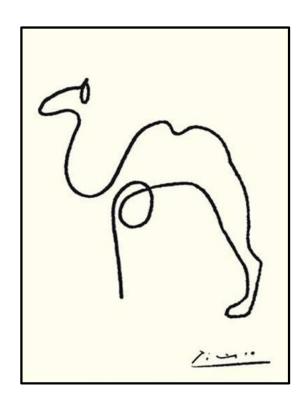
Selling Information Through Consulting


Yiling Chen
Harvard University

Haifeng Xu
University of Virginia

Shuran Zheng
Harvard University

We know a lot about selling items...

How do we sell a piece of information?

Market of Information

Consumer Information

Credit Reports

Recommendation

How is information different from items?

- Can be partially revealed
- e.g. FlightAware

09:15	Aberdeen	BD674	Delayed to 10:55
09:45	Newcastle	BA1326	Cancelled
09:55	Glasgow	BA1476	Cancelled
09:55	Durham Tees	GF 5232	Cancelled
09:55	Cork	AA8025	Delayed to 11:10
10:05	Dublin	AA7991	Delayed to 11:35
10:10	Shannon	AA8017	Delayed to 10:55
10:35	Edinburgh	BA1442	Cancelled
10.50	Manchester	BA1388	Cancelled

seller $\omega \leq 6$ $\omega > 6$ buyer Charge 30 ω in hours ω in minutes Charge 10 Charge 20

flight delay ω

Outline

Selling information to **budget-constrained** buyers

1. Motivation

Why budget-constrained buyers?

2. Our Results

- Model
- Main theorem
- Proof ideas

Motivation

• Babaioff et al. [2012]: buyers with unlimited budget

Budget-constrained buyers

Motivation

- Suppose Haifeng @Boston is going to give a talk @NYC. Safe if the flight delay ≤ 4 hrs
- Based on historical data & weather, $0 \le \text{delay} \le 10$
- Wait/take a train instead

loss	$delay \leq 4$	delay > 4
wait	0	+∞
take a train	100	100

- No information: will take a train
- Knowing the exact delay, take a train only when delay > 4
- Save 4/10*100 in expectation
- Willing to pay up to 40

Motivation

- Suppose FlightAware knows the exact delay and wants to sell it.
- 2 buyers:

	loss	prior belief
buyer 1	400	[0, 7.9984]
buyer 2	600	[0, 8.0016]

- Babaioff et al. [2012]: when delay > 4 w.p. 0.5, the optimal mechanism is to
 - charge ≈ 250000 when delay ≤ 4 ,
 - pay ≈ 249600 to the buyer when delay > 4.
- But the buyer's expected gain ≈250.

Our Results

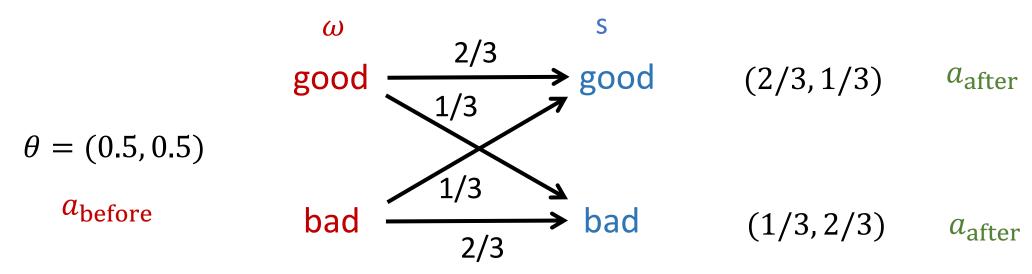
Consider budget-constrained buyers

- Simple optimal mechanism
- Compute via a polynomial-size LP
 - Improves the previous exponential-size LP by Babaioff et al. [2012] that solves one-round optimal mechanism when there is no budget constraint

Adding budget constraint makes the problem easier

Model: information buyer

- An unknown state of the world, random variable ω
- The buyer needs to choose an action $a \in A$ that leads to utility $u(a, \omega)$
- The buyer has a private type θ that represents
 - 1. his belief about ω : a probability distribution over Ω
 - 2. his utility function $u_{\theta}(a, \omega)$
- The buyer has a private budget b that can be used to purchase additional information about ω


Model: information seller

- Fully observes ω , has a budget M
- Knows the utility function $u_{\theta}(a,\omega)$ and the distribution $\mu(\theta,b,\omega)$
- Goal: sell ω to maximize the expected revenue

What are the mechanisms that can possibly be used?

