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Part 1. Extensions

1.A Mixed Lotteries

In this section, we apply our model to mixed lotteries, those involving both positive and

negative payoffs. To this end, we come back to the KT (1979) piecewise linear value function

exhibiting loss aversion, for loss aversion provides an intuitive explanation for risk aversion

with respect to small mixed bets. Using the salience function of Equation (5) in the text,

for which σ(x, y) = σ(−x,−y) for all x, y, all risk aversion for lotteries symmetric around

zero is due to loss aversion. For non-symmetric lotteries, salience and loss aversion interact

to determine risk preferences. To see this, consider Samuelson’s wager, namely the choice

between the lotteries:

LS =

 $200, 0.5

−$100, 0.5
, L0 = ($0, 1) .

In this choice, many subjects decline LS even though it has a positive and substantial

expected value. With a symmetric salience function, we have that σ(200, 0) > σ(100, 0) =

σ(−100, 0), implying that in this choice the local thinker focuses on the lottery gain.

Consider now what happens under the following piecewise linear value function:

v(x) =

 x, if x > 0

λx, if x < 0
,

where λ > 1 captures loss aversion. Now the local thinker rejects LS provided:

200 · 1

1 + δ
− 100λ · δ

1 + δ
< 0.

The decision maker rejects LS when his dislike for losses more than compensates for his
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focus on the lottery gain, i.e. λ > 2/δ.1 In lotteries whose negative downside is larger in

magnitude than the positive upside, salience and loss aversion go in the same direction in

triggering risk aversion.

Although our approach can be easily integrated with standard loss aversion, we wish to

stress that salience may itself provide one interpretation of the idea that “losses loom larger

than gains” (KT 1979) where, independently of loss aversion in the value function, states

with negative payoffs are ceteris paribus more salient than states with positive payoffs. The

ranking of positive and negative states is in fact left unspecified by Definition 1. One could

therefore add an additional property:

4) Loss salience: for every state s with payoffs xs = (xis)i=1,2 such that x1s + x2s > 0 we have

that

σ(−x1s,−x2s) > σ(x1s, x
2
s).

This condition relaxes the symmetry around zero of the salience function of Equation (5),

postulating that departures from zero are more salient in the negative than in the positive

direction. In this specification, local thinking can itself be a force towards risk aversion

for mixed lotteries, complementing loss aversion. In particular, if losses are sufficiently more

salient than gains, one can account for Samuelson’s wager based on salience alone (and linear

utility): if σ(−100, 0) > σ(200, 0), a local thinker with linear utility rejects Samuelson’s bet

as long as 200 · δ
1+δ
− 100 · 1

1+δ
< 0, or δ < 1/2. A specification where risk aversion for

mixed lotteries arises via the salience of lottery payoffs may give distinctive implications

from standard loss aversion, but we do not investigate this possibility here.

1.B Choice Among Many Lotteries

We now extend our model to a general choice among N ≥ 2 of lotteries, which is partic-

ularly useful for economic applications. Before doing so, note that preferences over N ≥ 2

1The role of loss aversion can also be gauged by considering the choice between two symmetric lotteries
with zero expected value, L1 = (−x, 0.5; x, 0.5) and L2 = (−y, 0.5; y, 0.5), with x > y. Since (5) is
symmetric, the states (−x, y) and (x,−y) have salience rank 1, whereas states (−x,−y) and (x, y) have
salience rank 2, so that L1 is evaluated at x(1− λ)/2, and L1 is evaluated at y(1− λ)/2. This implies that
for any degree of loss aversion λ > 1, the Local Thinker prefers the safer lottery L2.

2



lotteries cannot be inferred from pairwise comparisons because salience changes across com-

parisons and intransitivities can arise (see online Appendix 1.C).

To model choice from an arbitrary set of alternatives ℵ = {L1, . . . , LN} defined over

a state space S (as in Section 3), we first generalize the notion of payoff salience. Let

xs = (x1s, . . . , x
N
s ) be the vector of payoffs delivered in a generic state s, and denote by

x−is = {xjs}i 6=j the vector of payoffs excluding xis. The salience of state s for lottery Li is then

captured by a function σ̂(xis, x
−i
s ) which contrasts Li’s payoff xis in s with all other payoffs

x−is in the same state. Let x−is + ε denote the vector with elements {xjs + ε}j 6=i. In line with

Definition 1, we impose the following properties:

Definition 3 Given a state space S and a choice set ℵ, the salience of state s for lottery

Li is given by a continuous and bounded function σ̂(xis,x
−i
s ) that satisfies three conditions:

1) Ordering: if xis = max xs, then for any ε, ε′ ≥ 0 (with at least one strict inequality):

σ̂
(
xis + ε,x−is − ε′

)
> σ̂

(
xis,x

−i
s

)
.

If xis = min xs, then for any ε, ε′ ≥ 0 (with at least one strict inequality):

σ̂
(
xis − ε,x−is +ε′

)
> σ̂

(
xis,x

−i
s

)
.

2) Diminishing sensitivity: if xjs > 0 for all j, then for any ε > 0,

σ̂(xis + ε,x−is +ε) < σ̂(xis,x
−i
s )

3) Reflection: for any two states s, s̃ ∈ S such that xjs, x
j
s̃ > 0 for all j, we have

σ̂(xis,x
−i
s ) < σ̂(xis̃,x

−i
s̃ ) if and only if σ̂(−xis,−x−is ) < σ̂(−xis̃,−x−is̃ )

When N > 2, one can construct a salience function satisfying the above requirements by
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setting:

σ̂(xis,x
−i
s ) ≡ σ(xis, f(x−is )), (1)

where σ(., .) is the salience function employed in the two lottery case of Section 3, and

f(x−is ) : RN−1 → R is a function of the residual vector x−is . Definitons 1 and 3 jointly

impose some restrictions on the properties of f(x−is ). One intuitive specification which,

together with Definition 1, satisfies Definition 3 is:

f(x−is ) =
1

N − 1

∑
j 6=i

xjs. (2)

That is, the salience of a lottery state s depends on the contrast between the lottery’s payoff

and the average payoff of the other lotteries in s. For N = 2, Equation (1) reduces to the

salience function of Section 3.

Even though σ(., .) is symmetric, when there are more than two lotteries salience is in

general not symmetric because the same state does not necessarily have the same salience for

different lotteries. Consider for instance a state where lottery Li’s payoff xis is very different

from the payoffs of all the other lotteries in x−is , but in turn the payoffs in x−is are similar

to each other. According to the salience function implied by (1) and (2), then, state s is

very salient for Li but not salient for the other lotteries. In contrast, a state s may be very

salient for all lotteries if in that state half the lotteries have a very low payoff and the other

half have a very high payoff.

Given a lottery specific salience ranking kis based on the salience function σ̂, each state

is assigned a decision weight πis according to Equation (8) in the text, and a value V LT (Li)

is computed for each lottery Li according to Equation (10).

One important new effect arising in the choice among N > 2 lotteries is that the pref-

erence ranking among any two lotteries depends on the remaining alternatives, potentially

leading to violations of independence of irrelevant alternatives (IIA). By shaping payoff

salience, the choice set is a source of context effects. A detailed analysis of these possibilities

can be found in Bordalo (2011) and Bordalo, Gennaioli and Shleifer (2011).
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1.C Intransitivity of pairwise preferences

Systematic intransitivities in choice under risk have been documented by several authors

(Tversky 1969, Starmer and Sugden 1996, Luce 2000). Some models accounting for this

phenomenon are Tversky’s additive difference model and Regret Theory. Our model also

yields intransitivities, and the structure imposed by salience allows to place restrictions on

the circumstances in which intransitivities can or cannot occur.

