Prior-free Data Acquisition for Accurate Statistical Estimation

Yiling Chen, Shuran Zheng

Harvard University

June, 2019

Acquiring data from self-interested individuals to estimate some statistic of a population

Problem description

A data analyst

- Avg. daily workout time?
- Budget **B**
- No prior information about the cost or data

- Incur cost to record workout time
- Cost and data arbitrarily correlated

Model

A data analyst

• Estimate the mean of some parameter of interest *z*

n data providers

- Incur cost c_i to acquire the data z_i
- Cost and data arbitrarily correlated
- Self-interested

- Budget **B**
- No prior information of the cost (or data)
- For i = 1, ..., n
 - 1. The *i*-th data provider arrives (in random order).
 - 2. Decide a mechanism M_i to purchase the *i*-th data point z_i based on all observed history H_{i-1} ,
- Aggregate all collected information to output an estimator *S* of the population mean $\frac{1}{n}\sum z_i$.

Problem description

- For i = 1, ..., n
 - 1. The *i*-th data holder arrives (in random order).
 - 2. Based on all observed history H_{i-1} , decide a mechanism M_i to purchase the *i*-th data point z_i .
- Aggregate all collected information to output an estimator *S* of the population mean $\frac{1}{n} \sum z_i$.
- Objective: output a good estimator S
 - Unbiased point estimation: small variance
 - Interval estimation: minimize the length
- Constraint: expected spending \leq budget **B**

Previous results: known cost distribution

A simpler problem Roth and Schoenebeck [2012], Chen et al. [2018]:

- the marginal cost distribution is known
- find a fixed mechanism to purchase n data points
- unbiased estimator with minimum variance (in worst-case cost-data correlation)

Previous results: known cost distribution

Naïve purchasing mechanisms:

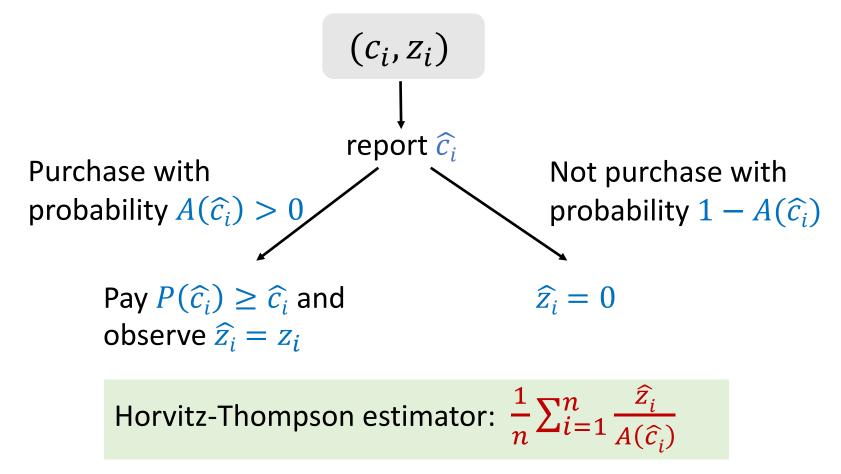
• Fixed price p so that the expected spending = B

Bias toward the low cost sub-population!

• Purchase with a constant probability q, output $\sum \hat{z_i}/q$ Variance may not be optimal

Survey mechanisms from Roth and Schoenebeck [2012]

• Purchase data with different costs with different probabilities and prices



Previous results: known cost distribution

Horvitz-Thompson estimator:
$$\frac{1}{n} \sum_{i=1}^{n} \frac{\widehat{z_i}}{A(\widehat{c_i})}$$

