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Abstract: 

State and local government pension funds in the United States 

collectively manage a very large and diverse pool of assets to meet the 

even large sum of accrued liabilities. Recent research has emphasized 

that widely-used accounting practices, like matching discount rates to 

expected asset returns, understate the market value of these liabilities. 

Less work has explored the risks inherent in existing diverse set asset 

allocations, and the accounting practices used by most state and local 

pensions do not capture or report this risk at all. To explore the effect of 

asset market risk, we build and simulate a dynamic model of pension 

funding using a realistic return generating process. We find that the 

range of potential outcomes is very large, meaning that state and local 

governments need to prepare for an extremely wide range of possible 

funding shocks in the next few decades. Moreover, this wide range of 

outcomes makes the ultimate impact of policy choices – such as 

changing the discount rate or failing to sufficiently contribute to the 

fund – nonlinear and difficult to anticipate. Together, these findings 

suggest the need for more attention and reporting of these risks and the 

attendant range of possible outcomes by public plans. 
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I. Introduction 

Though they often fly under the radar in public discourse, state and local 

pension plans are among the most important institutions in the modern economy. They 

provide retirement benefits for nearly 10 million beneficiaries; have nearly 20 million 

members, and manage nearly $4 trillion in assets.1  The huge scale of these plans means 

that seemingly obscure assumptions on investment returns and discount rates have 

enormous consequences.  For example, CALPERS, the largest such plan, just reported 

(in 2016) an annual return of roughly 7% below expectation. Given CALPERS’ 

enormous holdings, that’s a shortfall equivalent to 30% of the state’s income tax 

revenue for the year. 

In recent years, the risky funding system underlying these plans has come under 

fire in academic circles. For example, Brown and Wilcox (2009) and Rauh and Novy-

Marx (2014) argue that the discount rates used by public plans to account for future 

liabilities are generally too high. These papers note that these liabilities, when 

discounted at rates closer to those offered by municipal bonds, are significantly larger 

and require substantially more upfront funding. Administrators of public plans have 

pushed back against this critique, arguing that commonly used discount rates better 

reflect the true historical experience and asset requirements facing plans (NASRA 2010). 

While this discussion is an important one, it is academic in the sense that few 

major funds are or are moving towards an allocation concentration in municipal bonds.  

State and local governments will not face a deterministic cost associated with a “riskless 

benchmark”, but rather a distribution of potential future costs determined by assumed 

discount rate, asset allocation, and other policy choices.  It is crucial, then, that policy 

                                                           
1
 Annual Survey of Public Pensions: State- and Locally Administered Defined Benefit Data Summary Brief: 2015. 

https://www.census.gov/content/dam/Census/library/publications/2016/econ/g15-aspp-sl.pdf 
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makers understand how their decisions interact with each other and affect the entire 

distribution of outcomes, rather than simply theoretical risk-free benchmarks or an 

assumed ‘average’ outcome.  

Unfortunately, the current accounting guidelines for public pensions focus solely 

on assumed deterministic outcomes. The Government Accounting Standards Board 

(GASB) statements on accounting guidelines for defined benefit plans2 do not even 

mention the word “distribution” in this context.  We will show that this deterministic, 

assumption based approach can provide unreliable guidance to policy makers. 

Another shortcoming with the existing debate is that models used by both 

academics and practitioners generally assume that state and local governments will 

indeed fund the promises they make.  In practice, of course, governments often fail to 

come up with the money they “should” contribute according to their funding laws. In 

fact, a recent study found that less than 85% of the required payments to cover 

unfunded liabilities were made from 2001-2013.3 It is important to have a model that 

builds in this reality of pension funding, or non-funding, when trying to evaluate the 

costs of different policies. 

In this paper, we aim to remedy this gap in the discussion. Building on models 

by Josh McGee and Michelle Welch (2014a, 2014b) we incorporate a realistic set of asset 

classes and return shocks into the model. We allow for plans to invest in a range of 

different asset classes, and simulate return processes that build in historical across-class 

correlations and non-normality.  Using data on historical, within-class performance by 

public funds, we also estimate time-varying idiosyncratic variances within asset classes. 

The size of these idiosyncratic shocks vary with the cycle or average return, and 

together, create a rich and realistic distribution of asset market results. We then allow 

                                                           
2
 Available at: 

3
 This calculation is on a weighted basis. http://www.nasra.org/files/JointPublications/NASRA_ARC_Spotlight.pdf 
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the model to dynamically account for these shocks, simulate return draws, and track 

how the system evolves over stochastic iterations. We calibrate the model to one large 

system, the Texas Employee Retirement System. By looking at the distribution of 

outcomes under different scenarios for this prototypical system, we can better shed 

light on the impact of policy choices and economic assumption on outcomes. 

This exercise generates a few important insights. The first, and likely most 

important, is that the existing status quo is enormously risky. In our baseline simulation 

for the Texas ERS, under its current policies, the sum of the discounted amortized 

payments required over a 30-year period and final unfunded liabilities has a standard 

deviation of roughly 7.25% of the total present discounted value of payroll over that 

period. This means that the total cost to the taxpayers of Texas will vary significantly 

with states of the world going forward. The current system of pension accounting, 

whatever the discount rate used, doesn’t convey the risks inherent in the system and 

how policy choices affect those risk.  In our conclusion, we discuss statistics that public 

plans could report using these types of simulations to make this risk transparent to 

policymakers. 

Related to this point, our simulations highlight the risk-reward tradeoff 

associated with riskier pension plan allocations. GASB standards implicitly recognize 

the ‘reward’ side of riskier allocations by tying discount rates to expected returns, a 

point also made by Andonov et al (2015). And indeed, our simulations confirm, that 

more often than not, these allocations do generate superior results.  When comparing 

outcomes for the median asset return simulation, shifting assets into riskier categories 

like equities generally yields a faster path toward full funding and smaller over all 

payments en route to that destination. For example, shifting an additional 15% of the 

Texas ERS system into equities from money markets and debt reduced the time until 

full funding, at the median of the return distribution, by roughly 5 years. 



5 
 

The gains, of course, are not without tradeoffs, and GASB standards do not 

account for these risks in any meaningful way. While outcomes are better at the median, 

performance in the left tail of the return distribution are dramatically worse. The gap in 

the 95th percentile of the distribution, between the baseline allocation and the riskier one 

mentioned above, is enormous.  The riskier allocation winds up costing roughly 15% 

more under the Texas ERS calibration, which over 30 years generates a price tag of over 

$46 billion in PDV costs. 