To illustrate how intransitive preferences may arise in our model, consider the following

three lotteries:

Lπ =

 αx, π

0, 1− π
, L$ =

 x, απ

0, 1− απ
, Ls = (y, 1), (3)

where x, y > 0 and α < 1. Lotteries L$ and Lπ are of the kind giving rise to the preference

reversals of Section 5. In this case, a local thinker prefers the safer lottery Lπ to L$ as long

as π is large and δ is not too small. Suppose now that the sure prospect y is such that in

the pairwise comparison with L$ the latter’s gain is salient while in that with Lπ the latter’s

loss is salient, i.e. σ(x, y) > σ(0, y) > σ(αx, y). It is then possible to find values (y, δ) such

that choices are intransitive:2

Lπ � L$, L$ � Ls, Ls � Lπ.

Intransitivity arises because risk aversion in the direct comparison of Lπ with L$ is reversed

to risk seeking when the two lotteries are indirectly compared via their pairwise choice against

the sure thing Ls. The intuition is as follows. In the direct comparison, Lπ � L$ because

lottery Lπ pays off with much higher probability than L$. In the indirect comparison,

Lπ ≺ L$ because the sure thing stresses the upside of the risky lottery and the downside of

the safe lottery. This is “as if” in the direct comparison the decision maker chooses based on

probabilities, while in the indirect comparison he chooses based on payoffs. This intuition is

closely related to Tversky’s (1969) account of intransitivities.

Although in our model intransitivities can arise in pairwise choices, choice is well defined

2One numerical example is x = 100, α = 1/10, π = 3/4, y = 4 and δ = 0.75.
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within any given choice set. The choice set shapes the salience of each option and thus its

valuation according to Definition 3. In particular, the local thinker’s choice from {Lπ, L$, Ls}

is well defined and can be found by applying Definition 3.3

1.C.1 Limits on Intransitivity

We now show that intransitivities never occur in choices among independent lotteries

sharing the same support with two or three outcomes. The intuition is that for such choices,

the state space – and the salience ranking of states – does not change across choices, only

the probabilities of states do. The fact that a local thinker is transitive in such choices is

consistent with the intuition that intransitivities require shifts in attention and salience from

one choice to the next (Tversky, 1969).

Consider the space of payoffs {x, y, z}, where x > y > z > 0. A lottery is defined by the

probability it yields each payoff, which we denote La = {ax, ay, az}. We now show:

Lemma 2 A local thinker’s preferences are pairwise transitive if δ = 0 or δ = 1. Fur-

thermore, for any δ preferences are pairwise transitive within the set of independent lotteries

sharing the same support consisting of up to 3 payoffs.

Proof. Assuming all lotteries are independent (and all probabilities are positive), in a

pairwise choice there are 9 states of the world. The salience ranking is univocal, up to the

relative ranking of states (x, y) and (y, z). For now take the following ranking

σ(x, z) > σ(y, z) > σ(x, y) > σ(x, x) = σ(y, y) = σ(z, z).

Then La � Lb iff

(x− z)[axbz − azbx] + δ(y − z)[aybz − azby] + δ2(x− y)[axby − aybx] > 0 (4)

We want to show that choice from such lotteries is transitive, i.e. La � Lb and Lb � Lc

imply La � Lc.

3In particular, any pairwise intransitive choice pattern gives rise to a violation of independence of irrelevant
alternatives when compared to choice from the full choice set.
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Rewrite equation (4) in a more convenient way, by replacing a3 = 1−a1−a2 and similarly

for b3. Then La � Lb provided

(x− z)[ax − bx] + δ(y − z)[ay − by] > ∆[axby − aybx] (5)

where ∆ = (x− z)− δ(y − z)− δ2(x− y). The left hand side captures the intuition that La

is preferred to Lb when it has a sufficiently higher probability of a high payoff. In the limit

δ → 1, ∆ goes to zero and preferences among lotteries depend only on the linear terms in

the left hand side

(x− z)ax + (y − z)ay > (x− z)bx + (y − z)by (6)

Since these conditions are linear, lotteries can be ranked by this weighted average of payoff

differences and so preferences are transitive (and of course they coincide with the rational

agent’s preferences).

Intransitivities may arise only because of the quadratic term on the right hand side of

(4), which comes from the fact that we are dealing with the product state space. The effect

of local thinking on the preferences between lotteries cannot be easily characterized. To see

that, note that ∆ measures the average (perceived) difference between any two payoffs x, y

and z. While for δ → 1 these differences cancel out, for δ < 1 the largest payoff difference

(x− z) is overvalued, so in general ∆ is positive and increasing as δ decreases. Then if e.g.

ax > bx and ay < by local thinking increases both sides of (5). Still, it is instructive to

compare the fully rational case (6) to the case δ = 0. Here La � Lb when:

ax
az

>
bx
bz

(7)

For the full local thinker, only the ratio of probabilities for the most salient payoffs matters.

As a result, lotteries are ranked according to this ratio and we recover transitivity.

To examine the general case, suppose La � Lb and Lb � Lc for a given δ ∈ (0, 1). Then
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(5) implies:

(x− z)ax + δ(y − z)ay > (x− z)bx + δ(y − z)by + ∆[axby − aybx]

> (x− z)cx + δ(y − z)cy + ∆[axby − aybx] + ∆[bxcy − bycx]

Note that in deriving the second line, it is essential that the salience ranking does not change

when we compare different lotteries. Here the fact that all lotteries have the same support

plays a crucial role. Rearranging, we get that La � Lb and Lb � Lc together imply

(x− z)[ax − cx] + δ(y − z)[ay − cy] > ∆[axby − aybx] + ∆[bxcy − bycx] (8)

while La � Lc means (note the same left hand side)

(x− z)[ax − cx] + δ(y − z)[ay − cy] > ∆[axcy − aycx]

Subtracting ∆[axcy − aycx] from both sides of (8) we get

(x− z)[ax − cx] + δ(y − z)[ay − cy] − ∆[axcy − aycx]

> ∆[(axby − aybx) + (bxcy − bycx)− (axcy − aycx)]

= ∆[ax(by − cy) + cx(ay − by) + bx(cy − ay)] (9)

The left hand side of this equation (first line) is positive iff La � Lc. For simplicity write it

as ũ(La − Lb). We now show that the right hand side (third line) of this equation can also

be written in terms of ũ(La−Lb). We use again that La � Lb and Lb � Lc, which put lower

bounds on (ay − by) and (by − cy) respectively (according to (5)) to get:

ax(by − cy) + cx(ay − by) + bx(cy − ay)

>
∆

δ(y − z)
bx[axcy − aycx]−

x− z
δ(y − z)

bx[ax − cx] + bx[cy − ay]

= − bx
δ(y − z)

[(x− z)[ax − cx] + δ(y − z)[ay − cy]−∆[axcy − aycx]]

= − bx
δ(y − z)

ũ(La − Lc)
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Inserting this result in (9) we get

ũ(La − Lc) > −
bx∆

δ(y − z)
ũ(La − Lc)

which, because y > z and ∆ > 0, implies that ũ(La − Lc) > 0, namely

La � Lc.

So we have transitivity. Moreover, we also have that La ∼ Lb and Lb ∼ Lc imply La ∼ Lc.

