images are totally uninformative. The authors argue that the subjects’
behavior is consistent with a cued recall mechanism: whether the subjects
respond to the cue is commensurate with the reinstatement in the brain’s
visual areas of patterns associated with the cue. Enke, Schwerter, and
Zimmermann (2019) give experimental subjects news about a hypothetical
asset, associating certain images with good news and others with bad news.
When assessing the asset’s value, subjects overreact to good news associ-
ated with images that co-occurred with past good news. This result is in
line with the model of memory-based choice of Bordalo, Gennaioli, and
Shleifer (2020) in which context (an image) cues recall of past experiences
associated with it. Several papers document that individuals’ decisions are
shaped by recall of past experiences: assessments of expected inflation are
based on goods bought frequently (Cavallo, Cruces, & Perez-Truglia,
2017), and willingness to participate in the stock market depends on own
past returns (Malmendier and Nagel, 2011; Wachter and Kahana, 2019).

4 Tversky’s (1977) model of similarity has also been used to study the
problem of categorization, which is distinct from what we consider here.
Kemp, Bernstein, and Tenenbaum (2005) and Gershman (2017) show that
testing whether two objects have the same data generating process reduces,
under some assumptions, to a measure of non-Euclidean similarity similar
to Tversky’s model.

5 Formally, the decision maker computes the conditional probability by
retrieving all elementary events � consistent with each hypothesis h and
data d, and by using the probability measure P to compute: P�H �

h � D � d� � ���	:H����h,D����ddP��� ⁄���	:D����ddP���.
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red hair. But similarity between d and h decreases in the size
P(d, �h) of the set of people who are Irish but do not have red hair,
as well as in the size P(�d, h) of the set of people who have red
hair but are not Irish. Formally, the similarity between hypothesis
h and data d is given by:

S(d, h) � �f(P(d, h)) � �f(P(d, �h)) � �f(P(�d, h)). (2)

Similarity between hypothesis h and data d increases in their
correlation: the more h and d occur together. In the previous
example, for a given size of the red-haired Irish population P(d, h),
similarity between Irish and red hair is maximized when all Irish
are red haired, P(d, �h) � 0, and when red hair occurs only among
the Irish, P(�d, h) � 0.

Similarity is linked to retrieval through Luce’s rule. That is, the
probability of recalling h when cued with d is given by:

P̃(h | d) � eS(d,h)

�
h��H

eS(d,h�)
. (3)

When cued with d, a hypothesis h more similar to d is more
easily retrieved. Retrieval is normalized, so that recall probabilities
add to one. Normalization captures a form of interference whereby
recall of more similar items inhibits that of less similar ones. The
decision maker estimates the probability of h in d by measuring the
frequency with which h comes to mind among all retrieved d
members. Through the law of large numbers, Equation 3 also
yields the probability that subjects on average attach to hypothesis
h given data d.

According to Equation 3, recall of h, and thus its assessed
probability, follow the well- known law of frequency. The more
people are both Irish and have red hair (higher P(d, h)), the more
likely is d � Irish to cue retrieval of h � red hair. This effect is
common to most memory-based models of probability assessments
(Anderson & Reder, 1999; Dougherty et al., 1999; Kahana, 2012).

The law of frequency is however subject to two kinds of
interference. The first is interference across different hypotheses.
A person who has seen many dark haired Irish (high P(d, �h)) is
less likely to recall red hair. This is due to both the � term in the
similarity function (Equation 2) and the normalization of recall in
Luce’s rule (Equation 3). Many memory models, including Min-
erva DM and sampling, display this form of interference, which
tends to produce underestimation of unlikely traits.

The second, and critical, form of interference occurs across
different data. For a decision maker who has seen few non-Irish
people with red hair (which implies a low P(–d, h)), Irish is more
associated with red hair, and retrieval of red haired Irish is in-
creased. Conversely, when thinking about dark hair among d �
Irish, Spaniards or Italians may come to mind because this hair
color is much more common among these other nationalities –d.
This interferes with recalling dark-haired Irish. This form of in-
terference flows back from hypothesis h to different data –d.

This second mechanism only operates when � 	 0, and implies
that distinctive traits are overestimated, even if they are unlikely.
We call this the kernel of truth property. It leads subjects to
overestimate a hypothesis h that is more associated with the
current data d relative to other data –d, even though the latter
association is normatively irrelevant. Our experiment tests this
prediction precisely by varying the normatively irrelevant “decoy”

distribution P(�d, h) while holding the relevant probabilities P(d,
h) and P(d, �h) constant.6

Consider a convenient formulation in which f(x) � ln (c 
 x),
where c is a non-negative constant, and � � 0.7 The assessed
probability P̃(h | d) then becomes:

P̃(h | d) 
 [c � P(h | d)P(d)]�

[c � P(h | �d)P(�d)]� . (4)

Parameter � captures the strength of frequency-based recall.
When � is high, likely hypotheses are oversampled from memory
and their probability is inflated. For low �, the reverse holds:
sampling depends less on P(h | d), so that low likelihood hypoth-
eses are oversampled across the board.

Parameter � instead captures contextual interference, or the
kernel of truth. If � is high, when cued by data d we oversample
hypotheses that are unlikely to occur with other data, that is, with
low P(h | �d). The decision maker then inflates the probability of
such distinctive hypotheses. The parameter c pins down a baseline
probability of recalling a hypothesis, regardless of its frequency,
which caps distortions when a hypothesis does not occur at all
given the decoy data –d.

Equation 4 flexibly nests different kinds of judgments, both
rational and biased. When � � 1 and c � � � 0, the model
collapses to Bayesian inference. When instead � 	 1, and c � � �
0 the model generates a form of overreaction to data, in the sense
of overestimation of hypotheses that are more likely, given d,
reminiscent of overconfidence (Moore & Healy, 2008). Con-
versely, when � � 1 the model generates a form of underreaction
to data. In the extreme case of � � 0, all hypotheses are recalled
with the same probability, so that unlikely ones are mechanically
oversampled.

When � � 0, the model fails to yield context-dependent beliefs
and overestimation of distinctive hypotheses. This occurs only
when � 	 0, so that assessments about d depend on the decoy
distribution –d. This mechanism generates representativeness ef-
fects. In fact, if � � 1 
 � and c � 0, Equation 4 becomes:

P̃(h | d) 
 P(h | d)� P(h | d)
P(h | �d)��

. (5)

which exactly captures Tversky and Kahneman’s (1983) definition
of representativeness: “an attribute is representative of a class if it
is very diagnostic; that is, the relative frequency of this attribute is
much higher in that class than in a relevant reference class” (p.
296). In this case, our model yields the Bordalo et al. (2016)
definition of representativeness and diagnostic expectations (Bor-
dalo et al., 2018), which directly follow Kahneman and Tversky’s
definition, as special cases of similarity based recall.

