AM108 1:00pm
Class 12: limit cycles in 2D
Goals for the day:

1. Explain what is meant by closed orbit or closed trajectory.
2. Use polar coordinates to represent a 2D dynamical system.
3. Rule out or rule in closed orbits in 2D systems.
Team problems:
1. (Ruling out closed orbits) Let
T =y
y=x—a2°—py, p>0.

This system is known as the unforced Duffing oscillator. The py term is a damping term. Use
Dulac’s criterion to show that the system has no closed orbits for pu > 0.

2. (Back in 1D) Consider the (1D) dynamical system

d
ditc =2(1 - 2?)(4 — 2?)
with x restricted to > 0. Find the fixed points, determine their stability, and draw the phase

portrait.
3. (Connecting 1D to 2D polar) Consider the (2D polar) dynamical system
F=7r1—r*)4—-r?
0=1.
Sketch the phase portrait for this system using the information from the question above.
4. Consider the dynamical system
F=r(l—7r%)4-1r?
6=2—r2
Sketch the phase portrait for this system.
5. (Poincaré-Bendixson) Let
t=x—y—2°

j=a+y—y’
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Construct a trapping region. Try using a large square centered at the origin and a small circle
centered at the origin. Recall ri = x3 + yy, 0 = (x5 — yi) /r2.



6. Consider the dynamical system
7= rsin?0(1 —r?)(4 — r?)
f=1.
Sketch the phase portrait for this system.

Answers:

1. Find a g(x,y) such that Bg(g:;y)y + 8g(x,y)(g;x3—uy) < 0 for all (x,y).

2. f(z) = z(1 —2%)(4—2?) = 0 gives the fixed points. These are x = 0, &1, +2. We restrict ourselves
to x > 0 so these are z = 0,1, 2.

For their stability, check the sign of %. % =(1—-2?)(4—2?)+2(—22)(4 — 2?) + (1 — 2?)(—22).
At z = 0 this is (1 — 0)(4 — 0) = 4. Because stability alternates we know that = = 0 is unstable,
x = 1 is stable and x = 2 is unstable, but let’s check these.

At x =1 this is 1(—2)(4 — 1) = —6 so stable as expected.

At x = 2 this is 2(1 — 4)(—4) = 12 so unstable as expected.

3. Now we have a system given in polar.
r is a radius and 6 is an angle, both in the zy plane.

The fixed points for r are as above, with stability as given above. So there is a fixed point at (0, 0)
that is unstable, there is a limit cycle at radius 1 from the origin, which is stable, and there is a
limit cycle at radius 2 from the origin, which is unstable.

4. The radial behavior is the same in this system but now 6 is not changing steadily in time. Instead
how it changes depends on the radius. At a radius of 7 = v/2, 6 changes sign, so for r < v/2, 0
increases with time. And for r» > \/5, 0 is decreasing with time.

5. For large y, y ~ —y3. For large =, & ~ —2®. For small x,y, @ ~ x — y,y ~ y + 2,77 ~ r2.

6. Now the angular behavior is back to being steady, but the speed of motion in the radial direction
depends on angle. The limit cycle locations have not changed, but the way trajectories move on
the cycles and to get to the cycles now has an angular dependence. Trajectories have slow radial
change when 6 is near 0 or 7, so at those values, the angle keeps changing steadily while the radius
is barely changing. The radius changes fastest near § = 7/2 and 37 /2, where the radial change is
just like the parts above.
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Figure 1: From left to right, we have the phase portraits for 2, 3, and 4