1.D Preference Reversals under the Revealed Preference Approach

Section 5 in the text showed that under the “valuation approach” our model explains

when preference reversals occur in choice and pricing among lotteries of the form

L1 = (x, p; 0, 1− p) L2 = (2x, p/2; 0, 1− p/2).

We now show that the same patterns can arise when selling prices are computed under the

revealed preference approach. To do so, recall that a local thinker with linear utility chooses

the safer lottery L1 in the choice set {L1, L2} if and only if:

p ≥ 2(1− δ)
2− δ − δ2

. (10)

Therefore, it is sufficient to show that the local thinker may state a higher “revealed prefer-

ence price ” for the riskier lottery L2 than for the safer lottery L1 when (10) holds.

1.D.1 Reversal and Pricing in Isolation

To define the “revealed preference price” for a lottery L = (y, q; 0, 1 − q), consider the

choice set {L,LP}, where LP = (P, 1) is a lottery promising the sure amount P . Define the

revealed preference price of L as the minimum P such that a local thinker weakly prefers
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the sure payoff LP to L. When y = x and q = p we have that L = L1 and P is the price of

L1. When instead y = 2x and q = p/2 we have that L = L2 and P is the price of L2.

With linear utility and a given salience ranking, the certainty equivalent of a lottery is

its expected value computed using the decision weights implied by salience. If the upside

of lottery L is salient, then the decision weight attached to the lottery’s upside is q
q+(1−q)δ ,

and so P = y · q
q+(1−q)δ . If instead the downside of lottery L is salient, the decision weight

attached to the lottery’s upside is qδ
qδ+(1−q) , and so P = y · qδ

qδ+(1−q) .

Since lotteries L1 and L2 have the same mean, the certainty equivalent of the risky lottery

L2 is higher than that of the safe lottery L1 if L2 has a salient upside (even if L1’s upside is

also salient). This is because L2 pays its salient upside with a smaller probability, and we

know that smaller probabilities are subject to greatest distortions. By the same argument,

the certainty equivalent of the risky lottery L2 is lower than that of the safe lottery L1 if the

downside of L2 is salient. As a consequence, the necessary and sufficient condition for the

certainty equivalent of the risky lottery L2 to be higher than that of the safe lottery L1 (and

thus for preference reversals to arise when (10) holds), is that the upside of L2 is salient.

The upside of the general lottery L is salient when the lottery is contrasted with its price

P = y · q
q+(1−q)δ provided:

σ

(
y, y · q

q + (1− q)δ

)
> σ

(
0, y · q

q + (1− q)δ

)
. (11)

Condition (11) imposes that, at the high revealed preference price, the lottery’s upside is

indeed salient.4

For preference reversals to occur in the context of lotteries L1 and L2, it must then be

the case that the above condition is satisfied for L2, namely when y = 2x and q = p/2. That

4To fully characterize the revealed preference price P for L, note that the latter has a salient downside,
and so P = y δq

qδ+(1−q) provided:

σ

(
y, y

δq

qδ + (1− q)

)
< σ

(
0, y

δq

qδ + (1− q)

)
. (12)

Conditions (11) and (12) are mutually exclusive, but for a given salience function there may be parameter
values (y, q, δ) for which neither of them holds. This phenomenon is caused by jumps in the salience ranking,
and disappears when probability distortions are a smooth function of salience. In this case, the minimum
price P which is (weakly) preferred to the lottery is determined by σ(y, P ) = σ(0, P ) (note that the certainty
equivalent is not continuous, but is monotonic).
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is, it must be that:

σ

(
2x, xp

2

p+ (2− p)δ

)
> σ

(
0, xp

2

p+ (2− p)δ

)
. (13)

The mechanism for preference reversals encoded in (13) is the same as the one creating

these reversals in the valuation approach of Section 5. When considered in isolation, the

upside of the riskier lottery becomes salient, and so the lottery is overvalued relative to

L1. The only difference now is that condition (13) imposes an additional restriction on the

expected value xp, namely it cannot be too high.

We can also use (13) to characterize a sufficient condition for preference reversals to arise.

Since the lottery’s price P increases in the probability p, condition (13) is less likely to hold

as p increases. As a result, preference reversals can only occur when (13) is satisfied at the

lowest possible probability p = 2(1−δ)
2−δ−δ2 consistent with (10), namely when:

σ

(
2x, x

2

1 + δ + δ2

)
> σ

(
0, x

2

1 + δ + δ2

)
. (14)

It is only when (14) holds that it is possible to find p ≥ 2(1−δ)
2−δ−δ2 such that preference reversals

occur. Note that the condition is more likely to hold when δ is high. Using the salience

function (5) in the text, the above condition becomes:

2x

1 + δ + δ2
< θ

(
1 + δ + δ2

2
− 1

)
.

The lotteries’ payoff cannot be too large.

1.D.2 Preference Reversals in the Context of Choice

Consider now the case in which the certainty equivalents for the two lotteries are de-

termined jointly, namely in the choice context. This is akin to presenting the local thinker

with the choice set {L1, L2, LP1 , LP2}, where L1 = (x, p; 0, 1 − p), L2 = (2x, p/2; 0, 1 − p/2)

and LPi = (Pi, 1), where Pi is the revealed preference price of lottery Li. Now explicitly

determining the prices is much more complicated because one needs to jointly determine two
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prices and two salience rankings. The key point, though, is that in equilbrium, the price

of each lottery will be equal to the lottery’s expected value calculated at the equilibrium

salience ranking. This implies that when choosing among the lotteries the local thinker will

value them at the resulting expected values. Accordingly, when pricing the lotteries the

local thinker will state precisely the lotteries’ perceived expected values. As a result, the

local thinker’s valuation of lotteries will be consistent with their pricing, and no preference

reversals will occur.

1.E First Order Stochastic Dominance for Independent Lotteries

Let σ : R× R→ R be a function satisfying ordering

[a, b] ⊂ [a′, b′]⇒ σ(a, b) < σ(a′, b′)

If a local thinker has a choice between lottery L1 = (xi, pi) (yields payoff xi with probability

pi) and lottery L2 = (yj, qj), denote by LLTi the lotteries’ representations derived from the

salience function σ, i.e.

L1 = (xi, p
LT
i ), L2 = (yi, q

LT
i )

where decision weights are determined as in Definition 2. Set i = 1, . . . , N and j = 1, . . . ,M

such that xi+1 > xi and yi+1 > yi.

Lemma 3 Let L1 = (xi, pi) and L2 = (yj, qj) be two independent lotteries over positive

payoffs, whose supports intersect at most in one point. If lottery L1 first order stochastically

dominates (f.o.s.d.) lottery L2 , then LLT,δ1 f.o.s.d. LLT,δ2 for any local thinker (meaning, a

local thinker defined by any salience function satisfying ordering).

Proof. L1 f.o.s.d. L2 if and only if

∑
j≥k

qj −
∑
i≥ik

pi ≤ 0

for each k = 1, ...,M , where ik = min {i : xi ≥ yk}. It is convenient to rewrite these
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stochastic dominance (SD) conditions in terms of sums over the state space

∑
j≥k

∑
ĩ

qjpĩ −
∑
i≥ik

∑
j̃

piqj̃ ≤ 0 (15)

For a local thinker this becomes

∑
j≥k

qj
∑
ĩ

pĩδĩj ≤
∑
i≥ik

pi
∑
j̃

qj̃δij̃ (16)

But notice that the sums have states in common, which drop out of the expression. These

are the states (i, j) with i ≥ ik, j ≥ k. Thus the expression reduces to:

∑
j≥k

qj
∑
ĩ<ik

pĩδĩj ≤
∑
i≥ik

pi
∑
j̃<k

qj̃δij̃ (17)

This is a friendlier expression than the full sum (16) because SD ensures that

∑
j≥k

qj ≤
∑
i≥ik

pi, and equivalently
∑
ĩ≤ik

pĩ ≤
∑
j̃<k

qj̃.

