
AM108 1:00pm, Class 03

1. We’ll start by revisiting linear stability analysis. Consider the differential equation

ẋ = x(1 + x).

This has two fixed points.

(a) Use geometric reasoning (i.e. draw a graph) to sketch the phase portrait.

(b) Find the Taylor approximation to second order about the fixed point at the origin. This is a
bit silly to do for a polynomial, but go ahead and take the derivatives.

The Taylor expansion about x0 is f(x) = f(x0) + (x− x0)f ′(x0) +
1

2
(x− x0)2f ′′(x0) + h.o.t.

(c) In linear stability analysis we look at the sign of f ′(x∗) to understand the stability of a fixed
point x∗, so we are using the (x− x0)f ′(x0) term and neglecting terms that are quadratic and
above, include the 1

2 (x−x0)2f ′′(x0) term. Fill out the following chart about the size of the two
terms as x− x0 gets smaller for the Taylor polynomial you found above:

x− x∗ (x− x∗)f
′(x∗)

1
2 (x− x∗)

2f ′′(x∗)

1
0.1
0.01
0.001

When does it make sense to you to neglect terms that are nonlinear in x − x∗? What would
change if f ′(x0) = 0?

2. Think of
ẋ = x(1 + x)

as being a member of the family of differential equations specified by

ẋ = x(r + x).

We’d like to understand all of the possible phase portraits for this family of equations. This is
the purpose of a bifurcation diagram. For this problem, we consider r to be a parameter of the
differential equation, t to be the independent variable, and x to be the dependent variable.

(a) Find the fixed points of the differential equation as a function of r. Does the number of fixed
points vary with the value of r?

(b) Use linear stability analysis to identify the stability of one of the fixed points as a function of r.

(c) Create a bifurcation diagram showing the values of the fixed points vs r. Indicate the stability
of the fixed points with solid lines for stable points and dashed lines for unstable fixed points.

(d) A bifurcation occurs when the phase portrait undergoes a qualitative change. Identify rc, the
critical value of the parameter at the bifurcation.

(e) What type of bifurcation is this?

3. Now consider the differential equation

ẋ = rx− sinhx

where sinh(x) = 1
2 (ex − e−x). Graphs of sinhx are given below.

GraphicsGrid[{{Plot[Sinh[x], {x, -5, 5}, AxesLabel -> {"x", "Sinh[x]"},

PlotRange -> {{-5, 5}, {-5, 5}}],

Plot[Sinh[x], {x, -10, 10}, AxesLabel -> {"x", "Sinh[x]"}]}}]
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(a) Start by plotting rx and sinhx against x. Intersections of these curves give fixed points. To
identify the stability of the fixed points you can use the sign of rx−sinhx. The sign is determined
by the relative position of the sinhx and rx curves. Sketch the qualitatively different vector fields
(phase portraits) that occur as r is varied. Perhaps start by thinking about r = 0. Adjusting r
changes the slope of the line rx.

(b) Argue that a bifurcation occurs and identify the type of bifurcation (including, if relevant,
whether it is subcritical or supercritical).

(c) Use linear stability analysis to find rc, the critical value of the parameter at the bifurcation.

(d) Sketch the bifurcation diagram.

4. (3.4.14) Consider the system ẋ = rx + x3 − x5.

(a) Find an algebraic expression for each of the fixed points as r varies. You should be able to find
a quadratic in x2 to help you with this.

(b) Calculate rs, the parameter value at which the nonzero fixed points are born in a saddle-node
bifurcation.

(c) Sketch the bifurcation diagram.

5. Use linear stability analysis to find rc, the critical value of the parameter at the bifurcation. Sketch
the bifurcation diagram.

(a) Let ẋ = r + x− ln(1 + x).

(b) Let ẋ = rx− ln(1 + x).

Plot[Log[1 + x], {x, -3, 3}, AxesLabel -> {"x", "Ln[1+x]"}]
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6. Let ẋ = x(r− x)(r2 − x + 3). Draw a bifurcation diagram for this system, marking the location and
type of any bifurcations. Note: once you classify the stability of one solution, all the other stabilities
should follow.
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A few bifurcation diagram shapes from the problems above (these diagrams do not include stability
information):

GraphicsGrid[{{ContourPlot[x (r + x) == 0, {r, -4, 4}, {x, -3, 3},

FrameLabel -> {"r", "x"}],

ContourPlot[r x - Sinh[x] == 0, {r, -4, 4}, {x, -4, 4},

FrameLabel -> {"r", "x"}],

ContourPlot[r x + x^3 - x^5 == 0, {r, -1, 1}, {x, -2, 2},

FrameLabel -> {"r", "x"}]}, {ContourPlot[

r + x - Log[1 + x] == 0, {r, -3, 3}, {x, -3, 3},

FrameLabel -> {"r", "x"}],

ContourPlot[r x - Log[1 + x] == 0, {r, -1, 3}, {x, -2, 3},

FrameLabel -> {"r", "x"}],

ContourPlot[x (r - x) (r^2 - x + 3) == 0, {r, -5, 5}, {x, -5, 12},

FrameLabel -> {"r", "x"}]}}]
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