Class 19: Lorenz Attractor

Goals for the day:

- 1. Work with definitions to gain practice with the term attractor.
- 2. Identify what the largest Liapunov exponent of a system conveys about the system.
- 3. Find orbits in a map.
- 1. We defined an attractor, A, as a closed set with some specific properties: A is an invariant set; A attracts an open set of initial conditions; A is minimal.
 - (a) Consider the system $\dot{x} = x x^3$, $\dot{y} = -y$. This is the set that was used as an example in the video. Let $I = \{(x, y) : -1 \le x \le 1, y = 0\}$. Argue that I is an invariant set.
 - (b) Consider the system $\dot{x} = x x^3$, $\dot{y} = -y$. Let $I = \{(x,y) : -1 \le x \le 1, y = 0\}$. The set I is closed and invariant. It is also attracting for a set of points larger than the set itself. Identify its basin of attraction.
 - (c) Is the set I an attractor?
- 2. (9.3.1) Consider the 2D system

$$\dot{\theta_1} = \omega_1$$

$$\dot{\theta_2} = \omega_2,$$

with $\frac{\omega_1}{\omega_2}$ irrational. The phase space is the torus. Consider two trajectories that start close to each other, so they have similar $(\theta_1(0), \theta_2(0))$. For example, let $\theta_1(0)$ differ by δ between the two trajectories and $\theta_2(0)$ be identical for the two trajectories. Using $\|\delta(t)\| = \sqrt{\Delta\theta_1^2 - \Delta\theta_2^2}$ as the distance between the trajectories at time t, find the largest Liapunov exponent of this system.

 $\|\delta(t)\| \sim \|\delta_0\|e^{\lambda t}$ where λ is the largest Liapunov exponent.

This system is quasiperiodic. Why isn't it considered chaotic?

3. Let $\lambda = 1 \text{ year}^{-1}$ for some unidentified chaotic system. Recall that $\|\delta(t)\| \sim \|\delta_0\|e^{\lambda t}$. A team of scientists is trying to make a prediction about the evolution of the system given its initial state. Their initial measurement is within 10^{-3} m of the actual state of the system, and they believe their model equations are exactly correct. They want their estimate of the state of the system to be correct to within 1 m. Over what time scale is their prediction achieving the accuracy they desire?

You can assume that $\ln 10^3 \approx 7$.

If they wanted to double the length of time over which your estimate held, how much more accurate would your initial estimate need to be?

4. (9.4.2) The tent map is a simple analytical model that has some properties in common with the Lorenz map. Let

$$x_{n+1} = \begin{cases} 2x_n, & 0 \le x_n \le \frac{1}{2} \\ 2 - 2x_n, & \frac{1}{2} \le x_n \le 1. \end{cases}$$

- (a) Draw f(x) where $x_{n+1} = f(x_n)$. Why is this map the "tent map"?
- (b) Find the fixed points of this map.
- (c) Classify the stability of the fixed points.
- (d) Show the map has a period-2 orbit. This means that there is an x such that f(f(x)) = x.
- (e) Classify the stability of any period-2 orbits.
- (f) Look for a period-3 or period-4 point. If you find one, are such orbits stable or unstable?
- (g) If you want, you can think about this for a period-k orbit...

Some answers on back

Answers:

- 1. (a) Let $x_0 \in [-1, 1], y_0 = 0$. For all points $(x_0, y_0), \ \dot{y}|_{y_0} = 0$ so we don't leave the set in the y direction. We also need to check the x direction: If $x_0 = \pm 1$ or $x_0 = 0$ then $\dot{x}|_{x_0} = 0$, so if we start at one of those points we definitely stay in the set for all time. If $x_0 \in (-1, 0)$ then $\dot{x}|_{x_0} < 0$ and we flow towards x = -1 but we can't pass that point, so we stay in I. Similarly if $x_0 \in (0, 1)$ then we flow towards x = 1 but we can't pass that point, so we also stay in I. No matter where we start in I we stay in I for all time, so the set is invariant.
 - (b) Its basin of attraction is the whole plane, actually (considered an open set).
 - (c) Actually, the trajectories are moving towards the two stable points (-1,0) and (1,0), and not towards all of I, so not an attractor.
- 2. $\theta_1(t) = \omega_1 t + \theta_1(0)$ and $\theta_2(t) = \omega_2 t + \theta_2(0)$, so $\Delta \theta_1 = \delta$ and $\Delta \theta_2 = 0$. $\delta(t) = \delta$, so $\delta(t) = \delta$ are is no sensitive dependence on initial conditions and no exponential divergence of nearby trajectories.
- 3. $1 \sim 10^{-3} e^t$, so we have $t \sim \ln 10^3 \approx 7$ years. To double the length of time, we want the time to be $2 \ln 10^3$ years and still want $1 \sim \delta_0 e^t$ so $1 \sim \delta_0 e^{2 \ln 10^3}$. $\Rightarrow 1 \sim \delta_0 (10^3)^2$. $\Rightarrow \delta_0 \sim 10^{-6}$. This is 1 μ m of initial measurement accuracy instead of 1 mm.

4. (a)

- (b) If 2x = x then x = 0, so 0 is a fixed point. If 2 2x = x then 2 3x = 0 so $x = \frac{2}{3}$. $\frac{1}{2} \le \frac{2}{3} \le 1$, so $\frac{2}{3}$ is also a fixed point. Looking at the graph of this below, there are two intersections between y = f(x) and y = x corresponding to two fixed points.
- (c) $\frac{df}{dx} = \pm 2$ so it is greater than 1 in magnitude. This means the fixed points are unstable.
- (d) x = f(f(x)). If $0 \le x \le \frac{1}{2}$ then $x \to 2x$. If $0 \le x \le \frac{1}{4}$ then $x \to 2x \to 4x$. This has a fixed point of 0 but that isn't a period 2 point. If $\frac{1}{4} \le x \le \frac{1}{2}$ then $x \to 2x \to 2 4x$. This has a fixed point of x = 2 4x so $x = \frac{2}{5}$. $f(\frac{2}{5}) = \frac{4}{5}$ so the period-2 orbit is $x_1 = \frac{2}{5}, x_2 = \frac{4}{5}$. Looking at the graph of y = f(f(x)) below, there are 4 intersection points with y = x. These correspond to the two period-1 fixed points and two new fixed points. The two new fixed points form a period-2 orbit.
- (e) For the stability, we created the map explicitly, so it is clear that $x_{n+2} = f(f(x_n))$ has a Floquet multiplier of 4, and is unstable. More generally, thinking about the growth of a perturbation near the period-2 point, let z_n be a point near the period-2 orbit and let η_n be the distance of z_n from the orbit. $\eta_{n+2} \approx f'(z_{n+1})\eta_{n+1} \approx f'(z_{n+1})f'(z_n)\eta_n$. In our case, |f'(z)| = 2 for all z, so $|f'(z_{n+1})f'(z_n)| = 4$.
- (f) From above, any such orbit is unstable. Now, can we find one? For the period-3, looking at the y = f(f(f(x))) graph below, there are six intersection points. Two of these correspond to the period-1 points. The other 6 are new and correspond to two different period-3 orbits $(\frac{2}{9}, \dots \text{ and } \frac{2}{7} \dots)$

The map for period-4 should have $2^4 = 16$ intersections, of which two are period-1 and two are period-2 but the other 12 should be new, so 3 period-4 orbits.

Figure 1: Maps from left: $x_{n+1} = f(x_n)$, $x_{n+2} = f(f(x_n))$ and $x_{n+3} = f(f(f(x_n)))$.