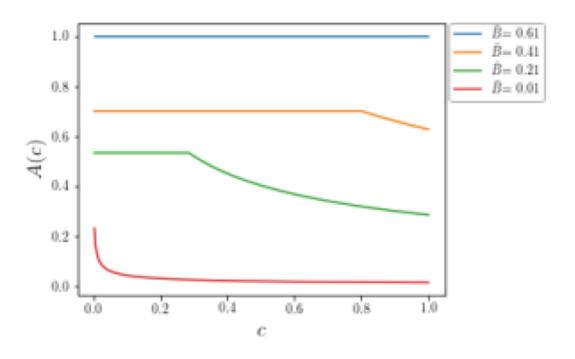
- Minimize the variance of the output Horvitz-Thompson estimator.
- A(c), P(c) should satisfy
 - Individual rationality: $P(c) \ge c$
 - Incentive compatibility
 - Budget feasibility: $E_c[A(c)P(c)] \leq \overline{B}$

$$OPT(n, C, B) = (A^*, P^*)$$

 $C = \{c_1, ..., c_n\}$

Previous results: known cost distribution

- Characterization of $A^*(c)$ from Chen et al. [2018]
- Virtual costs $\phi(c)$
- $A^*(c) \propto \frac{1}{\sqrt{\phi(c)}}$



Unknown cost distribution: challenges

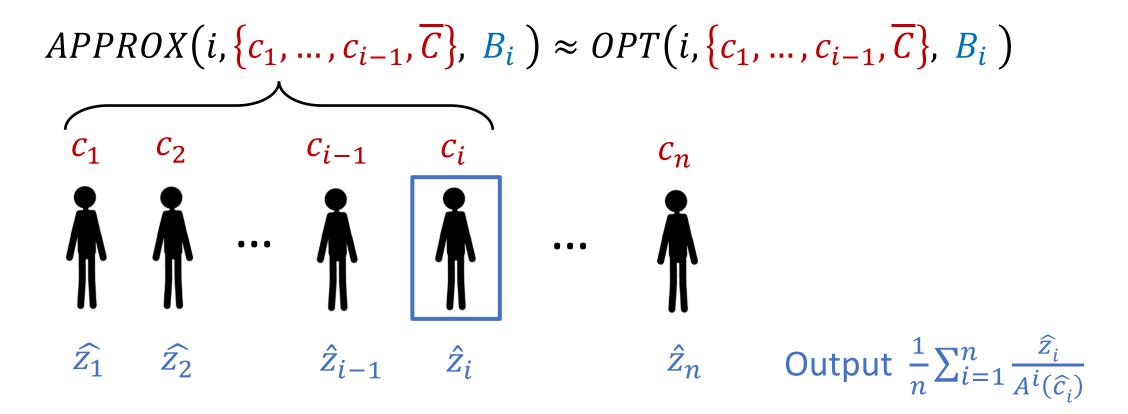
- $OPT(n, \mathcal{C}, B) = (A^*, P^*)$
- Make purchasing decisions without knowing future costs
 - satisfy the **budget** constraint
 - optimize the performance
- Adjust the mechanism based on the observed costs

Our contribution

- Prior-free mechanism design
 - Performance matches that of the optimal mechanism, which knows the true cost distribution, within a constant factor.
- Confidence interval estimator

Prior-free mechanisms: algorithm

• At round *i*, use a survey mechanism M_i



Prior-free mechanisms: result

Theorem: When we use $B_i \propto \sqrt{i}$, our mechanism is

- IC and IR,
- with expected total spending no more than B,
- and performance no worse than a constant factor times the benchmark $OPT(n + 1, \{c_1, ..., c_n, \overline{C}\}, B)$.

Prior-free mechanisms: proof ideas

• At round *i*, use a survey mechanism M_i

Step #1: Decompose the variance into per-round ``loss''

Variance of $S \approx E[loss(M_1)] + E[loss(M_2)] + \cdots + E[loss(M_n)]$

$$\mathbb{E}[\mathsf{loss}(M_i)] = \mathbb{E}\left[\frac{1}{A^i(\widehat{c}_i)}\right]$$

Prior-free mechanisms: proof ideas

Step #2: Compare the loss of our mechanism with the loss of the benchmark

• L(n, C, B) = expected loss of using APPROX(n, C, B) when the data holder's cost is randomly chosen from C