Our experiments test the predictions that follow from � 	 0 by
varying the decoy data –d across treatments. Our experiments then

6 Another difference from existing memory models is that in our setup
encoding is perfect, not noisy as in the Minerva-DM of Dougherty, Gettys,
Ogden (1999). Noisy encoding could be added to our model, but we stress
that interference across groups relies on fairly accurate memories, in the
sense that the co-occurrence of types and groups is correctly recorded. This
is critical to obtain belief distortions that depend on the true features of the
data.

7 In our two-hypothesis setting, both � and � modulate the extent to
which similarity S(d, h) increases in the likelihood P(d, h), so � is
redundant.
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allow us to quantify the parameters of the model, and hence to
assess Equation 4 quantitatively.

Experimental Design

We now describe our main experiments, and the model’s pre-
dictions for each of them.

Study 1. Participants are shown a sequence of 50 abstract
images that vary along two dimensions, content and color. They
are randomly assigned to one of two treatments: a condition in
which they see 10 orange numbers, 15 blue numbers, and 25 gray
shapes (gray treatment); or a condition in which they see the same
10 orange numbers and 15 blue numbers, but also 25 blue words
(the blue treatment). The memory databases are described below.

After observing the sequence of 50 images, participants are
asked several questions. On the first screen, they are asked:

Q1: “An image was randomly drawn from the images that
were just shown to you. The chosen image showed a number.
What is the likely color of the chosen image?”

On the following screen, participants are given the same sce-
nario but then asked:

Q2: “What is the probability the number is orange?”

Finally, on the next screen, participants are asked:

Q3: “How many orange numbers were shown to you?”, and

Q4: “‘How many blue numbers were shown to you?”

In both treatments, subjects assess the distribution of the colors
of the numbers, but the decoy distribution varies across treatments.
All our experiments build on this basic design, which extends the
preliminary experiments in Bordalo et al. (2016).

In Q1 and Q2 subjects are cued with the data d � number and
are asked to assess the probability of different colors. In Q3 and Q4
they are asked to recall how many orange and blue numbers were
shown to them. Our model implies that assessments of likelihood
and recall go hand in hand, and are shaped by the critical contex-
tual interference parameter � in Equation 4. Formally, Appendix A
in the online supplemental materials shows that Equation 3 yields
the following predictions.

Prediction 1. If � 	 0, the blue treatment reduces the assessed
likelihood that the randomly drawn number is blue in Q1 and Q2
relative to the gray treatment. If � � 0 there is no treatment effect.

Prediction 2. If � 	 0, the blue treatment reduces the share of
blue numbers recalled in Q3 and Q4 relative to the gray treatment.
There is also a positive correlation at the individual level between
the share of blue numbers recalled from Q3 and Q4 and the
assessed likelihood of the number being blue in Q1 and Q2. If � �
0 there is no treatment effect.

If � 	 0, in the blue treatment the retrieval of blue words
interferes with the retrieval of blue numbers from the data d �
number. Thus, blue numbers are undersampled relative to the gray
treatment, in which interference in the retrieval of numbers of any
color is not at work. As a result, the probability of the less likely
hypothesis—that a number is orange—is overestimated in the blue
treatment. If instead � � 0, the decoy distribution is irrelevant so
there is no treatment effect.

Study 2. In this experiment, we manipulate the strength of
contextual interference by creating five new variants of the decoy
data (the distribution of numbers is always kept the same). We
denote by bluek a treatment in which we replace k blue words with
orange words. We allow for six such treatments varying the
frequency of orange words k � {0, 1, 3, 6, 10, 22} (where k � 0
coincides with the blue treatment in Study 1). The model generates
the following prediction.

Prediction 3. If � 	 0, the assessed probability that a random
number is orange in Q1 and Q2 and the share of recalled orange
numbers in Q3 and Q4 decrease with the number of orange words
k in the decoy distribution. If � � 0 there is no treatment effect.

Prediction 3 is a more stringent test of the kernel of truth.
According to Equation 4, the probability of retrieving orange,
given d � number and thus the assessed likelihood of orange
numbers both decrease in the share of orange words, because
orange words interfere with the recall of orange numbers.

Study 3. In our final experiment, we test a key implication of
the model: features of the task that shape perceptions of similarity
affect memory retrieval and thus probability judgments, even if
they are normatively irrevelant.

To explore this mechanism, we build on Study 1 where images
are characterized by content and color. We now let images vary
also in a third attribute, specifically font size. The database for all
participants is now: all orange numbers are large and all blue
numbers are small, while all words are blue and large.

We then run two treatments that vary only in the questions
asked. In the color treatment, we ask “What is the likely color of
a randomly drawn number?” (Q1) and “What is the probability of
a randomly drawn number being orange?” (Q2). In the size treat-
ment, we instead ask “What is the likely font size of a randomly
drawn number?” and “What is the probability of a randomly drawn
number being large?”

The point of this experiment is that the similarity of the data d �
number to a given color, say orange, is different from the similarity
of the same data d to the corresponding size, namely large. This
implies that asking subjects to assess color will produce different
judgments than asking them to assess size, even though the two
tasks are normatively identical.8 The model yields the following
prediction.

Prediction 4. If � 	 0, the share of recalled orange/large
numbers and the assessment of the probability that a random
number is orange/large is higher in the color treatment than in the
size treatment. If � � 0 there is no treatment effect.

In the color treatment, contextual interference inhibits the recall
of blue numbers due to the presence of blue words. In the size
treatment, contextual interference inhibits the recall of large num-

8 Because in this experiment the distribution of images seen during the
viewing stage is identical across treatments, there is no reason for a
participant in one treatment to attend to or encode images differently from
a participant in another treatment. This helps rule out the possibility that
differential attention during encoding is driving our results. Although a
precise distinction between selective encoding and selective recall is be-
yond the scope of this paper, it is useful to distinguish a process in which
the instability of probabilistic assessments arises from the selectivity of
retrieval from the memory database, rather than from a permanent distor-
tion of the memory database itself, because of inattention at the encoding
stage. In the current experiment, the first mechanism seems to be driving
the results.
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bers due to the presence of large words. But because large numbers
are orange, the size treatment inhibits the recall of orange numbers
and their assessed likelihood relative to the color treatment. This
effect, of course, only arises if � 	 0.