We prove (17) by induction over the index k of outcomes of L2. Starting from k = M , (17)

becomes:

qM
∑
ĩ<iM

pĩδĩM ≤
∑
i≥iM

pi
∑
j̃<M

qj̃δij̃ (18)

Recall that S.D. implies

qM ≤
∑
i≥iM

pi (19)

so it is sufficient to show that the factor multiplying qM has the upper bound

∑
ĩ<iM

pĩδĩM ≤
∑
j̃<M

qj̃δi∗j̃ (20)

where i∗ minimizes the coefficient of the right hand side of (18), that is
∑

j̃<k qj̃δij̃. We can

rewrite the left hand side of (20) as a sum over j̃, by grouping all the xi payoffs that occur
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between yj̃ and yj̃+1: ∑
j̃<iM

ij̃+1∑
ĩ=ij̃

pĩδĩM

 ≤∑
j̃<M

qj̃δi∗j̃ (21)

By SD, this holds when δ = 1. To investigate the impact of the δs, recall that i∗ > M and

j̃ < M . Thus salience ordering guarantees that within any term j̃ in the sum, we have

ĩ ∈
[
ij̃, ij̃+1

]
⇒ δĩM ≤ δi∗j̃

since in fact
[
xĩ,yM

]
⊂
[
yj̃,xi∗

]
. Therefore, within each interval

[
yj̃, yj̃+1

]
, the left hand side is

discounted more than the right hand side. Together with the stochastic dominance condition

(19), this means that (18) holds. Moreover, this implies that

qLT,δM −
∑
i≥iM

pLT,δi ≤ qM −
∑
i≥iM

pi ≤ 0 (22)

so that the difference between the cumulative probability distribution of L1 and L2 is am-

plified by the local thinker. Now suppose the following holds for some k + 1 < M .

∑
j≥k+1

qLT,δj −
∑
i≥ik+1

pLT,δi ≤
∑
j≥k+1

qj −
∑
i≥ik+1

pi (23)

Then to show it holds for k, we only need to show that the k-terms that are added to the

sum above satisfy

qLT,δk −
ik+1−1∑
i=ik

pLT,δi ≤ qk −
ik+1−1∑
i=ik

pi (24)

In other words, we need to show that the factor qLT,δk /qk has an upper bound which is smaller

than the terms that enter in the sum over pLT,δi (this is analogous to the discussion around

(20) above). We want to show that (generalizing (20))

∑
ĩ<ik

pĩδĩk ≤ mini

∑
j̃<k

qj̃δij̃

 (25)

Denote by i∗ the index that minimizes the right hand side, as – as before – regroup the left
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hand side ∑
j̃<ik

ij̃+1∑
ĩ=ij̃

pĩδĩk

 ≤∑
j̃<k

qj̃δi∗j̃ (26)

Again, for each j̃, we have
[
xĩ,yk

]
⊂
[
yj̃,xi∗

]
, so that δĩk < δi∗j̃k. Together with SD, this

implies that (26) holds. Therefore, we have shown that

∑
j≥k

qLT,δj −
∑
i>ik+1

pLT,δi ≤
∑
j≥k

qj −
∑
i>ik+1

pi (27)

for all k, thus concluding the proof of the proposition.
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Part 2. Experimental Evidence and Calibrations

Our experimental results were obtained from surveys conducted on Amazon Mechanical

Turk, an online marketplace service hosted by Amazon.com. MTurk allows requesters to

post tasks that workers can complete in exchange for compensation. Typical tasks include

data management (e.g. finding the best category for a product), content management (e.g.

tagging contents with keywords), and consumer surveys. There is a growing usage of online

surveys, and of MTurk in particular, as a tool for research in the social sciences (for an

overview of its use in economics, see Horton, Rand and Zeckhauser, 2010). To test the per-

formance of this tool as a means to study decision-making under risk, we ran several surveys

consisting of well known choice problems, such as the Allais paradoxes, Samuelson’s wager,

framing effects and the Ellsberg paradoxes. In all such experiments we found agreement

with the traditional lab experiment results.

We posted surveys consisting of several multiple choice questions, typically between four

and six, which were either choice problems or elicitations of value (surveys are available upon

request). Throughout the surveys, we presented choice problems in the traditional form used

in (KT79). A representative example of a choice problem we used is:

Choose between:

Lottery A: $2000 with 1% chance and $0 with 99% chance, Lottery B: $20 for sure.

Independent lotteries were always presented side by side, as above, to prevent spurious

interpretation of correlations. The sample size was typically between 75 and 120 subjects

per survey. As requesters, we have no information about workers who complete our surveys,

except for their worker ID. Using this information, we find that over 1100 different subjects

participated in our surveys, of whom over 60% participated only once. We required two con-

ditions for participation: i) that workers be living in the U.S. (so that subjects had as much

as possible a similar understanding of survey questions) and ii) that workers’ reputation index

be above 0.96 out of 1 (see discussion below on incentives). We did not collect demographic

information on our subjects. However, other surveys on MTurk workers demographics have

found that, compared to the general U.S. population, U.S. MTurk workers are slightly more

likely to be female (60%), have a similar age distribution but are somewhat younger on

16



average (ages range from 16 to 60, and 45% are above 30 years old), have higher education

level (about half have a bachelor degree or higher) and report an average household income

level of $40, 000. Even though this data is self reported, it indicates that the pool of workers

is very representative of the internet-using population, and reasonably representative of the

general population.

We used several approaches to ensure high quality data. Monetary incentives were not

feasible due to the large volume of surveys and the range of lottery payoffs involved. More-

over, the evidence on the impact of monetary incentives suggests a modest quantitative

correction to levels of risk aversion, but not a qualitative change of the subjects’ risk ap-

petite (at least in laboratory settings, see e.g. Grether and Plott 1979, and Holt and Laury,

2002). To understand the workers’ motivation, note that they choose tasks in terms of their

compensation and interest to them5. Once they choose a task, they have a strong incentive

to perform, as it can affect their reputation index: requesters have the option to accept or

reject a worker’s task, and the reputation index captures the percentage of a worker’s tasks

which were accepted. We systematically discarded from the analysis surveys completed in

a very short time, under 45 seconds, as these surveys were likely to have been answered

without due attention. We included all other data from choice problems in the analysis. We

occasionally introduced test questions, such as a choice between a two-outcome lottery and

a sure prospect close to or lower than the lottery’s downside. The rate of “wrong” anwers,

where the sure prospect was chosen over the lottery, was always negligible. To check for

consistency of preferences across subjects, we ran several surveys a few times in identical

form. We found the results to be consistent, and data from identical surveys was pooled. To

test for robustness, we repeated several surveys while changing some aspects of the presen-

tation. For instance, we varied the ordering of questions, and also the order of presentation

of the states of the world; we also varied numerical values, e.g. in the Allais paradoxes and

in the evaluation problems. Preferences were largely robust to such manipulations, and we

do not report these tests here.