Our simulations also clarify some of the ongoing debate regarding appropriate 

discount rates.  Changes in the discount rate have a perverse immediate impact on 

liabilities and funded ratios in that funds with higher rates and lower contributions 

appear better funded on impact. Over time, though, the reduced contributions 

associated with higher discounting leads to more not less underfunding. 

 In our simulations, plans that systematically make contributions based on 

discount rates significantly below average asset returns usually do wind up fully 

funded, despite the current risk-inducing allocations. Of course, it is possible for plans 

to put away “too much” money too, in the sense that pensions can become overfunded. 

Additionally, it is inefficient for plans to make large contributions if asset returns fall 

below discount rates. Thus the ‘cost-minimizing’ discount rate4 depends non-linearly on 

the realization of investment returns. The wide range of potential outcomes generated 

by risky asset allocations thus makes it difficult to plan, which is itself a source of risk. 

Finally, our simulations demonstrate that the impact of state and local 

government meeting their funding their commitments also depends on a fund’s 

investment returns. The relationship between the returns a plan earns and the impact of 

contributing its payments on funding status and overall costs is also non-linear. When 

                                                           
4
 Note, the cost minimizing rate may not be the same as the rate needed to calculate the market value of the 

liabilities.   
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asset market returns are very strong, failing to make contributions does not really affect 

the plans funded status. The larger than expected investment income can replace the 

shortfall and ensure the plan is adequately funded. Full initial contributions lead to 

overfunding in this situation. Conversely, when asset market returns are weak, early 

up-front contributions are multiplied by years of sub-par returns and make a smaller 

dent in the unfunded liabilities. Our simulations confirm that the impact of 

responsibility is largest when returns are in an intermediate range.  

Though there is a large literature on public sector pensions, there are only a few 

papers undertaking simulation exercises similar to the ones we conduct here. Perhaps 

most similar is a contemporaneous paper by Boyd and Yin (2016) that similarly tries to 

simulate the impact of different funding policies with an assumed stochastic 

distribution of returns. Though the details of the model differ, they reach similar 

conclusions regarding the degree of risk in the system. Other papers that calculate 

outcomes for pension systems under a distribution of outcomes include Rauh and 

Novy-Marx (JPE 2014), which explores the impact of linking benefits to returns in a risk 

sharing environment, and Munnell, Aubry, and Hurwitz (2013), which tests the 

sensitivity of funding ratios to investment returns. Maurer, Mitchell, and Rogalla (2009) 

simulate pension outcomes for a proposed reform of public sector pensions in 

Germany, and CalPERS undertook a simulation exercise designed to measure risk for 

its members (CalPers 2014).5 

The importance of this issue can be seen in municipal pension plans around the 

country as the threat of default looms. Understanding the impact of plan decisions on 

the riskiness of the plan is fundamental to understanding the value of the benefits to 

employees and the costs to employers and ultimately taxpayers. Bottazzi, Jappelli and 

Padula (2006) and Card and Ransom (2011) find that beneficiaries adjust their 

                                                           
5
 https://www.calpers.ca.gov/docs/forms-publications/annual-review-funding-2014.pdf 
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expectations and private wealth accumulation decisions based on pension reforms. 

With courts hearing cases (Cloud, 2011) and allowing changes to plan benefits based on 

the financial state of the municipality and pension plan in light of the Great Recession, 

the ability of each economic agent to understand the distribution of outcomes they face 

is critical to their own decision making. 

Many pensions face a challenge to overcome the benefit enhancements that 

followed a flush time in the late 1990s (Koedel, Ni and Podgursky, 2014) that shifted 

wealth from the recently employed to the retiring. These enhancements left funds in a 

position where they may need to reduce/freeze benefits, increase contributions or 

investment more aggressively (Rauh 2010).  

To address the issues around the impact of contributions, investment allocations 

and discount rate selection, this paper proceeds as follows. In the next section, we lay 

out the math underlying our model and the unique method we use to generate a 

plausible distribution of investment returns. In section 3, we explore the output from 

our simulation and discuss their implications. Section 4 discusses potential policy 

responses to the simulations and concludes. 

 

II. Model of Pension Dynamics 

To simulate the funded status of pensions it is required that both the expected 

future liabilities and assets be calculated. We embed the techniques in McGee and 

Welch (2014a, 2014b) into a discrete-time dynamic model wherein each period’s values 

reflect updates based on stochastic asset returns. Specifically, we have the two 

endogenous state variables UL (unfunded liabilities) and MV (the market value of 

assets) evolve according to the following laws of motion: 
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ULt+1 = Lt+1– MVt+1 

MVt+1= MVt+ Ct + Rt – Pt 

where R represents the total, stochastic return of the plan and P represents payouts 

accrued by an exogenous workforce evolution process. The plans’ total contributions C 

is defined by the equation: 

Ct = NCt +                       

where NC is the Normal Cost as determined by the exogenous workforce evolution 

process. The final term in this equation reflects the fact that the fund must cover any 

negative asset value immediately. We use the McGee-Welch algorithm to calculate an 

updated NC period-by-period.  

NCt = NC_Fract * TotalPayrollt 

NC_Fract = PVBt/CCWt 

where: 

TotalPayrollt is the aggregated sum of the salaries of all workers in period t; 

PVBt is the expected present value of benefits to all current workers in period t, 

discounted at the plan’s selected discount rate; 

CCWt is the present value of the expected future salaries to all current workers in 

period t, discounted at the plan’s selected discount rate. 

The expected future benefits and payroll are a function of plan provided 

separation and mortality rates, salary information, a benefit formula and inflation. The 

benefit formula uses years of service at separation, retirement age, salary data and a 

benefit percentage in order to calculate the initial benefit, B. The model allows for 
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annual cost of living adjustment (COLA) so that B is increased annually by an assumed 

COLA. 

The pension formula built into the model is based on final average salary defined 

benefit system (FAS DB). Workers in an FAS DB system are provided a lifetime annuity 

based on their final average salary and years of service, as outlined by McGee and 

Welch: 

B(            
                                    

 

     
 

 
    

  

        
 

where YOS is the years of service, M is the benefit multiplier, R is an indicator of 

retirement eligibility, E is a reduction percentage for early retirement, y is the number of 

years used in the final average salary calculation and CW is the current wage. The 

wages for the workers evolve along a pre-set salary vector which grows with inflation. 