Discussion

Our model makes three distinctive predictions relative to the
existing models of biased probabilistic assessments, and our ex-
perimental design allows us to test them.

First, our approach is based on selective recall. We measure
recall directly in our experiment in Q3 and Q4. Some alternative
approaches do not rely on basic cognitive functions, such as
memory. Rather, they assume specific distortions without explor-
ing their cognitive basis. For instance some papers assume that
subjects compute P(h | d) using P(d | h) (Gigerenzer & Hoffrage,
1995; Kahneman & Frederick, 2002; Koehler, White, & Grondin,
2003; Villejoubert & Mandel, 2002; for a review, see Nilsson et
al., 2005), or that representative types provide strong confirmation
of hypotheses (Tentori, Crupi, & Russo, 2013). These distortions
are tailored to specific inference problems, and lead to inaccurate
predictions in many settings, including in our experiment.9 Buse-
meyer, Pothos, Franco, and Trueblood (2011) offer a quantum
probability model in which conjunction and disjunction fallacies
can arise as an initial belief state is sequentially projected into
different events. Our model offers a more primitive mechanism, in
which beliefs are constructed by recalling exemplars from mem-
ory.

Second, relative to other models emphasizing memory limita-
tions, our approach makes the distinctive kernel of truth prediction,
whereby recall and assessments are context dependent and exag-
gerate true correlations in the data (e.g., the association between
the cue “number” and the type “orange”). This prediction is absent
from other memory-based models. In sampling models (Sanborn &
Chater, 2016), subjects randomly sample the memory database, so
the decoy distribution should not affect beliefs because it does not
distort the sampling of numbers. Because in the Minerva DM
model (Dougherty et al., 1999) retrieval is noisy, it generates
imprecision but not systematic distortions depending on the decoy
distribution.10 The same is true of exemplar models like PROBEX
(Juslin & Persson, 2002). In these models, subjects cued by num-
ber retrieve exemplars of different colors on the basis of a Euclid-
ean similarity function that does not depend on the decoy distri-
bution. As a consequence, these models cannot deliver Predictions
1, 3, and 4.

Evidence in line with Prediction 4 would offer particularly striking
support to the role of contextual interference, which gives rise to the
kernel of truth. Since in Study 3 size and color are perfectly correlated
within the group of numbers, the cue should play no role for Bayesian
subjects, nor should it play a role in sampling models (where numbers
are correctly represented on average), in exemplar models (where
large numbers and orange numbers are equally similar to the average
number), or in prototype models (where the prototype is the most
likely number, which is always blue).

Finally, our approach to similarity is based on experienced
statistical associations between items in memory. This occurs
without the need of biases in social information transmission that
emphasize stereotypical traits such as in Bhatia’s (2017) model of

semantic associations. Our experiment rules out the role of such
semantic associations by focusing on abstract objects.

Representativeness and Selective Recall

Study 1: Baseline Experiment

In Study 1 we compare probabilistic assessments in the blue
treatment (10 orange numbers, 15 blue numbers, 25 blue words)
and the gray treatment (10 orange numbers, 15 blue numbers, 25
gray shapes), as in Table 1.11 According to Prediction 1, retrieval
of blue numbers is interfered with in the blue treatment so that
participants inflate the frequency of orange numbers relative to the
gray treatment, P̃�o � n�blue � P̃�o � n�gray. Mapping Prediction 1 to
our output measures, we test whether participants in the blue
treatment: (a) are more likely to choose orange as the likely color,
(b) assign a higher probability to orange numbers, and (c) report a
higher share of orange numbers compared to participants in the
gray treatment, computed from answers to Q3 and Q4.

The results are summarized in Figure 1 and Table 2 and show
strong support for Prediction 1. Column 1 in Table 2 reports an
ordinary least squares (OLS) regression of a response dummy (1 if
“orange is likely”) on a treatment dummy (1 if blue) and a location
dummy (1 if Milan), that amounts to comparing the average share of
participants who said orange is likely in the gray treatment versus the
blue treatment. As shown in Figure 1, that share increases 21.1pp
(percentage points) from the gray treatment to the blue treatment

9 One intuition behind these models is that the inverse conditional
P(number | orange) is more accessible to decision makers than the target
one P(orange | number) (Kahneman and Frederick, 2002). This might be
the case when experimental subjects are given the former and are asked to
estimate the latter, as in inference problems. This is less so in the general
case where subjects retrieve a distribution from memory, where this ap-
proach leads to problems. For example, in the relative likelihood model of
Villejoubert and Mandel (2002) the assessed probability of orange numbers
is over 50% as long as P(number | orange) 	 P(number | blue), even as the
true share P(orange | number) goes to zero. A smoother formulation of the
inverse conditional is a mechanical neglect of base rates, whereby the odds
ratio P(orange | number)/P(blue | number) is assessed as P(number | orange)/
P(n | b)[P(orange)/P(blue)]�, with � � 1 (Bayes’ rule corresponds to � � 1).
This formulation predicts that if a prior is sufficiently strong, say
P(orange | number) is high, then a signal that supports the prior (i.e. that the
number is in fact orange) reduces the posterior probability assigned to that
type. While our experiments do not cover this particular point, existing
evidence generally indicates that individuals update their beliefs in the direc-
tion of their signals.

10 Dougherty et al. (1999) argue that their model can also account for some
manifestations of the representativeness heuristic. However, these effects are
obtained by changing the model’s formulation in ways that are unrelated to its
core assumptions its core assumptions (namely, the authors assume that, when
cued with data d and asked to assess hypothesis h, subjects spontaneously
self-cue the hypothesis h and effectively assess p(d | h), because the latter is
assumed to be more accessible). Our model yields representativeness as a
special case of a general process.

11 This study was conducted in the laboratory in spring of 2018, in two
waves with N � 427 (University of Cologne) and N � 363 (Bocconi
University), respectively. Here we present the aggregated results. We
report the procedural details and disaggregated results (Tables B.2 and B.3)
in Appendix B.1 in the online supplemental materials.
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(31.1% to 52.2%, significant at 1% level).12 Column 2 shows the
median probability of orange numbers is significantly higher in the
blue treatment than in the gray treatment (significant at the 1% level).

Columns 3 and 4 show how the median quantity of recalled orange
and blue numbers depends on the treatment.13 Responses in the gray
treatment are quite accurate, as indicated by the constant term. In the
treatment, participants retrieve fewer blue numbers, consistent with
interference from blue words.