In the next sections, we provide a detailed account of experiments that are important to

5Workers seemed to take a personal interest in our surveys, often providing feedback and justifying their
choices.
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assess our hypothesis of local thinking: those on the role of correlation among lotteries for

risk preferences (Section 2.B), and those concerning the role of context dependent evaluation

in preference reversals (Section 2.C). Section 2.D considers whether standard calibrations of

Prospect Theory can account for the shifts in risk preferences documented in Section 4 of

the paper.

2.B Robustness on the role of correlations in experiments

2.B.1 Correlation and the Allais paradoxes

To check the robustness of the results of Section 5.1, whereby the Allais paradox can

be turned on and off depending on the correlation structure of the lotteries, we ran several

variations of the experiment reported in the paper.

1) We checked that our results do not depend on the particular tabular representation

of states of the world. To do so, we replaced the latter with verbal representations of world

events such as: “Suppose you can choose between the following two lotteries, whose prizes

depend on the draw of a card. Suppose the card deck is arranged such that with 1% chance

you draw an ace, with 33% you draw a king and with 66% you draw a number. Lottery

1 yields $2500 if you draw an ace, and $0 otherwise, etc.” The experimental results were

similar to those obtained by expressing lotteries in tabular form.

We also tested whether the results depended on precise knowledge of probabilities. To do

so, we replaced risky outcomes for uncertain outcomes, for instance the following problem

from (TK92):

“Suppose you can choose between two lotteries, which depend on the differenceD between

the closing value of the Dow-Jones stock market index today and its closing value tomorrow:

if D is less than 30 pts between 30 and 35 pts more than 35 pts

Lz1 gives 0 z 7500

Lz2 gives z 2500 2500

where z is the common consequence taking the values 0 and 2500. In both experiments,

choice patterns were similar to those obtained in the original correlated version of the Allais
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paradox: subjects were risk averse in both problems, largely independent of the common

consequence z. Indeed, preferences were:

L2500
1 L2500

2

L0
1 16% 11%

L0
2 5% 68%

.

These results lend further support to our account that the state space shapes risk preferences,

via the salience of the allowed states of the world.

2) To check whether the role of correlation in the common ratio paradox of Section 5.2 is

due to special properties of compound lotteries, we ran a compound version of the common

consequence paradox of Section 5.1, in the following pair of choice problems:

Problem 1: Suppose you are presented with a two-stage game. In the first stage, you

have a 66% chance of getting $0 and ending the game, and a 34% chance of going to the

second stage. In the second stage, you will play one Lottery, L1 = (2500, .97; 0, .03) or

L2 = (2400, 1).

Problem 1’: identical to Problem 1, except in that the first stage offered a 66% chance of

getting $2400, instead of $0. In both problems, subjects choose which lottery to play before

the first stage of the game. The preferences were:

L1’ L2’

L1 6.7% 2.7%

L2 6.7% 83.9%

Preferences were essentially the same in both Problems, as expected from local thinking

and in accordance with the independence axiom. The choice patterns were similar to those

observed for the one-stage problem with common consequence z = $2400. As a result, the

compounded lottery form did not add much to correlation, suggesting that the salience of

the zero payoff in the space state generated by the lotteries may be responsible for choice

patterns.

3) Finally, we tested our assumption that when lottery correlation is not described ex-
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plicitly, subjects interpret the problem as a choice between two independent lotteries. To do

so, we compare the implicitly uncorrelated choice problem,

Problem 2: L1 = (2500, .33; 0, .67) vs L2 = (2400, .34; 0, .66).

with a problem where the state space makes the absence of correlation explicit:

Problem 2’:

21.78% 22.78% 11.22% 44.22%

L′1 2500 0 2500 0

L′2 0 2400 2400 0

The choice patterns in the two problems, elicited from two different groups of subjects,

were indistinguishable: the riskier lotteries L1 and L1’ were chosen by 46% and 49% of

subjects, respectively (N = 75 for each problem). The same subjects were then asked to

choose between the following correlated version of the same problem:

Problem 2c:

1% 33% 66%

Lc1 0 2500 0

Lc2 2400 2400 0

Both groups of subjects shifted towards risk aversion, with large majorities (up to 78%)

choosing Lc2 over Lc1.

L1 L2 L′1 L′2

Lc1 .20 .1 .14 .08

Lc2 .26 .44 .35 .43

The mirroring behavior of the two groups of subjects supports our assumption that

lotteries are interpreted as independent by default.

2.B.2 Further tests on the role of correlation on choice

We also tested the impact of correlations on choice problems that, unlike those of the

Allais paradox, do not feature a common consequence state. Consider the following two

choice problems:
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Problem 3: L1 = (40, .67; 120, .33) vs L2 = (30, .5; 110, .5)

Problem 3’:

1/6 1/3 1/2

L1’: $40 $120 $40

L2’: $110 $110 $30

Evidently, Problem 3’ is simply a correlated version of Problem 3. The two lotteries

have similar expected values, respectively $66.4 and $70. The joint preferences were:

L1’ L2’

L1 11% 28%

L2 17% 44%

There is a significant shift towards lottery L2’, which wins in the most salient and least

likely state. Notably, this occurs even though lottery A wins in 2 out of 3 states. Thus,

correlation here affects choice in the way predicted by local thinking.

2.C Robustness on context dependent evaluation and preference re-

versals

The key implication of our model regarding Preference Reversals is that pricing in the

context of choice is different from pricing in isolation because lotteries are being compared

to different alternatives. Here we review this basic mechanism by: i) checking for context

dependent evaluation in a setting where there are no preference reversals, and ii) providing

a detailed description of our experiments on preference reversals.

We begin with point i). To check that context dependent evaluation is a feature of choice

extending beyond preference reversals, we asked subjects to price L$ = (600, .4; 0, .6) in

isolation and in the context of a choice with Lp = (400, 1). There are two differences with

the preference reversals experiments: a) the expected value of L$ is much lower than that

of Lp so we do not expect reversals of preference between pricing and choice, and b) Lp is

a sure gain, which simplifies the pricing problem, so subjects only price L$. Crucially, since

in the comparison with Lp the downside of L$ is salient, we expect that pricing in choice is

lower than pricing in isolation.

21



To elicit pricing in isolation and in the choice context, we used wording similar to Grether

and Plott (1974): “Suppose that you can choose between playing lottery L$ and getting a

sure dollar amount. If this amount is very low, you might choose the lottery. As the dollar

amount increases, you might prefer it to the lottery. For what dollar amount would you be

indifferent between playing the lottery and getting the dollar amount?” Subjects chose from

a menu of prices. We also tried to have subjects enter their own price; in this case the data

is more noisy. The experiments confirm that subjects vastly prefer Lp to L$ and the prices

satisfy:

P (L$|Lp) = 170 < P (Liso$ ) = 230

Pricing in isolation is higher not only on average, but also probabilistically: the price dis-

tribution for L$ in isolation, PLiso
$

first-order stochastically dominates the price distribution

for L$ in the context of choice, PL$|Lp , as shown in Figure 1. We ran another version of

the survey where instead of the certainty equivalent we elicited the selling price, denoted by

P sell(L$), which yielded similar results.