Properties of L(n, C, B):

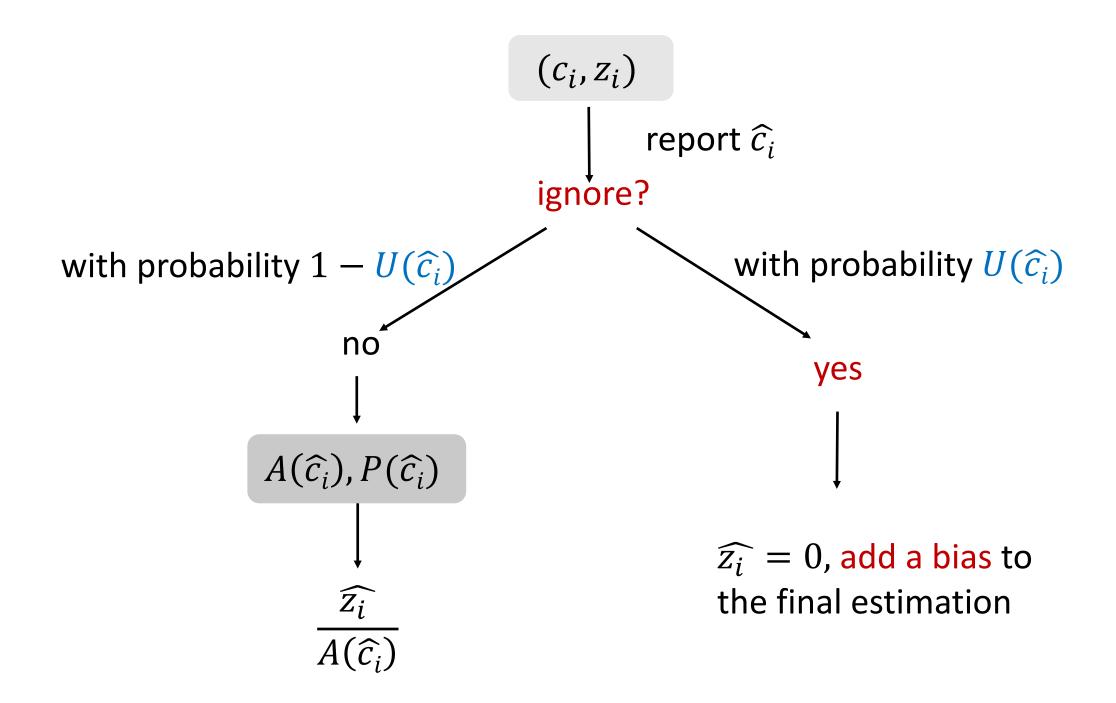
1. $L(n, C, B/k) \le k \cdot L(n, C, B)$ for any n, C, B, k

2. Let *S* be a random subset $\subseteq C$ with |S| = k, $E_S[L(k, S, B)] \leq L(n, C, B)$

- At round *i*, allocate budget B_i , the expected loss $\leq L(n, C, B) \cdot \frac{B}{B_i}$
- Choose $B_i \propto \sqrt{i}$, total "loss" \leq constant * benchmark

Confidence interval estimator

- Allow the estimator to be biased
- Ignore some high-cost data points
- Bias-variance tradeoff
- Optimal confidence interval: minimize the worst-case expected length.



Confidence interval estimator

- Characterization of a 2-approximation of the optimal confidence interval when the cost distribution is known
- Online mechanism that matches the benchmark within a constant factor

Thanks & Questions?

First estimate the costs

- Truthfulness guarantee weaker
- Difficult to estimate $\phi(c)$

Questions

- Bandits with knapsack (dynamic pricing):
 - Action space too large
 - Regret dependent on |A|
- Online convex optimization
 - Put the violation of budget constraint into objective function: cannot be decomposed into per round loss function
 - Online convex optimization (with long-term budget): unknown budget constraint-> unknown X