We next compare how data on recall (Q3 and Q4) matches assess-
ments of likelihood (Q1 and Q2). First, we report in Column 5 the
results of an OLS regression of a response dummy that takes value 1
if the participant reported more orange numbers in Q3 than blue
numbers in Q4, which is an alternative measure of each participant’s
belief about the likely color. Consistent with Column 1, there is a
significant increase in the share of participants who recalled more
orange than blue numbers in the blue treatment (25.8% vs. 42.4%).
The treatment dummy coefficients are close in Columns 1 and 5. In
fact, answers to Q1, Q3 and Q4 are consistent (in the sense of
answering “orange” in Q1 if and only if more orange numbers are
recalled in Q3 than blue numbers in Q4) for 87.3% of participants.

Finally, we compute the ratio of orange numbers to total numbers
recalled, which is an alternative measure of the (recalled) probability
of orange numbers. Column 6 shows that, as predicted by the model,
participants recalled on average a significantly higher share of orange
numbers in the blue treatment (50% vs. 44.4%). Again, the coeffi-
cients are close in Columns 2 and 6. In fact, the stated probability of
orange numbers explains about 75% of the variability in the share of
recalled orange numbers across individuals (see Column 1 of Table
B.11 in Appendix B.3.1 in the online supplemental materials).

The results point to systematic distortions in the retrieval of infor-
mation, leading to distorted beliefs in the direction predicted by the
model of representativeness in Equation 3. The treatment effect rep-
resents a jump of over 50% in the frequency of assessing orange as the
likely color (Columns 1 and 5), and a 13% to 16% increase in
the estimate of the probability of a randomly drawn number being
orange (Columns 2 and 6), so it is large both in absolute and in relative
terms.14 This suggests that interference can account for why unlikely
traits are accessible after specific cues, offering an explanation for
some effects attributed to the representativeness heuristic (Kahneman
& Tversky, 1972). In particular, such distortions predictably arise in
an environment of purely abstract objects with no preexisting associ-
ations in memory.15,16

Study 2: Varying Relative Likelihood

We next test whether, in line with Prediction 3, probabilistic as-
sessments about the color distribution of numbers change as the

frequency of orange words increases and interference for recall of
orange numbers intensifies. As before, the target group is 25 numbers
(10 orange and 15 blue). For the decoy group, we create six variants
of the words distribution in the blue treatment, denoted bluek, which
are characterized by replacing k blue words with orange words. We
conducted Study 2 on MTurk with N � 1, 738 and k � 0, 1, 3, 6, 10,
22 and in the laboratory with N � 254 and k � 1, 6. Here we present
the disaggregated results and discuss procedural details in Appendix
B.2 in the online supplemental materials.

12 Nonlinear logit regressions yield similar results, Table B.1 in Appen-
dix B.1 in the online supplemental materials.

13 We report median, rather than mean, responses to the amount of
numbers recalled because they are by construction less noisy. However,
similar results hold for means, see Table B.1 in Appendix B.1 in the online
supplemental materials.

14 The same experiment was also rerun in the lab and on MTurk without
including question Q2 on the probability that a randomly drawn number is
orange. The results are strikingly similar: the treatment effect represents a jump
in the frequency of assessing orange as the likely color from 29% to 58% (lab)
and 41% to 54% (MTurk), and an increase in the estimate of the share of
orange numbers recalled from 45% to 48% (lab) and 47% to 50% (MTurk).
See Tables B.4, B.5, B.6, and B.7 in Appendix B.1.1 in the online supple-
mental materials.

15 One may ask whether the particular colors chosen impact our results.
Research in psychology starting with Goldstein (1942) and Stone and English
(1998) proposes that warmer colors, such as red and yellow, may induce
outward focusing, while cooler colors may induce inward focusing (reserva-
tion), in part due to their different wavelengths. Elliot, Maier, Moller, Fried-
man, and Meinhardt (2007) propose a more general framework in which the
impact of specific colors varies by context and is a function of learned
associations. It is unlikely that any pre-existing association between orange and
numbers drives our results, particularly the across-treatment differences in the
experiments where orange is not representative of numbers (see Studies 2 and
3). We also ran a separate experiment, reported in Appendix C.3 in the online
supplemental materials, that replaced color with font size as the types (i.e. the
random variable T), and the results are unchanged (see Table C.5).

16 A clear feature of the data is that the frequency of the “orange is likely”
mistake is significant, around 35%, even in the gray treatments where our
model predicts low distortions from representativeness. As we show when
calibrating the model in the Model Calibration and Assessment section, this
distortion pins down the model parameter �, which creates probabilistic
distortions even in the absence of contextual interference from a decoy group.

Table 1
Databases of Study 1

Hypotheses

Data Orange Blue Gray

Image database in the gray treatment
Numbers 10 15 0
Decoy (shapes) 0 0 25

Image database in the blue treatment
Numbers 10 15 0
Decoy (words) 0 25 0
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Figure 1. Share of participants who believe that the likely color of a
randomly drawn number is orange for the blue and gray treatments of
Study 1. See the online article for the color version of this figure.
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As Figure 2 shows, the results are consistent with our predictions.
For MTurk experiments (top panel), the share of participants who
answered “orange is likely” decreases from 54.1% from the baseline
treatment with k � 0% to 31% in the variant with most orange words,
k � 22. The figure suggests a decline between k � 0 and k 	 0 that
becomes particularly strong from k � 10 to k � 22. The decline is
statistically significant at the 5% level between k � 0 and k  6 and
at the 1% level between k � 10 and k � 22.17

Similar results hold in laboratory experiments, shown on the
lower panel. Increasing the number of orange words from one to
six reduces the share of participants stating that “orange is likely”
by 13.4pp (significant at the 5% level). This again points to a
general trend, as can be seen by comparing these findings with the
results from Study 1.18

Table 3 summarizes the pattern described above for the experi-
ments run in the lab. Column 1 reports an OLS regression of a
response dummy (1 if “orange is likely”) on the actual amount of
orange words participants are exposed to. The significant negative
coefficient implies that the share of participants who believed that
“orange is likely” decreases by 2.7pp per orange word added. Simi-
larly, the median assessed likelihood of orange numbers drop by 2pp
per orange word added (Column 2). Turning to data on recall, the
share of participants who recalled seeing more orange numbers as
well as the share of orange to total numbers recalled declines in the
amount of orange words, Column 5 and Column 6, respectively.19

Again, results obtained on MTurk are quantitatively very sim-
ilar. The share of participants who say “orange is likely” drops by
1pp per orange word added. Turning to data on recall, as orange
words are added, participants recall more blue numbers and are
less likely to recall seeing more orange numbers (see Table B.10
in Appendix B.2 in the online supplemental materials).