Figure 1: Context Dependent Evaluation

We now consider point ii). To test for preverence reversals, we used the following

strategy. Subjects were presented with a choice between two-outcome lotteries Lp and L$,

where Lp is a lottery with a high probability of a low payoff, and L$ pays a high payoff with

low probability. The full state space of the choice problem was presented. Each subject

was asked to choose between the lotteries and immediately afterwards to price one of the
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lotteries. This represents pricing in the choice context. After a few filler questions, that

subject was asked to price the remaining lottery. This represents pricing in isolation. Which

lottery was priced in which context (choice or isolation) was randomized across subjects.

Our identifying assumption is that in the choice context the pricing of each lottery is based

on its evaluation in comparison with the alternative lottery. Our account for preference

reversals then predicts that they occur between choosing and pricing in isolation, but not

between choosing and pricing in the choice context. To elicit pricing in either context, we

used the Grether and Plott (1974) wording described above. As in the experiment described

in point i), subjects chose from a menu of prices. We also tried to have subjects enter their

own price, which yields noisier data. We considered the two lotteries

Lp = (4, .97; 0, .03), vs L$ = (16, .31; 0, .69)

which Tversky et al (1990) found to lead to a high rate of preference reversals. The experi-

mental results allow us to make four points:

1) Standard preference reversals, where individuals choosing Lp over L$ price L$ higher,

occur in terms of average prices in isolation. To see this, note that the mean prices P (Liso$ )

and P (Lisop ) for L$ and Lp, respectively, stated by individuals that had chosen Lp over L$

were equal to

P (Lisop ) = 4.6 < P (Liso$ ) = 5.2 .

Since Lp � L$ and P (Lisop ) < P (Liso$ ), Preference Reversal occurs with respect to mean

prices in isolation.

We then tested whether preference reversals occur not only on average, but also prob-

abilistically. Even though we do not directly replicate Tversky’s within-subject test (since

each subject priced only one lottery in each context), we checked from the distributions of

prices in isolation the likelihood with which Preference Reversals would occur if individuals

were drawing prices from these distributions. To do so, we denoted the price distribution for

L$ in isolation by PLiso
$

and the price distribution for Lp in isolation by PLisop . As a first step,

we noted that PLiso
$

nearly first-order stochastically dominates PLisop as shown in Figure 2.

Figure 2 already gives a compelling visual effect of the potential prevalence of preference
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Figure 2: P (Liso$ ) roughly first-order stochastically dominates P (Lisop ).

reversals (remmeber that this is the price distribution for individual who chose Lp over L$).

To quantify this effect, we denoted by CLiso
$

the cumulative pricing distribution for lottery

L$ in isolation implied by the observed price distribution PLiso
$

. Then the likelihood that a

given subject exhibits a Preference Reversal is:

Prob
[
P (Liso$ ) > P (Lisop )

]
=

∫
PLisop (p) ·

(
1− CLiso

$
(p)
)
dp.

The data imply that, conditional on Lp � L$, Prob
[
P (Liso$ ) > P (Lisop )

]
= 0.52.

Interestingly, the observed choice and pricing patterns allow us to predict the frequency

of non-standard preference reversals, namely those whereby L$ is preferred to Lp and yet

Lp is priced higher in isolation. These non-standard reversals are neither predicted by our

model nor by any other theory of preference reversals (Tversky et al 1990, Loomes and

Sugden 1983). However, studies on preference reversals have document that these non-

standard patterns occur in the data, and experimenters have attributed them to arbitrary

fluctuations in evaluation, especially if the two lotteries are evaluated similarly (Bostic et

al 1990). Crucially, as stressed by (Tversky et al 1990) the preference reversal phenomenon

is interesting precisely because in experiments the non-standard reversals appear to occur

substantially less frequently than standard ones, suggesting that the riskier lottery tends to
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be systematically undervalued in the choice context and overpriced in isolation. If preference

reversals were simply due to random fluctuations, the rates of standard and non-standard

reversals would be the same on average. Using the above method, we find that in our

experiments non-standard reversals occur with frequency around 25%, which is substantially

lower than the frequency of standard preference reversals in our data.6 Thus, also in our

experiments reversals cannot be explained by random fluctuations in evaluation.

2) Standard preference reversals do not occur between choice and pricing in the context

of choice, consistent with the key prediction of our model. Indeed, conditional on Lp � L$,

the mean prices in the context of choice were

P (Lp|L$) = 4.3 > P (L$|Lp) = 4.1

Now the distribution for P (Lp|L$) does not first order stochastically dominate that for

P (L$|Lp) because subjects attribute similar values to both lotteries in the choice context

(indeed, about half the subjects chose each lottery), which magnifies the impact of noise

in pricing in the chocie context. Interestingly, we estimate from the price distribution that

using prices in the context of choice, around 45% of subjects would exhibit the standard

preference reversal while around 49% incur in the non-standard preference reversal in the

context of choice. There is no significant difference between these two rates, which suggests

that any reversals in the context of choice are due to random fluctuations of evaluation.

To summarize points 1 and 2, our results show that the key feature of our experiments

is that the price of the riskier lottery L$ substantially increases when performed in isolation

relative to choice (see Figure 3), while the price of the safer lottery Lp does not change much

in the two contexts. These features are both predicted by our model (the latter one is due to

the fact that Lp wins with probability close to one, p = 0.95). The two prices are generally

very close in the context of choice, although the precise ranking in this context is not clearly

established by the data. These findings confirm that context-dependent evaluation provides

6The difference between these rates is less striking here than those found in the literature, which reports
rates for standard preference of around 75% (conditional on choosing Lp), and rates for non-standard reversals
of around 15% (conditional on choosing L$). This may be due to a potentially higher level of noise in our
data, or more simply to errors introduced by our method of inferring preference reversals from independent
pricing distributions.
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an empirically valid account of preference reversals.

Figure 3: Effect of context on the evaluation of L$.

3) As is clear from average pricing, some subjects reported prices for Lp above its high

payoff of $4; since the range of prices in the menu extend much beyond the normal range

of prices for Lp, this may induce some subjects to erroneously choose a higher price (this

problem did not occur for L$, probably because the expected value is so much lower than the

upper limit). Yet, using different menus for the two lotteries might have also induced relative

mispricing (we conservatively chose mispricing of Lp because it goes against the standard

preference reversals hypothesis). To get a more realistic distribution of prices, and to check

for the robustness of the results, we also cleaned the data by truncating the most extreme

overpricing.

To do so, we discarded surveys where stated prices exceeded the respective expected

values by 50% or more, and we capped the stated price for Lp at $4. Again, average prices

support our prediction; conditional on choosing Lp over L$ the average prices are:

P (Lisop ) = 3.88 < P (Liso$ ) = 4.58

This result holds not only for the averages but also for the distributions of prices, in the sense

that the distribution for P (Liso$ ) essentially first order stochastically dominates the price for
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P (Lisop ), as before. Let us now compare choice and pricing in the choice context. Again

conditional on Lp � L$, the subjects now price Lp on average just above L$:

P (Lp|L$) = 3.41 ∼ P (L$|Lp) = 3.40

As before, the distributions do not suggest a significant difference between the two prices.

The rate of standard and non-standard preference reversals are also very similar (around

30%). Thus, the truncated yield very similar results to the non-truncated data. This conclu-

sion is robust to different specifications of the truncation (although lowering the threshold

for the pricing of Lp affects P (Lp) relatively more than P (L$)).

