
AM108 1:00pm
Class 17: Coupled oscillators and Poincar maps
Goals for the day:

1. Describe how coupled oscillators might behave if they are interacting.

2. Use a Poincaré map to analyze a limit cycle.

3. Distinguish between quasiperiodicity and periodic motion.

Team Problems:

1. (8.6.1: “Oscillator death” and bifurcations on a torus) This model is from Ermentrout and Kopell
(1990), where the authors were considering a system of interacting neural oscillators. They developed
a simple example with two oscillators that captured many of the interaction properties they wanted.
Specifically, they wanted to capture that coupling can suppress oscillation (“oscillator death”) and
lead to a steady state of the coupled system. Here is their example model:

θ̇1 = ω1 + sin θ1 cos θ2

θ̇2 = ω2 + sin θ2 cos θ1.

The oscillators have a natural frequency, but they also are responding to each other. Find the
different behaviors possible in this system, with the aim of identifying bifurcations and plotting a
stability diagram in ω1ω2 space.

(a) In the video, looking for fixed points of φ = θ1 − θ2 allowed us to identify curves where θ1 =
θ2+const. Here, use both φ = θ1−θ2 and ψ = θ1+θ2 to aid your analysis. Note: If θ1−θ2 = C1

and θ1 + θ2 = C2 then the system has a fixed point. Find the curves in ω1ω2 parameter space
along with bifurcations occur, and classify the bifurcations.

(b) Classify the different behaviors of the system in the ω1ω2 plane, sketching phase diagrams
corresponding to each region of the plane.

2. (8.7.2) Consider the vector field on the cylinder given by ẏ = ay and θ̇ = 1. This system is not in
polar coordinates because y in not a polar angle. Instead the system evolves on a cylinder so that θ
can change periodically why y ∈ R.

Let Σ = {(y, 0) : y ∈ [−1, 1]} be a line segment on the cylinder. Define a Poincaré map, P : Σ→ Σ.
To do this, note that it takes time 2π for θ to evolve by 2π and thus for the trajectory to return to
Σ.

2π =

∫ 2π

0

dt =

∫ P (y)

y

dt

dy
dy.

After finding the map, show that the system has a periodic orbit (meaning that P has a fixed point),
and use its Floquet multiplier (eigenvalue) to identify the stability.

When you examine the Floquet multiplier, it is important to remember that we are wondering whether
perturbations grow in length or shrink near the fixed point, so we are not comparing to 0 in this case.



Some Answers:

1. The chart shown for ω1 > 0 and ω2 > 0.

fixed points

no f.p. or l.c.

no f.p. or l.c.

limit cycles and phase locking
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The green and orange lines are saddle-node bifurcations of cycles (|ω1 − ω2| = 2). The blue line
is a line of infinite period bifurcations (ω1 + ω2 = 1) where the saddle-node bifurcations cross the
limit cycles.

2. We have 2π =
∫ P
y

1
a
1
ydy. So 2πa = ln P (y)

y . ⇒ P (y) = ye2πa. This has a fixed point when P (y) = y

so when y = ye2πa. This means y∗ = 0 is a fixed point. The Floquet multiplier is e2πa and it has
magnitude less than 1 when a < 0. This is all consistent of our understanding of the system based
on examining the flow.
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