Study 2 provides evidence that the relative frequency of types
shapes the magnitude of belief distortions. In line with Prediction
3, as the number of orange words increases, participants are less
likely to recall a randomly drawn number as orange, despite the
fact that the number of orange numbers is held constant across
these variants.

Studies 1 and 2 include waves of our experiment in the lab with
1,044 participants (further robustness runs described in Appendix
B.1.1 in the online supplemental materials raise these figures to 8
waves of our experiment and a total of 4,706 participants). The

evidence supports our predictions consistently across all waves of
our experiment.

Study 3: Modulating Recall Through Cues

In the final experiment, we attempt to better isolate the role of
similarity-based recall in driving our results by testing Prediction
4: cueing assessments of a target group along different dimensions
can trigger different patterns of interference across groups and
generate different probabilistic assessments.

We implement the distribution of images described in Table 4,
where all blue numbers are small while all other items (orange
numbers and blue words) are large. According to Prediction 4,
assessment of a number’s size entails interference with recall of
large (and orange) numbers, while assessment of a number’s color
entails as before interference with recall of blue (and small)
numbers. As a result, the estimated likelihood of large, orange
numbers is larger in the second case.

The results support this prediction. Participants assess “orange is
likely” in the color cue treatment significantly more often than
“large is likely” in the size cue treatment (40% vs. 17%, significant

17 Increasing the number of orange words from 0 to 1, 3, 6, 10, and 22
reduces the share of MTurk participants stating that “orange is likely” by
5.3pp, 7.4pp, 7.0pp, 8.4pp, and 23.1pp, respectively. While the difference
between 0 orange words and 1 orange words is not statistically significant, the
remaining ones are at least marginally significant when compared to the
bluek�0 treatment, with respective OLS p values of .070, .085, .037,
and �.001. Pair-wise differences in the assessed probability that a randomly
selected number is more likely to be orange comparing across only those
treatments with 1, 3, 6, and 10 orange words are not large and not statistically
significant from zero. However, the assessed probability that a random number
is more likely to be orange is greater in the treatments with 1, 3, 6, or 10 orange
words than in the treatment with 22 orange words. Pair-wise tests yield OLS
p values below .001 in each of these cases.

18 Study 1’s blue treatment is equivalent to k � 0. The gray treatment is not
directly comparable, but to the extent that no number color is particularly
representative in that treatment it is similar to k � 10.

19 Table 3 shows no effect on the median number of recalled blue or orange
numbers from the addition of five orange words. Some evidence suggests that
this is due to power limitation of this exercise: (a) there is a significant negative
effect on the mean (see Appendix B.2 in the online supplemental materials),
and (b) there is also a significant effect in the median in the MTurk experiment,
where a larger range of orange words was introduced.

Table 2
Regression Estimates of Treatment Effects in Study 1 (Lab)

Independent
variables

OLS: Y � 1
if “orange is

more likely” (1)

0.5-Q-Reg:
Y � Probability that

a randomly-drawn
number is orange (2)

0.5-Q-Reg:
Y � Orange numbers

recalled (3)

0.5-Q-Reg:
Y � Blue numbers

recalled (4)

OLS: Y � 1 if
more orange

numbers recalled (5)

0.5-Q-Reg:
Y � Share of
orange to total

numbers recalled (6)

1 if blue .2111��� (.0342) .07��� (.0137) 0 (.6078) �2��� (.5878) .1667��� (.0329) .0556��� (.0124)
Location dummy yes yes yes yes yes yes
Constant .3113��� (.0284) .43��� (.0144) 12��� (.5046) 15��� (.4880) .2576��� (.0273) .4444��� (.0114)
Observations 790 790 790 790 790 790
Adj./Ps. R2 0.04 0.03 0.02 0.01 0.03 0.02

Note. This table presents estimates of the treatment effect on several outcome measures relating to our model predictions in Study 1. Columns 1 and 5
present ordinary least squares (OLS) regression of response dummies (1 if “orange is likely” in Column 1 and 1 if “recalled more orange than blue numbers”
in Column 5) on a treatment dummy (1 if blue). Columns 2, 3, 4, and 6 present 0.5-quantile regressions of subjects’ stated probability that a random number
is orange, number of recalled orange numbers, number of recalled blue numbers and share of recalled orange numbers, respectively, on the treatment
dummy. In all regressions, a location dummy is included. Standard errors are in parentheses.
��� p � .01.
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at the 1% level). Column 1 of Table 5 shows the result of
regressing a question-response dummy (equal 1 if “orange is
likely” in the color cue or “large is likely” in the size cue) on a
treatment dummy (equal 1 if color cue, equal 0 if size cue), while
controlling for when the treatments were conducted.

As in Tables 2 and 3, we use participants’ estimates of how
many images of each type they saw to address more directly their
retrieval of numbers. First, we compare the share of participants
who recalled seeing more orange than blue numbers in the color
cue with the share of participants who recalled seeing more large
than small numbers in the size cue. We find, analogously to our
main result, that a significantly greater share of participants re-
called more orange than blue numbers than more large than small
numbers; see Column 2 of Table 5. Second, we check the average
share of recalled large orange numbers and find, consistent with
the account of interference-based distorted recall, that, on average,
participants recalled a significantly higher share of large orange
numbers under the color cue (see Column 3 of Table 5).

Finally, we examine the results from direct probability estimates
in Q2. When asked to predict the probability that a randomly

drawn number is orange/large, participants on average state a
significantly higher probability that a random number is orange in
the color cue treatment than that a random number is large in the
size cue treatment (see Column 2 of Table 5). These findings
suggest that participants’ retrieval of blue and orange numbers
from their image database was differentially distorted depending
on whether color or font size was cued in the question stage.

Model Calibration and Assessment

The previous sections document that elicited beliefs about a
given data, numbers, are shaped by its comparison to a reference
data, in line with the predictions of our model. In fact, there is
significant and systematic variation across treatments in subjects’
average estimation of the likelihood P̃(o | n), ranging from 0.36 to
0.499. To assess how well the model can explain the observed
variation in beliefs, and to quantitatively estimate the role of
interference in the model, we conduct a calibration exercise.

Beliefs about numbers can be summarized in the elicited odds
P̃(o | n) /P̃(b | n) of orange to blue numbers. Our calibration is
targeted to match this moment as it varies across treatments.
Starting from Equation 3, we obtain:

P̃(o | n)
P̃(b | n)

� eS(n,o)�S(n,b).