The expected present value of benefits to a worker are calculated using standard 

actuarial techniques that account for the probabilities of separation and mortality for 

each age-tenure combination. 

In order to account for the common option of the employee withdrawing from 

the plan and choosing to take their own contributions along with any vested employer 

contributions rather than the annuity, the model calculates the present value of benefits 

as: 

                                      

where f is a function that represents a plan’s rules for withdrawing contributions based 

on the employee contributions (EEC), employer contributions (ERC) and the stated rate 

of return on those contributions (       ). 
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To consider the total benefits that the plan should expect to pay, the model 

aggregates the present value of benefits for all current workers. The normal cost in a 

given period is then calculated as the ratio of the present value of benefits of the current 

workers to the present value of payroll of the current workers multiplied by the current 

payroll. In order to find the present value of the payroll we need to consider the 

evolution of the workforce. 

We performed transformations to the current workforce with the assumptions 

that: 

1. The entry age distribution for new hires is constant and equal to the current 

age distribution of the workers with one year of service. 

2. The workforce will grow at a constant rate and that the number of newly 

hired workers will be a function of the growth of the workforce and the 

separation rates. 

To evolve the workforce over time the current workforce was multiplied by one 

minus the separation matrix (WFremainingt), aged by 1 year and added to new hires 

(NewHirest).  

Following McGee and Welch, the workforce is described by a k x k upper 

triangular matrix, W, where k is equal to the difference between the oldest age possible 

in the model and the youngest entry age, plus 1. The rows of the matrix represent the 

entry age of the workers while the columns represent the current age. The diagonal of 

the matrix represents the most recently hired workers (their entry age is equal to their 

current age). It is the diagonal of the initial workforce that is used to set the age 

distribution of all newly hired workers.  
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The process of removing separating workers requires an element by element 

multiplication of the workforce by the k x k separation matrix, as provided by a plan, 

resulting in W’. Prior to adding the new workers to W’, the remaining workers must be 

aged 1 year. This is accomplished by multiplying W’ by a shift matrix, A, which is a k x 

k matrix with ones on the super-diagonal, as shown below: 

     

      
       

   
        

  

   

 
 
 
 
 
     
     
     
     
      

 
 
 
 

 

The multiplication of W’ and A will yield W’’, the matrix of remaining workers 

now one year older, and thus with one more year of experience. 

The process of adding the new workers to the now-aged existing workers 

requires generating a matrix, Φ’, which will be added to W’’ to create the complete next 

period workforce. In order to generate Φ’, we must first generate Φ, which is a k x k 

matrix of k columns of the vector of new hires,        , by age. The vector         is created by 

multiplying each element of   , the distribution of new hires as determined by the age 

distribution of first year employees in the initial workforce, by a scaler p, the population 

of new hires required to fulfill the required workforce growth. The number of new hires 

required is found by: 

#WFt*(1 + G) = #WFremainingt + #NewHirest 

where the #WFt is the number of workers in the workforce at time t, G is the growth rate 

of the workforce, #WFremainingt is the number of workers in WFremainingt, and 

#NewHirest is the number of new hires required. 
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This process is continued iteratively to generate the future workforce. 

To properly account for the normal cost, only the payroll and benefits of the 

current workforce is considered each period. The iterative process then recalculates the 

PVB and CCW each period based on the new, current workforce. 

The amortization cost, A, is also calculated using methods developed in the 

McGee and Welch paper. We depart from that setup, however, in that At+1 is calculated 

each period as a function of the then current funding level and payroll rather than as a 

function of the initial A. Additionally, we allow for the relaxation of the assumption that 

the full contribution is made. 

At = LevPctt*TotalPayrollt 

LevPctt = ULt/CCW30t 

where: 

CCW30t is the present value of the expected future payroll to all current workers 

over the following 30 years from period t, discounted at the plan’s selected 

discount rate.  

Here, we have assumed an open 30 year level-percent payoff method for the 

unfunded liability.  In other words, the required payments are set based on a thirty year 

amortization horizon that is recalculated each period. There are alternative methods to 

amortization payment calculations as well. Closed, rather than open, methods would 

preset the amortized payment for future periods, while level-dollar, rather than level-

percent, would fix the dollar payment rather than allow it to float with the size of the 

payroll. Boyd and Yin (2016) note that among funds listed in the Public Pension Plans 

Database a pure closed method is atypical and either an open or hybrid method are 
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most common. Additionally, over 70% of funds use a level percent, rather than level 

dollar method.  

CCW30t is found in similar way to CCW, with the exception being that the model 

only looks forward to 30 years of payroll rather than the entire possible tenure of the 

current workforce. 

The unfunded liability, UL, of the plan, is the difference between the plan’s 

liabilities and its assets. The liability is the present value of future payouts to current 

plan members (current workers, separated but not yet retired and retirees) and a 

function of the benefit formula, discount rate, COLA, wages, wage growth, workforce, 

separation and mortality matrices. 

While a full history of the prior workers (already separate/retired) would allow 

for an elegant solution whereby the model-estimated benefits owed each year could be 

used to calculate the plan liabilities and resulting amortized cost, the lack of the 

complete data offers the options of attempting to estimate and recreate the prior 

workforce and rebuild it based on assumptions of prior growth and separations or 

make similar assumptions about the growth of liabilities and benefits for all participants 

together. To simplify this process, we have assumed that the liabilities and benefit 

payments increase in proportion to the growth in payroll over time with the initial 

levels provided in the plan data. After projecting the workforce evolution and 

calculating the total payroll for all workers during each period, the growth in payroll is 

calculated. This method allows for an approximation of the impacts due to changes in 

the workforce distribution across age and tenure and the resulting impacts on total 

payroll to be included in the model.  
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To allow for changes in the assumed discount rate to impact the liabilities and 

amortized costs we calculated the Adjusted Liability (AL) by finding the Liability 

Adjustment Factor (LAF) as: 

AL = L * LAF 

LAF = 
    

      

      
 
   

    
      

      
 
   

 

where T is the liability payoff time, g is the payroll growth rate, b is the new discount 

rate and a is the original discount rate (the one used by the plan to calculate the initial 

liabilities). The method differs from the one used by McGee and Welch in that they used 

the ratio of the discount rates compounded out to the duration of the liabilities. While a 

practical calculation, the duration of the liabilities was not available in the plan data and 

is subject to some variation over time as the distribution of plan participants changes. 