4) It is the comparison between the two lotteries, rather than the actual choice, that drives

the large change in evaluation between choice and pricing in isolation. To test for this, in

another version of the survey subjects were asked to price the lotteries under comparison, but

without having to choose between them. We again observe, under the same truncation as

in point 3, that L$ is priced higher in isolation, P (Lisop ) = 3.58 < P (Liso$ ) = 4.34. However,

L$ is also priced higher under comparison, albeit much less so that in isolation: P (Lp|L$) =

3.42 < P (L$|Lp) = 3.78. The main difference between the two price distributions is again

the large shift in evaluation of L$; to that extent, the results are still compatible with our

predictions. Moreover, while the presentation of the lotteries was identical in the two versions

of the survey, we expect that subjects who were asked to choose were more thorough in their

examination of the state space. That may help explain why pricing under comparison was

half-way between pricing under choice and pricing in isolation.

2.D Calibrations

2.D.1 Long-shot lotteries and bounds on θ

Recall the specification of the salience function in Equation (2) is:

σ(x, y) =
|x− y|

|x|+ |y|+ θ
.
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y 1 5 20 50 100 200
.44 .50 .15 .06 .10 .10

Table 1: Proportion of risk-seeking subjects in longshot lotteries

The parameter θ plays an important role in determining the salience of states whose payoffs

are close to zero; it can be interpreted as a cognitive limit to the resolution of payoff magni-

tude when a payoff approaches zero. This latter property of salience is crucial to determine a

local thinker’s risk attitudes with respect to longshot lotteries in Section 4.2: a local thinker

takes the longshot lottery if and only if y < θ · (1 − 2p)/2p. We thus use the experimental

results on longshot lotteries to derive constraints on θ. The following table reports the pro-

portion of 100 subjects who chose the longshot lottery over its expected value as a function

of y ∈ {1, 5, 20, 50, 100, 200} when p = 0.01.

Thus, for p = 0.01, risk seeking decreases strongly between y = $5 and y = $20. This

yields θ ≥ 0.1. We use the specification θ ∼ 0.1 to analyze the remaining results on risk

preferences, see 2.C.3b.

2.D.2 Calibrations of Prospect Theory

We consider the ability of standard calibrations of Cumulative Prospect Theory (CPT)

to account for the risk shifting experiments of Sections 4, where dramatic shifts in risk pref-

erences occurred as the expected values of lotteries changed. To explore CPT’s predictions in

these experiments, we use the following standard functional forms for CPT’s value function

v and probability weighting function π (Tversky and Kahneman, 1992):

v(x) =

 xα for x ≥ 0

−λ(−x)α for x < 0
, π(p) =

pγKT

(pγKT + (1− p)γKT )1/γKT

An agent characterized by v(x) has constant relative risk aversion with coefficient 1−α > 0

(implying decreasing absolute risk aversion). The parameter λ > 1 captures loss aversion.

This functional form is standard in applications of Prospect Theory (e.g. Benartzi and

Thaler, 1995). Importantly, the estimations of α from different sets of experiments yield
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very different values. In choices between two outcome lotteries and a sure prospect, Tversky

and Kahneman calibrate α ∼ 0.88, λ ∼ 2.25. In choices involving three-outcome lotteries

Wu and Gonzalez (1996) get α ∼ 0.5 and α ∼ 0.37. The estimation of the probability

weighting function is more stable, locating around γKT ∼ 0.61 (TK1992). Wu and Gonzalez

(1996) estimate γKT ∼ 0.71, while Prelec’s (1998) simplest representation of the weighting

function is

π(p) = e−(− ln p)γP

with γP ∼ 0.65, which is numerically very similar to the original (TK92) calibration. These

calibrations are useful references for generating predictions of CPT for our choice problems.

2.D.2a Long-shot lotteries

Consider again the choice between a sure prospect S = {y, 1} and a long-shot lottery

L = {x, p; 0, 1 − p} with the same expected value, y = xp. A CPT agent evaluates these

lotteries as

VCPT (L) = π(p) · v(y/p), and VCPT (S) = v(y)

If the value function is a power function, then L is preferred to S when π(p)(y/p)α > yα, that

is, π(p) > pα. This condition is independent of the expected value y; thus, for a given level

of probability, a CPT agent’s either refuses any long-shot lottery, or takes every long-shot

lottery, when that lottery L is compared with its expected value S. This is in contradiction

with the experimental results (and also the intuition) whereby subjects prefer the lottery L

as long as its expected value is small enough. CPT can account for these results by allowing

a more general value function, featuring increasing relative risk aversion. However, several

results (including the following) also need decreasing absolute risk aversion to be compatible

with CPT, and constant relative risk aversion is a natural candidate for that.

2.D.2b Shifts in risk preferences

Consider again the risk shifting experiments of Section 4 where the lottery loss is kept

constant at l = 20. Our experimental results, summarized in Table 2, are broadly consistent

with the predictions of our model displayed in Figure 3.
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$10500 0.83 0.65 0.50 0.48 0.46 0.33 0.23
$2100 0.83 0.65 0.48 0.43 0.48 0.38 0.21
$400 0.60 0.58 0.44 0.47 0.33 0.30 0.23
$100 0.58 0.54 0.40 0.32 0.22 0.30 0.13
$20 0.15 0.2 0.12 0.08 0.10 0.25 0.15

0.01 0.05 0.2 0.33 0.4 0.5 0.67

Table 2: Proportion of Risk-Seeking subjects

Can CPT explain these patters through a combination of risk aversion and probability

weighting? The answer is that it depends on the values of α and γKT . We simulated the

choice behavior of a CPT agent using a single-agent stochastic choice model (Camerer and

Ho 1994), which assumes that all subjects are described by the same calibrated model but

their choices follow a stochastic process described by the logistic function P (L1 � L2) =

1/(1 + eV (L2)−V (L1)). This process introduces no extra degrees of freedom and ensures that

P (L1 � L2) = 0.5 if and only if V (L1) = V (L2), and also P (L1 � L2) = 1 if and only if

V (L1) >> V (L2). The specification above fixes the value function’s normalization, v(1) = 1.

The quantitative CPT predictions thus generated for the baseline KT calibration (α = 0.88

and γPT = 0.61) are presented in Table 3:

$10500 1 0.99 0.85 0.52 0.39 0.28 0.21
$2100 1 1 0.89 0.52 0.37 0.25 0.16
$400 1 1 0.92 0.51 0.34 0.20 0.12
$100 1 1 0.93 0.47 0.28 0.15 0.08
$20 1 1 0.74 0.17 0.08 0.04 0.02

0.01 0.05 0.2 0.33 0.4 0.5 0.67

Table 3: CPT with baseline calibration α = 0.88, γKT = 0.61 (TK1992)

This table reveals two important facts:

1. CPT predicts a drop in risk seeking when π(p) < p, i.e. when p > 0.35, which

corresponds broadly to what we observe. However, in its original intution, the prob-

ability weighting function was meant to overweight small probabilities (in KT, 1979

this seems to mean p < 0.1). As a result, from a conceptual standpoint our prediction

of overweighting of probabilities (and thus of risk seeking) for moderate probabilities
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is entirely original because it explains why agents can overweight even probabilities as

high as p ∼ 0.35.

2. When α is high (in Table 3, α = 0.88), the value function is little curved and risk

attitudes depend mainly on the weighting of probabilities. As a result, agents are risk

seeking for any p such that π(p) > p and risk aversion otherwise, largely independently

of y. Thus in the baseline KT calibration α = 0.88 for two outcome lotteries, CPT

cannot reproduce the experimental patterns. Similarly, one can show that if α is small

(e.g. α = 0.37 as suggested by Wu and Gonzalez 1996), choices are driven mainly by

risk preferences and agents are essentially risk neutral for any y > 100, independently of

p. This reasoning suggests that an intermediate level of α may ensure that preferences

depend both on payoff level x and on its variance (through p), as observed. Table 4

shows the predictions of CPT with the intermediate α = 0.6.