Assuming, as in the Model and Experimental Framework sec-
tion, that � � 0 and using the same logarithmic functional form
f(x) � ln(c 
 x), the predicted assessed odds of orange numbers
are given by:

P̃(o | n)
P̃(b | n)

�
(c � P(o, n))��� · � c � P(o, n)

c � P(o, �d)�
�

(c � P(b, n))��� · � c � P(b, n)
c � P(b, �d)�

� (6)

where P(o, n) and P(b, n) are the frequency of orange and blue
numbers among all images shown to participants, while P(o, �d),
P(b, �d) are the frequency of orange and blue decoy images
among all images shown to participants.

We next pin down the three parameters �, �, and c by matching
the odds (Equation 6) with the odds computed from the average
assessment across subjects of the likelihood of orange numbers.
We match three predicted odds to their empirical counterparts in
three different conditions. Table 6 shows the treatments used for
calibration and the corresponding empirical target odds. The first
two moments come from the blue and gray conditions of our
baseline Study 1 in the lab. The third moment comes from Study
2, and in particular from the treatment with one orange word (k �
1). Across these three conditions, in Equation 6 the target distri-
bution of numbers is unchanged, while the decoy distribution
changes.20

We invert the resulting system of three equations (Equation 6)
using standard numerical methods. The results are in Table 7. Our

20 The experimental data includes six moments on probabilistic assess-
ments of the probability of orange numbers, which can be mapped directly
to the model. The three chosen target moments come from the three most
basic experiments. We then use the remaining moments for out-of-sample
tests of model performance.

Figure 2. Share of participants who believe that the color of a randomly
drawn number is most likely orange for the blue treatments with k � 0, 1,
3, 6, 10, 22. (a) Conducted with MTurk. (b) Conducted in laboratory. See
the online article for the color version of this figure.
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numerical solution achieves a good fit of the empirical odds (least
squared error of 8.7  10�4) which suggests that the estimates are
very close to the exact solution of the system. Given the moments
in Table 6, parameter � is tightly estimated, as shown in Figure 3.
This indicates an important role for interference across groups in
shaping beliefs: to get a sense of magnitudes, the model suggests
that replacing gray shapes with blue words generates a 7pp in-
crease in the perceived probability of orange numbers, from 0.43
to 0.50. To assess more formally the significance of the departure
from the null � � 0, we reestimate � by matching the target
moments in Table 6 computed from a large number of boot-
strapped samples with replacement. We find that � is positive and
statistically significant at the 5% level.21

Using these estimates, we next examine the model’s perfor-
mance out of sample in: (a) assessments of likelihood in treatments
not targeted by the calibration; (b) assessments of modal color
across Studies 1, 2, and 3; (c) recall of orange and blue numbers
across Studies 1, 2, and 3; and (d) recall of orange and blue
numbers in supplementary experiments where the number of de-
coys is varied.

We start by computing the model’s predictions for assessments
P̃(o | n) in the remaining experiments where we elicited likelihood
assessments, namely in Lab Study 2 (treatment with 6 orange
words, k � 6) and in lab Study 3, both the size and color
treatments. Figure 4 shows the results (blue dots), as well as the fit
with the target moments (blue circles). To facilitate the assessment
of model performance, Figure 4 also shows the predictions of the
calibrated model where interference is shut down (� � 0, dotted
line) as well as the 45° line that would obtain if the model would
perfectly match the evidence. The calibrated model reproduces the
large observed variation in the assessed probability of orange
numbers, and matches fairly well the out of sample moments, in
particular the impact of the size cue which leads to a large drop in
P̃(o | n) to a value much lower than in the target treatments. The

calibrated model thus significantly outperforms models that lack
contextual interference, � � 0, which would predict no variation in
P̃(o | n) (the horizontal dotted line).

In Appendix D in the online supplemental materials, we quan-
tify the significance of these results against a benchmark in which
participants form beliefs with mean-zero noise. For each experi-
ment, we proxy the noise distribution with the empirical de-
meaned distribution of answers. Using bootstrapping methods, we
place confidence intervals on the Bayesian benchmark (P(o | n) �
0.4) as well as on our observations, showing that the latter depart
significantly from the former. We also place confidence intervals
on the model predictions. Overall, this analysis strengthens the
case for contextual interference, � 	 0, in driving the results.

We next consider subjects’ assessments of which color is modal,
which are closely related to likelihood assessments. In every
experiment, some subjects say orange and some say blue, reflect-
ing disagreement that is also observed in their assessments of
likelihood. To assess model performance in this context, it is not
sufficient to use the average assessed probability of orange num-
bers (which is weakly below 0.5 in every experiment). For the
purpose of obtaining a distribution of assessments across subjects,
we assume that they sample numbers from memory from a bino-
mial distribution of colors with a probability of orange given by
the model predicted likelihood P̃(o | n). Specifically, we assume
they sample N � 25 numbers, which is the true number of numbers
and also coincides with the modal number of numbers recalled.
Naturally, averaging the likelihood of orange numbers across
subjects again yields P̃(o | n). But this process also yields a share of
subjects that state that orange is the modal color, which is given by
1�cdf (N/2, N, P̃(o | n)), where cdf stands for the cumulative

21 Details of this exercise are in Appendix D in the online supplemental
materials. We do not reestimate parameter c because it has little influence
in the results other than moderating the effect of representativeness of
orange numbers when there are no orange words, P(o | w) � 0. We know
that the best-fitting c is positive because the assessed probability of orange
numbers is bounded below 1.

Table 3
Regression Estimates of Treatment Effects in Study 2 (Lab Only)

Independent
variables

OLS: Y � 1
if “orange is
likely” (1)

0.5-Q-Reg:
Y � Probability that

a random number
is orange (2)

0.5-Q-Reg:
Y � Orange numbers

recalled (3)

0.5-Q-Reg:
Y � Blue numbers

recalled (4)

OLS: Y � 1
if more orange

numbers recalled (5)

0.5-Q-Reg:
Y � Share of
orange to total

numbers recalled (6)

k (number of orange
words) �.0268�� (.0125) �.02��� (.0071) 0 (.1466) 0 (.2108) �.0164 (.0121) �.0123�� (.0062)

Constant .5268��� (.0506) .5200��� (.0288) 10��� (.4867) 15��� (.5943) .4107��� (.0491) .4738��� (.0251)
Observations 254 254 254 254 254 254
Adj./Ps. R2 0.02 0.02 0.00 0.00 0.01 0.01

Note. This table presents estimates of the treatment effect on several outcome measures relating to our model predictions in Study 2. We report on our
results from the lab here, because we elicited participants’ expected probability that a random number is orange not via MTurk. Columns 1 and 5 present
ordinary least squares (OLS) regression of response dummies (1 if “orange is likely” in Column 1 and 1 if “recalled more orange than blue numbers” in
Column 3) on k, the number of orange words. Columns 2, 3, 4, and 6 present 0.5-quantile regressions of subjects’ stated probability that a random number
is orange, number of recalled orange numbers, number of recalled blue numbers and share of recalled oranges numbers, respectively, on k � 6.
�� p � .05. ��� p � .01.