Our method gives a similar result numerically and allows for changes over time as the 

payroll growth rate varies. It is derived as follows: 

    
   

      

 

   
 

where     are the future benefits to be paid to the prior and current workers and r is the 

plan’s discount rate.  

When considering the future benefits, we made a simplifying assumption that 

the benefit payouts would grow along with payroll so that: 

                 

This would give us the following: 
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Adopting the notation of the b as the new discount rate and a as the old discount rate 

we would have the following: 

  

 
 

        
      

      
 
    

         
      

      
 
    

 

where L’ is the new liability. 

When considering changes in discount rates our unfunded liabilities would then 

be calculated as: 

ULT+1 = LAFT+1 * LT+1– MVT+1 

This model updates iteratively so that each period, the new workforce and asset 

returns impact the current assets, liabilities and net cash flows with the assumption that 

the plan would rebalance to the target allocation. While the original model used in 

McGee and Welch set the Amortized Cost as a level percentage of payroll, allowing for 

uncertain asset returns and skipping payments requires a recalculation of the 

Amortized Cost each year in an open payoff method assumption. 

Finally, we must consider the mechanics of the asset levels. The initial asset level 

is provided by the plan and the model allows for user inputs for asset allocations. In 

addition to generating returns, the assets are also impact by benefit payments and 

contributions. The normal and amortized contributions to the plan are calculated within 

the model and update iteratively as the model evolves through time. While the model 

calculates the future benefits of the current workforce, it lacks the year-by-year benefits 

owed to the prior workforce. As previously described, the benefit payments are set at 
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the initially at the plan specified level and allowed to grow along with payroll each 

year. 

 With this model in hand, we now turn to simulating pension dynamics under 

different parameterization. First, we will address asset allocation across asset classes 

while allowing for within asset class shocks. Second, we will address the impact of 

discount rate selection on the overall cost of the plan and distribution of results. Finally, 

we will address the skipping and reducing amortized cost contributions. 

 

III. Simulations 

The Distribution of Returns 

One of the key elements of generating realistic simulations for our model is using 

a realistic distribution of asset returns. Much of the existing literature has conducted 

simulations assuming returns are drawn from standard distributions like a normal or 

log-normal random variable. Such an approach ignores the considerable skewness and 

kurtosis in the actual distribution of returns.  

To remedy this, we begin by collecting historical data on annual returns for 

widely used benchmark series for eleven different asset classes. Table 1 lists these 

benchmarks. 

Table 1  

Asset Class Benchmark Index 

Domestic Equities S&P 500 

Fixed Income Barclays Global Bond Index 

International Equities MSCI World ex-USA USD 
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Private Equity Commonfund Private Equity 

Marketable Alternatives HFRI Fund of Funds 

Venture Capital Commonfund Capital Venture Capital 

Real Estate NCREIF Open-End Diversified Core 

Energy & Natural 

Resources 

S&P Global Natural Resources 

Commodities DJ-UBS Commodity 

Distressed Debt HFRI Distressed Debt 

Short-Term 

Securities/Cash 

S&P/BGC 0-3m US T-bill TR 

 

To preserve the realistic correlation structure across asset classes, in each period 

of the simulations, we draw one year of the historical distribution. The asset class return 

data is drawn from annual returns from 1986 – 2013. We then begin our asset return 

simulation using the return for each benchmark in that period. 

Of course, individual funds experience variation around these benchmarks. 

Moreover, this variation is not constant over the business cycle. To model this, we 

assume that the return earned by any fund is equal to 

                 

where      is a draw from a normal distribution with     and              . 

The mean return      is the return drawn from year y for asset class a, and      is the 

simulated return for asset class a for iteration i. 

To estimate the parameters    and   , we collected several years of data on 

within-asset class returns for public pension plans in the Pensions & Investments. While 
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this series is not long enough to use for the baseline return draw, it was sufficient to 

estimate the standard deviation of within-class returns and the correlation of this 

standard deviation with the average return. We estimated these individual plan level 

shocks for equities, 3-month treasuries, 10-year debt, private equity, real estate and 

global debt. For the other classes we experiment with both (1) not assuming individual 

level shocks and (2) matching to the individual shocks of other known classes. Since 

these other classes generally receive smaller weight in allocation decisions, our results 

are not sensitive to this decision. The    for each of the measured asset classes (equities, 

3-month treasuries, 10-year debt, private equity, real estate and global debt) were 

determined to be 0.06, 0.035, 0.049, 0.1, 0.108 and 0.0 while the   were determined to be 

-0.2, 0, -0.2, 0.0, -0.15 and 0.0, respectively. Thus, after drawing a year and average 

benchmark returns, we draw individual asset class shocks using these ‘cyclical’ model 

standard deviations. This allows for the maintenance of correlation across asset classes, 

non-normal distribution of returns and within-asset class variation that is responsive to 

the size of the return in a given year. 

We model our example plan on the Texas Employee Retirement System, a choice 

we will make throughout this section. Our TX ERS allocation assigns a weight of 45%, 

6%, 15%, 10%, 14% and 10% distributed across equities, 3-month treasuries, 10-year 

debt, private equity, real estate, and global debt, respectively. This allocation assigns 

zero weight to the other classes, and so those benchmarks are not use in the simulation.  

This baseline distribution has a mean of 10.45% and a standard deviation of 9.76%. The 

skewness and kurtosis of the distribution are -.8 and 4.27, which indicates heavy tails 

and is in line with findings from the literature (Egan 2007).  

While we allow for a rich correlation structure in returns within-year across asset 

classes, we assume independent draws from the data generating process across years. 

The distribution of annualized returns over a twenty-five-year period has a smaller 
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variance than the annual return. The median annualized return under the base 

distribution is 10.0% (with a standard deviation of 1.8%).  Though this variance might 

appear minor, the heterogeneity in possible outcomes results in large differences in 

fiscal costs. If applied to the starting asset value, the difference between the 75th 

percentile and 25th percentile of this range is 1064% of the initial asset value. 

