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Acquiring data from self-interested individuals to estimate 
some statistic of a population



Problem description

A data analyst 

• Avg. daily workout time?
• Budget !
• No prior information about the 

cost or data

" data providers

…

• Incur cost to record workout time
• Cost and data arbitrarily correlated



Model
A data analyst 

• Estimate the mean of some parameter of 
interest !

• Budget "
• No prior information of the cost (or data)

# data providers
• Incur cost $% to acquire the data !%
• Cost and data arbitrarily correlated
• Self-interested

• For & = 1,… , #
1. The &-th data provider arrives (in random order).
2. Decide a mechanism +% to purchase the &-th data point !% based

on all observed history -%./ ,
• Aggregate all collected information to output an estimator 0 of the 

population mean /1 ∑ !%.



Problem description
• For ! = 1,… , &

1. The !-th data holder arrives (in random order).
2. Based on all observed history '()* , decide a mechanism +( to 

purchase the !-th data point ,(.
• Aggregate all collected information to output an estimator . of the 

population mean 
*
/ ∑ ,(.

• Objective: output a good estimator .
• Unbiased point estimation: small variance
• Interval estimation: minimize the length

• Constraint:  expected spending ≤ budget 2



Previous results: known cost distribution
A simpler problem Roth and Schoenebeck [2012], Chen et al. [2018]:
• the marginal cost distribution is known
• find a fixed mechanism to purchase ! data points
• unbiased estimator with minimum variance (in worst-case cost-data 

correlation)



Previous results: known cost distribution
Naïve purchasing mechanisms:
• Fixed price ! so that the expected spending = #
Bias toward the low cost sub-population! 
• Purchase with a constant probability $, output ∑ &'(/$
Variance may not be optimal



Survey mechanisms from Roth and Schoenebeck [2012]
• Purchase data with different costs with different probabilities and prices

("#, %#)

report '"(Purchase with 
probability ) '"( > 0

Not purchase with 
probability 1 − )('"()

Pay . '"( ≥ '"( and 
observe '%( = %#

'%( = 0

Horvitz-Thompson estimator: 
1
2 ∑#41

2 '5#
6 '7#



Previous results: known cost distribution

• Minimize the variance of the output Horvitz-Thompson estimator.
• ! " , #(") should satisfy
• Individual	rationality:	# " ≥ "

• Incentive	compatibility
• Budget	feasibility:	>? ! " # " ≤ A

Horvitz-Thompson estimator: 
B

C
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N = {"B, … , "C}



Previous results: known cost distribu2on

• Characterization	of	.∗ 0 from	Chen et al. [2018]
• Virtual	costs	6(0)
• .∗ 0 ∝ :

; <



Unknown cost distribution: challenges

• !"# $, &, ' = )∗, "∗
• Make	purchasing	decisions	without knowing future costs
• satisfy the budget constraint 
• optimize the performance

• Adjust the mechanism based on the observed costs



Our contribution

• Prior-free mechanism design
• Performance matches that of the optimal mechanism, which knows the true 

cost distribution, within a constant factor.

• Confidence interval estimator



Prior-free mechanisms: algorithm
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• At round &, use a survey mechanism '$
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Prior-free mechanisms: result

Theorem: When we use !" ∝ $, our mechanism is 
• IC and IR, 
• with expected total spending no more than B, 
• and performance no worse than a constant factor times the 

benchmark %&'() + 1, c., … , 01, 2 , !).



Prior-free mechanisms: proof ideas

Step #1: Decompose the variance into per-round ``loss’’

Variance of ! ≈ E[loss($%)] + E[loss($&)] +          ⋯ + E[loss($))]

E[loss($*)] = E[ %
,- ./*

]

• At round 0, use a survey mechanism $*



Prior-free mechanisms: proof ideas
Step #2: Compare the loss of our mechanism with the loss of the benchmark
• ! ", $, % = expected loss of using '(()*+ ", $, % when the data holder’s 

cost is randomly chosen from $
Properties of !(", $, %):
1. ! ", $, %/1 ≤ 1 ⋅ ! ", $, % for any ", $, %, 1
2. Let 4 be a random subset ⊆ $ with |4| = 1,

78 ! 1, 4, % ≤ !(", $, %)
• At round 9, allocate budget %:, the expected loss ≤ ! ", $, % ⋅ ;;<
• Choose %: ∝ 9, total “loss” ≤ constant * benchmark



Confidence interval estimator

• Allow the estimator to be biased
• Ignore some high-cost data points
• Bias-variance tradeoff
• Optimal confidence interval: minimize the worst-case expected 

length.



("#, %#)

ignore?

yesno

with probability '(("))with probability 1 − '(("))

, (") , -(("))

.%#
, (")

.%# = 0, add a bias to 
the final estimation

report (")



Confidence interval estimator

• Characterization of a 2-approximation of the optimal confidence 
interval when the cost distribution is known
• Online mechanism that matches the benchmark within a constant 

factor



Thanks & Questions?



First estimate the costs

• Truthfulness guarantee weaker
• Difficult to estimate !(#)



Questions

• Bandits with knapsack (dynamic pricing): 
• Action space too large
• Regret dependent on |A|

• Online convex optimization
• Put the violation of budget constraint into objective function: cannot be 

decomposed into per round loss function
• Online convex optimization (with long-term budget): unknown budget 

constraint-> unknown X