Table 4
Database in Study 3

10 orange, large numbers
15 blue, small numbers
25 blue, large words
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density function of the binomial distribution.22 Figure 5 plots the
resulting predicted shares against the empirical shares for our
studies, which were obtained both in the lab and on Mturk.23

Again, the model captures quantitatively the large variation in
the share of subjects reporting that orange is the modal color,
which varies by a factor of nearly three from 0.18 to 0.52—a
pattern that is absent in models that lack contextual interference
(horizontal dotted line). The model tends to underpredict this
share, particularly relative to the MTurk data, which may be due to
the fact that with binomial sampling mistakes about the mode
become very unlikely as P̃(o | n) drops below 0.5, which may be
too strict (the assumption that this sampling process is unbiased
may not hold in reality, since thinking about an orange number
may cue further retrieval of orange numbers).

We next go back to the data on recall. From each subject’s
recalled number of orange and blue numbers we construct a
recalled share of orange numbers. We then compare the recalled
share in each treatment –d, averaged across subjects, to the mo-
del’s predicted probability P̃(o | n) in that treatment. Figure 6
shows the results.

The model again matches well the recalled shares, particularly
in Studies 1 and 2. This is perhaps not surprising given that the
correlation between recall and assessed probabilities is very high
in these studies (see Table B.11 in Appendix B.3.1 in the online
supplemental materials). This high correlation is a nontrivial result
consistent with the model’s predictions that assessments of prob-
ability distributions are shaped by recall of group elements.24

Finally, we also assess the performance of the model relative to
Study 1.A, described in Appendix C.1 in the online supplemental

materials, which explores a different source of variation in the
similarity between colors and numbers: group size. In this exper-
iment, as before, we keep constant the set of numbers (15 blue, 10
orange) as well as the color distribution among words (all blue),
but vary the number of words from 5 to 50, 75, and 125. Consider
the effect of adding more blue words. According to the similarity
function (Equation 2), this: (a) reduces the similarity of any color
to numbers, because there numbers are a smaller share of all
objects, and (b) increases interference with the recall of blue
numbers. Thus, adding blue words increases the (relative) similar-
ity of orange to numbers and the assessed probability P̃(o | n).
Figure 7 (green dots) shows that the model’s prediction holds in
the data. Moreover, the calibrated model matches well the quan-
titative variation in assessed probability of orange numbers as the
number of words changes, even though the experiment highlights
a source of variation not used in the calibration.

In Appendix D in the online supplemental materials, we assess
the statistical significance of the results in Figures 5, 6, and 7,
following the method described for Figure 4 above. We again find
that our results are exceedingly unlikely to arise in a model of
unbiased but noisy beliefs.

We conclude this section with a discussion of the other model
parameters. As shown in Equation 2, a value of � below 1 means
that the similarity between a hypothesis and data does not respond
one for one to their overlap: adding more blue numbers does not
make the set of blue objects substantially more similar to the set of
numbers. As a consequence, memory-based beliefs underreact to

22 We do not pursue further the analysis of the resulting distribution of
likelihood assessments, because the results rely heavily on the assumed
sampling process which is not an integral part of our model.

23 Recall that lab runs of Study 2 included treatments k � 1, 6 while
MTurk runs included treatments k � 1, 3, 6, 10, 22. Moreover, Study 3 was
only run in the lab.

24 One outlier is Study 3’s size treatment, where recalled share is much
higher than assessed likelihood. This may be due to the fact that the
differential cueing (size vs color) in that experiment was stronger for the
elicitation of likelihood (which occurred first) than for the recall task, in
which subjects were asked to recall numbers both in terms of size and of
color.

Table 5
Regression Estimates of Treatment Effects in Study 3

Independent
variables

OLS: Y � 1
if “orange
or large is
likely” (1)

OLS: Y � 1
if more orange

or large numbers
recalled (2)

0.5-Q-Reg:
Y � Share of

orange or large
to total numbers

recalled (3)

0.5-Q-Reg:
Y � Probability that

a randomly-drawn
number is orange

or large (4)

1 if color cue .2296��� (.0343) .1168��� (.0341) .04�� (.0178) .05�� (.0218)
Wave dummy yes yes yes yes
Constant .1808��� (.0293) .1953��� (.0291) .41��� (.0152) .35��� (.0186)
Observations 647 647 647 647
Adj./Ps. R2 0.06 0.02 0.01 0.01

Note. This table presents estimates of the treatment effect on several outcome measures relating to our model predictions. Columns 1 and 2 present an
ordinary least squares (OLS) regression of response dummies (1 if “orange is likely” in treatment color cue and 1 if “large is more likely” in treatment font
size cue for Column 1 and 1 if “more orange numbers are recalled than blue numbers” in treatment color cue and 1 if “more large numbers are recalled
than small numbers” in treatment font size cue for Column 2) on a treatment dummy. Columns 3 and 4 present 0.5-quantile regressions of subjects’ share
of recalled orange (treatment color cue) or large (treatment font size cue) numbers over total recalled numbers and stated probability that a random number
is orange (treatment color cue) or large (treatment font size cue), respectively, on the treatment dummy. In all regressions, a wave dummy is included.
Standard errors are in parentheses.
�� p � .05. ��� p � .01.

Table 6
Target Moments for Model Calibration

Study Treatment –d Experimental odds

1 (lab) gray shapes 0.78
1 (lab) words k � 0 0.99
2 (lab) words k � 1 0.93

Note. Target moments.
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the variation in likelihood of hypotheses given data, and tilt their
odds toward 1. This underreaction leads to an overestimation of
rare types, at the cost of underestimating frequent types. In our
experiments, this contributes to an overestimation of orange num-
bers, which however is small in magnitude and constant across
treatments.

Finally, parameter c captures a baseline probability of any
hypothesis coming to mind. This parameter plays an important role
in smoothing the effects of extreme representativeness, which arise
in the similarity expression (Equation 2) when we use the loga-
rithmic functional form for f().

In sum, our model of selective memory offers a unified quan-
titative account of experimental measurements on recall and prob-
ability assessments using the new mechanism of contextual inter-
ference.