Is this large standard deviation reasonable?  Using data from Shoag (2011) and 

Farrell and Shoag (2012) on pension returns from the 1980s onward, we find the 

standard deviation of annualized cumulative twenty-five year returns is roughly 0.67%. 

That’s the variation across plans within one realization of the world.  The Boston College 

PPD similarly has an unweighted standard deviation of annualized returns from 2001-

2015 of 0.87%. Given the large idiosyncratic variation within a given set of aggregate 

returns, a number like 1.8% across possible realizations of the world of aggregate 

returns seems credible. 

A crucial fact to note is that mean return generated by this simulation process is 

large and exceeds both the discount rate used by the Texas ERS and the long run 

average return reported in Shoag (2011). The long run average in that paper may not be 

a useful benchmark, however, given the greater weight placed on riskier, higher return 

assets over time.  

 Our distribution also has a higher mean return than the average annual return 

reported from 2001-2015 in the Boston College Public Plan Database. That data set has a 

weighted mean return of 6.7% and a weighted median of 9.8%. One reason for this large 

difference is that this has been a relatively atypical period, historically, in terms of asset 

market returns. The distribution of index returns includes years with high returns 

outside this recent window. When excluding the “Great Recession” from this dataset 

our simulated distribution better fits the data. The mean and median weighted returns 
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in the PPD excluding the recession are 10.1% and 11.8% respectively, relative again, to 

our simulated mean of 10.4%.6 

We plot the CDF of returns of returns from the Boston College Public Plans data 

and our simulations below. As can be seen in the graph, the two distributions are 

largely similar, only our simulations are centered on a higher mean. 

Figure 1: 

 

 

It is difficult to overstate just how important this gap is for the likely evolution of 

plan dynamics. In Figure 2 below we plot the evolution of the amortization and 

shortfall costs as a percentage of payrolls under the two distributions. Since the normal 

cost, or the incremental costs associated with new workers, is pre-determined in our 

simulations, this is a good measure of costs. These simulations are likewise modeled 

around the TX ERS plan, and we therefore also use a 5% discount rate, 4% workforce 

                                                           
6
 The PPD shows a similar pattern for the Texas ERS, which has an average return of 5.6% over the period and 

10.6% when excluding the recession. 
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growth rate and 3% inflation, along with the plan-provided workforce and evolution 

matrices. Importantly, we assume that the plan contributes its normal cost and any 

negative balance and pays the actuarial amortization cost under a 30-year amortization 

horizon. We plot the median amortization and shortfall outcome in blue, with the grey 

lines representing the twenty-fifth and seventy-fifth percentile of the distribution. 

Figure 2: 

  

Simulated Distribution Public Plans Database Distribution 

 

As can be seen in the graph, under this simulated distribution of returns, 

amortization and shortfall payments are steadily declining at the median of the 

distribution. This is due to the rate of return generally exceeding the discount rate and 

steady payment of the amortization cost. This finding deviates from Boyd and Yin 

(2016), who find that a typical level-percent, open amortization method plan, starting at 

75% funded, would only reach 85% after 30 years. The driver for this difference lies in 

the simulation assumptions, namely the difference between the discount rate and asset 

returns. Boyd and Yin’s simulation assumed a discount rate equal to the mean of 

expected asset returns, while this model assumed a plan-provided discount rate that is 

well below the simulated asset returns. While the contributions of open amortization 
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method, alone, would fail to fully close the unfunded liability, returns above the 

discount rate for much of the distribution drive asset levels above liabilities, fully 

eliminating the gap. Even in the relatively poor asset market return segment of the 

distribution, these costs are below their initial levels. This is not to understate the risk 

within the distribution, though, as the interquartile range remains 4 percent of payrolls 

after 25 years. 

The same conclusion is not true under the PPD distribution of returns. Under 

that scenario, despite regularly making amortization payments, the plan ends up 

paying a larger fraction of payroll to cover these overhang costs after 25 years in the 

median outcome. Again, this conclusion is relatively insensitive to the location within 

the distribution – even the 25th percentile of these costs experiences only a modest 

decline despite years of contributions. Though again, the interquartile range remains 

large across realization within this distribution, at 4% of payrolls.  In total, these 

comparisons highlight how big an impact the shift in the return distribution will have 

on these outcomes. 

Of course, the distribution of amortization costs is only one measure of plan 

financial health, and a spot measure at that. It does not factor into account extant 

unfunded liabilities. Similarly, considering only unfunded liabilities would ignore prior 

differences in amortization payments. To more broadly consider the impact of the PPD 

versus the simulated return distribution, we measure the present discounted value of 

all prior amortization and shortfall payments along with any remaining unfunded 

liabilities after thirty years, divided by the present discounted value of all past payroll. 

We plot the distribution for both the PPD and simulated asset distributions in Figure 3 

below. 
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Figure 3: 

 

As can be seen in the figure, the simulated distribution has far smaller total costs. 

At the mean, these differences are 14.6% of the total PDV of payroll over the period. 

Needless to say, this represents an enormous difference in fiscal costs, and one that 

would be difficult for state and local governments to cover. Of course, even within the 

distributions themselves there is enormous risk. The interquartile range in the 

simulation and PPD data is almost as large as the gap between the two distributions 

themselves: 11.7% and 9.1% of payroll respectively. The net result shows just how risky 

– or wide a variety of outcomes – are possible under the current system. Both across and 

within distributions, the potential range of funding requirements is enormous relative 

to current values and state budgets. 

Going forward, we will use the simulated distribution of returns to consider the 

impact of changing asset allocations (which is not possible with the PPD approach), 

discount rates, and payment failures. While we have attempted to create a realistic 
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model, it is important to keep in mind that – if anything – we are using a generous 

distribution of returns. It is impossible to know if the next thirty years will look like the 

1980s and 1990s or the last fifteen years in terms of aggregate market performance.  This 

is obviously not a choice variable for policymakers. The risks we will consider going 

forward are all measured for choices within a distribution of returns, but the center of 

the distribution is obviously itself a huge risk with large implications as shown above. 

 

Baseline and the Impact of Asset Allocation  

In the previous section, we highlighted the importance of large returns in 

determining total fiscal cost for a pension fund.  In this section we consider perhaps the 

most intuitive determinant of returns, asset allocation. If the fiscal future of public funds 

is so tied to high returns, what is the consequence to shifting assets to investments that 

historically have offered greater returns? 

