
AM108 1:00pm
Class 19: Lorenz Attractor
Goals for the day:

1. Work with definitions to gain practice with the term attractor.

2. Identify what the largest Liapunov exponent of a system conveys about the system.

3. Find orbits in a map.

1. We defined an attractor, A, as a closed set with some specific properties: A is an invariant set ; A
attracts an open set of initial conditions; A is minimal.

(a) Consider the system ẋ = x − x3, ẏ = −y. This is the set that was used as an example in the
video. Let I = {(x, y) : −1 ≤ x ≤ 1, y = 0}. Argue that I is an invariant set.

(b) Consider the system ẋ = x − x3, ẏ = −y. Let I = {(x, y) : −1 ≤ x ≤ 1, y = 0}. The set I is
closed and invariant. It is also attracting for a set of points larger than the set itself. Identify
its basin of attraction.

(c) Is the set I an attractor?

2. (9.3.1) Consider the 2D system

θ̇1 = ω1

θ̇2 = ω2,

with ω1

ω2
irrational. The phase space is the torus. Consider two trajectories that start close to

each other, so they have similar (θ1(0), θ2(0)). For example, let θ1(0) differ by δ between the two
trajectories and θ2(0) be identical for the two trajectories. Using ‖δ(t)‖ =

√
∆θ21 −∆θ22 as the

distance between the trajectories at time t, find the largest Liapunov exponent of this system.

‖δ(t)‖ ∼ ‖δ0‖eλt where λ is the largest Liapunov exponent.

This system is quasiperiodic. Why isn’t it considered chaotic?

3. Let λ = 1 year−1 for some unidentified chaotic system. Recall that ‖δ(t)‖ ∼ ‖δ0‖eλt. A team of
scientists is trying to make a prediction about the evolution of the system given its initial state. Their
initial measurement is within 10−3 m of the actual state of the system, and they believe their model
equations are exactly correct. They want their estimate of the state of the system to be correct to
within 1 m. Over what time scale is their prediction achieving the accuracy they desire?

You can assume that ln 103 ≈ 7.

If they wanted to double the length of time over which your estimate held, how much more accurate
would your initial estimate need to be?

4. (9.4.2) The tent map is a simple analytical model that has some properties in common with the
Lorenz map. Let

xn+1 =

{
2xn, 0 ≤ xn ≤ 1

2
2− 2xn,

1
2 ≤ xn ≤ 1.

(a) Draw f(x) where xn+1 = f(xn). Why is this map the “tent map”?

(b) Find the fixed points of this map.

(c) Classify the stability of the fixed points.

(d) Show the map has a period-2 orbit. This means that there is an x such that f(f(x)) = x.

(e) Classify the stability of any period-2 orbits.

(f) Look for a period-3 or period-4 point. If you find one, are such orbits stable or unstable?

(g) If you want, you can think about this for a period-k orbit...

Some answers on back



Answers:

1. (a) Let x0 ∈ [−1, 1], y0 = 0. For all points (x0, y0), ẏ|y0 = 0 so we don’t leave the set in the y
direction. We also need to check the x direction: If x0 = ±1 or x0 = 0 then ẋ|x0 = 0, so if
we start at one of those points we definitely stay in the set for all time. If x0 ∈ (−1, 0) then
ẋ|x0

< 0 and we flow towards x = −1 but we can’t pass that point, so we stay in I. Similarly
if x0 ∈ (0, 1) then we flow towards x = 1 but we can’t pass that point, so we also stay in I.
No matter where we start in I we stay in I for all time, so the set is invariant.

(b) Its basin of attraction is the whole plane, actually (considered an open set).

(c) Actually, the trajectories are moving towards the two stable points (−1, 0) and (1, 0), and not
towards all of I, so not an attractor.

2. θ1(t) = ω1t+ θ1(0) and θ2(t) = ω2t+ θ2(0), so ∆θ1 = δ and ∆θ2 = 0. δ(t) = δ, so λ = 0. There is
no sensitive dependence on initial conditions and no exponential divergence of nearby trajectories.

3. 1 ∼ 10−3et, so we have t ∼ ln 103 ≈ 7 years. To double the length of time, we want the time to be
2 ln 103 years and still want 1 ∼ δ0et so 1 ∼ δ0e2 ln 103 .⇒ 1 ∼ δ0(103)2. ⇒ δ0 ∼ 10−6. This is 1 µm
of initial measurement accuracy instead of 1 mm.

4. (a)

(b) If 2x = x then x = 0, so 0 is a fixed point. If 2− 2x = x then 2− 3x = 0 so x = 2
3 . 1

2 ≤
2
3 ≤ 1,

so 2
3 is also a fixed point. Looking at the graph of this below, there are two intersections

between y = f(x) and y = x corresponding to two fixed points.

(c) df
dx = ±2 so it is greater than 1 in magnitude. This means the fixed points are unstable.

(d) x = f(f(x)). If 0 ≤ x ≤ 1
2 then x → 2x. If 0 ≤ x ≤ 1

4 then x → 2x → 4x. This has a fixed
point of 0 but that isn’t a period 2 point. If 1

4 ≤ x ≤ 1
2 then x → 2x → 2 − 4x. This has a

fixed point of x = 2− 4x so x = 2
5 . f( 2

5 ) = 4
5 so the period-2 orbit is x1 = 2

5 , x2 = 4
5 .

Looking at the graph of y = f(f(x)) below, there are 4 intersection points with y = x. These
correspond to the two period-1 fixed points and two new fixed points. The two new fixed
points form a period-2 orbit.

(e) For the stability, we created the map explicitly, so it is clear that xn+2 = f(f(xn)) has a
Floquet multiplier of 4, and is unstable. More generally, thinking about the growth of a
perturbation near the period-2 point, let zn be a point near the period-2 orbit and let ηn be
the distance of zn from the orbit. ηn+2 ≈ f ′(zn+1)ηn+1 ≈ f ′(zn+1)f ′(zn)ηn. In our case,
|f ′(z)| = 2 for all z, so |f ′(zn+1)f ′(zn)| = 4.

(f) From above, any such orbit is unstable. Now, can we find one? For the period-3, looking at
the y = f(f(f(x))) graph below, there are six intersection points. Two of these correspond
to the period-1 points. The other 6 are new and correspond to two different period-3 orbits
( 2
9 , ... and 2

7 ....)

The map for period-4 should have 24 = 16 intersections, of which two are period-1 and two
are period-2 but the other 12 should be new, so 3 period-4 orbits.
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Figure 1: Maps from left: xn+1 = f(xn), xn+2 = f(f(xn)) and xn+3 = f(f(f(xn))).
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