$10500 0.78 0.62 0.52 0.50 0.50 0.49 0.48
$2100 0.89 0.70 0.54 0.50 0.49 0.48 0.47
$400 0.94 0.80 0.57 0.49 0.48 0.45 0.44
$100 0.93 0.82 0.57 0.47 0.44 0.41 0.38
$20 0.32 0.22 0.13 0.11 0.10 0.10 0.11

0.01 0.05 0.2 0.33 0.4 0.5 0.67

Table 4: CPT with α = 0.6, γKT = 0.61

This calibration which is closer on average to the experimental results, even though

differences remain; for instance, agents are not progressively more risk seeking as the expected

value y increases; instead they are extremely risk seeking (for y ≥ 100) and then progressively

more risk neutral. To formally quantify this fit, a meaningful measure of distance between

the two tables 2 and 4 would need to be developed. Still, our conclusion from this exercise is

that the probability weighting function controls how risk attitudes change as p varies, while

the value function controls how risk attitudes change as y varies. Since our results describe

these two comparative statics, we find that by fine tuning both the probability weighting

function and the value function, CPT can recover some of the features of our results.

We finally simulate our model by using the same stochastic choice model. With our
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$10500 0.79 0.79 0.75 0.71 0.69 0.34 0.39
$2100 0.79 0.83 0.79 0.75 0.72 0.31 0.37
$400 0.68 0.82 0.82 0.78 0.76 0.27 0.34
$100 0.38 0.72 0.81 0.79 0.77 0.22 0.30
$20 0.001 0.002 0.013 0.03 0.04 0.07 0.16

0.01 0.05 0.2 0.33 0.4 0.5 0.67

Table 5: Local Thinking with δ = 0.7, θ = 0.1

specification of decision weights, a local thinker’s evaluation is discontinuous at payoff levels

where salience ranking changes. This presents a difficulty in the application of the stochastic

choice model, since the latter is very sensitive to changes in the difference between the

utilities, particularly if this difference moves away from zero. A straightforward application

of the stochastic choice model would therefore lead to a very abrupt transition from risk

aversion to risk seeking. To address this issue, we introduce a smoothing of the local thinker’s

evaluation of lotteries in the form of risk aversion in the value function (an alternative

strategy would be to use a different stochastic choice model without this particular feature).

We thus simulate our model with the value function v(x) = x0.88, and fit (by least mean

squares) the parameters θ and δ to the data. Table shows the results with the best fit

δ = 0.7, θ = 0.1: The predictions are sensitive to δ, since it modulates large variations in the

evaluation of the lotteries: for δ = 1 the lotteries are evaluated at their expected value, and

for δ → 0 they are evaluated at their most salient payoff. The specification δ = 0.7 gives

a good agreement with the experimental data. The value of θ is also important, but only

for the lower left entry in the table: as for the long-shot lotteries, the experimental data for

this experiment imply that when y = 20 the lotteries’ downside is salient for any p. Setting

p = 0.01, we again get θ ≤ 0.4. For p > 0.01 the constraint is eased and for y ≥ 100, all

payoffs are greater or equal to 80 so θ effectively does not count.

Having introduced risk aversion to generate predictions with logistic stochastic choice

model, we also confirmed that the fit δ = 0.7 and θ = 0.1 is still consistent with the Allais

common consequence and common ratio paradoxes; with risk aversion, the new constraints

are δ ∈ (0.19, 0.82). Introducing this amount of risk aversion also has an impact on predic-

tions about longshot lotteries. With α = 0.88, even when the upside of the lottery is salient,
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a small majority of subjects are predicted to be risk averse; when the downside is salient,

then the vast majority will be risk averse. This is close to the observed rates, see Table ??.

2.D.2c Robustness of the Allais paradox:

Consider once more the common consequence paradox of Equation (13):

Lz1 = (2500, 0.33; 0, 0.01; z, 0.66), and Lz2 = (2400, 0.34; z, 0.66)

Salience Theory explains the shift toward risk seeking which occurs when z is reduced

from 2400 to 0 as being triggered by the fact that when z = 0 the two lotteries have the

same downside. This implies that the upside 2500 of the riskier lottery Lz1 becomes salient,

enhancing risk taking. We have tested this intuition by considering correlated versions of

these lotteries. Here we consider a different modification of the paradox which preserves

lottery independence and allows for a comparison with CPT. The intuition for the Allais

paradox in our model suggests that the shift toward risk seeking occurs only as z approaches

2400. In fact, at any z > 0 the risky lottery Lz2 still has a lower downside than Lz1, which

stifles risk seeking.

To test this possibility, we let subjects choose between Lz1 and Lz2 for z = $0, $5, $25,

$100, $200, and $2400.

z 0 5 25 100 200

.56 .71 .78 .80 .83

As predicted by our model, as soon as z > 0 as many as 70% of subjects prefer the safe

lottery Lz2 even if z is as low as $5. Interestingly, this boost in the preference for the safer

lottery Lz2 as z increase from 0 to $5 comes from subjects who had chosen Lz1 when z = 0.

The pattern of responses for z = 100 already approaches that reported by KT for z = 1000.

Is this sharp reactions of subjects to z = 5 consistent with Prospect Theory? The

Prospect Theory agent evaluates the difference between the prospects as:

V (Lz2)− V (Lz1) = v(z)[1− π(.66)− π(.34)]− π(.33)v(2500) + π(.34)v(2400),
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so that to prefer Lz1 when z = 0 (i.e. L0
2 − L0

1 < 0) subjects must have that π(.34)v(2400)−

π(.33)v(2500) < 0. As z increases, since the weighting function is assumed to be subadditive

[i.e. 1 > π(.66) + π(.34)], the leftmost term in the above expression becomes larger and

larger, eventually rendering the entire expression positive for z = 2400. One would however

require a quite steep value function v(·) for the switch in the sign of the above expression

to already occur at z = 5, especially because the extent of subadditivity of π(·) is typically

small. Using the above calibrations for the value function v and the probability weighting

function π, we get

V (Lz2)− V (Lz1) = 0.08 · zα − 0.348 · 2500α + 0.355 · 2400α

Preferences are again modeled by the stochastic choice approach. Varying the risk

aversion coefficient α has two effects: increasing α increases the impact of z on the demand

for the safer option Lz1 as z → 2400, but it also diminishes that impact when z is small.

Instead, if α is small, increasing z from 0 to 5 significantly increases demand for Lz1, but

for large z the agent is indifferent between Lz1 and Lz2. This trade-off is inconsistent with

the experimental data, which shows both a significant increase in demand for Lz1 for z = 5

relative to z = 0, and also a nearly universal demand for Lz1 as z → 2400. Both of these

effects are predicted by our model. To see this, note that for any positive value of z in

consideration (and θ ∼ 0.1), the salience ranking of states is

σ(0, 2400) > σ(0, z) > σ(2500, z) > σ(z, 2400) > σ(2500, 2400) > σ(z, z)

so that the most salient states favor Lz2. Instead, for z = 0 the salience ranking collapses to

the four less salient states:

σ(2500, 0) > σ(0, 2400) > σ(2500, 2400) > σ(0, 0)

which favors the riskier lottery.
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