We test this by consider two asset allocations within our simulated return frame 

work, a relatively risky one with a weight of 66%, 0%, 0%, 10%, 14% and 10% 

distributed across equities, 3-month treasuries, 10-year debt, private equity, real estate, 

and global debt and a more conservative, and our base case allocation with a 

distribution of 45%, 06%, 15%, 10%, 14% and 10% across the same. The more 

conservative allocation is, again, an approximation of the current Texas ERS asset 

allocations. The riskier allocation is loosely based on the allocation advanced in the 

Government Accounting Standards Board 2012 statement on financial reporting for 

public pension plans.7 

                                                           
7
 P.77 
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The impact on the cumulative distribution function of annual returns is 

presented in Figure 4 below: 

Figure 4: 

 

Again, the baseline distribution has a mean of 10.48% and a standard deviation 

of 9.72%. The skewness and kurtosis of the distribution are -.8 and 4.26, which indicates 

heavy tails and is in line with findings from the literature (Egan 2007). The more 

aggressive distribution has a mean of 11.65% and a standard deviation of 13.47%. The 

skewness and kurtosis are similarly magnified, at -1.13 and 4.82. Whereas the PPD and 

simulated return distribution represented a centering shift with relatively little change 

in shape, here the relatively risky distribution has a twisting effect on the cumulative 

distribution of returns. 

The median annualized return under the risky distribution is 10.76% (with a 

standard deviation of 2.7%), and the median annualized return under the base 

distribution is 10.0% (with a standard deviation of 1.8%).  
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Though these twenty five-year annualized return differences may appear minor, 

they have enormous implications for the financial situation in the plan. The roughly 1% 

differential at the median, when compounded, results in a difference equal to four times 

the asset holdings of the plan. Given that holdings for a plan like the Texas ERS are 

roughly 46% of annual tax revenue, this is a very large swing. While the riskier 

distribution has more favorable outcomes at the median, the larger variance in 

annualized returns is similarly magnified when considering the cumulative impact. The 

interquartile gap for the riskier distribution is roughly 21 times the starting asset value, 

as opposed to the aforementioned already large interquartile range of 10.6 for the base 

scenario. Again, given the large base to which these ranges apply, these shocks imply 

enormous swings in funding pressure. 

To better understand the financial impact, we begin by exploring required 

payments into the system. Again, since the normal cost, or the incremental costs 

associated with new workers, is pre-determined in our simulations, we track the 

evolution of the amortization cost and shortfall under the two allocations as a percent of 

payroll (also exogenous). Again, we plot the median outcome in blue, with the grey 

lines representing the twenty-fifth and seventy-fifth percentile of the distribution. 
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Figure 5: 

  

Base Allocation Risky Allocation 

 

As is evident in the figures, in the median situation, regularly contributing the 

ARC mostly eliminates the amortization costs in twenty to twenty-five years. Again, 

this is assuming a discount rate of 5% and an open ended amortization horizon of 30 

years. It takes slightly longer and persists at a slightly higher level under the more 

conservative allocation, which yields lower returns at the median.  In the fortunate, 25th 

percentile scenarios, these costs are eliminated in less than 10 years under the base 

allocation. In these same fortunate scenarios, these costs are eliminated in little over 5 

years in the riskier ones. 

In the less fortunate case, however, that exists at the 75th percentile of the 

distribution the amortization costs remain significant despite these regular 

contributions. In fact, the riskier distribution has higher cost for many years at this part 

of the distribution, despite better outcomes at the median. 

To make this point even clearer, we plot the gap in outcomes at different 

percentiles for the two allocations by year. The units displayed in the Y-axis are again in 
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units of the year one amortization cost, and the line plots the difference between the 

base case and the aggressive allocation. On the left, we plot the gap at the median.  The 

results are positive, indicating that at the median, the baseline distribution has larger 

required payments. The difference grows as the more aggressive allocation achieves full 

funding, and then decline until both plans are nearly fully funded. On the right, 

however, the results are negative and rapidly falling. This shows that the base line 

allocation has smaller cost in bad situations, and this gap grows as losses are 

compounded. The gaps in the tail are significantly larger in magnitude as well. This 

reflects a tradeoff between the median scenario and the potential downside outcomes. 

Figure 6: 

  

Gap in Costs in the Median Case Gap in Costs in at the 95th Percentile 

 

Another outcome of interest is not the amortization cost alone, a “spot measure”, 

but also the total unfunded liabilities. We compare the distribution of unfunded 

liabilities as a percent of total liabilities below in Figure 7. The impact of more 

aggressive asset allocations initially lowers the average unfunded ratio and increases 

the spread in outcomes. This actually reduces the percentage of outcomes, at ten years, 

where the ratio of unfunded liabilities to total liabilities fall above 40%, as the Texas ERS 
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starts near this threshold. This is shown first panel of Figure 7. The effect of riskier, and 

on average higher, returns is asymmetric though. This is because a series of good 

returns does not materially reduce the percent of liabilities that are unfunded once full 

funding is achieved. Thus, in the long run, a riskier allocation actually increases the 

percent of realizations “at risk.” Again, this perhaps unintuitive fact stems from the left-

side truncation of the distribution. The magnitude of this effect is meaningful. As 

displayed in Figure 7 below, plans are about 8.1 percentage points more likely to be at 

least 40% unfunded under the risky scenario in twenty-five years.  

Figure 7: 

Ten Year Status 

  

Thirty Year Status 
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Base Distribution Risky Distribution 

Of course, these funding ratios do not account for differences in payments over 

the years, which can be large as demonstrated in Figure 6. Again, we construct a more 

comprehensive measure by taking the present-discounted value of amortization and 

shortfall payments plus any unfunded liabilities as a fraction of the present-discounted 

value of total payroll. The safer distribution is significantly less likely to wind up with 

very low costs. It is also less likely to wind up in the right tail of this distribution 

showing that it limits some of the worse possible outcomes. This effect, evident after 30 

years in Figure 8 below.  

Figure 8: 
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The overall picture, then, across several measures is fairly consistent. The system 

contains a significant amount of risk given current allocations. Asset markets are quite 

variable, and even under a generously modeled distribution, the historical data on plan 

returns and realistic assumptions imply that the range of outcomes facing funding 

governments in enormous.  Median outcomes imply a plan like the Texas ERS is 

moving towards full funding, but this is not true under many realizations. Even if the 

Texas ERS continues to make their full required contributions, and we use the 

simulated return distribution with high baseline returns, there is still a greater than 1 in 

3 chance that required amortization payments will be more than 50% bigger in thirty 

years in absolute terms. 