Discussion

This paper explores the link between intuitive thinking, as
exemplified by the representativeness heuristic, and memory. The
evidence takes the form of a systematic instability of probabilistic
assessments: numbers are recalled as being more likely to be
orange than blue when presented together with blue words than
with gray shapes. This evidence shows that the probabilistic as-
sessment of a hypothesis (object is orange) given data (object is a
number) involves selective retrieval of hypotheses from memory,
and that this retrieval is subject to contextual interference from

other data. The role of cue-based recall and of contextual interfer-
ence is most clearly illustrated by the fact that, keeping experience
constant, probabilistic judgments about given data are dramatically
altered depending on what comparisons are triggered by the cue
(Study 3).

The key ingredient is that recall is driven by a similarity
metric that reflects the actual statistical correlation between
hypotheses and data. This mechanism yields representativeness
(Bordalo et al., 2016; Gennaioli & Shleifer, 2010) and recon-
ciles the observed alignment between assessments of similarity
and assessments of probability (Tversky & Kahneman, 1983).
As is common in memory research (Kahana, 2012) we take the
similarity function as a primitive, but relative to conventional
analyses our findings underscore the promise of a context-
dependent similarity metric— originally motivated by intuitive
judgments of similarity, Tversky (1977) in accounting for recall
and probability judgments.

An important next step is to provide a foundation of our simi-
larity metric in terms of memory associations. One promising
avenue is to describe mental activation and recall in terms of a
bidirectional associative network, as in the Co3 model (Spellman,
Ullman, & Holyoak, 1993), which has been shown to capture some
elements of Tversky’s (1977) similarity metric (Bhatia, 2016) but
also constitutes the basis of Howard and Kahana’s (2002) temporal
context model of memory retrieval. Such a foundation may help
unify representativeness, recency, and temporal contiguity effects,
and, in particular, allow for a richer analysis of experiments like
ours in which subjects see the images in different orders, which
should also influence recall and probability judgments.

As described in the introduction, the patterns of interference
uncovered by our experiment seem to be at the heart of many

Table 7
Calibration of Model Parameters

�� �� c�

0.66 0.07 0.01

� p � .1.

Figure 3. Model fit. For each value of � in the x-axis, we compute the
least square error (LSE) over parameters �, c, namely LSE(�) � mina,c �
[P̃ (o |n)i/P̃ (b |n)i � P̂ (o |n)i/P̂ (b |n)i]

2 where i indexes the three target
moments in Table 6 and P̂ (o |n)i/P̂ (b |n)i are the target empirical moments.
LSE(�) attains a minimum at �� � 0.07. The figure plots the ratio
In[LSE(�)/ LSE(��)] as a function of �. See Appendix D in the online
supplemental materials for details. See the online article for the color
version of this figure.

Figure 4. Model Performance 1: assessments of likelihood, data P̂ (o |n)
versus model predictions P̃(o |n). The graph also plots the 45° line, as well
as the prediction of the calibrated model where contextual interference is
shut down, � � 0. See the online article for the color version of this figure.
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examples of base-rate neglect, as well as the conjunction fallacy
(Gennaioli & Shleifer, 2010).25 Interference is also consistent with
the cognitive psychology approach to stereotypes, as described by
Hilton and Von Hippel (1996): “stereotypes are selective [. . .] in

that they are localized around group features that are the most
distinctive, that provide the greatest differentiation between
groups” (p. 241). Here again, contextual interference seems essen-
tial.

Some stereotypical beliefs can be amplified by exposure to
biased sources of information that confirm intuitive beliefs, such as
natural language (Bhatia, 2017). Such semantic associations may
be unavoidable in driving beliefs about groups that are particularly
salient in real world situations. In these cases, we view the two
approaches as complementary. Interference in retrieval may help
predict which specific features of groups will form a stereotype.
Natural language and rehearsal may disproportionately sample a
group’s representative types, reinforcing the belief originating in
selective recall. In this way, selective recall and semantic similar-
ity are likely to be complementary forces in creating real world
judgments.

Overall, our results suggest that memory shapes the accessibility
of thoughts that drive intuitive thinking about past experiences and
can be an important determinant of probabilistic beliefs (Kahne-
man, 2003). This suggests that other distortions in probabilistic
judgment might be understood by integrating other memory mech-
anisms—not only contextual interference—into settings where
people form probabilistic assessments by retrieving information

25 Consider the Linda problem: given Linda’s background, a variety of
professional outcomes are possible. Retrieval of the bank teller outcome is
dampened because the average bank teller is more strongly associated with
people of different, perhaps less rebellious, backgrounds. Subjects thus
underestimate the probability that Linda is a bank teller for the same reason
they may overestimate the probability that she is a social worker. In
comparison to the generic bank teller, the more specific feminist bank teller
outcome is much more representative of Linda, so (between subjects) a
higher likelihood is assigned to it.

Figure 5. Model Performance 2: assessments of modal color, data versus
model predictions. The graph also plots the 45° line, as well as the
prediction of the calibrated model where contextual interference is shut
down, � � 0. See the online article for the color version of this figure.

Figure 6. Model Performance 3: recall of orange numbers versus model
predicted P̃(o |n). The graph also plots the 45° line, as well as the predic-
tion of the calibrated model where contextual interference is shut down,
� � 0. See the online article for the color version of this figure.

Figure 7. Model Performance 4: recall of orange numbers versus model
predicted P̃(o |n), Study A.1. The graph also plots the 45° line. See the
online article for the color version of this figure.
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from memory on the basis of cues. For instance, it has been
suggested that anchoring biases might be due to selective retrieval
based on similarity with the anchor (Strack & Mussweiler, 1997).
Relatedly, it is possible that providing the inverse conditional
probability of data given hypothesis anchors judgment of the
probability of hypothesis given data (as in the taxicab problem)
precisely because the former is very accessible to memory. The
availability heuristic, whereby probabilistic judgments reflect “the
ease with instances or occurrences can be brought to mind” (Tver-
sky & Kahneman, 1974, p. 1127), explicitly relies on recall.
Finally, semantic memory might be at play when making proba-
bilistic judgments in nonexperiential settings, where the likelihood
of an event may be “judged by the degree to which it reflects the
salient features of the process by which it is generated” (Kahne-
man & Tversky, 1972, p. 431). The notion of memory here may be
to retrieve specific processes in light of available cues, perhaps
along the lines advocated by Schacter, Addis, and Buckner (2007):
“a crucial function of memory is to make information available for
the simulation of future events” (p. 659). Extending our framework
to incorporate these issues may provide a unified explanation of
judgment biases and intuitive thinking.
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