
AM108 1:00pm, Class 01

1. Introduce yourself to your teammates.

Solution: NA. (Introduce yourself every time you’re on a new team.)

2. Let x 7→ cosx. (x ∈ R defines the state of the system).

(a) Select a starting point and try iterating this map. You may use a calculator to do this exactly
or a graph of cosx to do this approximately. Plot a time series of the iterates. What happens?

Solution:

pts = {};

x1 = -5;

Do[AppendTo[pts, x0];

x1 = Cos[x1], {8}]

ListPlot[pts, AxesLabel -> {"n", "x_n"}]
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One set of iterates is shown (starting from x1 = −5). These converge towards the value of
x where x = cosx:

FindRoot[x == Cos[x], {x, 0.75} ]

{x -> 0.739085}

(b) How does your starting value of x matter?

Solution:

For any starting value x ∈ R, the first iterate is cos(x) ∈ [−1, 1]. Iterating again, we have
cos(cos(x)) ∈ [cos(1) ≈ 0.540302, 1]. This means

cos(cos(cos(x))) ∈ [cos(1) ≈ 0.540302, cos(cos(1)) ≈ 0.857553].

With each iterate the range of possible values is narrowing. For all initial values x ∈ R we
land in the range [≈ 0.54,≈ 0.86] after just 3 iterates. Continuing with the process, they
would all converge towards that same value of x. We haven’t quite shown that, though.

1. To model population, let xn+1 = axn where xn is the population at time n and xn+1 is the
population at time n+ 1, one year later. This is the map

x→ ax.

Assume a ∈ R with a > 1.

• If x0 = b with b ∈ (0,∞), find a formula for xn.

• What will happen to xn at long times?



• Critique this as a population model. When could you imagine it might work and when would
it not?

• Now change the constraint on a. Let a ∈ R. What different behavior do you see as you change
a? Describe all of the possibilities.

• Which values of a might be more or less appropriate for a population model? Justify your
answer.

2. Now we will switch to a continuous population model. Instead of using discrete generations, let
the population grow continuously at a rate α.

dN

dt
= αN

describes the change in population over time. Note: We will often write Ṅ in place of dN
dt .

• Describe this equation: linear/nonlinear, autonomous/nonautonomous, order of the equation.

• Show that N(t) = N0e
αt is a solution of this differential equation, and graph a time series

of this solution for a few values of N0 and α. To show that an expression is a solution to an
equation, you can plug the expression in and show that the equation then holds.

• We can approximate this continuous model (with substantial error) by the discrete model
Nn+1 = Nn + α∆tNn. Relate the value of α in the continuous model to the value of a in our
previous model.

• Describe how this discrete model approximates the continuous model.

Note: When we approximate the solution of a differential equation numerically via a computer we
always work with a discrete approximation of the differential equation. The particularly approxi-
mation is called forward Euler and is rarely used.

3. The simple population model above had some limitations. Now consider

dN

dt
= αN(1−N/K)

with α,K > 0. This is called the logistic equation.

• Describe this equation: linear/nonlinear, autonomous/nonautonomous, order of the equation.

• Graph dN
dt as a function of N . Mark K and α on your axes.

• When N ∈ (0,K) is the population increasing over time or decreasing over time? How do you
know?

• When N > K is the population increasing over time or decreasing over time?

• What happens when N = 0 or when N = K?

• Assume the population starts at time 0 at N = 2K. Describe what happens to the population
over time.

• Assume the population starts at time 0 at N = K/2. Describe what happens to the population
over time.

• Describe what you think might be the general long term behavior of the population under
this model.

• Critique this model as a population model. What do you like about it? What are some of its
limitations?

4. Separation of variables for solving (nonlinear) differential equations.

• Consider dx
dt = cos x

sin x . To find solution functions x(t):

sinx

cosx

dx

dt
= 1
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⇒
∫

sinx

cosx

dx

dt
dt =

∫
dt

⇒
∫

sinx

cosx
dx = t+ C.

This method of solution, which results in an integral in terms of just x, is referred to as
separation of variables. Use a u substitution to integrate, and thus to find a family of solutions
to the differential equation.

• Consider dx
dt = x(1 − x). Use separation of variables and the method of partial fractions to

find a family of solutions x(t) to the differential equation.
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