There has been a pronounced trend toward more aggressive allocations by public 

pensions (Pew Charitable Trust, 2014). While riskier allocations may reduce costs at 

median or better returns, they increase the risk of large payments at the other end of the 
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distribution.  This is reflected in both the total amount paid, annual costs, and funding 

ratios.  Riskier allocations also increase the likelihood of severe underfunding in both 

the long and short run.  In the longer run, in our simulations, the combined effect of 

high compounded asset returns, low discount rates, and regular amortization payments 

ensures plans become fully funded under most realizations. This highlights the 

advantage – in addition to the importance of asset returns –of regularly meeting the 

amortization cost and choosing a conservative discount rate, topics we explore in the 

next subsection.8 Still, there is a tail of significant risk under more aggressive allocation 

even with conservative funding policy. 

This discussion also hints at the limitations of existing accounting measures to 

convey an accurate sense of the consequences of asset allocation decisions. Neither 

funding ratios nor amortization costs provide policymakers with a sense of the impact 

of these decisions on the distribution of possible outcomes. A number of the measures 

we discussed here – say funding ratios at certain moments of the distribution – do 

convey that intuition for a given set of accounting assumptions. As we will see below, 

these measures are unfortunately sensitive to changes in those assumptions.  

Different Discount Rates  

One parameter that has received significant attention in the literature on pension 

funding is the discount rate. Many plans set discount rates in line with expected asset 

returns. Critics charge that the discount rate should instead reflect the riskiness of the 

liabilities, which given their state backing, carry risks more in line with either risk free 

or municipal bond rates.  

                                                           
8
 For example, we simulated the base case scenario in which plans only make ½ of their required amortization 

payment each year. Though the payment increases as a result, this policy change increases the fraction of plans 
with more than 40% unfunded liabilities by more than 50%.  
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Our model allows us to explore the impact of different discount rates on the 

funding status of the plan. Our simulations in the previous section proceeded under the 

conservative (relative to the majority of plans) discount rate of 5%. To explore the 

impact of changing this assumption, we simulate plans using funding rules that follow 

a 7% discount rate.  

On impact, the increase in the discount rate reduces the assumed liabilities 

considerably. As a result, the initial funding ratio improves. This can be seen in the 

rightward shift in the funding distribution at five years. 

Over time, though, this accounting “improvement” in funding ratios does not—

in fact—produce higher investment returns. Despite this, due to the perceived 

improvement in funding ratios, plans contribute smaller amounts to deal with future 

liabilities. As a result of the smaller contribution, funding ratios begin to fall relative to 

the distribution without a discount rate change. The distributions become relatively 

similar at 15 years, and the entire distribution is shifted left after twenty-five years. 

 

Figure 9: 

5 Years 15 Years 
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25 Years  

 

 

 

Of course, the initial “improvement” in funding ratios was an accounting result, 

not an economic one. To separate out the impact of the discounting itself from the 

planning aspects, we compare the khaki distribution (discounting at 5% but having 

planned assuming 7%) to a distribution that used 5% for both discounting and 

planning. To do this, we use the liability adjustment factor (LAF) previously calculated. 

The resulting distributions at 5, 15, and 25 years are plotted in Figure 10 below.   
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This figure highlights a critical feature of the impact of changing the discount 

rate. Though moving the discount rate itself has an impact on funding status, as seen in 

Figure 9, the more important consequence of moving the rate is the real impact it has on 

contributions. Here, when liabilities are ultimately discounted using the same rate, 

having set contributions using the higher rate led to 32.6 pp more plans falling below 

the 80% asset to constant-discount-rate-measured liabilities at 15 years and 39.2 pp 

fewer plans below the threshold at 25 years. Again, these results highlight the impact of 

discounting on funding outcomes beyond their immediate accounting effect.  

Figure 10: 

5 Years 15 Years 

 

 

25 Years  
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While lower discount rates improve funding ratios, they also require funds to 

have larger contributions. There are two potential hazards associated with this 

requirement. The first is, in the event of returns below the discount rate, funds are 

“cheaper” in present discounted value terms the smaller the historical contributions. 

For example, had employers ceased contributing immediately before the market 

downturn in 2008, they would have saved a considerable amount of money. 

The second occurs in the event of good returns. In our model excess assets over 

and above the actuarial requirement do not reduce the contributions mandated on 

employers10. For example, a series of good returns in Illinois in the 1990s led to more 

generous pensions offered to system members rather than savings to the taxpayer 

(Fitzpatrick 2012). This is also consistent with a long literature on the “flypaper” effect 

(see Hines and Thaler 1995) and the findings in Shoag (2011) that gains are not 

symmetrically rebated to taxpayers.  Thus, if returns are large enough, employers could 

contribute “too much” under low discount rates and wind up overfunded. Of course, in 

the intermediate return range, large contributions reduce total costs since they exploit 

favorable returns but do not overfund. 

                                                           
10

 Some funding formulas may allow for a reduction in normal contributions if the fund reaches a particular 
threshold above 100%. Here we work under the assumption that this is not the case. 
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To see this, we once again use our measure of the present-discounted value of 

amortization and shortfall payments and the unfunded liabilities at 30 years. We again 

divide this measure by the present discounted value of total payroll. We plot this total 

cost measure against the annualized 30-year return earned in each simulation. We plot 

these charts separately for a 5% discount rate (blue) and a 7% discount rate (red). To 

keep things comparable, we use 5% as the rate for doing the present discounted value 

calculations, even when the plan operated under the 7% discount rate. 

 

Figure 11: 

 

 

The figure confirms the intuition explained  above. Under the low return case 

(less than 5%), the high discount rate mechanics are cheaper in constant PDV terms. 

Similarly, to the right of the graph, when returns are very high, the low upfront 
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contributions from a high discount rate are again cheaper in PDV terms. In the bulk of 

the simulations, in the center of the returns distributions, however, things are cheaper 

with lower discount rates and high returns. In other words, the investment of increased 

amortized contributions driven by initially having a lower discount rate does not pay 

off when returns are either much lower or much higher than expected. This difficulty in 

determining the cost-minimizing discount rate is another consequence of risky 

allocations. 