Model: information as signals

- Partial information: a random variable (signal) s that is correlated with the state of the world ω
- Example: binary $\omega = \text{good/bad}$, reveals ω w.p. 2/3

Value of Information: the gain from knowing s

$$V_{\theta}(s) = E_{\theta}[u(a_{\text{after}}, \omega)] - E_{\theta}[u(a_{\text{before}}, \omega)]$$

Model: mechanisms

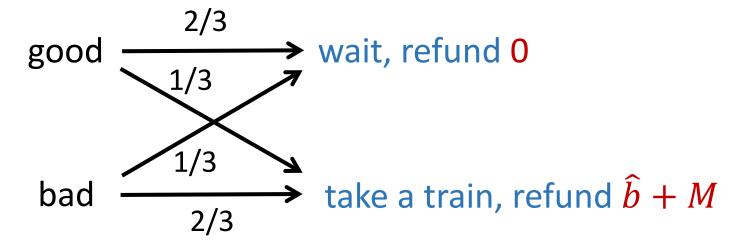
- A menu of (partial information s, price p_s)
- The seller can interact with the buyer in multiple rounds Babaioff et al.
 [2012]

- Multiple-round mechanisms
- Recommend actions to the buyer and then charge some prices

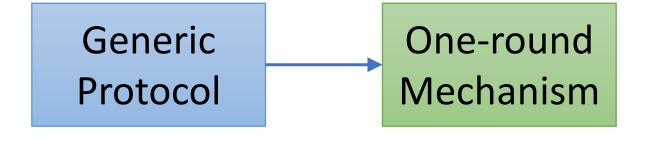
Consulting Mechanism:

- 1. Ask the buyer to report his type $\hat{\theta}$ and deposit his budget \hat{b} .
- **2.** For each reported $\widehat{\theta}$ and \widehat{b} , according to ω , (randomly) decides an action to recommend and an amount of refund, the amount of which is either 0 or $\widehat{b} + M$.

ullet Buyers with different reported $\hat{oldsymbol{ heta}}$ and $\hat{oldsymbol{b}}$ will get different recommendations


Consulting Mechanism:

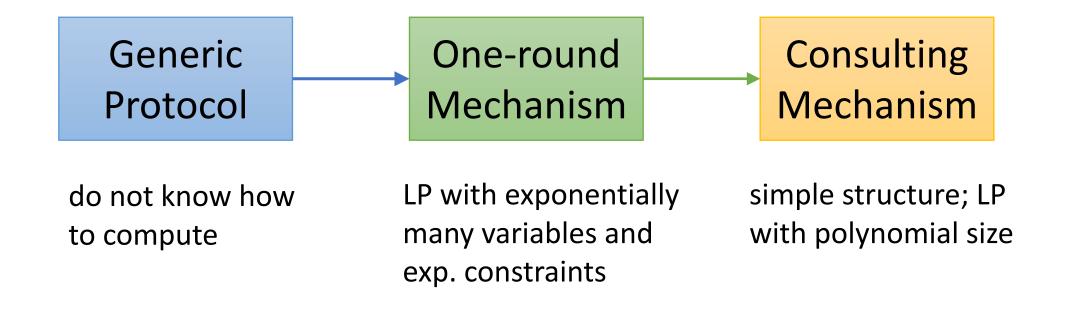
- 1. Ask the buyer to report his type $\hat{ heta}$ and deposit his budget \hat{b} .
- 2. For each reported $\hat{\theta}$ and \hat{b} , according to ω , (randomly) decides an action to recommend and an amount of refund, the amount of which is either 0 or $\hat{b} + M$.
- For each $\hat{\theta}$ and \hat{b} :



Consulting Mechanism:

- 1. Ask the buyer to report his type $\hat{ heta}$ and deposit his budget \hat{b} .
- 2. For each reported $\hat{\theta}$ and \hat{b} , according to ω , (randomly) decides an action to recommend and an amount of refund, the amount of which is either 0 or $\hat{b} + M$.
- For each $\hat{\theta}$ and \hat{b} :

Theorem: There always exists an IC and IR Consulting Mechanism that achieves no less revenue than any (possibly multiple-round) mechanisms.


do not know how to compute

LP with exponentially many variables and exp. constraints

One-round Mechanism

- 1. Ask the buyer to report his type $\hat{\theta}$ and deposit his budget \hat{b} .
- 2. According to the reported $\hat{\theta}$ and \hat{b} , give the buyer a piece of partial information s and refund t(s).

• LP with exponentially many variables and exponentially many constraints

 \mathcal{P}

Exponential-size LP for computing optimal *one-round mechanism*

 $\begin{array}{c} D \\ \hline D \\ \hline \end{array}$ Dual LP of $\mathcal P$

 \mathcal{P}'

Exponential-size LP which provably admits a consulting mechanism as its solution

Duality

With the same optimal objective as \mathcal{D} but poly-size variables

Variable transformation

\mathcal{P}'

Exponential-size LP which provably admits a consulting mechanism as its solution

- Two possible payments
- Can be reduced to a consulting mechanism

Polynomial-size LP

- Variables: for each $\theta \in \Theta$ and $b \in B$, probability of recommending $a \in A$ and charge one of the two possible payments.
- Objective: expected revenue
- Constraints:
 - Individual Rationality
 - Incentive Compatibility

Summary

Selling information to budget-constrained buyers

- Simple one-round optimal mechanism: consulting mechanisms
- Compute the optimal mechanism via a polynomial-size LP

Thanks & Questions?