 Discussions on the appropriate discount rate are often discussed in the literature, 

but frequent changes are less common. This non-linear impact of payments also shows 

up in the more common practice of plans skip or reduce their amortize cost 

contributions. The next section evaluates the impact of such decisions and finds that 

they are similarly impacted by investment risk.  

  

Failure to Pay Amortization Cost  

In this section, we consider the impact of failing to pay the amortization cost on 

outcomes. To do this, we simulate the model with the plan contributing only the normal 

cost for the first three periods. The time series evolution of this model is displayed in 

Figure 12. 

Figure 12: 
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Obviously failing to make payments increases the time it takes plans, at the 

median, to achieve effectively full funding. In fact, the median outcome never quite 

achieves full funding in the twenty-five-year horizon plotted above. Still, most of the 

gap in funding can be overcome for much of the distribution because (1) contributions 

increase after the three-year break in response to higher liabilities and (2) in our 

simulations asset returns outstrip the discount rate in general,  

It is important to consider that the impact of failing to make payments may 

interact with the stochastic nature of returns, a possibility noted by Boyd and Yin (2016) 

as well. To explore this, we consider how annual payments evolve at different parts of 

the simulated distribution. The impact at the 25th, median, and 95th percentile is 

presented in Figure 13 below.  Unlike Boyd and Yin (2016) and perhaps counter 

intuitively, we find a non-linear interaction. The impact of underfunding matters most 

in the face of mid-level asset returns.  

To see this intuition, note that when asset returns are poor, as in the 95th 

percentile, the failure to pay the initial amortization amounts has a small impact relative 
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to the losses in the asset markets. Moreover, even the payments themselves would have 

experienced poor returns had they been contributed, and so their direct contribution 

would have been smaller. 

When returns are very good, say as in the 25th percentile of the distribution, 

amortization costs tend towards zero very quickly. While the dollar values lost by 

failing to make the contributions are large, the rapid transition to full funding with and 

without these contributions puts a limit on the reduction in amortization costs.  

The impact of skipping payments, then, is largest when returns are in the middle 

of the distribution, as at the median. In this scenario, plans do not immediately achieve 

full funding, and the gains from the increased contributions are not wiped out in the 

asset markets. 

Figure 13: 
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As the previous figure demonstrates, the reduction in contributions depends on 

the realized returns. For example, the total reduction in contributions is bigger at the 

25th percentile than they do at the median. Of course amortization costs are not the only 

aspect of pension accounting impacted by neglecting to meet required contributions. 

Lower contributions may translate into lower funding ratios. To get the full impact, we 

once again turn to our PDV measure. Like before, we plot the PDV of costs and 

unfunded liabilities against annualized return for the two scenarios below: 

Figure 14: 
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Again, skipping payments increases costs at the mean and median of the distribution, 

but actually decreases them in the tails. The non-linearity induced by asset market risk 

makes the consequences of funding decisions difficult to foresee. As with our analysis 

of discount rates, risky investments not only carry risks themselves, but make the 

appropriate policy decisions more complicated as well. 

 

IV. Conclusions and Policy Implications 

Our findings are several. First and foremost, our simulations highlight the 

enormous range of potential outcomes facing state and local governments. The mean of 

the return distribution is certainly vital for determining whether plans are likely to 

trend towards or away from full funding. Still, across all of the realistic distributions, 

whatever their mean, the variation across draws is tremendous. State and local pension 

plans manage such large sums that these present substantive risk to their total budgets.  
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Given that many state and local governments already face many institutional 

constraints to smoothing revenue shocks, the uncertainty generated by these funds 

makes planning difficult. 

Second, the movement towards riskier asset classes that has occurred has had a 

predictable effect on the distribution of outcomes. While higher risk, higher return 

allocation improves funding outcomes and reduces total costs at the median, it also 

greatly increases costs at the tail of the distribution.  Existing accounting practices, 

which sometimes do acknowledge the higher expected return associated with riskier 

allocations, do not measure or report the accompanying increases in risk. This skews the 

information and incentives for policy makers. 

Third, funds that switch to a higher discount rate perversely look better funded 

immediately after the switch and have lower up front amortized cost contributions. 

These lower payments combined with asset returns that underperform relative to the 

increased discount rate eventually lead to lower funding ratios, however. The impact of 

selecting a higher or lower discount rate on total cost is complicated by the wide range 

of possible asset returns. The effect here is non-linear,  as the total cost of the plan over 

25 years are higher with high discount rates when asset returns are near the mean, but 

decreases for returns at either tail. 

Fourth, skipping payments has a similar impact to increasing your discount rate 

in that they lower your upfront contributions. When returns are near the median, failing 

to capitalize on these good returns increases the total cost of the plan over 25 years.  If 

the returns are subpar, or if they are so good as to lead to overfunding, the total cost 

decreases with smaller upfront payments. 

 A final implication of these exercises is that many of the intuitive risk measures 

discussed in the Section III (such as funding ratios or amortization payments at a 
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moment of the distribution) are sensitive to accounting assumptions like the discount 

rate, asset smoothing period, amortization horizon, and others. As such, these risk 

measures cannot be used to evaluate the impact of these assumptions themselves on the 

distribution of outcomes, nor can they be used to evaluate riskiness across plans with 

different assumptions. A risk measure that could be used in this way would need to use 

a constant set of assumptions, for example a universal fixed discount rate. Having a set 

baseline for plan to compare themselves against would allow for greater transparency 

on plan status and risk.  

 This should be less contentious than it first appears. As discussed above, there is 

a long standing and fierce debate about the appropriateness of linking assumptions like 

the discount rate to plan specific features like the asset allocation. Whatever the 

rationale for making these linkages for funding purposes, these arguments do not apply 

in a risk measurement context. Finally, the lack of any existing risk metric is a clear 

hindrance to policymakers. The existing reporting by public funds in no way conveys 

the wide range of possible funding outcomes. Existing accounting practices often 

recognize the impact of decisions on one part of the distribution of outcomes (say the 

mean or median) without indicating that they also affect other moments. Simulations 

based on the model we developed and those similar to it can help better convey the full 

impact of policy decisions. We believe that these types of simulations should become 

part of the standard public fund reporting. 
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